51
|
Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT, Powers AC, Gu G, Stein R. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 2016; 310:E91-E102. [PMID: 26554594 PMCID: PMC4675799 DOI: 10.1152/ajpendo.00285.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Analysis of MafB(-/-) mice has suggested that the MAFB transcription factor was essential to islet α- and β-cell formation during development, although the postnatal physiological impact could not be studied here because these mutants died due to problems in neural development. Pancreas-wide mutant mice were generated to compare the postnatal significance of MafB (MafB(Δpanc)) and MafA/B (MafAB(Δpanc)) with deficiencies associated with the related β-cell-enriched MafA mutant (MafA(Δpanc)). Insulin(+) cell production and β-cell activity were merely delayed in MafB(Δpanc) islets until MafA was comprehensively expressed in this cell population. We propose that MafA compensates for the absence of MafB in MafB(Δpanc) mice, which is supported by the death of MafAB(Δpanc) mice soon after birth from hyperglycemia. However, glucose-induced glucagon secretion was compromised in adult MafB(Δpanc) islet α-cells. Based upon these results, we conclude that MafB is only essential to islet α-cell activity and not β-cell. Interestingly, a notable difference between mice and humans is that MAFB is coexpressed with MAFA in adult human islet β-cells. Here, we show that nonhuman primate (NHP) islet α- and β-cells also produce MAFB, implying that MAFB represents a unique signature and likely important regulator of the primate islet β-cell.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Scoville
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie Carroll
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Wei-Ming Yu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - David M Harlan
- Department of Medicine, University of Massachusetts, Worcester, Massachusetts
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Charles T Roberts
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
52
|
Ahmad Z, Rafeeq M, Collombat P, Mansouri A. Pax6 Inactivation in the Adult Pancreas Reveals Ghrelin as Endocrine Cell Maturation Marker. PLoS One 2015; 10:e0144597. [PMID: 26658466 PMCID: PMC4676685 DOI: 10.1371/journal.pone.0144597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax6 is an important regulator of development and cell differentiation in various organs. Thus, Pax6 was shown to promote neural development in the cerebral cortex and spinal cord, and to control pancreatic endocrine cell genesis. However, the role of Pax6 in distinct endocrine cells of the adult pancreas has not been addressed. We report the conditional inactivation of Pax6 in insulin and glucagon producing cells of the adult mouse pancreas. In the absence of Pax6, beta- and alpha-cells lose their molecular maturation characteristics. Our findings provide strong evidence that Pax6 is responsible for the maturation of beta-, and alpha-cells, but not of delta-, and PP-cells. Moreover, lineage-tracing experiments demonstrate that Pax6-deficient beta- and alpha-cells are shunted towards ghrelin marked cells, sustaining the idea that ghrelin may represent a marker for endocrine cell maturation.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- * E-mail: (AM); (ZA)
| | - Maria Rafeeq
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
| | - Patrick Collombat
- Université de Nice Sophia Antipolis, Nice, France
- Inserm U1091, IBV, Diabetes Genetics Team, Nice, France
- JDRF, New York, NY, United States of America
- Genome and Stem Cell Center, GENKOK, Erciyes University, Kayseri, Turkey
| | - Ahmed Mansouri
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, RG Molecular Cell Differentiation, Goettingen, Germany
- JDRF, New York, NY, United States of America
- University of Goettingen, Department of Clinical Neurophysiology, Goettingen, Germany
- * E-mail: (AM); (ZA)
| |
Collapse
|
53
|
Scoville DW, Cyphert HA, Liao L, Xu J, Reynolds A, Guo S, Stein R. MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function. Diabetes 2015; 64:3772-83. [PMID: 26180087 PMCID: PMC4613979 DOI: 10.2337/db15-0281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
Insulin produced by islet β-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate β-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was used to isolate MafA transcription factor-binding proteins. Among the many coregulators identified were all of the subunits of the mixed-lineage leukemia 3 (Mll3) and 4 (Mll4) complexes, with histone 3 lysine 4 methyltransferases strongly associated with gene activation. MafA was bound to the ∼1.5 MDa Mll3 and Mll4 complexes in size-fractionated β-cell extracts. Likewise, closely related human MAFB, which is important to β-cell formation and coproduced with MAFA in adult human islet β-cells, bound MLL3 and MLL4 complexes. Knockdown of NCOA6, a core subunit of these methyltransferases, reduced expression of a subset of MAFA and MAFB target genes in mouse and human β-cell lines. In contrast, a broader effect on MafA/MafB gene activation was observed in mice lacking NCoA6 in islet β-cells. We propose that MLL3 and MLL4 are broadly required for controlling MAFA and MAFB transactivation during development and postnatally.
Collapse
Affiliation(s)
- David W Scoville
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Al Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland Stein
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
54
|
Pettersson AML, Acosta JR, Björk C, Krätzel J, Stenson B, Blomqvist L, Viguerie N, Langin D, Arner P, Laurencikiene J. MAFB as a novel regulator of human adipose tissue inflammation. Diabetologia 2015; 58:2115-23. [PMID: 26115698 DOI: 10.1007/s00125-015-3673-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Dysregulated expression of metabolic and inflammatory genes is a prominent consequence of obesity causing insulin resistance and type 2 diabetes. Finding causative factors is essential to understanding progression of these pathologies and discovering new therapeutic targets. The transcription factor V-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MAFB) is highly expressed in human white adipose tissue (WAT). However, its role in the regulation of WAT function is elusive. We aimed to characterise MAFB expression and function in human WAT in the context of obesity and insulin resistance. METHODS MAFB mRNA expression was evaluated in human WAT from seven cohorts with large inter-individual variation in BMI and metabolic features. Insulin-induced adipocyte lipogenesis and lipolysis were measured and correlated with MAFB expression. MAFB regulation during adipogenesis and the effects of MAFB suppression in human adipocytes was investigated. MAFB regulation by TNF-α was examined in human primary adipocytes and THP-1 monocytes/macrophages. RESULTS MAFB expression in human adipocytes is upregulated during adipogenesis, increases with BMI in WAT, correlates with adverse metabolic features and is decreased after weight loss. MAFB downregulation decreases proinflammatory gene expression in adipocytes and interferes with TNF-α effects. Interestingly, MAFB is differentially regulated by TNF-α in adipocytes (suppressed) and THP-1 cells (upregulated). Further, MAFB is primarily expressed in WAT macrophages/monocytes and its expression correlates with macrophage and inflammatory markers. CONCLUSIONS/INTERPRETATION Our findings indicate that MAFB is a regulator and a marker of adipose tissue inflammation, a process that subsequently causes insulin resistance.
Collapse
Affiliation(s)
- Annie M L Pettersson
- Department of Medicine Huddinge, Lipid laboratory, Karolinska Institutet, Novum, NVS D4, Hälsovägen 7, 14186, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Spaeth JM, Hunter CS, Bonatakis L, Guo M, French CA, Slack I, Hara M, Fisher SE, Ferrer J, Morrisey EE, Stanger BZ, Stein R. The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia 2015; 58:1836-44. [PMID: 26021489 PMCID: PMC4785827 DOI: 10.1007/s00125-015-3635-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. METHODS Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. RESULTS Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. CONCLUSIONS/INTERPRETATION Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.
Collapse
Affiliation(s)
- Jason M. Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
- Department of Medicine, Division of Endocrinology Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Bonatakis
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Catherine A. French
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ian Slack
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jorge Ferrer
- Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Edward E. Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, 723 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| |
Collapse
|
56
|
Yang Q, Yin RX, Zhou YJ, Cao XL, Guo T, Chen WX. Association of polymorphisms in the MAFB gene and the risk of coronary artery disease and ischemic stroke: a case-control study. Lipids Health Dis 2015. [PMID: 26204962 PMCID: PMC4513700 DOI: 10.1186/s12944-015-0078-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B gene (MAFB) has been associated with serum lipid levels in the Eurpean population, but little is known about such association in the Chinese population or in atherosclerosis-related patients. Therefore, the purpose of the present study was to assess the association of the single nucleotide polymorphisms (SNPs) in the MAFB and serum lipid levels and the risk of coronary artery disease (CAD) and ischemic stroke (IS) in the Chinese population. METHODS A total of 1,065 unrelated patients (CAD, 525 and IS, 540) and 539 healthy controls were recruited in this study. Genotypes of the MAFB rs2902940 and rs6102059 SNPs were determined by the Snapshot technology platform. RESULTS The rs2902940AA genotype was associated with an increased risk of CAD (adjusted OR = 1.63, 95% CI = 1.07-2.48, P = 0.023) and IS (adjusted OR = 1.69, 95% CI = 1.09-2.61, P = 0.017). The rs2902940GA/AA genotypes were also associated with an increased risk of CAD (adjusted OR = 1.56, 95% CI = 1.04-2.32, P = 0.030 for GA/AA vs. GG) and IS (adjusted OR = 1.72, 95% CI = 1.14-2.60, P = 0.010 for GA/AA vs. GG). Significant interactions were observed only in those with higher body mass index (BMI), hypertension and diabetes (P < 0.05). The subjects with rs2902940GA/AA genotypes in controls had lower serum ApoAI levels than the subjects with GG genotype (P = 0.024). CONCLUSIONS The rs2902940A allele carriers in the MAFB conferred a decreased serum ApoAI level in controls and an increased risk of CAD and IS. The rs2902940GA/AA genotypes interacted with higher BMI, hypertension and diabetes to contribute the risk of CAD and IS.
Collapse
Affiliation(s)
- Qian Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Yi-Jiang Zhou
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Xiao-Li Cao
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Tao Guo
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Wu-Xian Chen
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
57
|
Cheng Y, Kang H, Shen J, Hao H, Liu J, Guo Y, Mu Y, Han W. Beta-cell regeneration from vimentin+/MafB+ cells after STZ-induced extreme beta-cell ablation. Sci Rep 2015; 5:11703. [PMID: 26129776 PMCID: PMC4486952 DOI: 10.1038/srep11703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
Loss of functional beta-cells is fundamental in both type 1 and type 2 diabetes. In situ beta-cell regeneration therefore has garnered great interest as an approach to diabetes therapy. Here, after elimination of pre-existing beta cells by a single high-dose of streptozotocin (STZ), we demonstrated that a considerable amount of beta-like-cells was generated within 48 hrs. But the newly formed insulin producing cells failed to respond to glucose challenge at this time and diminished afterwards. Insulin treatment to normalize the glucose level protected the neogenic beta-like cells and the islet function was also gradually matured. Strikingly, intermediate cells lacking epithelial marker E-cadherin but expressing mesenchymal cell-specific marker vimentin appeared within 16 hrs following STZ exposure, which served as the major source of insulin-producing cells observed at 24 hrs. Moreover, these intermediate cells strongly expressed alpha-cell-specific marker MafB. In summary, the data presented here identified a novel intermediate cell type as beta-cell progenitors, showing mesenchymal cell feature as well as alpha-cell marker MafB. Our results might have important implications for efforts to stimulate beta-cell regeneration.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Hongjun Kang
- Department of Critical Care Medicine, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Jing Shen
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
- Department of Endocrinology, Chinese PLA 309 Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Haojie Hao
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Jiejie Liu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yelei Guo
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
58
|
Andrzejewski D, Brown ML, Ungerleider N, Burnside A, Schneyer AL. Activins A and B Regulate Fate-Determining Gene Expression in Islet Cell Lines and Islet Cells From Male Mice. Endocrinology 2015; 156:2440-50. [PMID: 25961841 DOI: 10.1210/en.2015-1167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGFβ superfamily ligands, receptors, and second messengers, including activins A and B, have been identified in pancreatic islets and proposed to have important roles regulating development, proliferation, and function. We previously demonstrated that Fstl3 (an antagonist of activin activity) null mice have larger islets with β-cell hyperplasia and improved glucose tolerance and insulin sensitivity in the absence of altered β-cell proliferation. This suggested the hypothesis that increased activin signaling influences β-cell expansion by destabilizing the α-cell phenotype and promoting transdifferentiation to β-cells. We tested the first part of this hypothesis by treating α- and β-cell lines and sorted mouse islet cells with activin and related ligands. Treatment of the αTC1-6 α cell line with activins A or B suppressed critical α-cell gene expression, including Arx, glucagon, and MafB while also enhancing β-cell gene expression. In INS-1E β-cells, activin A treatment induced a significant increase in Pax4 (a fate determining β-cell gene) and insulin expression. In sorted primary islet cells, α-cell gene expression was again suppressed by activin treatment in α-cells, whereas Pax4 was enhanced in β-cells. Activin treatment in both cell lines and primary cells resulted in phosphorylated mothers against decapentaplegic-2 phosphorylation. Finally, treatment of αTC1-6 cells with activins A or B significantly inhibited proliferation. These results support the hypothesis that activin signaling destabilized the α-cell phenotype while promoting a β-cell fate. Moreover, these results support a model in which the β-cell expansion observed in Fstl3 null mice may be due, at least in part, to enhanced α- to β-cell transdifferentiation.
Collapse
Affiliation(s)
- Danielle Andrzejewski
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Melissa L Brown
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Nathan Ungerleider
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Amy Burnside
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| | - Alan L Schneyer
- Departments of Veterinary and Animal Science (D.A., A.B., A.L.S.) and Nutrition (M.L.B.), and Molecular and Cellular Biology Graduate Program (N.U.), University of Massachusetts-Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
59
|
Santos-Silva JC, Ribeiro RA, Vettorazzi JF, Irles E, Rickli S, Borck PC, Porciuncula PM, Quesada I, Nadal A, Boschero AC, Carneiro EM. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 2015; 47:1533-48. [PMID: 25940922 DOI: 10.1007/s00726-015-1988-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/15/2015] [Indexed: 01/12/2023]
Abstract
Taurine (Tau) regulates β-cell function and glucose homeostasis under normal and diabetic conditions. Here, we assessed the effects of Tau supplementation upon glucose homeostasis and the morphophysiology of endocrine pancreas, in leptin-deficient obese (ob) mice. From weaning until 90-day-old, C57Bl/6 and ob mice received, or not, 5% Tau in drinking water (C, CT, ob and obT). Obese mice were hyperglycemic, glucose intolerant, insulin resistant, and exhibited higher hepatic glucose output. Tau supplementation did not prevent obesity, but ameliorated glucose homeostasis in obT. Islets from ob mice presented a higher glucose-induced intracellular Ca(2+) influx, NAD(P)H production and insulin release. Furthermore, α-cells from ob islets displayed a higher oscillatory Ca(2+) profile at low glucose concentrations, in association with glucagon hypersecretion. In Tau-supplemented ob mice, insulin and glucagon secretion was attenuated, while Ca(2+) influx tended to be normalized in β-cells and Ca(2+) oscillations were increased in α-cells. Tau normalized the inhibitory action of somatostatin (SST) upon insulin release in the obT group. In these islets, expression of the glucagon, GLUT-2 and TRPM5 genes was also restored. Tau also enhanced MafA, Ngn3 and NeuroD mRNA levels in obT islets. Morphometric analysis demonstrated that the hypertrophy of ob islets tends to be normalized by Tau with reductions in islet and β-cell masses, but enhanced δ-cell mass in obT. Our results indicate that Tau improves glucose homeostasis, regulating β-, α-, and δ-cell morphophysiology in ob mice, indicating that Tau may be a potential therapeutic tool for the preservation of endocrine pancreatic function in obesity and diabetes.
Collapse
Affiliation(s)
- Junia C Santos-Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, e Centro de Pesquisa em Obesidade e Comorbidades, Universidade Estadual de Campinas (UNICAMP), C.P. 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
van der Meulen T, Huising MO. Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 2015; 54:R103-17. [PMID: 25791577 PMCID: PMC4373662 DOI: 10.1530/jme-14-0290] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| | - Mark O Huising
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
61
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
62
|
Tsuchiya M, Misaka R, Nitta K, Tsuchiya K. Transcriptional factors, Mafs and their biological roles. World J Diabetes 2015; 6:175-183. [PMID: 25685288 PMCID: PMC4317310 DOI: 10.4239/wjd.v6.i1.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/17/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
The Maf family of transcription factors is characterized by a typical bZip structure; these transcription factors act as important regulators of the development and differentiation of many organs and tissues, including the kidney. The Maf family consists of two subgroups that are characterized according to their structure: large Maf transcription factors and small Maf transcription factors. The large Maf subgroup consists of four proteins, designated as MAFA, MAFB, c-MAF and neural retina-specific leucine zipper. In particular, MAFA is a distinct molecule that has been attracting the attention of researchers because it acts as a strong transactivator of insulin, suggesting that Maf transcription factors are likely to be involved in systemic energy homeostasis. In this review, we focused on the regulation of glucose/energy balance by Maf transcription factors in various organs.
Collapse
|
63
|
Li F, Su Y, Cheng Y, Jiang X, Peng Y, Li Y, Lu J, Gu Y, Zhang C, Cao Y, Wang W, Ning G. Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development. Endocrinology 2015; 156:48-57. [PMID: 25343275 DOI: 10.1210/en.2014-1433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor menin is recognized as a key regulator of β-cell proliferation. To induce tumorigenesis within the pancreatic β-cells, floxed alleles of Men1 were selectively ablated using Cre-recombinase driven by the insulin promoter. Despite the β-cell specificity of the RipCre, glucagon-expressing tumors as well as insulinomas developed in old mutant mice. These glucagon-expressing tumor cells were menin deficient and expressed the mature α-cell-specific transcription factors Brain-specific homeobox POU domain protein 4 (Brn4) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB). Moreover, the inactivation of β-cell-specific transcription factors was observed in mutant β-cells. Our work shows that Men1 ablation in the pancreatic β-cells leads to the inactivation of specific transcription factors, resulting in glucagon-expressing tumor development, which sheds light on the mechanisms of islet tumorigenesis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism (F.L., Y.S., Y.Ch., X.J., Y.P., Y.L., J.L., Y.G., Y.Ca., W.W., G.N.), Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Laboratoire Génétique Moléculaire, Signalisation et Cancer (C.Z.), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5201, Faculté de Médecine, Université Claude Bernard Lyon, Centre Leon-Berard, Lyon69366, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
65
|
Heddad Masson M, Poisson C, Guérardel A, Mamin A, Philippe J, Gosmain Y. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion. Endocrinology 2014; 155:3781-92. [PMID: 25057789 DOI: 10.1210/en.2013-1843] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Collapse
Affiliation(s)
- Mounia Heddad Masson
- Department of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Medical School, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
66
|
Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun 2014; 5:4639. [PMID: 25145789 PMCID: PMC4143961 DOI: 10.1038/ncomms5639] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.
Collapse
|
67
|
Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 2014; 15:620. [PMID: 25051960 PMCID: PMC4124169 DOI: 10.1186/1471-2164-15-620] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/10/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Insulin producing beta cell and glucagon producing alpha cells are colocalized in pancreatic islets in an arrangement that facilitates the coordinated release of the two principal hormones that regulate glucose homeostasis and prevent both hypoglycemia and diabetes. However, this intricate organization has also complicated the determination of the cellular source(s) of the expression of genes that are detected in the islet. This reflects a significant gap in our understanding of mouse islet physiology, which reduces the effectiveness by which mice model human islet disease. RESULTS To overcome this challenge, we generated a bitransgenic reporter mouse that faithfully labels all beta and alpha cells in mouse islets to enable FACS-based purification and the generation of comprehensive transcriptomes of both populations. This facilitates systematic comparison across thousands of genes between the two major endocrine cell types of the islets of Langerhans whose principal hormones are of cardinal importance for glucose homeostasis. Our data leveraged against similar data for human beta cells reveal a core common beta cell transcriptome of 9900+ genes. Against the backdrop of overall similar beta cell transcriptomes, we describe marked differences in the repertoire of receptors and long non-coding RNAs between mouse and human beta cells. CONCLUSIONS The comprehensive mouse alpha and beta cell transcriptomes complemented by the comparison of the global (dis)similarities between mouse and human beta cells represent invaluable resources to boost the accuracy by which rodent models offer guidance in finding cures for human diabetes.
Collapse
Affiliation(s)
- Christopher Benner
- />Razzavi Newman Integrated Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Talitha van der Meulen
- />Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Elena Cacéres
- />Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kristof Tigyi
- />Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Cynthia J Donaldson
- />Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Mark O Huising
- />Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- />Department of Neurobiology, Physiology & Behavior, University of California, One Shields Avenue, 180 Briggs Hall, Davis, CA 95616 USA
| |
Collapse
|
68
|
Meister J, Le Duc D, Ricken A, Burkhardt R, Thiery J, Pfannkuche H, Polte T, Grosse J, Schöneberg T, Schulz A. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J Biol Chem 2014; 289:23353-66. [PMID: 24993824 DOI: 10.1074/jbc.m114.580803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion.
Collapse
Affiliation(s)
- Jaroslawna Meister
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| | | | | | - Ralph Burkhardt
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Helga Pfannkuche
- the Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, 04109 Leipzig, Germany
| | - Tobias Polte
- the Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany, the Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04109 Leipzig, Germany, and
| | | | | | - Angela Schulz
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| |
Collapse
|
69
|
Schiesser JV, Micallef SJ, Hawes S, Elefanty AG, Stanley EG. Derivation of insulin-producing beta-cells from human pluripotent stem cells. Rev Diabet Stud 2014; 11:6-18. [PMID: 25148364 DOI: 10.1900/rds.2014.11.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with those that seek to develop fully functional hormone expressing cells in vitro. Overall, our survey of the literature highlights the significant progress already made in the field and identifies remaining deficiencies in developing a pluripotent stem cell based treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Suzanne J Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Susan Hawes
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Edouard G Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
70
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
71
|
Bramswig NC, Kaestner KH. Transcriptional and epigenetic regulation in human islets. Diabetologia 2014; 57:451-4. [PMID: 24362728 PMCID: PMC3945729 DOI: 10.1007/s00125-013-3150-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Abstract
Gene regulation in human pancreatic endocrine cells is a complex process, governed by genetic and environmental factors and crosstalk between the various endocrine cell types, and between endocrine cells and the metabolic state. Recent advances in gene expression profiling, genome-wide analysis of epigenetic marks, and cell fractionation of human islets into their constitutive cell types have greatly increased our understanding of the complex processes that govern endocrine cell function in health and disease. Further progress in this area holds great promise for delivering new targets for the development of novel diabetes therapies.
Collapse
Affiliation(s)
- Nuria C. Bramswig
- Department of Genetics, Perelman School of Medicine, 3400 Civic Center Blvd., University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, 3400 Civic Center Blvd., University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
72
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
73
|
Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 2014; 19:259-71. [PMID: 24506867 PMCID: PMC3950964 DOI: 10.1016/j.cmet.2013.12.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/10/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022]
Abstract
Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult β cell function. In this study, we traced the fate of adult β cells after Pdx1 deletion. As expected, β-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of α cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift that included derepression of the α cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of α cells. These findings indicate that Pdx1 acts as a master regulator of β cell fate by simultaneously activating genes essential for β cell identity and repressing those associated with α cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of β cell identity contributes to the pathogenesis of type 2 diabetes.
Collapse
|
74
|
Martens GA, Motté E, Kramer G, Stangé G, Gaarn LW, Hellemans K, Nielsen JH, Aerts JM, Ling Z, Pipeleers D. Functional characteristics of neonatal rat β cells with distinct markers. J Mol Endocrinol 2014; 52:11-28. [PMID: 24049066 DOI: 10.1530/jme-13-0106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas.
Collapse
Affiliation(s)
- G A Martens
- Diabetes Research Center, Brussels Free University (VUB), Laarbeeklaan 103, B1090 Brussel, Belgium Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B1090 Brussels, Belgium Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, The Netherlands Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol 2013; 385:2-12. [PMID: 24183936 DOI: 10.1016/j.ydbio.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Specification and maturation of insulin(+) cells accompanies a transition in expression of Maf family of transcription factors. In development, MafA is expressed after specification of insulin(+) cells that are expressing another Maf factor, MafB; after birth, these insulin(+) MafA(+) cells stop MafB expression and gain glucose responsiveness. Current differentiation protocols for deriving insulin-producing β-cells from stem cells result in β-cells lacking both MafA expression and glucose-stimulated insulin secretion. So driving expression of MafA, a β-cell maturation factor in endocrine precursors could potentially generate glucose-responsive MafA(+) β cells. Using inducible transgenic mice, we characterized the final stages of β-cell differentiation and maturation with MafA pause/release experiments. We found that forcing MafA transgene expression, out of its normal developmental context, in Ngn3(+) endocrine progenitors blocked endocrine differentiation and prevented the formation of hormone(+) cells. However, this arrest was reversible such that with stopping the transgene expression, the cells resumed their differentiation to hormone(+) cells, including α-cells, indicating that the block likely occurred after progenitors had committed to a specific hormonal fate. Interestingly, this delayed resumption of endocrine differentiation resulted in a greater proportion of immature insulin(+)MafB(+) cells at P5, demonstrating that during maturation the inhibition of MafB in β-cell transitioning from insulin(+)MafB(+) to insulin(+)MafB(-) stage is regulated by cell-autonomous mechanisms. These results demonstrate the importance of proper context of initiating MafA expression on the endocrine differentiation and suggest that generating mature Insulin(+)MafA(+) β-cells will require the induction of MafA in a narrow temporal window to achieve normal endocrine differentiation.
Collapse
Affiliation(s)
- KaiHui Hu He
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Kirstine Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Michael Karadimos
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Connor Fitzpatrick
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| |
Collapse
|
76
|
Wang H, Yang Y, Ho G, Lin X, Wu W, Li W, Lin L, Feng X, Huo X, Jiang J, Liu X, Huang T, Wei C, Ma L. Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression. Mol Med Rep 2013; 8:769-74. [PMID: 23900717 DOI: 10.3892/mmr.2013.1598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (HUMSCs) are candidates for tissue engineering and may potentially be used for transdifferentiation into pancreatic endocrine cells. The adenoviral vector is effective in transducing genes into stem cells that are refractory to gene delivery by non‑viral approaches. qPCR was used to detect the pancreatic endogenous gene expression of HUMSCs transfected by islet cell-specific transcription factors (TFs). In the present study, using adenoviruses, the mouse TFs, pancreatic and duodenal homeobox 1 (pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (mafa) and class B basic helix‑loop‑helix factor neurogenin 3 (ngn3), which are essential for pancreatic cell development, were introduced into HUMSCs to assess the expression of the pancreatic genes, glucagon, pdx1 and nk2 homeobox 2 (nkx2.2). When pdx1, mafa and ngn3 were cotransduced into HUMSCs, the expression of glucagon increased by 21‑fold at days 3 and 7 following transduction, while the endogenous pdx1 gene expression was increased by 15‑fold at day 3 and decreased by 70% at day 7. When mafa and ngn3 were cotransduced into HUMSCs, there was a 5‑fold increase in pdx1 gene expression at day 7, but no activation was observed at day 3. When mafa alone was introduced into HUMSCs, the pdx1 gene expression was elevated by 6‑fold at day 3 and decreased by 3‑fold at day 7. Transduction of ngn3 alone into HUMSCs induced nkx2.2 gene expression at day 3 but the expression levels were decreased at day 7. However, when pdx1 and ngn3 were cotransduced into HUMSCs, the expression levels of glucagon, pdx1 and nks2.2 were all lower than those observed with pdx1 or ngn3 transduction alone. These results suggested that the transduction of pdx1, mafa and ngn3 genes into HUMSCs induced the expression of the pancreatic genes, glucagon, pdx‑1 and nkx2.2, and that the expression was time dependent. In addition, different combinations of the TFs may demonstrate synergistic or antagonistic effects. This data may be beneficial for guiding future studies obtaining mature pancreatic endocrine cells from HUMSCs.
Collapse
Affiliation(s)
- Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bonnavion R, Jaafar R, Kerr-Conte J, Assade F, van Stralen E, Leteurtre E, Pouponnot C, Gargani S, Pattou F, Bertolino P, Cordier-Bussat M, Lu J, Zhang CX. Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes. PLoS One 2013; 8:e72194. [PMID: 24013263 PMCID: PMC3754968 DOI: 10.1371/journal.pone.0072194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/08/2013] [Indexed: 01/08/2023] Open
Abstract
Pax4 and MafA (v-maf musculoaponeurotic fibrosarcoma oncogene homolog A) are two transcription factors crucial for normal functions of islet beta cells in the mouse. Intriguingly, recent studies indicate the existence of notable difference between human and rodent islet in terms of gene expression and functions. To better understand the biological role of human PAX4 and MAFA, we investigated their expression in normal and diseased human islets, using validated antibodies. PAX4 was detected in 43.0±5.0% and 39.1±4.0% of normal human alpha and beta cells respectively. We found that MAFA, detected in 88.3±6.3% insulin+cells as in the mouse, turned out to be also expressed in 61.2±6.4% of human glucagons+ cells with less intensity than in insulin+ cells, whereas MAFB expression was found not only in the majority of glucagon+ cells (67.2±7.6%), but also in 53.6±10.5% of human insulin+ cells. Interestingly, MAFA nuclear expression in both alpha and beta cells, and the percentage of alpha cells expressing PAX4 were found altered in a substantial proportion of patients with type 2 diabetes. Both MAFA and PAX4 display, therefore, a distinct expression pattern in human islet cells, suggesting more potential plasticity of human islets as compared with rodent islets.
Collapse
Affiliation(s)
- Rémy Bonnavion
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
| | - Rami Jaafar
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
| | - Julie Kerr-Conte
- Université Lille Nord de France/INSERM U859 Biotherapies of Diabetes, Faculty of Medicine, Lille, France
| | - Fouzia Assade
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
| | - Esther van Stralen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences & University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Emmanuelle Leteurtre
- Department of Pathology, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | | | - Sofia Gargani
- Université Lille Nord de France/INSERM U859 Biotherapies of Diabetes, Faculty of Medicine, Lille, France
| | - François Pattou
- Université Lille Nord de France/INSERM U859 Biotherapies of Diabetes, Faculty of Medicine, Lille, France
| | - Philippe Bertolino
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
| | | | - Jieli Lu
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
- The E-Institute of Shanghai, Sino-French Life Science and Genomic Center, Ruijin Hospital, Shanghai, China
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, China
- * E-mail: (JLL); (CXZ)
| | - Chang Xian Zhang
- Inserm U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Université de Lyon, Lyon, France
- The E-Institute of Shanghai, Sino-French Life Science and Genomic Center, Ruijin Hospital, Shanghai, China
- * E-mail: (JLL); (CXZ)
| |
Collapse
|
78
|
O'Dowd JF, Stocker CJ. Endocrine pancreatic development: impact of obesity and diet. Front Physiol 2013; 4:170. [PMID: 23882220 PMCID: PMC3714448 DOI: 10.3389/fphys.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022] Open
Abstract
During embryonic development, multipotent endodermal cells differentiate to form the pancreas. Islet cell clusters arising from the pancreatic bud form the acini tissue and exocrine ducts whilst pancreatic islets form around the edges of the clusters. The successive steps of islet differentiation are controlled by a complex network of transcription factors and signals that influence cell differentiation, growth and lineage. A Westernized lifestyle has led to an increased consumption of a high saturated fat diet, and an increase in maternal obesity. The developing fetus is highly sensitive to the intrauterine environment, therefore any alteration in maternal nutrition during gestation and lactation which affects the in-utero environment during the key developmental phases of the pancreas may change the factors controlling β-cell development and β-cell mass. Whilst the molecular mechanisms behind the adaptive programming of β-cells are still poorly understood it is established that changes arising from maternal obesity and/or over-nutrition may affect the ability to maintain fetal β-cell mass resulting in an increased risk of type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Jacqueline F O'Dowd
- Metabolic Diseases Group, Clore Laboratory, University of Buckingham Buckingham, UK
| | | |
Collapse
|
79
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
80
|
El Khattabi I, Sharma A. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. Mol Endocrinol 2013; 27:1078-90. [PMID: 23660596 PMCID: PMC3706838 DOI: 10.1210/me.2012-1346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022] Open
Abstract
The reduction in the expression of glucose-responsive insulin gene transcription factor MafA accompanies the development of β-cell dysfunction under oxidative stress/diabetic milieu. Humans with type 2 diabetes have reduced MafA expression, and thus preventing this reduction could overcome β-cell dysfunction and diabetes. We previously showed that p38 MAPK, but not glycogen synthase kinase 3 (GSK3), is a major regulator of MafA degradation under oxidative stress. Here, we examined the mechanisms of this degradation and whether preventing MafA degradation under oxidative stress will overcome β-cell dysfunction. We show that under oxidative and nonoxidative conditions p38 MAPK directly binds to MafA and triggers MafA degradation via ubiquitin proteasomal pathway. However, unlike nonoxidative conditions, MafA degradation under oxidative stress depended on p38 MAPK-mediated phosphorylation at threonine (T) 134, and not T57. Furthermore the expression of alanine (A) 134-MafA, but not A57-MafA, reduced the oxidative stress-mediated loss of glucose-stimulated insulin secretion, which was independent of p38 MAPK action on protein kinase D, a regulator of insulin secretion. Interestingly, the expression of proteasomal activator PA28γ that degrades GSK3-phosphorylated (including T57) MafA was reduced under oxidative stress, explaining the dominance of p38 MAPK over the GSK3 pathway in regulating MafA stability under oxidative stress. These results identify two distinct pathways mediating p38 MAPK-dependent MafA degradation under oxidative and nonoxidative conditions and show that inhibiting MafA degradation under oxidative stress ameliorates β-cell dysfunction and could lead to novel therapies for diabetes.
Collapse
Affiliation(s)
- Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
81
|
Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC, Stein R. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123:3305-16. [PMID: 23863625 DOI: 10.1172/jci65390] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes (T2DM) commonly arises from islet β cell failure and insulin resistance. Here, we examined the sensitivity of key islet-enriched transcription factors to oxidative stress, a condition associated with β cell dysfunction in both type 1 diabetes (T1DM) and T2DM. Hydrogen peroxide treatment of β cell lines induced cytoplasmic translocation of MAFA and NKX6.1. In parallel, the ability of nuclear PDX1 to bind endogenous target gene promoters was also dramatically reduced, whereas the activity of other key β cell transcriptional regulators was unaffected. MAFA levels were reduced, followed by a reduction in NKX6.1 upon development of hyperglycemia in db/db mice, a T2DM model. Transgenic expression of the glutathione peroxidase-1 antioxidant enzyme (GPX1) in db/db islet β cells restored nuclear MAFA, nuclear NKX6.1, and β cell function in vivo. Notably, the selective decrease in MAFA, NKX6.1, and PDX1 expression was found in human T2DM islets. MAFB, a MAFA-related transcription factor expressed in human β cells, was also severely compromised. We propose that MAFA, MAFB, NKX6.1, and PDX1 activity provides a gauge of islet β cell function, with loss of MAFA (and/or MAFB) representing an early indicator of β cell inactivity and the subsequent deficit of more impactful NKX6.1 (and/or PDX1) resulting in overt dysfunction associated with T2DM.
Collapse
|
82
|
Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 2013; 22:2551-60. [PMID: 23627894 DOI: 10.1089/scd.2013.0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we describe novel conditions for culture, expansion, and transdifferentiation of primary human dermal fibroblasts (hDFs) to induce expression of transcription factors (TFs) and hormones characteristic of the islets of Langerhans. We show that histones associated with the insulin gene are hyperacetylated and that insulin gene DNA is less methylated in islet cells compared to cells that do not express insulin. Using two compounds that alter the epigenetic signature of cells, romidepsin (Romi), a histone deacetylase inhibitor, and 5-Azacytidine (5-AzC), a chemical analogue of cytidine that cannot be methylated, we show that hDFs exhibit a distinctive regulation of expression of TFs involved in islet development as well as of induction of glucagon and insulin. Overexpression of Pdx1, a TF important for islet differentiation, and silencing of musculoaponeurotic fibrosarcoma oncogene homolog B, a TF that is expressed in mature glucagon-producing cells, result in induction of insulin to a higher level compared to Romi and 5-AzC alone. The cells obtained from this protocol exhibit glucose-stimulated insulin secretion and lower blood glucose levels of diabetic mice. These data show that fully differentiated nonislet-derived cells could be made to transdifferentiate to islet-like cells and that combining epigenetic modulation with TF modulation leads to enhanced insulin expression.
Collapse
Affiliation(s)
- Liora S Katz
- Laboratory of Endocrinology and Receptor Biology, NIDDK, NIH, Bethesda, Maryland 20892-8029, USA
| | | | | |
Collapse
|
83
|
Hunter CS, Dixit S, Cohen T, Ediger B, Wilcox C, Ferreira M, Westphal H, Stein R, May CL. Islet α-, β-, and δ-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes 2013; 62. [PMID: 23193182 PMCID: PMC3581213 DOI: 10.2337/db12-0952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ldb1 and Ldb2 are coregulators that mediate Lin11-Isl1-Mec3 (LIM)-homeodomain (HD) and LIM-only transcription factor-driven gene regulation. Although both Ldb1 and Ldb2 mRNA were produced in the developing and adult pancreas, immunohistochemical analysis illustrated a broad Ldb1 protein expression pattern during early pancreatogenesis, which subsequently became enriched in islet and ductal cells perinatally. The islet-enriched pattern of Ldb1 was similar to pan-endocrine cell-expressed Islet-1 (Isl1), which was demonstrated in this study to be the primary LIM-HD transcription factor in developing and adult islet cells. Endocrine cell-specific removal of Ldb1 during mouse development resulted in a severe reduction of hormone⁺ cell numbers (i.e., α, β, and δ) and overt postnatal hyperglycemia, reminiscent of the phenotype described for the Isl1 conditional mutant. In contrast, neither endocrine cell development nor function was affected in the pancreas of Ldb2(-/-) mice. Gene expression and chromatin immunoprecipitation (ChIP) analyses demonstrated that many important Isl1-activated genes were coregulated by Ldb1, including MafA, Arx, insulin, and Glp1r. However, some genes (i.e., Hb9 and Glut2) only appeared to be impacted by Ldb1 during development. These findings establish Ldb1 as a critical transcriptional coregulator during islet α-, β-, and δ-cell development through Isl1-dependent and potentially Isl1-independent control.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Shilpy Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Tsadok Cohen
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Ediger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Crystal Wilcox
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mark Ferreira
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Heiner Westphal
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| |
Collapse
|
84
|
Barbagallo D, Piro S, Condorelli AG, Mascali LG, Urbano F, Parrinello N, Monello A, Statello L, Ragusa M, Rabuazzo AM, Di Pietro C, Purrello F, Purrello M. miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic α cells to cytokine-induced apoptosis as compared to β cells. BMC Genomics 2013; 14:62. [PMID: 23360399 PMCID: PMC3571888 DOI: 10.1186/1471-2164-14-62] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/26/2013] [Indexed: 01/03/2023] Open
Abstract
Background The molecular bases of mammalian pancreatic α cells higher resistance than β to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus. Results Through high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6) and β (βTC1) cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1) specifically expressed at steady state in αTC1-6, but not in βTC1 or INS-1 cells; (2) significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6–48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rβ, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans) controls the expression of miR-296-3p and miR-298-5p. Conclusions Altogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific downregulation of miR-296-3p and miR-298-5p, coupled to upregulation of their targets as IGF1Rβ and TNFα, is a major determinant of mammalian pancreatic α cells resistance to apoptosis induction by cytokines.
Collapse
Affiliation(s)
- Davide Barbagallo
- Dipartimento Gian Filippo Ingrassia, Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale, Università di Catania, Catania, EU 95123, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Differentiation of stem cells into insulin-producing cells: current status and challenges. Arch Immunol Ther Exp (Warsz) 2013; 61:149-58. [PMID: 23283518 DOI: 10.1007/s00005-012-0213-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus is one of the most serious public health challenges of the twenty-first century. Allogenic islet transplantation is an efficient therapy for type 1 diabetes. However, immune rejection, side effects of immunosuppressive treatment as well as lack of sufficient donor organs limits its potential. In recent years, several promising approaches for generation of new pancreatic β cells have been developed. This review provides an overview of current status of pancreatic and extra-pancreatic stem cells differentiation into insulin-producing cells and the possible application of these cells for diabetes treatment. The PubMed database was searched for English language articles published between 2001 and 2012, using the keyword combinations: diabetes mellitus, differentiation, insulin-producing cells, stem cells.
Collapse
|
86
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
87
|
El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, Urbanek M, O'Halloran TV, Lowe WL. Accumulation of cadmium in insulin-producing β cells. Islets 2012; 4:405-16. [PMID: 23466887 PMCID: PMC3605169 DOI: 10.4161/isl.23101] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Evidence suggests that chronic low level cadmium exposure impairs the function of insulin-producing β cells and may be associated with type-2 diabetes mellitus. Herein, we describe the cadmium content in primary human islets and define the uptake kinetics and effects of environmentally relevant cadmium concentrations in cultured β cells. The average cadmium content in islets from 10 non-diabetic human subjects was 29 ± 7 nmol/g protein (range 7 to 72 nmol/g protein). Exposure of the β-cell line MIN6 to CdCl 2 concentrations between 0.1 and 1.0 µmol/L resulted in a dose- and time-dependent uptake of cadmium over 72 h. This uptake resulted in an induction of metallthionein expression, likely enhancing cellular cadmium accumulation. Furthermore, cadmium accumulation resulted in an inhibition of glucose stimulated insulin secretion in MIN6 cells and primary mouse islets. Our results indicate that this impairment in β-cell function is not due to an increase in cell death or due to an increase in oxidative stress. We conclude that mouse β cells accumulate cadmium in a dose- and time-dependent manner over a prolonged time course at environmentally relevant concentrations. This uptake leads to a functional impairment of β-cell function without significant alterations in cell viability, expression of genes important for β-cell function or increase in oxidative stress.
Collapse
Affiliation(s)
- Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chen X, Hermansen K, Jeppesen PB. Impact of glucagon-like peptide-1 (7-36) amide, isosteviol and 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside on leucine-mediated α-cell dysfunction. Diabetes Obes Metab 2012; 14:1020-31. [PMID: 22747908 DOI: 10.1111/j.1463-1326.2012.01633.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/30/2012] [Accepted: 06/03/2012] [Indexed: 01/09/2023]
Abstract
AIM To investigate the acute and chronic effects of l-leucine on pancreatic α-cell function in vitro. Furthermore, we wanted to explore if glucagon-like peptide-1 (GLP-1), isosteviol (ISV) and 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) counteract changes in α-cell function induced by chronic exposure to leucine. METHODS Isolated mice islets were incubated with 10 mM leucine for 2 or 72 h. We investigated glucagon and insulin secretion at 2 mM and 16.7 mM glucose. In addition, we cultured clonal α-TC1-6 cells with 5 mM leucine, 5 mM leucine plus GLP-1 (10(-6) M), or ISV (10(-6) M) or AICAR (10(-5) M) at high glucose for 72 h. We measured the glucagon secretion, cholesterol (CHO) and triglyceride (TG) content, cell proliferation as well as gene expression. RESULTS Ten millimolar of leucine for 2 h significantly stimulated glucagon and insulin secretion both at 2 and 16.7 mM glucose in mice islets. After 72 h incubation with 10 mM leucine the glucagon secretion was enhanced at both 2 and 16.7 mM glucose, whereas the glucose-stimulated insulin secretion (16.7 mM glucose) was inhibited. Chronic exposure to 5 mM leucine increased glucagon secretion, CHO and TG content, cell proliferation and Pcsk2 (p < 0.001), MafB (p < 0.05), Gcg (p < 0.001), Prkaa1 (p < 0.01), Hmgcr (p < 0.001), Srebf2 (p < 0.001), Acaca (p < 0.001), Mtor (p < 0.05) mRNA expression in clonal α-TC1-6 cells. While GLP-1 was cable of reducing glucagon hypersecretion and Pcsk2 (p < 0.05) mRNA expression. ISV and AICAR had no effect on leucine-induced glucagon hypersecretion. CONCLUSIONS Long-term exposure to leucine induces hypersecretion of glucagon secretion, that is, aminoacidotoxicity and influences some key genes of pancreatic α-cells. Interestingly, GLP-1 counteracts the leucine-induced α-cell dysfunction.
Collapse
Affiliation(s)
- X Chen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus C, Denmark
| | | | | |
Collapse
|
89
|
Matsuoka TA. Molecular mechanism of pancreatic β-cell dysfunction under diabetic conditions. Diabetol Int 2012. [DOI: 10.1007/s13340-012-0091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
90
|
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M. Differential regulation of embryonic and adult β cell replication. Cell Cycle 2012; 11:2431-42. [PMID: 22659844 PMCID: PMC3404874 DOI: 10.4161/cc.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from an inadequate functional β cell mass, either due to autoimmune destruction (Type 1 diabetes) or insulin resistance combined with β cell failure (Type 2 diabetes). Strategies to enhance β cell regeneration or increase cell proliferation could improve outcomes for patients with diabetes. Research conducted over the past several years has revealed that factors regulating embryonic β cell mass expansion differ from those regulating replication ofβ cells post-weaning. This article aims to compare and contrast factors known to control embryonic and postnatal β cell replication. In addition, we explore the possibility that connective tissue growth factor (CTGF) could increase adult β cell replication. We have already shown that CTGF is required for embryonicβ cell proliferation and is sufficient to induce replication of embryonic β cells. Here we examine whether adult β cell replication and expansion of β cell mass can be enhanced by increased CTGF expression in mature β cells.
Collapse
Affiliation(s)
- Uma Gunasekaran
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
91
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
92
|
Avrahami D, Kaestner KH. Epigenetic regulation of pancreas development and function. Semin Cell Dev Biol 2012; 23:693-700. [PMID: 22728076 DOI: 10.1016/j.semcdb.2012.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/13/2012] [Indexed: 12/25/2022]
Abstract
Multiple signaling systems and transcription factor cascades control pancreas development and endocrine cell fate determination. Epigenetic processes contribute to the control of this transcriptional hierarchy, involving both histone modifications and DNA methylation. Here, we summarize recent advances in the field that demonstrate the importance of epigenetic regulation in pancreas development, β-cell proliferation, and cell fate choice. These breakthroughs were made using the phenotypic analysis of mice with mutations in genes that encode histone modifying enzymes and related proteins; by application of activators or inhibitors of the enzymes that acetylate or methylate histones to fetal pancreatic explants in culture; and by genomic approaches that determined the patterns of histone modifications and chromatin state genome-wide.
Collapse
Affiliation(s)
- Dana Avrahami
- Department of Genetics and Institute of Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
93
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
94
|
Abstract
This review considers the role of α-cells in β-cell generation and regeneration. We present recent evidence obtained from lineage-tracing studies showing that α-cells can serve as progenitors of β-cells and present a hypothetical model how injured β-cells might activate α-cells in adult islets to promote β-cell regeneration. β-cells appear to arise by way of their trans-differentiation from undifferentiated α progenitor cells, pro-α-cells, both during embryonic development of the islets and in the adult pancreas in response to β-cell injuries. Plasticity of α-cells is endowed by the expression of the gene encoding proglucagon, a prohormone that can give rise to glucagon and glucagon-like peptides (GLPs). The production of glucagon from proglucagon is characteristic of fully-differentiated α-cells whereas GLP-1 is a product of undifferentiated α-cells. GLP-1, a cell growth and survival factor, is proposed to promote the expansion of neurogenin3-expressing, undifferentiated pro-α-cells during development. β-cells arise from pro-α-cells by a change in the relative amounts of the transcription factors Arx and Pax4, master regulators of the α- and β-cell lineages, respectively. A paracrine/autocrine model is proposed whereby injuries of β-cells in adult islets induce the production and release of factors, such as stromal cell-derived factor-1, that cause the de-differentiation of adjacent α-cells into pro-α-cells. Pro-α-cells produce GLP-1 and its receptor that renders them competent to trans-differentiate into β-cells. The trans-differentiation of pro-α-cells into β-cells provides a potentially exploitable mechanism for the regeneration of β-cells in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
95
|
Dai C, Brissova M, Hang Y, Thompson C, Poffenberger G, Shostak A, Chen Z, Stein R, Powers AC. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 2012; 55:707-18. [PMID: 22167125 PMCID: PMC3268985 DOI: 10.1007/s00125-011-2369-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/11/2011] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Our understanding of the transcription factors that control the development and function of rodent islet beta cells is advancing rapidly, yet less is known of the role they play in similar processes in human islets. METHODS To characterise the abundance and regulation of key proteins involved in glucose-regulated insulin secretion in human islets, we examined the expression of MAFA, MAFB, GLUT2 (also known as SLC2A2), βGK (also known as GCK) and PDX1 in isolated, highly purified human islets with an intact insulin secretory pattern. We also assessed these features in islets from two different mouse strains (C57BL/6J and FVB). RESULTS Compared with mouse islets, human islets secreted more insulin at baseline glucose (5.6 mmol/l), but less upon stimulation with high glucose (16.7 mmol/l) or high glucose plus 3-isobutyl-1-methyl-xanthine. Human islets had relatively more MAFB than PDX1 mRNA, while mouse islets had relatively more Pdx1 than Mafb mRNA. However, v-maf musculoaponeurotic fibrosarcoma oncogene homologue (MAF) B protein was found in human islet alpha and beta cells. This is unusual as this regulator is only produced in islet alpha cells in adult mice. The expression of insulin, MAFA, βGK and PDX1 was not glucose-regulated in human islets with an intact insulin secretory pattern. CONCLUSIONS/INTERPRETATION Our results suggest that human islets have a distinctive distribution and function of key regulators of the glucose-stimulated insulin secretion pathway, emphasising the urgent need to understand the processes that regulate human islet beta cell function.
Collapse
Affiliation(s)
- C. Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - M. Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - Y. Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
| | - C. Thompson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - G. Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - A. Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - Z. Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - R. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
| | - A. C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
- VA Tennessee Valley Healthcare System, Nashville, TN USA
| |
Collapse
|
96
|
Riedel MJ, Asadi A, Wang R, Ao Z, Warnock GL, Kieffer TJ. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 2012; 55:372-81. [PMID: 22038519 DOI: 10.1007/s00125-011-2344-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS In adult human islets, insulin and glucagon production is largely restricted to individual cell populations. The production of these hormones is less segregated during development and during the differentiation of human pluripotent stem cells towards pancreatic lineages. We therefore sought to characterise the transcription factor profile of these cells that co-produce insulin and glucagon in the developing human pancreas, and thus to gain insight into their potential fate during normal pancreas development. METHODS An immunohistochemical analysis was performed on human pancreas sections from fetal donors aged 9 to 21 weeks and from adult donors between the ages of 17 and 55 years. RESULTS Endocrine cells were observed within the pancreas at all ages examined, with cells co-producing insulin and glucagon observed as early as 9 weeks of fetal age. The population of cells that co-produce insulin and glucagon generally decreased in prevalence with age, with negligible numbers in adult pancreas. From 9 to 16 weeks, the population of glucagon-only cells increased, while the insulin-only cells decreased in abundance. Cells that co-produced insulin and glucagon also produced the alpha cell transcription factor, aristaless related homeobox (ARX), and lacked the beta cell transcription factors pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1) and v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA). CONCLUSIONS/INTERPRETATION Our results indicate that cells co-producing insulin and glucagon in the developing human pancreas share a transcription factor profile that is similar to that of mature alpha cells and suggest that some maturing alpha cells briefly exhibit ectopic insulin expression. Thus cells that co-produce insulin and glucagon may represent a transient cell population, which gives rise to mature alpha cells.
Collapse
Affiliation(s)
- M J Riedel
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
97
|
Reexpression of oncoprotein MafB in proliferative β-cells and Men1 insulinomas in mouse. Oncogene 2011; 31:3647-54. [DOI: 10.1038/onc.2011.538] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
Dorrell C, Schug J, Lin CF, Canaday PS, Fox AJ, Smirnova O, Bonnah R, Streeter PR, Stoeckert CJ, Kaestner KH, Grompe M. Transcriptomes of the major human pancreatic cell types. Diabetologia 2011; 54:2832-44. [PMID: 21882062 PMCID: PMC3880150 DOI: 10.1007/s00125-011-2283-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS We sought to determine the mRNA transcriptome of all major human pancreatic endocrine and exocrine cell subtypes, including human alpha, beta, duct and acinar cells. In addition, we identified the cell type-specific distribution of transcription factors, signalling ligands and their receptors. METHODS Islet samples from healthy human donors were enzymatically dispersed to single cells and labelled with cell type-specific surface-reactive antibodies. Live endocrine and exocrine cell subpopulations were isolated by FACS and gene expression analyses were performed using microarray analysis and quantitative RT-PCR. Computational tools were used to evaluate receptor-ligand representation in these populations. RESULTS Analysis of the transcriptomes of alpha, beta, large duct, small duct and acinar cells revealed previously unrecognised gene expression patterns in these cell types, including transcriptional regulators HOPX and HDAC9 in the human beta cell population. The abundance of some regulatory proteins was different from that reported in mouse tissue. For example, v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (avian) (MAFB) was detected at equal levels in adult human alpha and beta cells, but is absent from adult mouse beta cells. Analysis of ligand-receptor interactions suggested that EPH receptor-ephrin communication between exocrine and endocrine cells contributes to pancreatic function. CONCLUSIONS/INTERPRETATION This is the first comprehensive analysis of the transcriptomes of human exocrine and endocrine pancreatic cell types-including beta cells-and provides a useful resource for diabetes research. In addition, paracrine signalling pathways within the pancreas are shown. These results will help guide efforts to specify human beta cell fate by embryonic stem cell or induced pluripotent stem cell differentiation or genetic reprogramming.
Collapse
Affiliation(s)
- C. Dorrell
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - J. Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C. F. Lin
- Department of Genetics and Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - P. S. Canaday
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - A. J. Fox
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - O. Smirnova
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - R. Bonnah
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - P. R. Streeter
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA
| | - C. J. Stoeckert
- Department of Genetics and Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - K. H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - M. Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, L321, Portland, OR 97239, USA,
| |
Collapse
|
99
|
Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, Nishikawa K, Takayanagi H, Hitoshi S, Ikenaka K, Hosoya T, Hotta Y, Takahashi S, Kataoka K. MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res 2011; 26:2463-72. [PMID: 21713993 DOI: 10.1002/jbmr.458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serum calcium and phosphate homeostasis is critically regulated by parathyroid hormone (PTH) secreted by the parathyroid glands. Parathyroid glands develop from the bilateral parathyroid-thymus common primordia. In mice, the expression of transcription factor Glial cell missing 2 (Gcm2) begins in the dorsal/anterior part of the primordium on embryonic day 9.5 (E9.5), specifying the parathyroid domain. The parathyroid primordium then separates from the thymus primordium and migrates to its adult location beside the thyroid gland by E15.5. Genetic ablation of gcm2 results in parathyroid agenesis in mice, indicating that Gcm2 is essential for early parathyroid organogenesis. However, the regulation of parathyroid development at later stages is not well understood. Here we show that transcriptional activator v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MafB) is developmentally expressed in parathyroid cells after E11.5. MafB expression was lost in the parathyroid primordium of gcm2 null mice. The parathyroid glands of mafB(+/-) mice were mislocalized between the thymus and thyroid. In mafB(-/-) mice, the parathyroid did not separate from the thymus. Furthermore, in mafB(-/-) mice, PTH expression and secretion were impaired; expression levels of renal cyp27b1, one of the target genes of PTH, was decreased; and bone mineralization was reduced. We also demonstrate that although Gcm2 alone does not stimulate the PTH gene promoter, it associates with MafB to synergistically activate PTH expression. Taken together, our results suggest that MafB regulates later steps of parathyroid development, that is, separation from the thymus and migration toward the thyroid. MafB also regulates the expression of PTH in cooperation with Gcm2.
Collapse
Affiliation(s)
- Akiyo Kamitani-Kawamoto
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The development of the endocrine pancreas and the differentiation of its five cell types, α, β, δ, ε and pancreatic polypeptide (PP) cells, are a highly complex and tightly regulated process. Proper differentiation and function of α- and β-cells are critical for blood glucose homeostasis. These processes are governed by multiple transcription factors and other signalling systems, and its dysregulation results in diabetes. The differentiation of α-cells and the maintenance of α-cell function can be influenced at several stages during development and in the maturing islet. Many transcription factors, such as neurogenin 3 (Ngn3), pancreatic duodenal homeobox 1 (Pdx1) and regulatory factor x6 (Rfx6), play a crucial role in the determination of the endocrine cell fate, while other transcription factors, such as aristaless-related homeobox (Arx) and forkhead box A2 (Foxa2), are implicated in the initial or terminal differentiation of α-cells. In vivo and in vitro studies have shown that preproglucagon transcription, and therefore the maintenance of α-cell function, is regulated by several factors, including forkhead box A1 (Foxa1), paired box 6 (Pax6), brain4 (Brn4) and islet-1 (Isl-1). Detailed information about the regulation of normal and abnormal α-cell differentiation gives insight into the pathogenesis of diabetes, identifies further targets for diabetes treatment and provides clues for the reprogramming of α- to β-cells for replacement therapy.
Collapse
Affiliation(s)
- N C Bramswig
- Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|