51
|
Wang XY, Wang DB, Zhang ZP, Bi LJ, Zhang JB, Ding W, Zhang XE. A S-Layer Protein of Bacillus anthracis as a Building Block for Functional Protein Arrays by In Vitro Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5826-5832. [PMID: 26422821 DOI: 10.1002/smll.201501413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Indexed: 06/05/2023]
Abstract
S-layer proteins create a cell-surface layer architecture in both bacteria and archaea. Because S-layer proteins self-assemble into a native-like S-layer crystalline structure in vitro, they are attractive building blocks in nanotechnology. Here, the potential use of the S-layer protein EA1 from Bacillus anthracis in constructing a functional nanostructure is investigated, and apply this nanostructure in a proof-of-principle study for serological diagnosis of anthrax. EA1 is genetically fused with methyl parathion hydrolase (MPH), to degrade methyl parathion and provide a label for signal amplification. EA1 not only serves as a nanocarrier, but also as a specific antigen to capture anthrax-specific antibodies. As results, purified EA1-MPH forms a single layer of crystalline nanostructure through self-assembly. Our chimeric nanocatalyst greatly improves enzymatic stability of MPH. When applied to the detection of anthrax-specific antibodies in serum samples, the detection of our EA1-MPH nanostructure is nearly 300 times more sensitive than that of the unassembled complex. Together, it is shown that it is possible to build a functional and highly sensitive nanosensor based on S-layer protein. In conclusion, our present study should serve as a model for the development of other multifunctional nanomaterials using S-layer proteins.
Collapse
Affiliation(s)
- Xu-Ying Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dian-Bing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li-Jun Bi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji-Bin Zhang
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
52
|
Bacillus anthracis Capsular Conjugates Elicit Chimpanzee Polyclonal Antibodies That Protect Mice from Pulmonary Anthrax. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:902-8. [PMID: 26041039 DOI: 10.1128/cvi.00137-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
The immunogenicity of Bacillus anthracis capsule (poly-γ-D-glutamic acid [PGA]) conjugated to recombinant B. anthracis protective antigen (rPA) or to tetanus toxoid (TT) was evaluated in two anthrax-naive juvenile chimpanzees. In a previous study of these conjugates, highly protective monoclonal antibodies (MAbs) against PGA were generated. This study examines the polyclonal antibody response of the same animals. Preimmune antibodies to PGA with titers of >10(3) were detected in the chimpanzees. The maximal titer of anti-PGA was induced within 1 to 2 weeks following the 1st immunization, with no booster effects following the 2nd and 3rd immunizations. Thus, the anti-PGA response in the chimpanzees resembled a secondary immune response. Screening of sera from nine unimmunized chimpanzees and six humans revealed antibodies to PGA in all samples, with an average titer of 10(3). An anti-PA response was also observed following immunization with PGA-rPA conjugate, similar to that seen following immunization with rPA alone. However, in contrast to anti-PGA, preimmune anti-PA antibody titers and those following the 1st immunization were ≤300, with the antibodies peaking above 10(4) following the 2nd immunization. The polyclonal anti-PGA shared the MAb 11D epitope and, similar to the MAbs, exerted opsonophagocytic killing of B. anthracis. Most important, the PGA-TT-induced antibodies protected mice from a lethal challenge with virulent B. anthracis spores. Our data support the use of PGA conjugates, especially PGA-rPA targeting both toxin and capsule, as expanded-spectrum anthrax vaccines.
Collapse
|
53
|
Advances in Anthrax Detection: Overview of Bioprobes and Biosensors. Appl Biochem Biotechnol 2015; 176:957-77. [PMID: 25987133 DOI: 10.1007/s12010-015-1625-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
Abstract
Anthrax is an infectious disease caused by Bacillus anthracis. Although anthrax commonly affects domestic and wild animals, it causes a rare but lethal infection in humans. A variety of techniques have been introduced and evaluated to detect anthrax using cultures, polymerase chain reaction, and immunoassays to address the potential threat of anthrax being used as a bioweapon. The high-potential harm of anthrax in bioterrorism requires sensitive and specific detection systems that are rapid, field-ready, and real-time monitoring. Here, we provide a systematic overview of anthrax detection probes with their potential applications in various ultra-sensitive diagnostic systems.
Collapse
|
54
|
Ascough S, Altmann DM. Anthrax in injecting drug users: the need for increased vigilance in the clinic. Expert Rev Anti Infect Ther 2015; 13:681-4. [DOI: 10.1586/14787210.2015.1032255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
55
|
Goel AK. Anthrax: A disease of biowarfare and public health importance. World J Clin Cases 2015; 3:20-33. [PMID: 25610847 PMCID: PMC4295216 DOI: 10.12998/wjcc.v3.i1.20] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis (B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B. anthracis spores enter the body through skin lesion (cutaneous anthrax), lungs (pulmonary anthrax), or gastrointestinal route (gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
Collapse
|
56
|
Ahn J, Lee KJ, Ko K. Optimization of ELISA conditions to quantify colorectal cancer antigen-antibody complex protein (GA733-FcK) expressed in transgenic plant. Monoclon Antib Immunodiagn Immunother 2014; 33:1-7. [PMID: 24555929 DOI: 10.1089/mab.2013.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to optimize ELISA conditions to quantify the colorectal cancer antigen GA733 linked to the Fc antibody fragment fused to KDEL, an ER retention motif (GA733-FcK) expressed in transgenic plant. Variable conditions of capture antibody, blocking buffer, and detection antibody for ELISA were optimized with application of leaf extracts from transgenic plant expressing GA733-FcK. In detection antibody, anti-EpCAM/CD362 IgG recognizing the GA733 did not detect any GA733-FcK whereas anti-human Fc IgG recognizing the human Fc existed in plant leaf extracts. For blocking buffer conditions, 3% BSA buffer clearly blocked the plate, compared to the 5% skim-milk buffer. For capture antibody, monoclonal antibody (MAb) CO17-1A was applied to coat the plate with different amounts (1, 0.5, and 0.25 μg/well). Among the amounts of the capture antibody, 1 and 0.5 μg/well (capture antibody) showed similar absorbance, whereas 0.25 μg/well of the capture antibody showed significantly less absorbance. Taken together, the optimized conditions to quantify plant-derived GA733-FcK were 0.5 μg/well of MAb CO17-1A per well for the capture antibody, 3% BSA for blocking buffer, and anti-human Fc conjugated HRP. To confirm the optimized ELISA conditions, correlation analysis was conducted between the quantified amount of GA733-FcK in ELISA and its protein density values of different leaf samples in Western blot. The co-efficient value R(2) between the ELISA quantified value and protein density was 0.85 (p<0.01), which indicates that the optimized ELISA conditions feasibly provides quantitative information of GA733-FcK expression in transgenic plant.
Collapse
Affiliation(s)
- Junsik Ahn
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University , Seoul, Korea
| | | | | |
Collapse
|
57
|
Garman L, Vineyard AJ, Crowe SR, Harley JB, Spooner CE, Collins LC, Nelson MR, Engler RJM, James JA. Humoral responses to independent vaccinations are correlated in healthy boosted adults. Vaccine 2014; 32:5624-31. [PMID: 25140930 PMCID: PMC4323156 DOI: 10.1016/j.vaccine.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. METHODS Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. RESULTS Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). CONCLUSIONS Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
Collapse
Affiliation(s)
- Lori Garman
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA
| | - Amanda J Vineyard
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - Sherry R Crowe
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | | | - Limone C Collins
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Michael R Nelson
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Renata J M Engler
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Departments of Medicine and Pathology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
58
|
Bernstein DI, Jackson L, Patel SM, El Sahly HM, Spearman P, Rouphael N, Rudge TL, Hill H, Goll JB. Immunogenicity and safety of four different dosing regimens of anthrax vaccine adsorbed for post-exposure prophylaxis for anthrax in adults. Vaccine 2014; 32:6284-93. [PMID: 25239484 DOI: 10.1016/j.vaccine.2014.08.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Strategies to implement post exposure prophylaxis (PEP) in case of an anthrax bioterror event are needed. To increase the number of doses of vaccine available we evaluated reducing the amount of vaccine administered at each of the vaccinations, and reducing the number of doses administered. METHODS Healthy male and non-pregnant female subjects between the ages of 18 and 65 were enrolled and randomized 1:1:1:1 to one of four study arms to receive 0.5 mL (standard dose) of vaccine subcutaneously (SQ) at: (A) days 0, 14; (B) days 0 and 28; (C) days 0, 14, and 28; or (D) 0.25 mL at days 0, 14, and 28. A booster was provided on day 180. Safety was assessed after each dose. Blood was obtained on days 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 100, 180, and 201 and both Toxin Neutralizing antibody and anti-PA IgG antibody measured. RESULTS Almost all subjects developed some local reactions with 46-64% reported to be of moderate severity and 3.3% severe during the primary series. Vaccine groups that included a day 14 dose induced a ≥ 4 fold antibody rise in more subjects on days 21, 28, and 35 than the arm without a day 14 dose. However, schedules with a full day 28 dose induced higher peak levels of antibody that persisted longer. The half dose regimen did not induce antibody as well as the full dose study arms. CONCLUSION Depending on the extent of the outbreak, effectiveness of antibiotics and availability of vaccine, the full dose 0, 28 or 0, 14, 28 schedules may have advantages.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | - Lisa Jackson
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | | | | | - Paul Spearman
- Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
59
|
Kim YH, Kim KA, Kim YR, Choi MK, Kim HK, Choi KJ, Chun JH, Cha K, Hong KJ, Lee NG, Yoo CK, Oh HB, Kim TS, Rhie GE. Immunoproteomically identified GBAA_0345, alkyl hydroperoxide reductase subunit C is a potential target for multivalent anthrax vaccine. Proteomics 2014; 14:93-104. [PMID: 24273028 DOI: 10.1002/pmic.201200495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Anthrax is caused by the spore-forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA-acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent-spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.
Collapse
Affiliation(s)
- Yeon Hee Kim
- Division of High-risk Pathogen Research, Korea National Institute of Health, Chungbuk, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Pittman PR, Cavicchia M, Kingsbury J, Johnson N, Barrera-Oro J, Schmader T, Korman L, Quinn X, Ranadive M. Anthrax vaccine adsorbed: Further evidence supporting continuing the vaccination series rather than restarting the series when doses are delayed. Vaccine 2014; 32:5131-9. [DOI: 10.1016/j.vaccine.2014.03.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
61
|
Li X, Wu J, Ptacek T, Redden DT, Brown EE, Alarcón GS, Ramsey-Goldman R, Petri MA, Reveille JD, Kaslow RA, Kimberly RP, Edberg JC. Allelic-dependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci Transl Med 2014; 5:216ra175. [PMID: 24353158 DOI: 10.1126/scitranslmed.3007097] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cells are pivotal regulators of acquired immune responses, and recent work in both experimental murine models and humans has demonstrated that subtle changes in the regulation of B cell function can substantially alter immunological responses. The balance of negative and positive signals in maintaining an appropriate B cell activation threshold is critical in B lymphocyte immune tolerance and autoreactivity. FcγRIIb (CD32B), the only recognized Fcγ receptor on B cells, provides immunoglobulin G (IgG)-mediated negative modulation through a tyrosine-based inhibition motif, which down-regulates B cell receptor-initiated signaling. These properties make FcγRIIb a promising target for antibody-based therapy. We report the discovery of allele-dependent expression of the activating FcγRIIc on B cells. Identical to FcγRIIb in the extracellular domain, FcγRIIc has a tyrosine-based activation motif in its cytoplasmic domain. In both human B cells and B cells from mice transgenic for human FcγRIIc, FcγRIIc expression counterbalances the negative feedback of FcγRIIb and enhances humoral responses to immunization in mice and to BioThrax vaccination in a human anthrax vaccine trial. Moreover, the FCGR2C-ORF allele is associated with the risk of development of autoimmunity in humans. FcγRIIc expression on B cells challenges the prevailing paradigm of unidirectional negative feedback by IgG immune complexes via the inhibitory FcγRIIb, is a previously unrecognized determinant in human antibody/autoantibody responses, and opens the opportunity for more precise personalized use of B cell-targeted antibody-based therapy.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Protective antigen-specific memory B cells persist years after anthrax vaccination and correlate with humoral immunity. Toxins (Basel) 2014; 6:2424-31. [PMID: 25123559 PMCID: PMC4147590 DOI: 10.3390/toxins6082424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 01/20/2023] Open
Abstract
Anthrax Vaccine Adsorbed (AVA) generates short-lived protective antigen (PA) specific IgG that correlates with in vitro toxin neutralization and protection from Bacillus anthracis challenge. Animal studies suggest that when PA-specific IgG has waned, survival after spore challenge correlates with an activation of PA-specific memory B cells. Here, we characterize the quantity and the longevity of AVA-induced memory B cell responses in humans. Peripheral blood mononuclear cells (PBMCs) from individuals vaccinated ≥3 times with AVA (n = 50) were collected early (3-6 months, n = 27) or late after their last vaccination (2-5 years, n = 23), pan-stimulated, and assayed by ELISPOT for total and PA-specific memory B cells differentiated into antibody secreting cells (ASCs). PA-specific ASC percentages ranged from 0.02% to 6.25% (median: 1.57%) and did not differ between early and late post-vaccination individuals. PA-specific ASC percentages correlated with plasma PA-specific IgG (r = 0.42, p = 0.03) and toxin neutralization (r = 0.52, p = 0.003) early post vaccination. PA-specific ASC percentages correlated with supernatant anti-PA both early (r = 0.60, p = 0.001) and late post vaccination (r = 0.71, p < 0.0001). These data suggest PA-specific memory B cell responses are long-lived and can be estimated after recent vaccination by the magnitude and neutralization capacity of the humoral response.
Collapse
|
63
|
Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence. J Immunol Methods 2014; 408:78-88. [PMID: 24857756 DOI: 10.1016/j.jim.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
Abstract
Inhalation anthrax is a rare but acute infectious disease following adsorption of Bacillus anthracis spores through the lungs. The disease has a high fatality rate if untreated, but early and correct diagnosis has a significant impact on case patient recovery. The early symptoms of inhalation anthrax are, however, non-specific and current anthrax diagnostics are primarily dependent upon culture and confirmatory real-time PCR. Consequently, there may be a significant delay in diagnosis and targeted treatment. Rapid, culture-independent diagnostic tests are therefore needed, particularly in the context of a large scale emergency response. The aim of this study was to evaluate the ability of monoclonal antibodies to detect anthrax toxin proteins that are secreted early in the course of B. anthracis infection using a time-resolved fluorescence (TRF) immunoassay. We selected monoclonal antibodies that could detect protective antigen (PA), as PA83 and also PA63 and LF in the lethal toxin complex. The assay reliable detection limit (RDL) was 6.63×10(-6)μM (0.551ng/ml) for PA83 and 2.51×10(-5)μM (1.58ng/ml) for PA63. Despite variable precision and accuracy of the assay, PA was detected in 9 out of 10 sera samples from anthrax confirmed case patients with cutaneous (n=7), inhalation (n=2), and gastrointestinal (n=1) disease. Anthrax Immune Globulin (AIG), which has been used in treatment of clinical anthrax, interfered with detection of PA. This study demonstrates a culture-independent method of diagnosing anthrax through the use of monoclonal antibodies to detect PA and LF in the lethal toxin complex.
Collapse
|
64
|
Pondo T, Rose CE, Martin SW, Keitel WA, Keyserling HL, Babcock J, Parker S, Jacobson RM, Poland GA, McNeil MM. Evaluation of sex, race, body mass index and pre-vaccination serum progesterone levels and post-vaccination serum anti-anthrax protective immunoglobulin G on injection site adverse events following anthrax vaccine adsorbed (AVA) in the CDC AVA human clinical trial. Vaccine 2014; 32:3548-54. [PMID: 24768633 DOI: 10.1016/j.vaccine.2014.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Anthrax vaccine adsorbed (AVA) administered intramuscularly (IM) results in fewer adverse events (AEs) than subcutaneous (SQ) administration. Women experience more AEs than men. Antibody response, female hormones, race, and body mass index (BMI) may contribute to increased frequency of reported injection site AEs. METHODS We analyzed data from the CDC AVA human clinical trial. This double blind, randomized, placebo controlled trial enrolled 1563 participants and followed them through 8 injections (AVA or placebo) over a period of 42 months. For the trial's vaccinated cohort (n=1267), we used multivariable logistic regression to model the effects of study group (SQ or IM), sex, race, study site, BMI, age, and post-vaccination serum anti-PA IgG on occurrence of AEs of any severity grade. Also, in a women-only subset (n=227), we assessed effect of pre-vaccination serum progesterone level and menstrual phase on AEs. RESULTS Participants who received SQ injections had significantly higher proportions of itching, redness, swelling, tenderness and warmth compared to the IM study group after adjusting for other risk factors. The proportions of redness, swelling, tenderness and warmth were all significantly lower in blacks vs. non-black participants. We found arm motion limitation, itching, pain, swelling and tenderness were more likely to occur in participants with the highest anti-PA IgG concentrations. In the SQ study group, redness and swelling were more common for obese participants compared to participants who were not overweight. Females had significantly higher proportions of all AEs compared to males. Menstrual phase was not associated with any AEs. CONCLUSIONS Female and non-black participants had a higher proportion of AVA associated AEs and higher anti-PA IgG concentrations. Antibody responses to other vaccines may also vary by sex and race. Further studies may provide better understanding for higher proportions of AEs in women and non-black participants.
Collapse
Affiliation(s)
- Tracy Pondo
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Charles E Rose
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacey W Martin
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Janiine Babcock
- Walter Reed Army Institute of Research, Washington, DC, United States
| | - Scott Parker
- University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Michael M McNeil
- Immunization Safety Office, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
65
|
Hopkins RJ, Howard C, Hunter-Stitt E, Kaptur PE, Pleune B, Muse D, Sheldon E, Davis M, Strout C, Vert-Wong K. Phase 3 trial evaluating the immunogenicity and safety of a three-dose BioThrax® regimen for post-exposure prophylaxis in healthy adults. Vaccine 2014; 32:2217-24. [PMID: 24613523 DOI: 10.1016/j.vaccine.2014.01.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND This study was conducted to support licensure of a post-exposure prophylaxis indication for BioThrax(®) (anthrax vaccine adsorbed) concurrent with antimicrobials for individuals exposed to aerosolized anthrax spores. METHODS The immunogenicity and safety of a three-dose regimen (0, 2, and 4 weeks) of BioThrax administered subcutaneously (SC) were evaluated in 200 healthy adults 18-65 years of age. Toxin-neutralizing antibody (TNA) was expressed as 50% neutralization factor (NF50) at predetermined time points through Day 100. Safety was assessed by physical examinations, vital signs, solicited local and systemic reactions using web-enabled subject diaries, in-clinic solicited reactions, and unsolicited adverse events (AEs). RESULTS The prospectively defined success criteria for the primary and secondary endpoints were met. This required the lower bound of the 95% confidence interval (CI) for the proportion of subjects with a TNA NF50 value to be greater than 40% at Day 63 (primary), Day 70 (secondary) and Days 63-100 (secondary). At Day 63, 71% of subjects achieved a TNA NF50 threshold value ≥ 0.56, with a lower bound of the 95% CI ≥ 40% (64%). The percentage of subjects achieving a TNA NF50 threshold value ≥ 0.56 at Day 70 was 58% (95% CI: 50%, 65%), and the mean value on Days 63-100 (inclusive) was 53% (95% CI: 41%, 55%). The threshold TNA NF50 value of 0.56 was developed from previous rabbit challenge and human immunogenicity studies. No related serious AEs occurred during the study, and no subjects withdrew from the study because of an AE. Tenderness and pain at the injection site were recorded most often in subject diaries following vaccination. CONCLUSIONS BioThrax, administered as three SC doses at 0, 2, and 4 weeks, was well tolerated. The prospectively defined success criteria for TNA levels on Days 63, 70, and 63-100 were achieved.
Collapse
Affiliation(s)
- Robert J Hopkins
- Clinical Development, Emergent BioSolutions, Gaithersburg, MD, USA.
| | - Cris Howard
- Clinical Development, Emergent BioSolutions, Gaithersburg, MD, USA
| | | | - Paulina E Kaptur
- Corporate Clinical and Medical Affairs, Emergent BioSolutions, Gaithersburg, MD, USA
| | - Brett Pleune
- Regulatory Affairs, Emergent BioSolutions, Gaithersburg, MD, USA.
| | - Derek Muse
- Jean Brown Research, Salt Lake City, UT, USA
| | | | - Matthew Davis
- Rochester Clinical Research Inc., Rochester, NY, USA
| | - Cynthia Strout
- Coastal Carolina Research Center, Mount Pleasant, SC, USA
| | | |
Collapse
|
66
|
Wright JG, Plikaytis BD, Rose CE, Parker SD, Babcock J, Keitel W, El Sahly H, Poland GA, Jacobson RM, Keyserling HL, Semenova VA, Li H, Schiffer J, Dababneh H, Martin SK, Martin SW, Marano N, Messonnier NE, Quinn CP. Effect of reduced dose schedules and intramuscular injection of anthrax vaccine adsorbed on immunological response and safety profile: a randomized trial. Vaccine 2013; 32:1019-28. [PMID: 24373307 DOI: 10.1016/j.vaccine.2013.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We evaluated an alternative administration route, reduced schedule priming series, and increased intervals between booster doses for anthrax vaccine adsorbed (AVA). AVA's originally licensed schedule was 6 subcutaneous (SQ) priming injections administered at months (m) 0, 0.5, 1, 6, 12 and 18 with annual boosters; a simpler schedule is desired. METHODS Through a multicenter randomized, double blind, non-inferiority Phase IV human clinical trial, the originally licensed schedule was compared to four alternative and two placebo schedules. 8-SQ group participants received 6 SQ injections with m30 and m42 "annual" boosters; participants in the 8-IM group received intramuscular (IM) injections according to the same schedule. Reduced schedule groups (7-IM, 5-IM, 4-IM) received IM injections at m0, m1, m6; at least one of the m0.5, m12, m18, m30 vaccine doses were replaced with saline. All reduced schedule groups received a m42 booster. Post-injection blood draws were taken two to four weeks following injection. Non-inferiority of the alternative schedules was compared to the 8-SQ group at m2, m7, and m43. Reactogenicity outcomes were proportions of injection site and systemic adverse events (AEs). RESULTS The 8-IM group's m2 response was non-inferior to the 8-SQ group for the three primary endpoints of anti-protective antigen IgG geometric mean concentration (GMC), geometric mean titer, and proportion of responders with a 4-fold rise in titer. At m7 anti-PA IgG GMCs for the three reduced dosage groups were non-inferior to the 8-SQ group GMCs. At m43, 8-IM, 5-IM, and 4-IM group GMCs were superior to the 8-SQ group. Solicited injection site AEs occurred at lower proportions in the IM group compared to SQ. Route of administration did not influence the occurrence of systemic AEs. A 3 dose IM priming schedule with doses administered at m0, m1, and m6 elicited long term immunological responses and robust immunological memory that was efficiently stimulated by a single booster vaccination at 42 months. CONCLUSIONS A priming series of 3 intramuscular doses administered at m0, m1, and m6 with a triennial booster was non-inferior to more complex schedules for achieving antibody response.
Collapse
Affiliation(s)
- Jennifer G Wright
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| | - Brian D Plikaytis
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Charles E Rose
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Scott D Parker
- Alabama Vaccine Research Clinic, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL 35294-2050, United States
| | - Janiine Babcock
- Walter Reed Army Institute for Research, 503 Robert Grant Avenue, Silver Springs, MD 20910-7500, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hana El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Gregory A Poland
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Robert M Jacobson
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Harry L Keyserling
- Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, United States
| | - Vera A Semenova
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Han Li
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Jarad Schiffer
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Hanan Dababneh
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Sandra K Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Stacey W Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nina Marano
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nancy E Messonnier
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| |
Collapse
|
67
|
Farrow B, Hong SA, Romero EC, Lai B, Coppock MB, Deyle KM, Finch AS, Stratis-Cullum DN, Agnew HD, Yang S, Heath JR. A chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen. ACS NANO 2013; 7:9452-9460. [PMID: 24063758 DOI: 10.1021/nn404296k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on a robust and sensitive approach for detecting protective antigen (PA) exotoxin from Bacillus anthracis in complex media. A peptide-based capture agent against PA was developed by improving a bacteria display-developed peptide into a highly selective biligand through in situ click screening against a large, chemically synthesized peptide library. This biligand was coupled with an electrochemical enzyme-linked immunosorbent assay utilizing nanostructured gold electrodes. The resultant assay yielded a limit of detection of PA of 170 pg/mL (2.1 pM) in buffer, with minimal sensitivity reduction in 1% serum. The powdered capture agent could be stably stored for several days at 65 °C, and the full electrochemical biosensor showed no loss of performance after extended storage at 40 °C. The engineered stability and specificity of this assay should be extendable to other cases in which biomolecular detection in demanding environments is required.
Collapse
Affiliation(s)
- Blake Farrow
- Department of Applied Physics and Materials Science, and ‡Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pittman PR, Fisher D, Quinn X, Schmader T, Barrera-Oro JG. Effect of delayed anthrax vaccine dose on Bacillus anthracis protective antigen IgG response and lethal toxin neutralization activity. Vaccine 2013; 31:5009-14. [DOI: 10.1016/j.vaccine.2013.08.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/08/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
|
69
|
Be NA, Thissen JB, Gardner SN, McLoughlin KS, Fofanov VY, Koshinsky H, Ellingson SR, Brettin TS, Jackson PJ, Jaing CJ. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing. PLoS One 2013; 8:e73455. [PMID: 24039948 PMCID: PMC3767809 DOI: 10.1371/journal.pone.0073455] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy.
Collapse
Affiliation(s)
- Nicholas A. Be
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - James B. Thissen
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Shea N. Gardner
- Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kevin S. McLoughlin
- Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | | | | | - Sally R. Ellingson
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Thomas S. Brettin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Paul J. Jackson
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Crystal J. Jaing
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
70
|
Tevell Åberg A, Björnstad K, Hedeland M. Mass Spectrometric Detection of Protein-Based Toxins. Biosecur Bioterror 2013; 11 Suppl 1:S215-26. [DOI: 10.1089/bsp.2012.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Annica Tevell Åberg
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kristian Björnstad
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Annica Tevell Åberg, PhD, is a Senior Researcher; Kristian Björnstad, PhD, is a Senior Researcher; and Mikael Hedeland, PhD, is an Associate Professor and Deputy Head of Department; all at the Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden. Dr. Åberg and Dr. Hedeland are also affiliated with the Division of Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
71
|
Evaluation of intravenous anthrax immune globulin for treatment of inhalation anthrax. Antimicrob Agents Chemother 2013; 57:5684-92. [PMID: 23979731 DOI: 10.1128/aac.00458-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis toxins can be neutralized by antibodies against protective antigen (PA), a component of anthrax toxins. Anthrivig (human anthrax immunoglobulin), also known as AIGIV, derived from plasma of humans immunized with BioThrax (anthrax vaccine adsorbed), is under development for the treatment of toxemia following exposure to anthrax spores. The pharmacokinetics (PK) of AIGIV was assessed in naive animals and healthy human volunteers, and the efficacy of AIGIV was assessed in animals exposed via inhalation to aerosolized B. anthracis spores. In the clinical study, safety, tolerability, and PK were evaluated in three dose cohorts (3.5, 7.1, and 14.2 mg/kg of body weight of anti-PA IgG) with 30 volunteers per cohort. The elimination half-life of AIGIV in rabbits, nonhuman primates (NHPs), and humans following intravenous infusion was estimated to be approximately 4, 12, and 24 days, respectively, and dose proportionality was observed. In a time-based treatment study, AIGIV protected 89 to 100% of animals when administered 12 h postexposure; however, a lower survival rate of 39% was observed when animals were treated 24 h postexposure, underscoring the need for early intervention. In a separate set of studies, animals were treated on an individual basis upon detection of a clinical sign or biomarker of disease, namely, a significant increase in body temperature (SIBT) in rabbits and presence of PA in the serum of NHPs. In these trigger-based intervention studies, AIGIV induced up to 75% survival in rabbits depending on the dose and severity of toxemia at the time of treatment. In NHPs, up to 33% survival was observed in AIGIV-treated animals. (The clinical study has been registered at ClinicalTrials.gov under registration no. NCT00845650.).
Collapse
|
72
|
Ghosh N, Tomar I, Goel AK. A field usable qualitative anti-protective antigen enzyme-linked immunosorbent assay for serodiagnosis of human anthrax. Microbiol Immunol 2013; 57:145-9. [PMID: 23252995 DOI: 10.1111/1348-0421.12014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 12/22/2022]
Abstract
Although all mammals, including humans, are vulnerable when they come into direct contact with infected animals, anthrax is primarily a disease of herbivorous animals. In countries like India, cutaneous anthrax is a public health problem in several regions. Hence, a simple and efficacious serodiagnostic assay for large scale surveillance of endemic populations is required. In the present study, a field-usable, qualitative ELISA was developed for serodiagnosis of human anthrax. Results are assessed on a visual basis and no sophisticated instruments are required. Anti-protective antigen (PA) IgG was determined by visual examination of ELISA results of 225 human serum samples (160 from healthy humans, 5 from PA vaccinated individuals and 60 from confirmed anthrax cases). Comparison of the ELISA results with the results obtained from optical density values showed compatible sensitivity and specificity. Assay sensitivity, specificity, and positive and negative predictive values were found to be 100%. The developed assay could be a very useful tool for serological diagnosis of anthrax infection in humans.
Collapse
Affiliation(s)
- Neha Ghosh
- Biotechnology Division, Defense Research and Development Establishment, Gwalior 474 002, India
| | | | | |
Collapse
|
73
|
Saichua P, Sithithaworn P, Jariwala AR, Deimert DJ, Sithithaworn J, Sripa B, Laha T, Mairiang E, Pairojkul C, Periago MV, Khuntikeo N, Mulvenna J, Bethony JM. Microproteinuria during Opisthorchis viverrini infection: a biomarker for advanced renal and hepatobiliary pathologies from chronic opisthorchiasis. PLoS Negl Trop Dis 2013; 7:e2228. [PMID: 23717698 PMCID: PMC3662652 DOI: 10.1371/journal.pntd.0002228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
Approximately 680 million people are at risk of infection with Opisthorchis viverrini (OV) and Clonorchis sinensis, with an estimated 10 million infected with OV in Southeast Asia alone. While opisthorchiasis is associated with hepatobiliary pathologies, such as advanced periductal fibrosis (APF) and cholangiocarcinoma (CCA), animal models of OV infection show that immune-complex glomerulonephritis is an important renal pathology that develops simultaneously with hepatobiliary pathologies. A cardinal sign of immune-complex glomerulonephritis is the urinary excretion of immunoglobulin G (IgG) (microproteinuria). In community-based studies in OV endemic areas along the Chi River in northeastern Thailand, we observed that over half of the participants had urine IgG against a crude OV antigen extract (OV antigen). We also observed that elevated levels of urine IgG to OV antigen were not associated with the intensity of OV infection, but were likely the result of immune-complex glomerulonephritis as seen in animal models of OV infection. Moreover, we observed that urine IgG to OV antigen was excreted at concentrations 21 times higher in individuals with APF and 158 times higher in individuals with CCA than controls. We also observed that elevated urine IgG to OV antigen could identify APF+ and CCA+ individuals from non-cases. Finally, individuals with urine IgG to OV antigen had a greater risk of APF as determined by Odds Ratios (OR = 6.69; 95%CI: 2.87, 15.58) and a greater risk of CCA (OR = 71.13; 95%CI: 15.13, 334.0) than individuals with no detectable level of urine IgG to OV antigen. Herein, we show for the first time the extensive burden of renal pathology in OV endemic areas and that a urine biomarker could serve to estimate risk for both renal and hepatobiliary pathologies during OV infection, i.e., serve as a “syndromic biomarker” of the advanced pathologies from opisthorchiasis. Approximately 680 million people risk infection with food-borne trematodes, including Opisthorchis viverrini (OV). Animal models show that significant kidney pathology results from OV infection as detected by antibodies in urine (microproteinuria). However, kidney pathology in humans infected with OV is often overlooked because it develops alongside more severe pathologies such as bile duct fibrosis and bile duct cancer. In Northeastern Thailand, the researchers observed that OV infected individuals had elevated levels of urine IgG against OV antigen that was not associated with the level of OV infection. The researchers observed that urine IgG to OV antigen was associated with bile duct fibrosis and bile duct cancer. Moreover, individuals with urine IgG to OV antigen also had elevated risk of bile duct fibrosis and bile duct cancer than individuals with no urine IgG to OV antigen. For the first time, OV infection has been shown to result in significant kidney disease in humans, which is also strongly associated with bile duct pathology. A urine-based assay that could indicate both renal and bile duct pathology from OV infection would be of profound benefit in Southeast Asia, especially in the resource-limited settings of the Mekong Basin region countries of Thailand, Laos and Cambodia.
Collapse
Affiliation(s)
- Prasert Saichua
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (P. Sithithaworn); (J.M. Bethony)
| | - Amar R. Jariwala
- Department of Microbiology, Immunology and Tropical Medicine and Center for the Neglected Diseases of Poverty, George Washington University, Washington, D.C., United States of America
| | - David J. Deimert
- Department of Microbiology, Immunology and Tropical Medicine and Center for the Neglected Diseases of Poverty, George Washington University, Washington, D.C., United States of America
| | - Jiraporn Sithithaworn
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Eimorn Mairiang
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Maria Victoria Periago
- Insituto René Rachou, Laboratório de Imunologia Celular e Molecular, Belo Horizonte, Brazil
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jason Mulvenna
- Infections and Cancer, Queensland Institute of Medical Research, Queensland, Australia
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine and Center for the Neglected Diseases of Poverty, George Washington University, Washington, D.C., United States of America
- * E-mail: (P. Sithithaworn); (J.M. Bethony)
| |
Collapse
|
74
|
Evaluation of immunogenicity and efficacy of anthrax vaccine adsorbed for postexposure prophylaxis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1016-26. [PMID: 23658392 DOI: 10.1128/cvi.00099-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antimicrobials administered postexposure can reduce the incidence or progression of anthrax disease, but they do not protect against the disease resulting from the germination of spores that may remain in the body after cessation of the antimicrobial regimen. Such additional protection may be achieved by postexposure vaccination; however, no anthrax vaccine is licensed for postexposure prophylaxis (PEP). In a rabbit PEP study, animals were subjected to lethal challenge with aerosolized Bacillus anthracis spores and then were treated with levofloxacin with or without concomitant intramuscular (i.m.) vaccination with anthrax vaccine adsorbed (AVA) (BioThrax; Emergent BioDefense Operations Lansing LLC, Lansing, MI), administered twice, 1 week apart. A significant increase in survival rates was observed among vaccinated animals compared to those treated with antibiotic alone. In preexposure prophylaxis studies in rabbits and nonhuman primates (NHPs), animals received two i.m. vaccinations 1 month apart and were challenged with aerosolized anthrax spores at day 70. Prechallenge toxin-neutralizing antibody (TNA) titers correlated with animal survival postchallenge and provided the means for deriving an antibody titer associated with a specific probability of survival in animals. In a clinical immunogenicity study, 82% of the subjects met or exceeded the prechallenge TNA value that was associated with a 70% probability of survival in rabbits and 88% probability of survival in NHPs, which was estimated based on the results of animal preexposure prophylaxis studies. The animal data provide initial information on protective antibody levels for anthrax, as well as support previous findings regarding the ability of AVA to provide added protection to B. anthracis-infected animals compared to antimicrobial treatment alone.
Collapse
|
75
|
Schiffer JM, Maniatis P, Garza I, Steward-Clark E, Korman LT, Pittman PR, Mei JV, Quinn CP. Quantitative assessment of anthrax vaccine immunogenicity using the dried blood spot matrix. Biologicals 2013; 41:98-103. [DOI: 10.1016/j.biologicals.2012.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022] Open
|
76
|
Clement F, Dewar V, Van Braeckel E, Desombere I, Dewerchin M, Swysen C, Demoitié MA, Jongert E, Cohen J, Leroux-Roels G, Cambron P. Validation of an enzyme-linked immunosorbent assay for the quantification of human IgG directed against the repeat region of the circumsporozoite protein of the parasite Plasmodium falciparum. Malar J 2012; 11:384. [PMID: 23173602 PMCID: PMC3577486 DOI: 10.1186/1475-2875-11-384] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/23/2012] [Indexed: 11/13/2022] Open
Abstract
Background Several pre-erythrocytic malaria vaccines based on the circumsporozoite protein (CSP) antigen of Plasmodium falciparum are in clinical development. Vaccine immunogenicity is commonly evaluated by the determination of anti-CSP antibody levels using IgG-based assays, but no standard assay is available to allow comparison of the different vaccines. Methods The validation of an anti-CSP repeat region enzyme-linked immunosorbent assay (ELISA) is described. This assay is based on the binding of serum antibodies to R32LR, a recombinant protein composed of the repeat region of P. falciparum CSP. In addition to the original recombinant R32LR, an easy to purify recombinant His-tagged R32LR protein has been constructed to be used as solid phase antigen in the assay. Also, hybridoma cell lines have been generated producing human anti-R32LR monoclonal antibodies to be used as a potential inexhaustible source of anti-CSP repeats standard, instead of a reference serum. Results The anti-CSP repeats ELISA was shown to be robust, specific and linear within the analytical range, and adequately fulfilled all validation criteria as defined in the ICH guidelines. Furthermore, the coefficient of variation for repeatability and intermediate precision did not exceed 23%. Non-interference was demonstrated for R32LR-binding sera, and the assay was shown to be stable over time. Conclusions This ELISA, specific for antibodies directed against the CSP repeat region, can be used as a standard assay for the determination of humoral immunogenicity in the development of any CSP-based P. falciparum malaria vaccine.
Collapse
|
77
|
Ghosh N, Gupta G, Boopathi M, Pal V, Singh AK, Gopalan N, Goel AK. Surface Plasmon Resonance Biosensor for Detection of Bacillus anthracis, the Causative Agent of Anthrax from Soil Samples Targeting Protective Antigen. Indian J Microbiol 2012; 53:48-55. [PMID: 24426078 DOI: 10.1007/s12088-012-0334-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/31/2012] [Indexed: 01/29/2023] Open
Abstract
Bacillus anthracis, the causative agent of anthrax is one of the most important biological warfare agents. In this study, surface plasmon resonance (SPR) technology was used for indirect detection of B. anthracis by detecting protective antigen (PA), a common toxin produced by all live B. anthracis bacteria. For development of biosensor, a monoclonal antibody raised against B. anthracis PA was immobilized on carboxymethyldextran modified gold chip and its interaction with PA was characterized in situ by SPR and electrochemical impedance spectroscopy. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74, respectively. The change in Gibb's free energy (∆G = -78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 12 fM purified PA. When anthrax spores spiked soil samples were enriched, PA produced in the sample containing even a single spore of B. anthracis could be detected by SPR. PA being produced only by the vegetative cells of B. anthracis, confirms indirectly the presence of B. anthracis in the samples. The proposed method can be a very useful tool for screening and confirmation of anthrax suspected environmental samples during a bio-warfare like situation.
Collapse
Affiliation(s)
- N Ghosh
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - G Gupta
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - M Boopathi
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - V Pal
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - A K Singh
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - N Gopalan
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| | - A K Goel
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002 India
| |
Collapse
|
78
|
Fay MP, Follmann DA, Lynn F, Schiffer JM, Stark GV, Kohberger R, Quinn CP, Nuzum EO. Anthrax vaccine-induced antibodies provide cross-species prediction of survival to aerosol challenge. Sci Transl Med 2012; 4:151ra126. [PMID: 22972844 PMCID: PMC3668972 DOI: 10.1126/scitranslmed.3004073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because clinical trials to assess the efficacy of vaccines against anthrax are not ethical or feasible, licensure for new anthrax vaccines will likely involve the Food and Drug Administration's "Animal Rule," a set of regulations that allow approval of products based on efficacy data only in animals combined with immunogenicity and safety data in animals and humans. U.S. government-sponsored animal studies have shown anthrax vaccine efficacy in a variety of settings. We examined data from 21 of those studies to determine whether an immunological bridge based on lethal toxin neutralization activity assay (TNA) can predict survival against an inhalation anthrax challenge within and across species and genera. The 21 studies were classified into 11 different settings, each of which had the same animal species, vaccine type and formulation, vaccination schedule, time of TNA measurement, and challenge time. Logistic regression models determined the contribution of vaccine dilution dose and TNA on prediction of survival. For most settings, logistic models using only TNA explained more than 75% of the survival effect of the models with dose additionally included. Cross-species survival predictions using TNA were compared to the actual survival and shown to have good agreement (Cohen's κ ranged from 0.55 to 0.78). In one study design, cynomolgus macaque data predicted 78.6% survival in rhesus macaques (actual survival, 83.0%) and 72.6% in rabbits (actual survival, 64.6%). These data add support for the use of TNA as an immunological bridge between species to extrapolate data in animals to predict anthrax vaccine effectiveness in humans.
Collapse
Affiliation(s)
- Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, 6700B Rockledge Drive, Bethesda, MD 20892-7630, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kummerfeldt CE, Huggins JT, Sahn SA. Unusual bacterial infections and the pleura. Open Respir Med J 2012; 6:75-81. [PMID: 22977649 PMCID: PMC3439802 DOI: 10.2174/1874306401206010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 01/24/2023] Open
Abstract
Rickettsiosis, Q fever, tularemia, and anthrax are all bacterial diseases that can affect the pleura. Rocky Mountain Spotted Fever (RMSF) and Mediterranean Spotted Fever (MSF) are caused by Rickettsia rickettsii and Rickettsia conorii, respectively. Pleural fluid from a patient with MSF had a neutrophil-predominant exudate. Coxiellaburnetii is the causative agent of Q fever. Of the two cases described in the literature, one was an exudate with a marked eosinophilia while the other case was a transudate due to a constrictive pericarditis. Francisella tularensis is the causative agent of tularemia. Pleural fluid from three tularemia patients showed a lymphocyte predominant exudate. Bacillusanthracis is the causative agent of anthrax. Cases of inhalational anthrax from a recent bioterrorist attack evidenced the presence of a serosanguineous exudative pleural effusion. These four bacterial microorganisms should be suspected in patients presenting with a clinical history, exposure to known risk factors and an unexplained pleural effusion.
Collapse
Affiliation(s)
- Carlos E Kummerfeldt
- Division of Pulmonary and Critical Care, Medical University of South Carolina, USA
| | | | | |
Collapse
|
80
|
Adjemian J, Weber IB, McQuiston J, Griffith KS, Mead PS, Nicholson W, Roche A, Schriefer M, Fischer M, Kosoy O, Laven JJ, Stoddard RA, Hoffmaster AR, Smith T, Bui D, Wilkins PP, Jones JL, Gupton PN, Quinn CP, Messonnier N, Higgins C, Wong D. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009. Vector Borne Zoonotic Dis 2012; 12:922-31. [PMID: 22835153 DOI: 10.1089/vbz.2011.0917] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.
Collapse
Affiliation(s)
- Jennifer Adjemian
- Epidemic Intelligence Service, Office of Workforce and Career Development, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Anti-protective antigen IgG enzyme-linked immunosorbent assay for diagnosis of cutaneous anthrax in India. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1238-42. [PMID: 22718130 DOI: 10.1128/cvi.00154-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthrax caused by Bacillus anthracis is a public health problem in several developing countries whose main source of income is farming. Anthrax is a disease of herbivorous animals, and humans can be infected by handling infected animals or contaminated animal products. Specific diagnostic tests are unavailable in India for the detection and confirmation of cutaneous anthrax in humans. Here, we describe the development of an enzyme-linked immunosorbent assay (ELISA) for detection of serum antibodies against Bacillus anthracis protective antigen in the Indian population. A total of 405 serum samples collected from different groups were tested by the developed ELISA. The assay provided a specificity of 99.41% (95% confidence interval [CI], 97.89 to 99.93) and a sensitivity of 100% (CI, 94.4 to 100) using a cutoff value of 0.29 ELISA unit (EU). The positive predictive value (PPV) and negative predictive value (NPV) of the assay were 97% and 100%, respectively. The efficiency and J index for the reliability of the assay were 99.5% and 0.994, respectively. The assay can be a very useful tool for surveillance as well as for diagnosis of cutaneous anthrax cases in India.
Collapse
|
82
|
Recombinant protective antigen anthrax vaccine improves survival when administered as a postexposure prophylaxis countermeasure with antibiotic in the New Zealand white rabbit model of inhalation anthrax. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1158-64. [PMID: 22695155 DOI: 10.1128/cvi.00240-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhalation anthrax is a potentially lethal form of disease resulting from exposure to aerosolized Bacillus anthracis spores. Over the last decade, incidents spanning from the deliberate mailing of B. anthracis spores to incidental exposures in users of illegal drugs have highlighted the importance of developing new medical countermeasures to protect people who have been exposed to "anthrax spores" and are at risk of developing disease. The New Zealand White rabbit (NZWR) is a well-characterized model that has a pathogenesis and clinical presentation similar to those seen in humans. This article reports how the NZWR model was adapted to evaluate postexposure prophylaxis using a recombinant protective antigen (rPA) vaccine in combination with an oral antibiotic, levofloxacin. NZWRs were exposed to multiples of the 50% lethal dose (LD(50)) of B. anthracis spores and then vaccinated immediately (day 0) and again on day 7 postexposure. Levofloxacin was administered daily beginning at 6 to 12 h postexposure for 7 treatments. Rabbits were evaluated for clinical signs of disease, fever, bacteremia, immune response, and survival. A robust immune response (IgG anti-rPA and toxin-neutralizing antibodies) was observed in all vaccinated groups on days 10 to 12. Levofloxacin plus either 30 or 100 μg rPA vaccine resulted in a 100% survival rate (18 of 18 per group), and a vaccine dose as low as 10 μg rPA resulted in an 89% survival rate (16 of 18) when used in combination with levofloxacin. In NZWRs that received antibiotic alone, the survival rate was 56% (10 of 18). There was no adverse effect on the development of a specific IgG response to rPA in unchallenged NZWRs that received the combination treatment of vaccine plus antibiotic. This study demonstrated that an accelerated two-dose regimen of rPA vaccine coadministered on days 0 and 7 with 7 days of levofloxacin therapy results in a significantly greater survival rate than with antibiotic treatment alone. Combination of vaccine administration and antibiotic treatment may be an effective strategy for treating a population exposed to aerosolized B. anthracis spores.
Collapse
|
83
|
Validation and long term performance characteristics of a quantitative enzyme linked immunosorbent assay (ELISA) for human anti-PA IgG. J Immunol Methods 2012; 376:97-107. [DOI: 10.1016/j.jim.2011.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022]
|
84
|
Phase 1 study of a recombinant mutant protective antigen of Bacillus anthracis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:140-5. [PMID: 22190398 DOI: 10.1128/cvi.05556-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A phase 1 study of a recombinant mutant protective antigen (rPA) vaccine was conducted in 186 healthy adults aged 18 to 45 years. Volunteers were randomized to receive one of three formulations of rPA (formalin treated, alum adsorbed, or both), in 10- or 20-μg dosages each, or the licensed vaccine, AVA. Three injections were given at 2-month intervals and a 4th 1 year after the 3rd. Vaccinees were examined at the clinic once following each injection, at 48 to 72 h postinjection. Adverse reactions were recorded in diaries for 7 days. Sera were collected before each injection and 1 week after the 1st, 2 weeks after the 3rd and 4th, and 1 year after the 4th. Serum anti-PA IgG was assayed by enzyme-linked immunosorbent assay (ELISA) and toxin neutralization assay (TNA). All formulations at both dosages were safe and immunogenic, inducing booster responses, with the highest antibody levels following the 4th injection (354 to 732 μg/ml). The lowest levels were induced by the formalin-only-treated rPA; there was no statistical difference between levels induced by alum-adsorbed and formalin-treated/alum-adsorbed rPA or by the two dosages. The antibody levels declined in all groups during the 1-year intervals after the 3rd and 4th injections but less so during the 2nd year, after the 4th injection (fold decreases were 10 to 25 versus 3.4 to 7.0, P < 0.001). There were too few AVA recipients for statistical comparisons, but their antibody levels followed those of rPA. Anti-rPA measured by ELISA correlated with TNA titers (r = 0.97). These data support studying alum-adsorbed rPA in children.
Collapse
|
85
|
Boyer AE, Quinn CP, Beesley CA, Gallegos-Candela M, Marston CK, Cronin LX, Lins RC, Stoddard RA, Li H, Schiffer J, Hossain MJ, Chakraborty A, Rahman M, Luby SP, Shieh WJ, Zaki S, Barr JR, Hoffmaster AR. Lethal factor toxemia and anti-protective antigen antibody activity in naturally acquired cutaneous anthrax. J Infect Dis 2011; 204:1321-7. [PMID: 21908727 PMCID: PMC3182309 DOI: 10.1093/infdis/jir543] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous anthrax outbreaks occurred in Bangladesh from August to October 2009. As part of the epidemiological response and to confirm anthrax diagnoses, serum samples were collected from suspected case patients with observed cutaneous lesions. Anthrax lethal factor (LF), anti-protective antigen (anti-PA) immunoglobulin G (IgG), and anthrax lethal toxin neutralization activity (TNA) levels were determined in acute and convalescent serum of 26 case patients with suspected cutaneous anthrax from the first and largest of these outbreaks. LF (0.005-1.264 ng/mL) was detected in acute serum from 18 of 26 individuals. Anti-PA IgG and TNA were detected in sera from the same 18 individuals and ranged from 10.0 to 679.5 μg/mL and 27 to 593 units, respectively. Seroconversion to serum anti-PA and TNA was found only in case patients with measurable toxemia. This is the first report of quantitative analysis of serum LF in cutaneous anthrax and the first to associate acute stage toxemia with subsequent antitoxin antibody responses.
Collapse
Affiliation(s)
- Anne E Boyer
- Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Rynkiewicz D, Rathkopf M, Sim I, Waytes AT, Hopkins RJ, Giri L, DeMuria D, Ransom J, Quinn J, Nabors GS, Nielsen CJ. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine 2011; 29:6313-20. [PMID: 21624418 DOI: 10.1016/j.vaccine.2011.05.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/10/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
Abstract
Immunization with BioThrax(®) (Anthrax Vaccine Adsorbed) is a safe and effective means of preventing anthrax. Animal studies have demonstrated that the addition of CpG DNA adjuvants to BioThrax can markedly increase the immunogenicity of the vaccine, increasing both serum anti-protective antigen (PA) antibody and anthrax toxin-neutralizing antibody (TNA) concentrations. The immune response to CpG-adjuvanted BioThrax in animals was not only stronger, but was also more rapid and led to higher levels of protection in spore challenge models. The B-class CpG DNA adjuvant CPG 7909, a 24-base synthetic, single-strand oligodeoxynucleotide, was evaluated for its safety profile and adjuvant properties in a Phase 1 clinical trial. A double-blind study was performed in which 69 healthy subjects, age 18-45 years, were randomized to receive three doses of either: (1) BioThrax alone, (2) 1 mg of CPG 7909 alone or (3) BioThrax plus 1 mg of CPG 7909, all given intramuscularly on study days 0, 14 and 28. Subjects were monitored for IgG to PA by ELISA and for TNA titers through study day 56 and for safety through month 6. CPG 7909 increased the antibody response by 6-8-fold at peak, and accelerated the response by 3 weeks compared to the response seen in subjects vaccinated with BioThrax alone. No serious adverse events related to study agents were reported, and the combination was considered to be reasonably well tolerated. The marked acceleration and enhancement of the immune response seen by combining BioThrax and CPG 7909 offers the potential to shorten the course of immunization and reduce the time to protection, and may be particularly useful in the setting of post-exposure prophylaxis.
Collapse
Affiliation(s)
- Dianna Rynkiewicz
- University of Texas Health Sciences Center and Veterans' Administration Hospital, San Antonio, TX, UsA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Crowe SR, Garman L, Engler RJ, Farris AD, Ballard JD, Harley JB, James JA. Anthrax vaccination induced anti-lethal factor IgG: fine specificity and neutralizing capacity. Vaccine 2011; 29:3670-8. [PMID: 21420416 PMCID: PMC3233230 DOI: 10.1016/j.vaccine.2011.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
The efficacy biomarker of the currently licensed anthrax vaccine (AVA) is based on quantity and neutralizing capacity of anti-protective antigen (anti-PA) antibodies. However, animal studies have demonstrated that antibodies to lethal factor (LF) can provide protection against in vivo bacterial spore challenges. Improved understanding of the fine specificities of humoral immune responses that provide optimum neutralization capacity may enhance the efficacy of future passive immune globulin preparations to treat and prevent inhalation anthrax morbidity and mortality. This study (n=1000) was designed to identify AVA vaccinated individuals who generate neutralizing antibodies and to determine what specificities correlate with protection. The number of vaccine doses, years post vaccination, and PA titer were associated with in vitro neutralization, reinforcing previous reports. In addition, African American individuals had lower serologic neutralizing activity than European Americans, suggesting a genetic role in the generation of these neutralizing antibodies. Of the vaccinated individuals, only 69 (6.9%) had moderate levels of anti-LF IgG compared to 244 (24.4%) with low and 687 (68.7%) with extremely low levels of IgG antibodies to LF. Using overlapping decapeptide analysis, we identified six common LF antigenic regions targeted by those individuals with moderate levels of antibodies to LF and high in vitro toxin neutralizing activity. Affinity purified antibodies directed against antigenic epitopes within the PA binding and ADP-ribotransferase-like domains of LF were able to protect mice against lethal toxin challenge. Findings from these studies have important implications for vaccine design and immunotherapeutic development.
Collapse
Affiliation(s)
- Sherry R. Crowe
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
| | - Lori Garman
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - Renata J.M. Engler
- Vaccine Healthcare Centers (VHC) Network, Walter Reed Army Medical Center, Red Cross Building 41 Suite 021 PO Box 6900 Georgia Avenue, NW Washington, DC, U.S.A. 20012
| | - A. Darise Farris
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - Jimmy D. Ballard
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - John B. Harley
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
- Cincinnati Children's Hospital Medical Center, 3333 Burnet, ML 4010, Cincinnati, OH, U.S.A. 45229
| | - Judith A. James
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| |
Collapse
|
88
|
Brenneman KE, Doganay M, Akmal A, Goldman S, Galloway DR, Mateczun AJ, Cross AS, Baillie LW. The early humoral immune response to Bacillus anthracis toxins in patients infected with cutaneous anthrax. ACTA ACUST UNITED AC 2011; 62:164-72. [PMID: 21401726 DOI: 10.1111/j.1574-695x.2011.00800.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.
Collapse
Affiliation(s)
- Karen E Brenneman
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Antibody responses to a spore carbohydrate antigen as a marker of nonfatal inhalation anthrax in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:743-8. [PMID: 21389148 DOI: 10.1128/cvi.00475-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Bacillus anthracis exosporium protein BclA contains an O-linked antigenic tetrasaccharide whose terminal sugar is known as anthrose (J. M. Daubenspeck et al., J. Biol. Chem. 279:30945-30953, 2004). We hypothesized that serologic responses to anthrose may have diagnostic value in confirming exposure to aerosolized B. anthracis. We evaluated the serologic responses to a synthetic anthrose-containing trisaccharide (ATS) in a group of five rhesus macaques that survived inhalation anthrax following exposure to B. anthracis Ames spores. Two of five animals (RM2 and RM3) were treated with ciprofloxacin starting at 48 hours postexposure and two (RM4 and RM5) at 72 h postexposure; one animal (RM1) was untreated. Infection was confirmed by blood culture and detection of anthrax toxin lethal factor (LF) in plasma. Anti-ATS IgG responses were determined at 14, 21, 28, and 35 days postexposure, with preexposure serum as a control. All animals, irrespective of ciprofloxacin treatment, mounted a specific, measurable anti-ATS IgG response. The earliest detectable responses were on days 14 (RM1, RM2, and RM5), 21 (RM4), and 28 (RM3). Specificity of the anti-ATS responses was demonstrated by competitive-inhibition enzyme immunoassay (CIEIA), in which a 2-fold (wt/wt) excess of carbohydrate in a bovine serum albumin (BSA) conjugate of the oligosaccharide (ATS-BSA) effected >94% inhibition, whereas a structural analog lacking the 3-hydroxy-3-methyl-butyryl moiety at the C-4" of the anthrosyl residue had no inhibition activity. These data suggest that anti-ATS antibody responses may be used to identify aerosol exposure to B. anthracis spores. The anti-ATS antibody responses were detectable during administration of ciprofloxacin.
Collapse
|
90
|
Jariwala AR, Oliveira LM, Diemert DJ, Keegan B, Plieskatt JL, Periago MV, Bottazzi ME, Hotez PJ, Bethony JM. Potency testing for the experimental Na-GST-1 hookworm vaccine. Expert Rev Vaccines 2011; 9:1219-30. [PMID: 20923271 DOI: 10.1586/erv.10.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the next decade, a new generation of vaccines will target the neglected tropical diseases (NTDs). The goal of most NTD vaccines will be to reduce the morbidity and decrease the chronic debilitating nature of these often-forgotten infections – outcomes that are hard to measure in the traditional potency testing paradigm. The absence of measurable correlates of protection, a lack of permissive animal models for lethal infection, and a lack of clinical indications that do not include the induction of sterilizing immunity required us to reconsider the traditional bioassay methods for determining vaccine potency. Owing to these limitations, potency assay design for NTD vaccines will increasingly rely on a paradigm where potency testing is one among many tools to ensure that a manufacturing process yields a product of consistent quality. Herein, we discuss the evolution of our thinking regarding the design of a potency assay along these newly defined lines and its application to the release of the experimental Necator americanus-glutathione-S- transferase-1 (Na-GST-1) vaccine to prevent human hookworm infection. We discuss the necessary steps to accomplish the design and implementation of such a new potency assay as a resource for the burgeoning NTD vaccine community. Our experience is that much of the existing information is proprietary and needs to be pulled together in a single source to aid in our overall understanding of potency testing.
Collapse
|
91
|
Use of Host Factors in Microbial Forensics. MICROBIAL FORENSICS 2011. [PMCID: PMC7150250 DOI: 10.1016/b978-0-12-382006-8.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
92
|
Distinguishing Tropical Infectious Diseases from Bioterrorism. TROPICAL INFECTIOUS DISEASES: PRINCIPLES, PATHOGENS AND PRACTICE 2011. [PMCID: PMC7150159 DOI: 10.1016/b978-0-7020-3935-5.00125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
93
|
Brown BK, Cox J, Gillis A, VanCott TC, Marovich M, Milazzo M, Antonille TS, Wieczorek L, McKee KT, Metcalfe K, Mallory RM, Birx D, Polonis VR, Robb ML. Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA) vaccine to prevent anthrax in adults. PLoS One 2010; 5:e13849. [PMID: 21079762 PMCID: PMC2974626 DOI: 10.1371/journal.pone.0013849] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). METHODOLOGY/PRINCIPAL FINDINGS A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. CONCLUSIONS/SIGNIFICANCE The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. TRIAL REGISTRATION ClinicalTrials.gov NCT00057525.
Collapse
Affiliation(s)
- Bruce K. Brown
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Josephine Cox
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Anita Gillis
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Thomas C. VanCott
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Mary Marovich
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Mark Milazzo
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Tanya Santelli Antonille
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Lindsay Wieczorek
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Kelly T. McKee
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Karen Metcalfe
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Raburn M. Mallory
- DynPort Vaccine Company LLC, Frederick, Maryland, United States of America
| | - Deborah Birx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Victoria R. Polonis
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Merlin L. Robb
- United States Military HIV Research Program, Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| |
Collapse
|
94
|
Soroka SD, Schiffer JM, Semenova VA, Li H, Foster L, Quinn CP. A two-stage, multilevel quality control system for serological assays in anthrax vaccine clinical trials. Biologicals 2010; 38:675-83. [DOI: 10.1016/j.biologicals.2010.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 08/25/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022] Open
|
95
|
Crowe SR, Ash LL, Engler RJM, Ballard JD, Harley JB, Farris AD, James JA. Select human anthrax protective antigen epitope-specific antibodies provide protection from lethal toxin challenge. J Infect Dis 2010; 202:251-60. [PMID: 20533877 PMCID: PMC2891133 DOI: 10.1086/653495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bacillus anthracis remains a serious bioterrorism concern, and the currently licensed vaccine remains an incomplete solution for population protection from inhalation anthrax and has been associated with concerns regarding efficacy and safety. Thus, understanding how to generate long-lasting protective immunity with reduced immunizations or provide protection through postexposure immunotherapeutics are long-sought goals. Through evaluation of a large military cohort, we characterized the levels of antibodies against protective antigen and found that over half of anthrax vaccinees had low serum levels of in vitro toxin neutralization capacity. Using solid-phase epitope mapping and confirmatory assays, we identified several neutralization-associated humoral epitopes and demonstrated that select antipeptide responses mediated protection in vitro. Finally, passively transferred antibodies specific for select epitopes provided protection in an in vivo lethal toxin mouse model. Identification of these antigenic regions has important implications for vaccine design and the development of directed immunotherapeutics.
Collapse
Affiliation(s)
- Sherry R. Crowe
- Oklahoma Medical Research Foundation (OMRF), 825 NE 13 Street, Oklahoma City, OK 73104
| | - Linda L. Ash
- Oklahoma Medical Research Foundation (OMRF), 825 NE 13 Street, Oklahoma City, OK 73104
| | - Renata J. M. Engler
- Vaccine Healthcare Centers Network, Walter Reed Army Medical Center, Red Cross Building, 6900 Georgia Avenue, NW Washington, DC 20012
| | - Jimmy D. Ballard
- Oklahoma University Health Sciences Center (OUHSC), 820 NE 10, Oklahoma City, OK 73104
| | - John B. Harley
- Oklahoma Medical Research Foundation (OMRF), 825 NE 13 Street, Oklahoma City, OK 73104
- Oklahoma University Health Sciences Center (OUHSC), 820 NE 10, Oklahoma City, OK 73104
- US Department of Veterans Affairs Medical Center, 921 NE 13 Street, Oklahoma City, OK 73104
| | - A. Darise Farris
- Oklahoma Medical Research Foundation (OMRF), 825 NE 13 Street, Oklahoma City, OK 73104
- Oklahoma University Health Sciences Center (OUHSC), 820 NE 10, Oklahoma City, OK 73104
| | - Judith A. James
- Oklahoma Medical Research Foundation (OMRF), 825 NE 13 Street, Oklahoma City, OK 73104
- Oklahoma University Health Sciences Center (OUHSC), 820 NE 10, Oklahoma City, OK 73104
| |
Collapse
|
96
|
Detection technologies for Bacillus anthracis: Prospects and challenges. J Microbiol Methods 2010; 82:1-10. [DOI: 10.1016/j.mimet.2010.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 01/20/2023]
|
97
|
Ngundi MM, Meade BD, Lin TL, Tang WJ, Burns DL. Comparison of three anthrax toxin neutralization assays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:895-903. [PMID: 20375243 PMCID: PMC2884435 DOI: 10.1128/cvi.00513-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 01/14/2023]
Abstract
Different types of anthrax toxin neutralization assays have been utilized to measure the antibody levels elicited by anthrax vaccines in both nonclinical and clinical studies. In the present study, we sought to determine whether three commonly used toxin neutralization assays-J774A.1 cell-, RAW 264.7 cell-, and CHO cell-based assays-yield comparable estimates of neutralization activities for sera obtained after vaccination with anthrax vaccines composed of recombinant protective antigen (rPA). In order to compare the assays, sera were assayed alongside a common reference serum sample and the neutralization titers were expressed relative to the titer for the reference sample in each assay. Analysis of sera from rabbits immunized with multiple doses of the rPA vaccine showed that for later bleeds, the quantitative agreement between the assays was good; however, for early bleeds, some heterogeneity in relative neutralization estimates was observed. Analysis of serum samples from rabbits, nonhuman primates, and humans immunized with the rPA vaccine showed that the relative neutralization estimates obtained in the different assays agreed to various extents, depending on the species of origin of the sera examined. We identified differences in the magnitudes of the Fc receptor-mediated neutralization associated with the J774A.1 cell- and RAW 264.7 cell-based assays, which may account for some of the species dependence of the assays. The differences in the relative neutralization estimates among the assays were relatively small and were always less than 2.5-fold. However, because toxin neutralization assays will likely be used to establish the efficacies of new anthrax vaccines, our findings should be considered when assay outputs are interpreted.
Collapse
Affiliation(s)
- Miriam M. Ngundi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, Meade Biologics, Hillsborough, North Carolina 27278, University of Chicago, Chicago, Illinois 60637
| | - Bruce D. Meade
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, Meade Biologics, Hillsborough, North Carolina 27278, University of Chicago, Chicago, Illinois 60637
| | - Tsai-Lien Lin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, Meade Biologics, Hillsborough, North Carolina 27278, University of Chicago, Chicago, Illinois 60637
| | - Wei-Jen Tang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, Meade Biologics, Hillsborough, North Carolina 27278, University of Chicago, Chicago, Illinois 60637
| | - Drusilla L. Burns
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, Meade Biologics, Hillsborough, North Carolina 27278, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
98
|
Duriez E, Goossens PL, Becher F, Ezan E. Femtomolar detection of the anthrax edema factor in human and animal plasma. Anal Chem 2009; 81:5935-41. [PMID: 19522516 DOI: 10.1021/ac900827s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Edema factor (EF), a calmodulin-activated adenylyl cyclase, is a toxin which contributes to cutaneous and systemic anthrax. As a novel strategy to detect anthrax toxins in humans or animals infected by Bacillus anthracis, we have developed a sensitive enzymatic assay to be able to monitor functional EF in human and animal plasma. Samples containing EF are incubated in the presence of calmodulin and ATP, which is converted to cAMP. After oxidation and derivatization, cAMP is monitored by competitive enzyme immunoassay. Because of the high turnover of EF and the sensitivity of cAMP detection, EF can be detected at concentrations of 1 pg/mL (10 fM) in 4 h in plasma from humans or at 10 pg/mL in the plasma of various animal species using only a blood volume of 5 microL. The assay has good reproducibility with intra- and interday coefficients of variation in the range of 20% and is not subject to significant interindividual matrix effects. In an experimental study performed in mice infected with the Berne strain, we were able to detect EF in serum and ear tissues. This simple and robust combination of enzymatic reaction and enzyme immunoassay for the diagnosis of anthrax toxemia could prove useful in biological threat detection as well in research and clinical practice.
Collapse
Affiliation(s)
- Elodie Duriez
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
99
|
Immunoglobulin G (IgG) class, but Not IgA or IgM, antibodies to peptides of the Porphyromonas gingivalis chaperone HtpG predict health in subjects with periodontitis by a fluorescence enzyme-linked immunosorbent assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1766-73. [PMID: 19793900 DOI: 10.1128/cvi.00272-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chaperones are molecules found in all cells and are critical in stabilization of synthesized proteins, in repair/removal of defective proteins, and as immunodominant antigens in innate and adaptive immunity. Subjects with gingivitis colonized by the oral pathogen Porphyromonas gingivalis previously demonstrated levels of anti-human chaperone Hsp90 that were highest in individuals with the best oral health. We hypothesized that similar antibodies to pathogen chaperones might be protective in periodontitis. This study examined the relationship between antibodies to P. gingivalis HtpG and clinical statuses of healthy and periodontitis-susceptible subjects. We measured the humoral responses (immunoglobulin G [IgG], IgA, and IgM) to peptides of a unique insert (P18) found in Bacteroidaceae HtpG by using a high-throughput, quantitative fluorescence enzyme-linked immunosorbent assay. Indeed, higher levels of IgG class anti-P. gingivalis HtpG P18 peptide (P < 0.05) and P18alpha, consisting of the N-terminal 16 amino acids of P18 (P < 0.05), were associated with better oral health; these results were opposite of those found with anti-P. gingivalis whole-cell antibodies and levels of the bacterium in the subgingival biofilm. When we examined the same sera for IgA and IgM class antibodies, we found no significant relationship to subject clinical status. The relationship between anti-P18 levels and clinical populations and individual subjects was found to be improved when we normalized the anti-P18alpha values to those for anti-P18gamma (the central 16 amino acids of P18). That same ratio correlated with the improvement in tissue attachment gain after treatment (P < 0.05). We suggest that anti-P. gingivalis HtpG P18alpha antibodies are protective in periodontal disease and may have prognostic value for guidance of individual patient treatment.
Collapse
|
100
|
Keitel WA, Treanor JJ, El Sahly HM, Evans TG, Kopper S, Whitlow V, Selinsky C, Kaslow DC, Rolland A, Smith LR, Lalor PA. Evaluation of a plasmid DNA-based anthrax vaccine in rabbits, nonhuman primates and healthy adults. HUMAN VACCINES 2009; 5:536-44. [PMID: 19458488 PMCID: PMC3041018 DOI: 10.4161/hv.5.8.8725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
VCL-AB01, a cationic lipid-formulated plasmid DNA (pDNA)-based vaccine that contains genes encoding genetically detoxified Bacillus anthracis protective antigen (PA) and lethal factor (LF), was assessed in a Phase 1, dose-escalating clinical trial in healthy adults for safety and immunogenicity, and in nonhuman primates for immunogenicity and efficacy against challenge with a lethal dose of B. anthracis spores. Healthy 18-45 year old subjects were randomly assigned to receive either the investigational vaccine containing 0.2 mg, 0.6 mg, or 2 mg of total pDNA per dose, or saline placebo, administered at 0, 1 and 2 months. The 0.2 mg and 0.6 mg dose levels were generally well tolerated; however, dose-limiting reactogenicity was observed among subjects given the first 2 mg dose and the remaining two injections in the 2 mg group were reduced to 0.6 mg. Dose-related increases in seroconversion frequencies were observed. Overall, 10%, 33.3% and 80% of subjects in the 0.2, 0.6 and 2 mg groups, respectively, developed antibodies to PA and/or LF as measured by ELISA; however, antibodies with toxin neutralizing activity (TNA) were detected in only one subject. In monkeys that received a 0.6 mg dose three times at 2 week intervals, low levels of antibodies were detected by ELISA but not by the TNA assay in all animals just prior to challenge. Despite the absence of TNA, 75% animals survived the lethal challenge. In summary, VCL-AB01 was generally well tolerated in humans at a dose that provided immunity in monkeys despite the lack of robust TNA titers in either species.
Collapse
Affiliation(s)
| | - John J. Treanor
- University of Rochester; School of Medicine and Dentistry; Rochester, NY USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|