51
|
Kawicka M, Lewicki M, Frydrychowski P, Michałek M, Noszczyk-Nowak A. Comparative analysis of ECG records depending on body position in domestic swine (Sus scrofa domestica). Porcine Health Manag 2022; 8:39. [PMID: 36123754 PMCID: PMC9484185 DOI: 10.1186/s40813-022-00282-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Electrocardiography is a method widely applied in diagnosing abnormalities in the functioning of the heart muscle in veterinary medicine. It is a non-invasive and easy to perform test helpful in the general examination and a widely used patient monitoring method during anesthesia. Since the 1980s, pigs have become more and more popular companion animals. Moreover, the pig is a widely used model animal in biomedical research. Therefore, there is need to provide them with higher-quality veterinary services, also in emergency situations. It creates new challenges for veterinarians and the need to expand their knowledge of pigs’ treatment as pets. The aim of the planned experiment was to compare the ECG recordings made with two different body positions and determine if any differences occurred. Standard ECG in swine is performed under general anesthesia in the lying position on the left side, for this position of the body have been developed and reported standards in the literature. However, some procedures performed on swine require a different body position, for which there is less data in the literature.
Methods The study was carried out on 29 Polish landrace pigs weighing in the range of 33–44 kg. The tests were performed under general anesthesia with the same protocol for each animal, placing the animals first lying down on their right side, and then on their backs. The anesthesia protocol included medetomidine, midazolam, ketamine, and propofol. During the examination, ECG records were performed and analyzed in a 12-lead system with software support. Results The results show significant differences in electrocardiogram recordings depending on the animal's body position. Those differences mainly concern the amplitude of the P wave and R wave in the recordings and are even more visible comparing the electrocardiograms of the same specimen. There are also some significant differences in the duration of intervals. Based on the obtained results, reference ranges for the right lateral and dorsal positions were developed. Conclusion In conclusion, the body position has a significant impact on the ECG recording in swine, therefore performing this examination, chosen normative value tables should be compatible with the position of the examined animal.
Collapse
Affiliation(s)
- Marta Kawicka
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 31 Norwida St., 50-357, Wrocław, Poland
| | - Maksymilian Lewicki
- The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 31 Norwida St., 50-357, Wrocław, Poland
| | - Piotr Frydrychowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland
| | - Marcin Michałek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 47 Grunwaldzki Square, 50-366, Wrocław, Poland.
| |
Collapse
|
52
|
Immunosuppressive regimens in porcine transplantation models. Transplant Rev (Orlando) 2022; 36:100725. [PMID: 36054957 DOI: 10.1016/j.trre.2022.100725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
Pigs, or Sus scrofa domestica, are commonly used animal models in translational transplantation research due to their anatomical, physiological, and immunological similarities to humans. In solid organ transplantation studies, immunosuppressive medications may be administered to pigs to prevent rejection. We provide an overview of the immunosuppressive regimens used in allogeneic solid organ transplantation in pigs, including heart, lung, kidney, bowel and cotransplanted organs and focus on the use of tacrolimus, mycophenolate mofetil, and corticosteroids.
Collapse
|
53
|
Song J, Cho J, Park J, Hwang JH. Identification and validation of stable reference genes for quantitative real time PCR in different minipig tissues at developmental stages. BMC Genomics 2022; 23:585. [PMID: 35962323 PMCID: PMC9374586 DOI: 10.1186/s12864-022-08830-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Quantitative real time PCR (qPCR) is a powerful tool to evaluate mRNA expression level. However, reliable qPCR results require normalization with validated reference gene(s). In this study, we investigated stable reference genes in seven tissues according to four developmental stages in minipigs. Six candidate reference genes and one target gene (ACE2) were selected and qPCR was performed. BestKeeper, geNorm, NormFinder, and delta Ct method through the RefFinder web-based tool were used to evaluate the stability of candidate reference genes. To verify the selected stable genes, relative expression of ACE2 was calculated and compared with each other. Results As a result, HPRT1 and 18S genes had lower SD value, while HMBS and GAPDH genes had higher SD value in all samples. Using statistical algorithms, HPRT1 was the most stable gene, followed by 18S, β-actin, B2M, GAPDH, and HMBS. In intestine, all candidate reference genes exhibited similar patterns of ACE2 gene expression over time, whereas in liver, lung, and kidney, gene expression pattern normalized with stable reference genes differed from those normalized with less stable genes. When normalized with the most stable genes, the expression levels of ACE2 in minipigs highly increased in intestine and kidney at PND28, which is consistent with the ACE2 expression pattern in humans. Conclusions We suggest that HPRT1 and 18S are good choices for analyzing all these samples across the seven tissues and four developmental stages. However, this study can be a reference literature for gene expression experiments using minipig because reference gene should be validated and chosen according to experimental conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08830-z.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| | - Jeonghee Cho
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.,Department of Bio-Non-Clinical Science, Graduate School of Konyang University of Bioconvergence, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Jeongsik Park
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
54
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
55
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
56
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
57
|
Rosa F, Yelvington B, Terry N, Tripp P, Pittman HE, Fay BL, Ross TJ, Sikes JD, Flowers JB, Bar-Yoseph F, Yeruva L. Evaluation of the Safety of a Plant-Based Infant Formula Containing Almonds and Buckwheat in a Neonatal Piglet Model. Nutrients 2022; 14:1499. [PMID: 35406111 PMCID: PMC9002815 DOI: 10.3390/nu14071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
A randomized neonatal piglet trial was conducted to evaluate the safety and the effects of a plant-based formula containing almonds and buckwheat as the main ingredients on growth and plasma parameters. From postnatal day (PND) 2 to 21, the piglets were fed a dairy-based milk formula (Similac Advance) or a plant-based formula (Else Nutrition) and all piglets were euthanized at day 21. No diarrhea was observed after PND 8 and all the piglets completed the trial. Body growth, kcal intake, the complete plasma count parameters and hematological parameters were within the reference range in both groups. Organ growth and development was similar between the two groups. Plasma glucose was higher in the dairy-based-fed piglets relative to the plant-based at 2 weeks of age. Liver function biomarkers levels were greater in the plasma of the plant-based compared to the dairy-based fed group. In addition, calcium levels were higher in the plant-based fed piglets at 1 week of age. Thus, the plant-based formula tested in this study was well tolerated by the piglets and supported similar growth compared to dairy-based milk formula. Therefore, the results support the safety of the tested plant-based infant formula during the neonatal period in comparison to the dairy-based formula fed group.
Collapse
Affiliation(s)
- Fernanda Rosa
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79415, USA
| | - Brooke Yelvington
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - Nathan Terry
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - Patricia Tripp
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - Hoy E. Pittman
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - Bobby L. Fay
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - Taylor J. Ross
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | - James D. Sikes
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| | | | | | - Laxmi Yeruva
- United States Department of Agriculture-Agriculture Resaarch Service, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (F.R.); (B.Y.); (N.T.); (P.T.); (H.E.P.III); (B.L.F.); (T.J.R.); (J.D.S.)
| |
Collapse
|
58
|
Salinas EY, Donahue RP, Herrera JM, Hu JC, Athanasiou KA. The functionality and translatability of neocartilage constructs are improved with the combination of fluid-induced shear stress and bioactive factors. FASEB J 2022; 36:e22225. [PMID: 35224777 PMCID: PMC9045489 DOI: 10.1096/fj.202101699r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Neocartilage tissue engineering aims to address the shortcomings of current clinical treatments for articular cartilage indications. However, advancement is required toward neocartilage functionality (mechanical and biochemical properties) and translatability (construct size, gross morphology, passage number, cell source, and cell type). Using fluid-induced shear (FIS) stress, a potent mechanical stimulus, over four phases, this work investigates FIS stress' efficacy toward creating large neocartilage derived from highly passaged minipig costal chondrocytes, a species relevant to the preclinical regulatory process. In Phase I, FIS stress application timing was investigated in bovine articular chondrocytes and found to improve the aggregate modulus of neocartilage by 151% over unstimulated controls when stimulated during the maturation stage. In Phase II, FIS stress stimulation was translated from bovine articular chondrocytes to expanded minipig costal chondrocytes, yielding a 46% improvement in aggregate modulus over nonstimulated controls. In Phase III, bioactive factors were combined with FIS stress to improve the shear modulus by 115% over bioactive factor-only controls. The translatability of neocartilage was improved in Phase IV by utilizing highly passaged cells to form constructs more than 9-times larger in the area (11 × 17 mm), yielding an improved aggregate modulus by 134% and a flat morphology compared to free-floating, bioactive factor-only controls. Overall, this study represents a significant step toward generating mechanically robust, large constructs necessary for animal studies, and eventually, human clinical studies.
Collapse
Affiliation(s)
- Evelia Y Salinas
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Ryan P Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Jessica M Herrera
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
59
|
Satyamitra MM, Perez-Horta Z, DiCarlo AL, Cassatt DR, Rios CI, Price PW, Taliaferro LP. NIH Policies and Regulatory Pathways to U.S. FDA licensure: Strategies to Inform Advancement of Radiation Medical Countermeasures and Biodosimetry Devices. Radiat Res 2022; 197:533-553. [PMID: 35113982 DOI: 10.1667/rade-21-00198.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
The Radiation and Nuclear Countermeasures Program within the National Institute of Allergy and Infectious Diseases (NIAID), is tasked with the mandate of identifying biodosimetry tests to assess exposure and medical countermeasures (MCMs) to mitigate/treat injuries to individuals exposed to significant doses of ionizing radiation from a radiological/nuclear incident, hosted. To fulfill this mandate, the Radiation and Nuclear Countermeasures Program (RNCP), hosted a workshop in 2018 workshop entitled "Policies and Regulatory Pathways to U.S. FDA licensure: Radiation Countermeasures and Biodosimetry Devices." The purpose of the meeting was to facilitate the advancement of MCMs and biodosimetry devices by assessing the research devices and animal models used in preclinical studies; government policies on reproducibility, rigor and robustness; regulatory considerations for MCMs and biodosimetry devices; and lessons learned from sponsors of early stage MCM or biodosimetry devices. Meeting presentations were followed by a NIAID-led, open discussion among academic investigators, industry researchers and U.S. government representatives.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Zulmarie Perez-Horta
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), United States Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| |
Collapse
|
60
|
Gutierrez K, Glanzner WG, de Macedo MP, Rissi VB, Dicks N, Bohrer RC, Baldassarre H, Agellon LB, Bordignon V. Cell Cycle Stage and DNA Repair Pathway Influence CRISPR/Cas9 Gene Editing Efficiency in Porcine Embryos. Life (Basel) 2022; 12:life12020171. [PMID: 35207459 PMCID: PMC8876063 DOI: 10.3390/life12020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR/Cas9 technology is a powerful tool used for genome manipulation in different cell types and species. However, as with all new technologies, it still requires improvements. Different factors can affect CRISPR/Cas efficiency in zygotes, which influence the total cost and complexity for creating large-animal models for research. This study evaluated the importance of zygote cell cycle stage between early-injection (within 6 h post activation/fertilization) versus late-injection (14–16 h post activation/fertilization) when the CRISPR/Cas9 components were injected and the inhibition of the homologous recombination (HR) pathway of DNA repair on gene editing, embryo survival and development on embryos produced by fertilization, sperm injection, somatic cell nuclear transfer, and parthenogenetic activation technologies. Injections at the late cell cycle stage decreased embryo survival (measured as the proportion of unlysed embryos) and blastocyst formation (68.2%; 19.3%) compared to early-stage injection (86.3%; 28.8%). However, gene editing was higher in blastocysts from late-(73.8%) vs. early-(63.8%) injected zygotes. Inhibition of the HR repair pathway increased gene editing efficiency by 15.6% in blastocysts from early-injected zygotes without compromising embryo development. Our finding shows that injection at the early cell cycle stage along with HR inhibition improves both zygote viability and gene editing rate in pig blastocysts.
Collapse
Affiliation(s)
- Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Werner G. Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Mariana P. de Macedo
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Vitor B. Rissi
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos 89520-000, Brazil;
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Rodrigo C. Bohrer
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Correspondence: (L.B.A.); (V.B.)
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (K.G.); (W.G.G.); (M.P.d.M.); (N.D.); (R.C.B.); (H.B.)
- Correspondence: (L.B.A.); (V.B.)
| |
Collapse
|
61
|
Hemosiderin Accumulation in Liver Decreases Iron Availability in Tachycardia-Induced Porcine Congestive Heart Failure Model. Int J Mol Sci 2022; 23:ijms23031026. [PMID: 35162949 PMCID: PMC8834801 DOI: 10.3390/ijms23031026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
Despite advances in the management of iron deficiency in heart failure (HF), the mechanisms underlying the effects of treatment remain to be established. Iron distribution and metabolism in HF pathogenesis need to be clarified. We used a porcine tachycardia-induced cardiomyopathy model to find out how HF development influences hepatic and myocardial iron storing, focusing on ferritin, the main iron storage protein. We found that cumulative liver congestion (due to the decrease of heart function) overwhelms its capacity to recycle iron from erythrocytes. As a consequence, iron is trapped in the liver as poorly mobilized hemosiderin. What is more, the ferritin-bound Fe3+ (reflecting bioavailable iron stores), and assembled ferritin (reflecting ability to store iron) are decreased in HF progression in the liver. We demonstrate that while HF pigs show iron deficiency indices, erythropoiesis is enhanced. Renin–angiotensin–aldosterone system activation and hepatic hepcidin suppression might indicate stress erythropoiesisinduced in HF. Furthermore, assembled ferritin increases but ferritin-bound Fe3+ is reduced in myocardium, indicating that a failing heart increases the iron storage reserve but iron deficiency leads to a drop in myocardial iron stores. Together, HF in pigs leads to down-regulated iron bioavailability and reduced hepatic iron storage making iron unavailable for systemic/cardiac needs.
Collapse
|
62
|
Ienello L, Kennedy M, Wendt-Hornickle E, Baldo C, Moshnikova V, Guedes A. Ultrasound-guided rectus sheath block injections in miniature swine cadavers: technique description and distribution of two injectate volumes. Vet Anaesth Analg 2022; 49:210-218. [DOI: 10.1016/j.vaa.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
|
63
|
Donahue RP, Link JM, Meli VS, Hu JC, Liu WF, Athanasiou KA. Stiffness- and Bioactive Factor-Mediated Protection of Self-Assembled Cartilage against Macrophage Challenge in a Novel Co-Culture System. Cartilage 2022; 13:19476035221081466. [PMID: 35313741 PMCID: PMC9137312 DOI: 10.1177/19476035221081466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/23/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Jarrett M. Link
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
64
|
Durnaoglu S, Lee SK, Ahnn J. Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases. Mol Cells 2021; 44:861-878. [PMID: 34963103 PMCID: PMC8718366 DOI: 10.14348/molcells.2021.5016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sun-Kyung Lee
- Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
65
|
Halecker S, Metzger J, Strube C, Krabben L, Kaufer B, Denner J. Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms 2021; 9:microorganisms9122617. [PMID: 34946218 PMCID: PMC8706741 DOI: 10.3390/microorganisms9122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated as most of the other pig viruses can. PERV-A and PERV-B infect human cells in cell culture and are integrated in all pigs, whereas PERV-C infects only pig cells and it is found in many, but not all pigs. Minipigs are known for a high prevalence of recombinant PERV-A/C viruses able to infect human cells (Denner and Schuurman, Viruses, 2021;13:1869). Here, Mini-LEWE minipigs are screened for the first time for pig viruses including PERV. Peripheral blood mononuclear cells (PBMCs) from 10 animals were screened using PCR-based methods (PCR, RT-PCR, and real-time PCR). In comparison with our previous screening assays, numerous improvements were introduced, e.g., the usage of gene blocks as a PCR standard and foreign RNA to control reverse transcription in RT-PCR. Using these improved detection methods, Mini-LEWE pigs were found to be negative for porcine cytomegalovirus (PCMV), porcine lymphotropic herpesviruses (PLHV-1, -2 and -3), porcine circoviruses (PCV1, 2, 3 and 4), porcine parvovirus (PPV) and hepatitis E virus (HEV). All animals carried PERV-A, PERV-B and PERV-C in their genome. PERV-A/C was not found. In contrast to all other minipig breeds (Göttingen minipigs, Aachen minipigs, Yucatan micropig, Massachusetts General Hospital miniature pigs), Mini-LEWE minipigs have less viruses and no PERV-A/C. Parasitological screening showed that none of the Mini-LEWE minipigs harbored ecto- and gastrointestinal parasites, but at least one animal tested positive for anti-Toxoplasma gondii antibodies.
Collapse
Affiliation(s)
- Sabrina Halecker
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Ludwig Krabben
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
- Correspondence: ; Tel.: +49-30-8386-3059
| |
Collapse
|
66
|
Simulated Microgravity Induces the Proliferative Inhibition and Morphological Changes in Porcine Granulosa Cells. Curr Issues Mol Biol 2021; 43:2210-2219. [PMID: 34940129 PMCID: PMC8929043 DOI: 10.3390/cimb43030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Astronauts are always faced with serious health problems during prolonged spaceflights. Previous studies have shown that weightlessness significantly affects the physiological function of female astronauts, including a change in reproductive hormones and ovarian cells, such as granulosa and theca cells. However, the effects of microgravity on these cells have not been well characterized, especially in granulosa cells. This study aimed to investigate the effects of simulated microgravity (SMG) on the proliferation and morphology of porcine granulosa cells (pGCs). pGC proliferation from the SMG group was inhibited, demonstrated by the reduced O.D. value and cell density in the WST-1 assay and cell number counting. SMG-induced pGCs exhibited an increased ratio of cells in the G0/G1 phase and a decreased ratio of cells in the S and G2/M phase. Western blot analysis indicated a down-regulation of cyclin D1, cyclin-dependent kinase 4 (cdk4), and cyclin-dependent kinase 6 (cdk6), leading to the prevention of the G1-S transition and inducing the arrest phase. pGCs under the SMG condition showed an increase in nuclear area. This caused a reduction in nuclear shape value in pGCs under the SMG condition. SMG-induced pGCs exhibited different morphologies, including fibroblast-like shape, rhomboid shape, and pebble-like shape. These results revealed that SMG inhibited proliferation and induced morphological changes in pGCs.
Collapse
|
67
|
M'bitsi-Ibouily GC, Marimuthu T, du Toit LC, Kumar P, Choonara YE. In vitro, ex vivo and in vivo evaluation of a novel metal-liganded nanocomposite for the controlled release and improved oral bioavailability of sulpiride. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
68
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
69
|
París-Oller E, Matás C, Romar R, Lopes JS, Gadea J, Cánovas S, Coy P. Growth analysis and blood profile in piglets born by embryo transfer. Res Vet Sci 2021; 142:43-53. [PMID: 34861454 DOI: 10.1016/j.rvsc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Assisted reproductive technologies (ART), besides solving several reproductive problems, it has also been used as a tool to improve the animal productivity that is required for feeding the human population. One of these techniques, the embryo transfer (ET), has presented limitations in the porcine species, which could constrain its use in the porcine industry. To clarify the potential of this technique, we aimed to compare the impact of using ET or artificial insemination (AI) on the phenotype of the offspring during its first days of age, in terms of growth and blood parameters. At birth, the body weight was higher for ET-females than AI-females, but this difference was no longer observed at day 15. On day 3, it was observed a higher concentration of red blood cells, haemoglobin, and haematocrit in females-ET and a higher concentration of white blood cells in both ET-derived piglets (males and females) when compared to AI groups. On day 3, the biochemical analysis showed a higher level of albumin for ET-derived males, and a lower level of bilirubin for ET-females than AI controls. However, all values were within the normal ranges. Our results indicate that piglets derived from ET seem to be phenotypically similar to those born by AI, which provides preliminary evidence that the ET procedure is a safe technique, but additional studies beyond 15 days of life are requested to conclude its global impact. Furthermore, the presented reference values of blood parameters in this species are interesting data for the pig industry.
Collapse
Affiliation(s)
- Evelyne París-Oller
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jordana S Lopes
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
70
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
71
|
Schachtschneider KM, Schook LB, Meudt JJ, Shanmuganayagam D, Zoller JA, Haghani A, Li CZ, Zhang J, Yang A, Raj K, Horvath S. Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity. GeroScience 2021; 43:2467-2483. [PMID: 34523051 PMCID: PMC8599541 DOI: 10.1007/s11357-021-00439-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of age, epigenetic clocks, for many species. Using a custom methylation array, we generated DNA methylation data from n = 238 porcine tissues including blood, bladder, frontal cortex, kidney, liver, and lung, from domestic pigs (Sus scrofa domesticus) and minipigs (Wisconsin Miniature Swine™). Samples used in this study originated from Large White X Landrace crossbred pigs, Large White X Minnesota minipig crossbred pigs, and Wisconsin Miniature Swine™. We present 4 epigenetic clocks for pigs that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (pig and human). Two dual-species human-pig pan-tissue clocks accurately measure chronological age and relative age, respectively. We also characterized CpGs that differ between minipigs and domestic pigs. Strikingly, several genes implicated by our epigenetic studies of minipig status overlap with genes (ADCY3, TFAP2B, SKOR1, and GPR61) implicated by genetic studies of body mass index in humans. In addition, CpGs with different levels of methylation between the two pig breeds were identified proximal to genes involved in blood LDL levels and cholesterol synthesis, of particular interest given the minipig's increased susceptibility to cardiovascular disease compared to domestic pigs. Thus, breed-specific differences of domestic and minipigs may potentially help to identify biological mechanisms underlying weight gain and aging-associated diseases. Our porcine clocks are expected to be useful for elucidating the role of epigenetics in aging and obesity, and the testing of anti-aging interventions.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois At Chicago, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, University of Illinois At Chicago, Chicago, IL USA
- National Center for Supercomputing Applications, University of Illinois At Urbana-Champaign, Urban, IL USA
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois At Chicago, Chicago, IL USA
- Department of Animal Sciences, University of Illinois At Urbana-Champaign, Urbana, IL USA
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin – Madison, Madison, WI USA
| | - Dhanansayan Shanmuganayagam
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin – Madison, Madison, WI USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joshua Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA 90095 USA
| | - Andrew Yang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Gonda Building, 695 Charles Young Drive South, Los Angeles, CA 90095 USA
| |
Collapse
|
72
|
High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021; 13:v13091869. [PMID: 34578447 PMCID: PMC8473008 DOI: 10.3390/v13091869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Minipigs play an important role in biomedical research and they have also been used as donor animals for preclinical xenotransplantations. Since zoonotic microorganisms including viruses can be transmitted when pig cells, tissues or organs are transplanted, virus safety is an important feature in xenotransplantation. Whereas most porcine viruses can be eliminated from pig herds by different strategies, this is not possible for porcine endogenous retroviruses (PERVs). PERVs are integrated in the genome of pigs and some of them release infectious particles able to infect human cells. Whereas PERV-A and PERV-B are present in all pigs and can infect cells from humans and other species, PERV-C is present in most, but not all pigs and infects only pig cells. Recombinant viruses between PERV-A and PERV-C have been found in some pigs; these recombinants infect human cells and are characterized by high replication rates. PERV-A/C recombinants have been found mainly in minipigs of different origin. The possible reasons of this high prevalence of PERV-A/C in minipigs, including inbreeding and higher numbers and expression of replication-competent PERV-C in these animals, are discussed in this review. Based on these data, it is highly recommended to use only pig donors in clinical xenotransplantation that are negative for PERV-C.
Collapse
|
73
|
Trujanovic R, Verdier N, Calice I, Knecht C, Otero PE. Axillary ultrasound-guided approach for the brachial plexus in pig cadavers: A descriptive study. Lab Anim 2021; 56:165-171. [PMID: 34482749 DOI: 10.1177/00236772211036286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effective multimodal analgesia techniques are required when pigs are used as models in orthopedic human research. Regional anesthesia is a widely used technique to provide perioperative analgesia in animals undergoing orthopedic surgery. The brachial plexus (BP) block is indicated to desensitize the forelimb in many species but has not been yet described in pigs. The main aims of this study were to develop an ultrasound-guided axillary approach for the BP and to evaluate injectate spread and nerve staining in pig cadavers. Eight fresh F1 cross breed German Large White and German Landrace male pig cadavers were enrolled. Two cadavers were used for anatomical dissection of the axillary space and to determine the disposition of the BP. Six cadavers were used to perform a bilateral axillary ultrasound-guided approach for the BP, and after injecting 0.3 ml/kg of a solution of 2% lidocaine and new methylene blue (L-NMB), these were dissected to determine injectate spread and nerve staining. Upon dissection, the BP was observed in all the cases surrounded by the axillary sheath and in close proximity to the axillary artery. Ultrasonographic scanning and guidance for the approach to the BP was feasible in all cadavers and upon dissection, all the nerves forming the BP were stained in all their quadrants and in all the cases. In conclusion, the injection of 0.3 ml/kg of L-NMB through an ultrasound-guided axillary approach to the BP was feasible and adequate to entirely stain the BP in all pig cadavers. Further clinical studies are required to evaluate the effectiveness of this technique in live animals.
Collapse
Affiliation(s)
- Robert Trujanovic
- Anesthesia and Perioperative Intensive Care Unit, University of Veterinary Medicine Vienna, Austria
| | - Natali Verdier
- Anesthesia and Perioperative Intensive Care Unit, University of Veterinary Medicine Vienna, Austria.,Department of Anesthesiology and Pain Management, University of Buenos Aires, Argentina
| | - Ivana Calice
- Anesthesia and Perioperative Intensive Care Unit, University of Veterinary Medicine Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, University of Veterinary Medicine Vienna, Austria
| | - Pablo E Otero
- Department of Anesthesiology and Pain Management, University of Buenos Aires, Argentina
| |
Collapse
|
74
|
Fourier Transform Infrared Microspectroscopy Combined with Principal Component Analysis and Artificial Neural Networks for the Study of the Effect of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation on Articular Cartilage. Int J Mol Sci 2021; 22:ijms22179189. [PMID: 34502096 PMCID: PMC8430473 DOI: 10.3390/ijms22179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young’s modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.
Collapse
|
75
|
Improved efficiencies in the generation of multigene-modified pigs by recloning and using sows as the recipient. ZYGOTE 2021; 30:103-110. [PMID: 34176529 DOI: 10.1017/s0967199421000423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was performed to improve production efficiency at the level of recipient pig and donor nuclei of transgenic cloned pigs used for xenotransplantation. To generate transgenic pigs, human endothelial protein C receptor (hEPCR) and human thrombomodulin (hTM) genes were introduced using the F2A expression vector into GalT-/-/hCD55+ porcine neonatal ear fibroblasts used as donor cells and cloned embryos were transferred to the sows and gilts. Cloned fetal kidney cells were also used as donor cells for recloning to increase production efficiency. Pregnancy and parturition rates after embryo transfer and preimplantation developmental competence were compared between cloned embryos derived from adult and fetal cells. Significantly higher parturition rates were shown in the group of sows (50.0 vs. 4.1%), natural oestrus (20.8 vs. 0%), and ovulated ovary (16.7 vs. 5.6%) compared with gilt, induced and non-ovulated, respectively (P < 0.05). When using gilts as recipients, final parturitions occurred in only the fetal cell groups and significantly higher blastocyst rates (15.1% vs. 21.3%) were seen (P < 0.05). Additionally, gene expression levels related to pluripotency were significantly higher in the fetal cell group (P < 0.05). In conclusion, sows can be recommended as recipients due to their higher efficiency in the generation of transgenic cloned pigs and cloned fetal cells also can be recommended as donor cells through correct nuclear reprogramming.
Collapse
|
76
|
Quantification of Porcine Complement Activation Fragment C3a by a Neoepitope-Based Enzyme-Linked Immunosorbent Assay. Methods Mol Biol 2021; 2227:51-59. [PMID: 33847930 DOI: 10.1007/978-1-0716-1016-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) enables fast and simple quantification of analytes in the pico- to nanogram range in complex samples. Here, we describe an ELISA for the detection of porcine C3a as a marker for complement activation. Antibody specificity is critical for a robust assay. This assay is based on a pair of antibodies specific for the porcine C3a molecule and thus does not react with native C3.
Collapse
|
77
|
McCracken JM, Calderon GA, Robinson AJ, Sullivan CN, Cosgriff-Hernandez E, Hakim JCE. Animal Models and Alternatives in Vaginal Research: a Comparative Review. Reprod Sci 2021; 28:1759-1773. [PMID: 33825165 PMCID: PMC8204935 DOI: 10.1007/s43032-021-00529-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
While developments in gynecologic health research continue advancing, relatively few groups specifically focus on vaginal tissue research for areas like wound healing, device development, and/or drug toxicity. Currently, there is no standardized animal or tissue model that mimics the full complexity of the human vagina. Certain practical factors such as appropriate size and anatomy, costs, and tissue environment vary across species and moreover fail to emulate all aspects of the human vagina. Thus, investigators are tasked with compromising specific properties of the vaginal environment as it relates to human physiology to suit their particular scientific question. Our review aims to facilitate the appropriate selection of a model aptly addressing a particular study by discussing pertinent vaginal characteristics of conventional animal and tissue models. In this review, we first cover common laboratory animals studied in vaginal research-mouse, rat, rabbit, minipig, and sheep-as well as human, with respect to the estrus cycle and related hormones, basic reproductive anatomy, the composition of vaginal layers, developmental epithelial origin, and microflora. In light of these relevant comparative metrics, we discuss potential selection criteria for choosing an appropriate animal vaginal model. Finally, we allude to the exciting prospects of increasing biomimicry for in vitro applications to provide a framework for investigators to model, interpret, and predict human vaginal health.
Collapse
Affiliation(s)
- Jennifer M McCracken
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gisele A Calderon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew J Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Courtney N Sullivan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Julie C E Hakim
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
78
|
Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T. Molecular signature and colony morphology affect in vitro pluripotency of porcine induced pluripotent stem cells. Reprod Domest Anim 2021; 56:1104-1116. [PMID: 34013645 DOI: 10.1111/rda.13954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Overall efficiency of cell reprogramming for porcine fibroblasts into induced pluripotent stem cells (iPSCs) is currently poor, and few cell lines have been established. This study examined gene expression during early phase of cellular reprogramming in the relationship to the iPSC colony morphology and in vitro pluripotent characteristics. Fibroblasts were reprogrammed with OCT4, SOX2, KLF4 and c-MYC. Two different colony morphologies referred to either compact (n = 10) or loose (n = 10) colonies were further examined for proliferative activity, gene expression and in vitro pluripotency. A total of 1,697 iPSC-like colonies (2.34%) were observed after gene transduction. The compact colonies contained with tightly packed cells with a distinct-clear border between the colony and feeder cells, while loose colonies demonstrated irregular colony boundary. For quantitative expression of genes responsible for early phase cell reprogramming, the Dppa2 and EpCAM were significantly upregulated while NR0B1 was downregulated in compact colonies compared with loose phenotype (p < .05). Higher proportion of compact iPSC phenotype (5 of 10, 50%) could be maintained in undifferentiated state for more than 50 passages compared unfavourably with loose morphology (3 of 10, 30%). All iPS cell lines obtained from these two types of colony morphologies expressed pluripotent genes and proteins (OCT4, NANOG and E-cadherin). In addition, they could aggregate and form three-dimensional structure of embryoid bodies. However, only compact iPSC colonies differentiated into three germ layers. Molecular signature of early phase of cell reprogramming coupled with primary colony morphology reflected the in vitro pluripotency of porcine iPSCs. These findings can be simply applied for pre-screening selection of the porcine iPSC cell line.
Collapse
Affiliation(s)
- Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
79
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
80
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
81
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
82
|
Fil JE, Joung S, Zimmerman BJ, Sutton BP, Dilger RN. High-resolution magnetic resonance imaging-based atlases for the young and adolescent domesticated pig (Sus scrofa). J Neurosci Methods 2021; 354:109107. [PMID: 33675840 DOI: 10.1016/j.jneumeth.2021.109107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodevelopmental studies utilize the pig as a translational animal model due to anatomical and morphological similarities between the pig and human brain. However, neuroimaging resources are not as well developed for the pig as they are for humans and other animal models. We established a magnetic resonance imaging-based brain atlas at two different ages for biomedical studies utilizing the pig as a preclinical model. NEW METHOD Twenty artificially-reared domesticated male pigs (Sus scrofa) and thirteen sow-reared adolescent domesticated male pigs (Sus scrofa) underwent a series of scans measuring brain macrostructure, microstructure, and arterial cerebral blood volume. RESULTS An atlas for the 4-week-old and 12-week-old pig were created along with twenty-six regions of interest. Normative data for brain measures were obtained and detailed descriptions of the data processing pipelines were provided. COMPARISON WITH EXISTING METHOD Atlases at the two different ages were created for the pig utilizing newer imaging technology and software. This facilitates the performance of longitudinal studies and enables more precise volume measurements in pigs of various ages by appropriately representing the neuroanatomical features of younger and older pigs and accommodating the proportion differences of the brain over time. CONCLUSION Two high-resolution MRI brain atlases specific to the domesticated young and adolescent pig were created using defined image acquisition and data processing methods to facilitate the generation of high-quality normative data for neurodevelopmental research.
Collapse
Affiliation(s)
- Joanne E Fil
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA
| | - Sangyun Joung
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA
| | - Benjamin J Zimmerman
- Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Beckman Institute for Advances Science & Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Bradley P Sutton
- Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois, Urbana, IL, 61801, USA; Beckman Institute for Advances Science & Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
83
|
The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PLoS One 2021; 16:e0240642. [PMID: 33626093 PMCID: PMC7904207 DOI: 10.1371/journal.pone.0240642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
The presented experiment focuses on assessing the impact of HMB (hydroxy-β-methobutyrate) supplementation of mothers during pregnancy on the development of the skeletal system of their offspring. For this purpose, an experiment was carried out on 12 clinically healthy sows of the Great White Poland breed, which were divided randomly into two groups the control and the HMB group. All animals were kept under standard conditions and received the same feed for pregnant females. In contrast, females from the HMB group between 70 and 90 days were supplemented with 3-hydroxy-3-methylbutyle in the amount of 0.2g/kg b.w/day. Immediately after birth, the piglets were also divided into groups based on: sex, and presence or lack HMB supplementation, and subsequently were euthanized and humerus bones from all piglets were collected. Mother's HMB supplementation during pregnancy affected the multiple index of their offspring. The higher humerus mass and length was observed with the greater effect in males. Maternal supplementation also influenced on the geometrical and mechanical properties of the humerus as in the case of mass, this effect was higher in males. Also, the collagen structure of the compacted and trabecular bone changed under the HMB addition. Maternal supplementation also affected the expression of selected proteins in growth cartilage and trabecular bone. The obtained results show that the administration to the mother during pregnancy by the HMB significantly affects the development of the humerus in many ways. The obtained results also confirm the utility of such experiments in understanding of the importance of the pregnancy diet as an develop and adaptable factor of offspring organisms and are the base for further research in that area as well as in the protein markers expression area.
Collapse
|
84
|
The porcine corneal surface bacterial microbiome: A distinctive niche within the ocular surface. PLoS One 2021; 16:e0247392. [PMID: 33606829 PMCID: PMC7895408 DOI: 10.1371/journal.pone.0247392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose The ocular surface microbiome has been described as paucibacterial. Until now, studies investigating the bacterial community associated with the ocular surface through high-throughput sequencing have focused on the conjunctiva. Conjunctival samples are thought to reflect and be representative of the microbiome residing on the ocular surface, including the cornea. Here, we hypothesized that the bacterial community associated with the corneal surface was different from those of the inferonasal and superotemporal conjunctival fornices, and from the tear film. Methods Both eyes from 15 healthy piglets were sampled using swabs (inferonasal fornix, superotemporal fornix, and corneal surface, n = 30 each) and Schirmer tear test strips (STT, n = 30). Negative sampling controls (swabs and STT, n = 2 each) and extraction controls (n = 4) were included. Total DNA was extracted and high-throughput sequencing targeting the 16S rRNA gene was performed. Bioinformatic analyses included multiple contamination-controlling steps. Results Corneal surface samples had a significantly lower number of taxa detected (P<0.01) and were compositionally different from all other sample types (Bray-Curtis dissimilarity, P<0.04). It also harbored higher levels of Proteobacteria (P<0.05), specifically Brevundimonas spp. (4.1-fold) and Paracoccus spp. (3.4-fold) than other sample types. Negative control STT strip samples yielded the highest amount of 16S rRNA gene copies across all sample types (P<0.05). Conclusions Our data suggests that the corneal surface provides a distinct environmental niche within the ocular surface, leading to a bacterial community compositionally different from all other sample types.
Collapse
|
85
|
Wu J, Liu R, Li H, Yu H, Yang Y. Genetic diversity analysis in Chinese miniature pigs using swine leukocyte antigen complex microsatellites. Anim Biosci 2021; 34:1757-1765. [PMID: 33677912 PMCID: PMC8563246 DOI: 10.5713/ab.20.0637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The swine leukocyte antigen (SLA) gene group, which is closely linked and highly polymorphic, has important biomedical significance in the protection and utilization of germplasm resources. However, genetic polymorphism analyses of SLA microsatellite markers in Chinese miniature pigs are limited. Methods Eighteen pairs of microsatellite primers were used to amplify the SLA regions of seven miniature pig breeds and three wild boar breeds (n = 346) from different regions of China. The indexes of genetic polymorphism, including expected heterozygosity (He), polymorphic information content (PIC), and haplotype, were analyzed. The genetic differentiation coefficient (Fst) and neighbor-joining methods were used for cluster analysis of the breeds. Results In miniature pigs, the SLA I region had the highest numbers of polymorphisms, followed by the SLA II and SLA III regions; the region near the centromere had the lowest number of polymorphisms. Among the seven miniature pig breeds, Diannan small-ear pigs had the highest genetic diversity (PIC value = 0.6396), whereas the genetic diversity of the Hebao pig was the lowest (PIC value = 0.4330). The Fst values in the Mingguang small-ear, Diannan small-ear, and Yunnan wild boars were less than 0.05. According to phylogenetic cluster analysis, the South-China-type miniature pigs clustered into one group, among which Mingguang small-ear pigs clustered with Diannan small-ear pigs. Haplotype analysis revealed that the SLA I, II, and III regions could be constructed into 13, 7, and 11 common haplotypes, respectively. Conclusion This study validates the high genetic diversity of the Chinese miniature pig. Mingguang small-ear pigs have close kinship with Diannan small-ear pigs, implying that they may have similar genetic backgrounds and originate from the same population. This study also provides a foundation for genetic breeding, genetic resource protection, and classification of Chinese miniature pigs.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Ronghui Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China.,Agriculture and Rural Affairs Committee of Kaizhou District, Chongqing Municipality, Chongqing 405400, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| |
Collapse
|
86
|
Osum SH, Watson AL, Largaespada DA. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:1954. [PMID: 33669386 PMCID: PMC7920315 DOI: 10.3390/ijms22041954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
87
|
Nauwelaerts N, Deferm N, Smits A, Bernardini C, Lammens B, Gandia P, Panchaud A, Nordeng H, Bacci ML, Forni M, Ventrella D, Van Calsteren K, DeLise A, Huys I, Bouisset-Leonard M, Allegaert K, Annaert P. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - A contribution from the ConcePTION project. Biomed Pharmacother 2021; 136:111038. [PMID: 33526310 DOI: 10.1016/j.biopha.2020.111038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.
Collapse
Affiliation(s)
- Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Neel Deferm
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, UZ Leuven, Neonatology, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Belgium.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Peggy Gandia
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, France.
| | - Alice Panchaud
- Service of Pharmacy Service, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - Hedvig Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, PB. 1068 Blindern, 0316, Oslo, Norway.
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Anthony DeLise
- Novartis Pharmaceuticals Corporation, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, NJ, 07936, USA.
| | - Isabelle Huys
- KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium.
| | - Michele Bouisset-Leonard
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, Werk Klybeck Postfach, Basel, CH-4002, Switzerland.
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Belgium; KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium; Department of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands.
| | - Pieter Annaert
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| |
Collapse
|
88
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
89
|
Haga HA, Lervik A, Nordgreen J. Inhibition and facilitation of nociceptively evoked muscular activity by fentanyl or dexmedetomidine in isoflurane-anaesthetized pigs. Vet Anaesth Analg 2021; 48:230-238. [PMID: 33526309 DOI: 10.1016/j.vaa.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate motor and cardiovascular responses to dexmedetomidine or fentanyl in isoflurane-anaesthetized pigs. STUDY DESIGN Experimental, balanced, block randomized, two-group design. ANIMALS A group of 16 crossbred pigs, 55 ± 8 days (mean ± standard deviation) old. METHODS Deltoid electromyography (EMG) was recorded during isoflurane anaesthesia. Electrical stimulation using 5, 10, 20 and 40 mA of the distal right thoracic limb elicited a nociceptive withdrawal reflex (NWR), quantified by the area under the curve (AUC) for the simulation intensity versus EMG amplitude response curve. Latency to movement evoked by clamping a claw for maximum 60 seconds was noted. Arterial blood pressure and pulse rate were recorded. Data were sampled at baseline and during dexmedetomidine 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0 μg kg-1 hour-1 or fentanyl 5, 10, 20, 40, 80 and 160 μg kg-1 hour-1 infusions. The influence of infusion rate on NWR AUC and spontaneous EMG was analysed using a mixed model, with p < 5%. RESULTS NWR AUC increased at fentanyl 5 μg kg-1 hour-1 but decreased at fentanyl 40, 80 and 160 μg kg-1 hour-1 and dexmedetomidine 4.0 and 8.0 μg kg-1 hour-1. All pigs at fentanyl 80 μg kg-1 hour-1, and three pigs at dexmedetomidine 8.0 μg kg-1 hour-1 had mechanical latencies greater than 60 seconds. Spontaneous EMG activity increased accompanied by visually evident 'shivering' at fentanyl 5, 10 and 20 μg kg-1 hour-1 but decreased at dexmedetomidine 2, 4 and 8 μg kg-1 hour-1. Clinically relevant effects of increasing infusion rates on blood pressure or pulse rate were not observed. CONCLUSION AND CLINICAL RELEVANCE If anaesthetic plane or antinociception is evaluated in pigs, response to claw clamping and NWR will not necessarily give uniform results when comparing drugs. If only one method is used, results should be interpreted cautiously.
Collapse
Affiliation(s)
| | - Andreas Lervik
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| |
Collapse
|
90
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
91
|
Soeyono G, Dahlan K, Purba MS, Widhyari SD, Soesatyoratih R, Teng TS, Budiarti L, Wai HK, Kosat A. Assessment of biphasic calcium phosphate 70/30 alginate scaffold on the tibia in pigs. Vet World 2020; 13:2635-2642. [PMID: 33487981 PMCID: PMC7811555 DOI: 10.14202/vetworld.2020.2635-2642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Aim: Calcium phosphate bioceramics have been used for at least a decade, and many investigations have focused on the use of hydroxyapatite (HA) derivative in the regeneration of bone defects. Biphasic calcium phosphate (BCP) is a biomaterial composed of HA and beta-tricalcium phosphate (BCP), with a structure similar to bone. The aim of the study was to determine the influence of the BCP/alginate scaffold on tissue growth, blood, the lungs, and the electrical activity of the heart during bone healing in the tibia of pig. Materials and Methods: Three pigs were implanted with BCP/alginate scaffolds in the tibias. Pigs were acclimatized and treated with antibiotics and anthelminthic drugs 14 days before implantation. Each pig was implanted with a BCP/alginate scaffold in the right tibia and a defect without the implant was made in the left tibia as the control. Radiographic images of the tibia were captured 0, 7, 30, and 60 days after the operation. Erythrograms, radiography of the lungs, and electrocardiogram (ECG) recordings were done 0, 30, and 60 days after the operation. Results: Radiographic evaluations showed that the implant and peri-implant density of BCP decreased throughout the process of bone healing. The erythrogram profile indicated that a substantial amount of time (60 days) was required to adapt and return to pre-operative conditions. No significant differences in ECG recordings or pulmonary radiography were detected. Conclusion: The BCP/alginate scaffold did not induce a faster recovery rate from the bone defect compared to the control with no implant. However, the BCP/alginate scaffold was biodegradable, bioresorbable, and non-toxic.
Collapse
Affiliation(s)
- Gunanti Soeyono
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia.,Veterinary Paramedic Study Program, Vocational School, Bogor Agriculture University, Bogor, Indonesia
| | - Kiagus Dahlan
- Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Melpa Susanti Purba
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Sus Dherthi Widhyari
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Rr Soesatyoratih
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Thang Shi Teng
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Lieonny Budiarti
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Ho Kin Wai
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Agatha Kosat
- Department of Veterinary Clinic Reproduction and Pathology, Division of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
92
|
Sakib S, Uchida A, Valenzuela-Leon P, Yu Y, Valli-Pulaski H, Orwig K, Ungrin M, Dobrinski I. Formation of organotypic testicular organoids in microwell culture†. Biol Reprod 2020; 100:1648-1660. [PMID: 30927418 DOI: 10.1093/biolre/ioz053] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023] Open
Abstract
Three-dimensional (3D) organoids can serve as an in vitro platform to study cell-cell interactions, tissue development, and toxicology. Development of organoids with tissue architecture similar to testis in vivo has remained a challenge. Here, we present a microwell aggregation approach to establish multicellular 3D testicular organoids from pig, mouse, macaque, and human. The organoids consist of germ cells, Sertoli cells, Leydig cells, and peritubular myoid cells forming a distinct seminiferous epithelium and interstitial compartment separated by a basement membrane. Sertoli cells in the organoids express tight junction proteins claudin 11 and occludin. Germ cells in organoids showed an attenuated response to retinoic acid compared to germ cells in 2D culture indicating that the tissue architecture of the organoid modulates response to retinoic acid similar to in vivo. Germ cells maintaining physiological cell-cell interactions in organoids also had lower levels of autophagy indicating lower levels of cellular stress. When organoids were treated with mono(2-ethylhexyl) phthalate (MEHP), levels of germ cell autophagy increased in a dose-dependent manner, indicating the utility of the organoids for toxicity screening. Ablation of primary cilia on testicular somatic cells inhibited the formation of organoids demonstrating an application to screen for factors affecting testicular morphogenesis. Organoids can be generated from cryopreserved testis cells and preserved by vitrification. Taken together, the testicular organoid system recapitulates the 3D organization of the mammalian testis and provides an in vitro platform for studying germ cell function, testicular development, and drug toxicity in a cellular context representative of the testis in vivo.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aya Uchida
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Paula Valenzuela-Leon
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada
| | - Yang Yu
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kyle Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary Faculty of Veterinary Medicine, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
93
|
Ham J, Kim Y, An T, Kang S, Ha C, Wufue M, Kim Y, Jeon B, Kim S, Kim J, Choi TH, Seo JH, Kim DW, Park JU, Lee Y. Covalently Grafted 2-Methacryloyloxyethyl Phosphorylcholine Networks Inhibit Fibrous Capsule Formation around Silicone Breast Implants in a Porcine Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30198-30212. [PMID: 32574031 DOI: 10.1021/acsami.0c07629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface of human silicone breast implants is covalently grafted at a high density with a 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymer. Addition of cross-linkers is essential for enhancing the density and mechanical durability of the MPC graft. The MPC graft strongly inhibits not only adsorption but also the conformational deformation of fibrinogen, resulting in the exposure of a buried amino acid sequence, γ377-395, which is recognized by inflammatory cells. Furthermore, the numbers of adhered macrophages and the amounts of released cytokines (MIP-1α, MIP-1β, IL-8, TNFα, IL-1α, IL-1β, and IL-10) are dramatically decreased when the MPC network is introduced at a high density on the silicone surface (cross-linked PMPC-silicone). We insert the MPC-grafted human silicone breast implants into Yorkshire pigs to analyze the in vivo effect of the MPC graft on the capsular formation around the implants. After 6 month implantation, marked reductions of inflammatory cell recruitment, inflammatory-related proteins (TGF-β and myeloperoxidase), a myoblast marker (α-smooth muscle actin), vascularity-related factors (blood vessels and VEGF), and, most importantly, capsular thickness are observed on the cross-linked PMPC-silicone. We propose a mechanism of the MPC grafting effect on fibrous capsular formation around silicone implants on the basis of the in vitro and in vivo results.
Collapse
Affiliation(s)
- Jiyeon Ham
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngmin Kim
- Interdisciplinary Program in Stem Cell Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Taeyang An
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Cheolmin Ha
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Maierdanjiang Wufue
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yumin Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Byoungjun Jeon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Seulah Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungah Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, Institute of Human-Environment Interface Biology, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dae Woo Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center, 5 Gil 20, Boramae-ro, Dongjak-gu, Seoul 07061, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, 5 Gil 20, Boramae-ro, Dongjak-gu, Seoul 07061, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
94
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
95
|
Pan J, Pilawski I, Yuan X, Arioka M, Ticha P, Tian Y, Helms JA. Interspecies comparison of alveolar bone biology: Tooth extraction socket healing in mini pigs and mice. J Periodontol 2020; 91:1653-1663. [PMID: 32347546 DOI: 10.1002/jper.19-0667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Pan
- West China School of Stomatology Sichuan University Chengdu China
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| | - Igor Pilawski
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| | - Xue Yuan
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| | - Masaki Arioka
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
- Department of Clinical Pharmacology Kyushu University Fukuoka Japan
| | - Pavla Ticha
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| | - Ye Tian
- West China School of Stomatology Sichuan University Chengdu China
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| | - Jill A. Helms
- Department of Plastic and Reconstructive Surgery School of Medicine Stanford University Palo Alto California USA
| |
Collapse
|
96
|
de Lacerda Schickert S, van den Beucken JJ, Leeuwenburgh SC, Jansen JA. Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites. Biomolecules 2020; 10:E883. [PMID: 32526829 PMCID: PMC7356650 DOI: 10.3390/biom10060883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
The development of bone substitute materials (BSMs) intended for load-bearing bone defects is highly complicated, as biological and mechanical requirements are often contradictory. In recent years, biological BSMs have been developed which allow for a more efficient integration of the material with the surrounding osseous environment and, hence, a higher mechanical stability of the treated defect. However, while these materials are promising, they are still far from ideal. Consequently, extensive preclinical experimentation is still required. The current review provides a comprehensive overview of biomechanical considerations relevant for the design of biological BSMs. Further, the preclinical evaluation of biological BSMs intended for application in highly loaded skeletal sites is discussed. The selected animal models and implantation site should mimic the pathophysiology and biomechanical loading patterns of human bone as closely as possible. In general, sheep are among the most frequently selected animal models for the evaluation of biomaterials intended for highly loaded skeletal sites. Regarding the anatomical sites, segmental bone defects created in the limbs and spinal column are suggested as the most suitable. Furthermore, the outcome measurements used to assess biological BSMs for regeneration of defects in heavily loaded bone should be relevant and straightforward. The quantitative evaluation of bone defect healing through ex vivo biomechanical tests is a valuable addition to conventional in vivo tests, as it determines the functional efficacy of BSM-induced bone healing. Finally, we conclude that further standardization of preclinical studies is essential for reliable evaluation of biological BSMs in highly loaded skeletal sites.
Collapse
Affiliation(s)
| | | | | | - John A. Jansen
- Department of Dentistry—Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands; (S.d.L.S.); (J.J.J.P.v.d.B.); (S.C.G.L.)
| |
Collapse
|
97
|
Luna SPL, de Araújo AL, da Nóbrega Neto PI, Brondani JT, de Oliveira FA, Azerêdo LMDS, Telles FG, Trindade PHE. Validation of the UNESP-Botucatu pig composite acute pain scale (UPAPS). PLoS One 2020; 15:e0233552. [PMID: 32480399 PMCID: PMC7263847 DOI: 10.1371/journal.pone.0233552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 02/02/2023] Open
Abstract
The creation of species-specific valid tools for pain assessment is essential to recognize pain and determine the requirement and efficacy of analgesic treatments. This study aimed to assess behaviour and investigate the validity and reliability of an acute pain scale in pigs undergoing orchiectomy. Forty-five pigs aged 38±3 days were castrated under local anaesthesia. Behaviour was video-recorded 30 minutes before and intermittently up to 24 hours after castration. Edited footage (before surgery, after surgery before and after rescue analgesia, and 24 hours postoperatively) was analysed twice (one month apart) by one observer who was present during video-recording (in-person researcher) and three blinded observers. Statistical analysis was performed using R software and differences were considered significant when p<0.05. Intra and inter-observer agreement, based on intra-class correlation coefficient, was good or very good between most observers (>0.60), except between observers 1 and 3 (moderate agreement 0.57). The scale was unidimensional according to principal component analysis. The scale showed acceptable item-total Spearman correlation, excellent predictive and concurrent criterion validity (Spearman correlation ≥ 0.85 between the proposed scale versus visual analogue, numerical rating, and simple descriptive scales), internal consistency (Cronbach's α coefficient >0.80 for all items), responsiveness (the pain scores of all items of the scale increased after castration and decreased after intervention analgesia according to Friedman test), and specificity (> 95%). Sensitivity was good or excellent for most of the items. The optimal cut-off point for rescue analgesia was ≥ 6 of 18. Discriminatory ability was excellent for all observers according to the area under the curve (>0.95). The proposed scale is a reliable and valid instrument and may be used clinically and experimentally to assess postoperative acute pain in pigs. The well-defined cut-off point supports the evaluator´s decision to provide or not analgesia.
Collapse
Affiliation(s)
- Stelio Pacca Loureiro Luna
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Ana Lucélia de Araújo
- Post graduation Program in Anaesthesiology, Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | - Juliana Tabarelli Brondani
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Flávia Augusta de Oliveira
- Post graduation Program in Anaesthesiology, Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | - Felipe Garcia Telles
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Pedro Henrique Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| |
Collapse
|
98
|
Lipiski M, Eberhard M, Fleischmann T, Halvachizadeh S, Kolb B, Maisano F, Sauer M, Falk V, Emmert MY, Alkadhi H, Cesarovic N. Computed Tomography-based evaluation of porcine cardiac dimensions to assist in pre-study planning and optimized model selection for pre-clinical research. Sci Rep 2020; 10:6020. [PMID: 32265478 PMCID: PMC7138799 DOI: 10.1038/s41598-020-63044-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
The pig (Sus Scrofa Domestica) is an accepted model for preclinical evaluation of prosthetic heart valves and trans-catheter implantation techniques. Understanding porcine cardiac dimensions through three-dimensional computed tomography (CT), increases preclinical study success, leading to higher cost efficiency and to the observance of the obligation to the 3 R principles. Cardiac CT images of twenty-four Swiss large white pigs were segmented; aortic root, mitral valve, pulmonary trunk, tricuspid valve, as well as the aorto-mitral angle and left atrial height were analyzed. Correlation coefficient (r) was calculated in relation to body weight. In Swiss large white pigs, valvular dimensions, length of the pulmonary artery and ascending aorta as well as left atrial height correlate with body weight. Coronary ostia heights and aorto-mitral angle size can be neglected in animal size selection; no changes were found for either of the two parameters with increasing body weight.
Collapse
Affiliation(s)
- Miriam Lipiski
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Matthias Eberhard
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Beate Kolb
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Maisano
- Department of Cardiac Surgery, University Heart Center Zurich, Zurich, Switzerland
| | - Mareike Sauer
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Berlin, Germany
| | - Hatem Alkadhi
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
99
|
Kutikov AB, Moore SW, Layer RT, Podell PE, Sridhar N, Santamaria AJ, Aimetti AA, Hofstetter CP, Ulich TR, Guest JD. Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals. Neurosurgery 2020; 85:560-573. [PMID: 30169668 DOI: 10.1093/neuros/nyy379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immature neurons can extend processes after transplantation in adult animals. Neuronal relays can form between injected neural stem cells (NSCs) and surviving neurons, possibly improving recovery after spinal cord injury (SCI). Cell delivery methods of single or multiple bolus injections of concentrated cell suspensions thus far tested in preclinical and clinical experiments are suboptimal for new tract formation. Nonuniform injectate dispersal is often seen due to gravitational cell settling and clumping. Multiple injections have additive risks of hemorrhage, parenchymal damage, and cellular reflux and require additional surgical exposure. The deposition of multiply delivered cells boluses may be uneven and discontinuous. OBJECTIVE To develop an injection apparatus and methodology to deliver continuous cellular trails bridging spinal cord lesions. METHODS We improved the uniformity of cellular trails by formulating NSCs in hyaluronic acid. The TrailmakerTM stereotaxic injection device was automatized to extend a shape memory needle from a single-entry point in the spinal cord longitudinal axis to "pioneer" a new trail space and then retract while depositing an hyaluronic acid-NSC suspension. We conducted testing in a collagen spinal models, and animal testing using human NSCs (hNSCs) in rats and minipigs. RESULTS Continuous surviving trails of hNSCs within rat and minipig naive spinal cords were 12 and 40 mm in length. hNSC trails were delivered across semi-acute contusion injuries in rats. Transplanted hNSCs survived and were able to differentiate into neural lineage cells and astrocytes. CONCLUSION The TrailmakerTM creates longitudinal cellular trails spanning multiple levels from a single-entry point. This may enhance the ability of therapeutics to promote functional relays after SCI.
Collapse
Affiliation(s)
| | - Simon W Moore
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | | | - Nithya Sridhar
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | - Alex A Aimetti
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | | | - Thomas R Ulich
- InVivo Therapeutics Corporation, Cambridge, Massachusetts
| | - James D Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida.,Department of Neurosurgery, University of Miami, Miami, Florida
| |
Collapse
|
100
|
Hoareau GL, Barthélemy A, Goy-Thollot I, Pouzot-Nevoret C, Beyer CA, Walker LE, Stewart IJ, Grayson JK. Reference Intervals for and the Effects of Sample Handling and Sex on Rotational Thromboelastometry in Healthy Adult Pigs. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:322-327. [PMID: 32204749 DOI: 10.30802/aalas-jaalas-19-000095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Accurate assessment of coagulation in porcine studies is essential. We sought to establish normal values for porcine rotational thromboelastometry (ROTEM) according to the American Society for Veterinary Clinical Pathology guidelines and to assess the effects of various preanalytical parameters on those measurements. Healthy Yorkshire-cross pigs (n = 81; 46 males and 35 females) were anesthetized. By using a 18-gauge needle attached to a vacuum phlebotomy tube, blood was acquired from the cranial vena cava. Tubes were filled in the following order: evacuation clot tube, EDTA tube, heparin tube, and 2 citrate tubes. The citrate tubes were randomly assigned to 30 min with or without constant agitation on a rocker. The following parameters were reported according to the manufacturer's recommendations: clotting time, clot formation time, α, (tangent to the clot formation curve when the clot firmness is 20 mm), clot firmness after 10 and 20 min, maximal clot firmness, maximum lysis, and lysis indexes at 30 and 45 min. Reference intervals were reported as mean ± 2 SD (parametric distribution) or 2.5th and 97.5th percentile of the population's results (nonparametric distribution). The effects of sex, sampling order, and agitation on ROTEM results were analyzed through linear regression. Neither sex nor sample agitation influenced any of the ROTEM parameters. Combined reference intervals were established for each ROTEM parameter by pooling data from the nonagitated tubes for both male and female pigs. This study is the first to establish ROTEM reference intervals from a large number of male and female adult Yorkshire-cross pigs and to provide a detailed description of preanalytical sample processing.
Collapse
Affiliation(s)
- Guillaume L Hoareau
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Fairfield, California; Department of Surgery, University of Utah, Salt Lake City, Utah;,
| | | | | | | | - Carl A Beyer
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Fairfield, California; Department of Surgery, University of California-Davis Medical Center, Sacramento, California
| | - Lauren E Walker
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Fairfield, California
| | - Ian J Stewart
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Fairfield, California; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - J Kevin Grayson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Fairfield, California
| |
Collapse
|