51
|
Ding H, Zhang Y, Mao Y, Li Y, Shen Y, Sheng J, Gu N. Modulation of macrophage polarization by iron-based nanoparticles. MEDICAL REVIEW (2021) 2023; 3:105-122. [PMID: 37724082 PMCID: PMC10471121 DOI: 10.1515/mr-2023-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Macrophage polarization is an essential process involved in immune regulation. In response to different microenvironmental stimulation, macrophages polarize into cells with different phenotypes and functions, most typically M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. Iron-based nanoparticles have been widely explored and reported to regulate macrophage polarization for various biomedical applications. However, the influence factors and modulation mechanisms behind are complicated and not clear. In this review, we systemically summarized different iron-based nanoparticles that regulate macrophage polarization and function and discussed the influence factors and mechanisms underlying the modulation process. This review aims to deepen the understanding of the modulation of macrophage polarization by iron-based nanoparticles and expects to provide evidence and guidance for subsequent design and application of iron-based nanoparticles with specific macrophage modulation functions.
Collapse
Affiliation(s)
- He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Mao
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu Province, China
- Medical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
52
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
53
|
Yung HW, Zhao X, Glover L, Burrin C, Pang PC, Jones CJ, Gill C, Duhig K, Olovsson M, Chappell LC, Haslam SM, Dell A, Burton GJ, Charnock-Jones DS. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes maladaptation of maternal hepatic glucose metabolism. iScience 2023; 26:105911. [PMID: 36660474 PMCID: PMC9843443 DOI: 10.1016/j.isci.2022.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Placental hormones orchestrate maternal metabolic adaptations to support pregnancy. We hypothesized that placental ER stress, which characterizes early-onset pre-eclampsia (ePE), compromises glycosylation, reducing hormone bioactivity and these maladaptations predispose the mother to metabolic disease in later life. We demonstrate ER stress reduces the complexity and sialylation of trophoblast protein N-glycosylation, while aberrant glycosylation of vascular endothelial growth factor reduced its bioactivity. ER stress alters the expression of 66 of the 146 genes annotated with "protein glycosylation" and reduces the expression of sialyltransferases. Using mouse placental explants, we show ER stress promotes the secretion of mis-glycosylated glycoproteins. Pregnant mice carrying placentas with junctional zone-specific ER stress have reduced blood glucose, anomalous hepatic glucose metabolism, increased cellular stress and elevated DNA methyltransferase 3A. Using pregnancy-specific glycoproteins as a readout, we also demonstrate aberrant glycosylation of placental proteins in women with ePE, thus providing a mechanistic link between ePE and subsequent maternal metabolic disorders.
Collapse
Affiliation(s)
- Hong Wa Yung
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Luke Glover
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Charlotte Burrin
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, UK
| | - Carolyn J.P. Jones
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Carolyn Gill
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Kate Duhig
- Maternal and Fetal Health Centre, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Matts Olovsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, London, UK
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Graham J. Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - D. Stephen Charnock-Jones
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK
| |
Collapse
|
54
|
Yang SA, Rhee KH, Yoo HJ, Pyo MC, Lee KW. Ochratoxin A induces endoplasmic reticulum stress and fibrosis in the kidney via the HIF-1α/miR-155-5p link. Toxicol Rep 2023; 10:133-145. [PMID: 36714464 PMCID: PMC9879730 DOI: 10.1016/j.toxrep.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Ochratoxin A (OTA) is a ubiquitous fungal toxin found in agricultural products and foods that is toxic to both humans and animals. OTA mainly affects kidney, but the mechanisms underlying OTA-induced nephrotoxicity remain not fully understood. MicroRNA (miRNA) is involved in key cellular processes. The toxic mechanism and regulatory effects of miRNAs on OTA toxicity in kidney, and particularly the role of HIFα-1/miR-155-5p on OTA-caused ER stress and fibrosis, were investigated in this study. OTA induced hypoxia-like conditions such as ER stress and fibrosis in HK-2 cells and renal tissues via modulating HIF-1α, which was followed by regulation of ER stress-related proteins (GRP78 and ATF-4), as well as fibrosis-related markers (fibronectin, α-SMA, and E-cadherin). Notably, a total of 62 miRNAs showed significant differential expression in kidney of OTA-treated mice. Under OTA exposure, HIF-1α enhanced miR-155-5p expression, causing ER stress and fibrosis in HK-2 cells. HIF-1α knockdown decreased OTA-induced miR-155-5p expression as well as ER stress and fibrotic responses, whereas miR-155-5p overexpression restored this. Our data suggest that OTA enhances ER stress and fibrosis in the kidney through upregulating the HIF-1α/miR-155-5p link.
Collapse
Affiliation(s)
- Seon Ah Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Kyu Hyun Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 02841 Seoul, the Republic of Korea
| |
Collapse
|
55
|
d-allose protects brain microvascular endothelial cells from hypoxic/reoxygenated injury by inhibiting endoplasmic reticulum stress. Neurosci Lett 2023; 793:137000. [PMID: 36473686 DOI: 10.1016/j.neulet.2022.137000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is an acute brain disease with a high mortality rate. Currently, the only effective method is to restore the blood supply. But the inflammation and oxidative stress induced by this approach can damage the integrity of the endothelial system, which hampers the patient's outcome. d-allose has the biological activity to protect against ischemia-reperfusion injury, however, the underlying mechanism remains unclear. Here, brain microvascular endothelial cells (RBMECs) were used as the study material to establish an IR-injury model. Cell viability of RBMECs was suppressed after hypoxia/reoxygenation (H/R) treatment and significantly increased after d-allose supplementation. RNAseq results showed 180 differentially expressed genes (DEGs) between the therapy group (H/R + Dal) and the model group (H/R), of which 151 DEGs were restored to control levels by d-allose. Enrichment analysis revealed that DEGs were mainly involved in protein processing in endoplasmic reticulum. 6 DEGs in the unfolded protein response (UPR) pathway were verified by qRT-PCR. All of them were significantly down-regulated by d-allose, indicating that endoplasmic reticulum stress (ERS) was relieved. In addition, d-allose significantly inhibited the phosphorylation level of eIF2α, a marker of ERS. The downstream molecules of Phosphorylation of eIF2α, Gadd45a and Chac1, which trigger cycle arrest and apoptosis, respectively, were also significantly inhibited by d-allose. Thus, we conclude that d-allose inhibits the UPR pathway, attenuates eIF2α phosphorylation and ERS, restores the cell cycle, inhibits apoptosis, and thus enhances endothelial cell tolerance to H/R injury.
Collapse
|
56
|
Guimarães ES, Gomes MTR, Sanches RCO, Matteucci KC, Marinho FV, Oliveira SC. The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection. Front Immunol 2023; 13:1063221. [PMID: 36660548 PMCID: PMC9842658 DOI: 10.3389/fimmu.2022.1063221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a major role in several inflammatory disorders. ER stress induces the unfolded protein response (UPR), a conserved response broadly associated with innate immunity and cell metabolic function in various scenarios. Brucella abortus, an intracellular pathogen, triggers the UPR via Stimulator of interferon genes (STING), an important regulator of macrophage metabolism during B. abortus infection. However, whether ER stress pathways underlie macrophage metabolic function during B. abortus infection remains to be elucidated. Here, we showed that the UPR sensor inositol-requiring enzyme 1α (IRE1α) is as an important component regulating macrophage immunometabolic function. In B. abortus infection, IRE1α supports the macrophage inflammatory profile, favoring M1-like macrophages. IRE1α drives the macrophage metabolic reprogramming in infected macrophages, contributing to the reduced oxidative phosphorylation and increased glycolysis. This metabolic reprogramming is probably associated with the IRE1α-dependent expression and stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), an important molecule involved in cell metabolism that sustains the inflammatory profile in B. abortus-infected macrophages. Accordingly, we demonstrated that IRE1α favors the generation of mitochondrial reactive oxygen species (mROS) which has been described as an HIF-1α stabilizing factor. Furthermore, in infected macrophages, IRE1α drives the production of nitric oxide and the release of IL-1β. Collectively, these data unravel a key mechanism linking the UPR and the immunometabolic regulation of macrophages in Brucella infection and highlight IRE1α as a central pathway regulating macrophage metabolic function during infectious diseases.
Collapse
Affiliation(s)
- Erika S. Guimarães
- Departamento de Genética, Ecologia e Evolução, Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Túlio R. Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo C. O. Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kely Catarine Matteucci
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
57
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
58
|
Wang X, Zhou Y, Wang D, Wang Y, Zhou Z, Ma X, Liu X, Dong Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed Pharmacother 2023; 157:114045. [PMID: 36455457 DOI: 10.1016/j.biopha.2022.114045] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics & gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dali Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
59
|
Qi Q, Niture S, Gadi S, Arthur E, Moore J, Levine KE, Kumar D. Per- and polyfluoroalkyl substances activate UPR pathway, induce steatosis and fibrosis in liver cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:225-242. [PMID: 36251517 PMCID: PMC10092267 DOI: 10.1002/tox.23680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 05/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), which include perfluorooctanoic acid (PFOA), heptafluorobutyric acid (HFBA), and perfluorotetradecanoic acid (PFTA), are commonly occurring organic pollutants. Exposure to PFAS affects the immune system, thyroid and kidney function, lipid metabolism, and insulin signaling and is also involved in the development of fatty liver disease and cancer. The molecular mechanisms by which PFAS cause fatty liver disease are not understood in detail. In the current study, we investigated the effect of low physiologically relevant concentrations of PFOA, HFBA, and PFTA on cell survival, steatosis, and fibrogenic signaling in liver cell models. Exposure of PFOA and HFBA (10 to 1000 nM) specifically promoted cell survival in HepaRG and HepG2 cells. PFAS increased the expression of TNFα and IL6 inflammatory markers, increased endogenous reactive oxygen species (ROS) production, and activated unfolded protein response (UPR). Furthermore, PFAS enhanced cell steatosis and fibrosis in HepaRG and HepG2 cells which were accompanied by upregulation of steatosis (SCD1, ACC, SRBP1, and FASN), and fibrosis (TIMP2, p21, TGFβ) biomarkers expression, respectively. RNA-seq data suggested that chronic exposures to PFOA modulated the expression of fatty acid/lipid metabolic genes that are involved in the development of NFALD and fatty liver disease. Collectively our data suggest that acute/chronic physiologically relevant concentrations of PFAS enhance liver cell steatosis and fibrosis by the activation of the UPR pathway and by modulation of NFALD-related gene expression.
Collapse
Affiliation(s)
- Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Elena Arthur
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Keith E. Levine
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research InstituteNorth Carolina Central UniversityDurhamNorth CarolinaUSA
- NCCU‐RTI Center for Applied Research in Environmental Sciences (CARES)RTI International, Research Triangle ParkDurhamNorth CarolinaUSA
- Department of Pharmaceutical SciencesNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
60
|
Tang X, Liu L, Liu S, Song S, Li H. MicroRNA-29a inhibits collagen expression and induces apoptosis in human fetal scleral fibroblasts by targeting the Hsp47/Smad3 signaling pathway. Exp Eye Res 2022; 225:109275. [PMID: 36206860 DOI: 10.1016/j.exer.2022.109275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 12/29/2022]
Abstract
Members of the microRNA-29 (miR-29) gene family have been implicated as suppressors of collagen in several human diseases. The present study aimed to explore the function of miR-29a in human fetal scleral fibroblasts (HFSFs) and to investigate potential mechanisms by which the molecule regulates cellular functioning. First, HFSFs were transfected with miR-29a mimic, miR-29a inhibitor, or their corresponding controls. Then, cell proliferation and apoptosis were assessed using a CCK-8 assay and flow cytometry, respectively. Further, using real-time PCR, western blotting, and immunofluorescence staining, levels of miR-29a, heat shock protein 47 (Hsp47), COL1A1, Smad3, P-Smad3, Bax, and Bcl-2 were investigated. Next, empty vectors and SERPINH1-overexpressing vectors were used to transfect HFSFs. Western blotting and flow cytometry were performed to assess changes in levels of HFSF protein expression and apoptosis, respectively. Results indicated that the miR-29a mimic significantly inhibited Hsp47, Smad3, P-Smad3, and COL1A1 expression. Conversely, the miR-29a inhibitor enhanced the expression of the same genes. Furthermore, miR-29a overexpression inhibited HFSFs proliferation and enhanced the rate of HFSFs apoptosis. Consistent with this finding, miR-29a overexpression led to the downregulation of Bcl-2 and upregulation of Bax. In contrast, miR-29a suppression led to the upregulation of Bcl-2 and downregulation of Bax expression and reduced the rate of apoptosis. Additional research revealed that overexpression of Hsp47 prevented HFSFs apoptosis and enhanced collagen production. Findings that miR-29a overexpression reduces collagen expression levels, slows proliferation, and promotes apoptosis in HFSFs highlight the key role of miR-29a in scleral remodeling. The effects of miR-29a on scleral remodeling might mediate by targeting Hsp47 and repressing the Smad3 pathway.
Collapse
Affiliation(s)
- Xiaolan Tang
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shichun Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shengfang Song
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
61
|
Zhang N, Cui Y, Li Y, Mi Y. A Novel Role of Nogo Proteins: Regulating Macrophages in Inflammatory Disease. Cell Mol Neurobiol 2022; 42:2439-2448. [PMID: 34224050 PMCID: PMC11421643 DOI: 10.1007/s10571-021-01124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Nogo proteins, also known as Reticulon-4, have been identified as myelin-derived inhibitors of neurite outgrowth in the central nervous system (CNS). There are three Nogo variants, Nogo-A, Nogo-B and Nogo-C. Recent studies have shown that Nogo-A/B is abundant in macrophages and may have a wider effect on inflammation. In this review, we focus mainly on the possible roles of Nogo-A/B on polarization and recruitment of macrophages and their involvement in a variety of inflammatory diseases. We then discuss the Nogo receptor1 (NgR1), a common receptor for Nogo proteins that is also abundant in microglia/macrophage in the CNS. Interaction of Nogo and NgR1 in microglia/macrophage may affect the adhesion and polarization of macrophages that are involved in multiple neurodegenerative diseases, including Alzheimer's disease and multiple sclerosis. Overall, this review provides insights into the roles of Nogo proteins in regulating macrophage functions and suggests that, potentially, Nogo proteins maybe a new target in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuanyuan Cui
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuan Li
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yajing Mi
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
62
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
63
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
64
|
Wu Y, Meng W, Guan M, Zhao X, Zhang C, Fang Q, Zhang Y, Sun Z, Cai M, Huang D, Yang X, Yu Y, Cui Y, He S, Chai R. Pitavastatin protects against neomycin-induced ototoxicity through inhibition of endoplasmic reticulum stress. Front Mol Neurosci 2022; 15:963083. [PMID: 35992197 PMCID: PMC9381809 DOI: 10.3389/fnmol.2022.963083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Irreversible injury to inner ear hair cells induced by aminoglycoside antibiotics contributes to the formation of sensorineural hearing loss. Pitavastatin (PTV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, has been reported to exert neuroprotective effects. However, its role in aminoglycoside-induced hearing loss remains unknown. The objectives of this study were to investigate the beneficial effects, as well as the mechanism of action of PTV against neomycin-induced ototoxicity. We found that PTV remarkably reduced hair cell loss in mouse cochlear explants and promoted auditory HEI-OC1 cells survival after neomycin stimulation. We also observed that the auditory brainstem response threshold that was increased by neomycin was significantly reduced by pretreatment with PTV in mice. Furthermore, neomycin-induced endoplasmic reticulum stress in hair cells was attenuated by PTV treatment through inhibition of PERK/eIF2α/ATF4 signaling. Additionally, we found that PTV suppressed the RhoA/ROCK/JNK signal pathway, which was activated by neomycin stimulation in HEI-OC1 cells. Collectively, our results showed that PTV might serve as a promising therapeutic agent against aminoglycoside-induced ototoxicity.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Wei Meng
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Ming Guan
- Department of Otolaryngology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Advanced Innovation Center for Human Brain Protection, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiaojun Fang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yuhua Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Zihui Sun
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Mingjing Cai
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Dongdong Huang
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
| | - Xuechun Yang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yafeng Yu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Yafeng Yu,
| | - Yong Cui
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Yong Cui,
| | - Shuangba He
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, Nanjing Tongren Hospital, Southeast University, Nanjing, China
- Shuangba He,
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, School of Life Sciences and Technology, Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Renjie Chai,
| |
Collapse
|
65
|
Zhou L, Shen H, Li X, Wang H. Endoplasmic reticulum stress in innate immune cells - a significant contribution to non-alcoholic fatty liver disease. Front Immunol 2022; 13:951406. [PMID: 35958574 PMCID: PMC9361020 DOI: 10.3389/fimmu.2022.951406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and its complications affect millions of people worldwide. NAFLD (non-alcoholic fatty liver disease) is the liver disease associated with metabolic dysfunction and consists of four stages: steatosis with or without mild inflammation (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. With increased necroinflammation and progression of liver fibrosis, NAFLD may progress to cirrhosis or even hepatocellular carcinoma. Although the underlying mechanisms have not been clearly elucidated in detail, what is clear is that complex immune responses are involved in the pathogenesis of NASH, activation of the innate immune system is critically involved in triggering and amplifying hepatic inflammation and fibrosis in NAFLD/NASH. Additionally, disruption of endoplasmic reticulum (ER) homeostasis in cells, also known as ER stress, triggers the unfolded protein response (UPR) which has been shown to be involved to inflammation and apoptosis. To further develop the prevention and treatment of NAFLD/NASH, it is imperative to clarify the relationship between NAFLD/NASH and innate immune cells and ER stress. As such, this review focuses on innate immune cells and their ER stress in the occurrence of NAFLD and the progression of cirrhosis.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Hua Wang,
| |
Collapse
|
66
|
Tian F, Chen H, Zhang J, He W. Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. Int J Mol Sci 2022; 23:8024. [PMID: 35887371 PMCID: PMC9316004 DOI: 10.3390/ijms23148024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients' health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism's tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.
Collapse
Affiliation(s)
- Feng Tian
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| |
Collapse
|
67
|
Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022; 46:1539-1556. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
68
|
Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G. Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF-1α-Induced MANF Transcription Expression. Front Immunol 2022; 13:941219. [PMID: 35911675 PMCID: PMC9329666 DOI: 10.3389/fimmu.2022.941219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cold atmospheric plasma has been widely applied in medical treatment clinically, especially skin diseases. However, the mechanism of cold atmospheric plasma on the treatment of skin diseases is still undefined. In this study, dinitrofluorobenzene-induced atopic dermatitis mice model was constructed. Cold atmospheric plasma was able to decrease skin cells apoptosis, relieve skin inflammation, ER stress and oxidative stress caused by dinitrofluorobenzene stimulation, which was mediated by cold atmospheric plasma-induced MANF expression. In terms of mechanism, hypoxia-inducible factor-1α expression was increased intracellularly after cold atmospheric plasma treatment, which further bound to the promoter region of manf gene and enhanced MANF transcriptional expression. This study reveals that cold atmospheric plasma has a positive effect on atopic dermatitis treatment, also demonstrates the regulatory mechanism of cold atmospheric plasma on MANF expression via HIF-1α, which indicates the potential medical application of cold atmospheric plasma for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujing Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhuo Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| |
Collapse
|
69
|
Huston P. A Sedentary and Unhealthy Lifestyle Fuels Chronic Disease Progression by Changing Interstitial Cell Behaviour: A Network Analysis. Front Physiol 2022; 13:904107. [PMID: 35874511 PMCID: PMC9304814 DOI: 10.3389/fphys.2022.904107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Managing chronic diseases, such as heart disease, stroke, diabetes, chronic lung disease and Alzheimer’s disease, account for a large proportion of health care spending, yet they remain in the top causes of premature mortality and are preventable. It is currently accepted that an unhealthy lifestyle fosters a state of chronic low-grade inflammation that is linked to chronic disease progression. Although this is known to be related to inflammatory cytokines, how an unhealthy lifestyle causes cytokine release and how that in turn leads to chronic disease progression are not well known. This article presents a theory that an unhealthy lifestyle fosters chronic disease by changing interstitial cell behavior and is supported by a six-level hierarchical network analysis. The top three networks include the macroenvironment, social and cultural factors, and lifestyle itself. The fourth network includes the immune, autonomic and neuroendocrine systems and how they interact with lifestyle factors and with each other. The fifth network identifies the effects these systems have on the microenvironment and two types of interstitial cells: macrophages and fibroblasts. Depending on their behaviour, these cells can either help maintain and restore normal function or foster chronic disease progression. When macrophages and fibroblasts dysregulate, it leads to chronic low-grade inflammation, fibrosis, and eventually damage to parenchymal (organ-specific) cells. The sixth network considers how macrophages change phenotype. Thus, a pathway is identified through this hierarchical network to reveal how external factors and lifestyle affect interstitial cell behaviour. This theory can be tested and it needs to be tested because, if correct, it has profound implications. Not only does this theory explain how chronic low-grade inflammation causes chronic disease progression, it also provides insight into salutogenesis, or the process by which health is maintained and restored. Understanding low-grade inflammation as a stalled healing process offers a new strategy for chronic disease management. Rather than treating each chronic disease separately by a focus on parenchymal pathology, a salutogenic strategy of optimizing interstitial health could prevent and mitigate multiple chronic diseases simultaneously.
Collapse
Affiliation(s)
- Patricia Huston
- Department of Family Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort (Research), University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Patricia Huston, , orcid.org/0000-0002-2927-1176
| |
Collapse
|
70
|
Kumar M, Sharma S, Haque M, Kumar J, Hathi UPS, Mazumder S. TLR22-Induced Pro-Apoptotic mtROS Abets UPRmt-Mediated Mitochondrial Fission in Aeromonas hydrophila-Infected Headkidney Macrophages of Clarias gariepinus. Front Immunol 2022; 13:931021. [PMID: 35860264 PMCID: PMC9292580 DOI: 10.3389/fimmu.2022.931021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Toll-like receptors (TLRs) are epitomized as the first line of defense against pathogens. Amongst TLRs, TLR22 is expressed in non-mammalian aquatic vertebrates, including fish. Using headkidney macrophages (HKM) of Clarias gariepinus, we reported the pro-apoptotic and microbicidal role of TLR22 in Aeromonas hydrophila infection. Mitochondria act as a central scaffold in the innate immune system. However, the precise molecular mechanisms underlying TLR22 signaling and mitochondrial involvement in A. hydrophila-pathogenesis remain unexplored in fish. The aim of the present study was to investigate the nexus between TLR22 and mitochondria in pro-apoptotic immune signaling circuitry in A. hydrophila-infected HKM. We report that TLR22-induced mitochondrial-Ca2+ [Ca2+]mt surge is imperative for mtROS production in A. hydrophila-infected HKM. Mitigating mtROS production enhanced intracellular bacterial replication implicating its anti-microbial role in A. hydrophila-pathogenesis. Enhanced mtROS triggers hif1a expression leading to prolonged chop expression. CHOP prompts mitochondrial unfolded protein response (UPRmt) leading to the enhanced expression of mitochondrial fission marker dnml1, implicating mitochondrial fission in A. hydrophila pathogenesis. Inhibition of mitochondrial fission reduced HKM apoptosis and increased the bacterial burden. Additionally, TLR22-mediated alterations in mitochondrial architecture impair mitochondrial function (ΔΨm loss and cytosolic accumulation of cyt c), which in turn activates caspase-9/caspase-3 axis in A. hydrophila-infected HKM. Based on these findings we conclude that TLR22 prompts mtROS generation, which activates the HIF-1α/CHOP signalosome triggering UPRmt-induced mitochondrial fragmentation culminating in caspase-9/-3-mediated HKM apoptosis and bacterial clearance.
Collapse
Affiliation(s)
- Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Munira Haque
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Prasad Sah Hathi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
- *Correspondence: Shibnath Mazumder,
| |
Collapse
|
71
|
Lohani N, Singh MB, Bhalla PL. Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers. FRONTIERS IN PLANT SCIENCE 2022; 13:905674. [PMID: 35755714 PMCID: PMC9218420 DOI: 10.3389/fpls.2022.905674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Climate change associated increases in the frequency and intensity of extreme temperature events negatively impact agricultural productivity and global food security. During the reproductive phase of a plant's life cycle, such high temperatures hinder pollen development, preventing fertilization, and seed formation. At the molecular level, heat stress-induced accumulation of misfolded proteins activates a signaling pathway called unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasm to enhance the protein folding capacity of the cell. Here, we report transcriptional responses of Brassica napus anthers exposed to high temperature for 5, 15, and 30 min to decipher the rapid transcriptional reprogramming associated with the unfolded protein response. Functional classification of the upregulated transcripts highlighted rapid activation of the ER-UPR signaling pathway mediated by ER membrane-anchored transcription factor within 5 min of heat stress exposure. KEGG pathway enrichment analysis also identified "Protein processing in ER" as the most significantly enriched pathway, indicating that the unfolded protein response (UPR) is an immediate heat stress-responsive pathway during B. napus anther development. Five minutes of heat stress also led to robust induction of the cytosolic HSF-HSP heat response network. Our results present a perspective of the rapid and massive transcriptional reprogramming during heat stress in pollen development and highlight the need for investigating the nature and function of very early stress-responsive networks in plant cells. Research focusing on very early molecular responses of plant cells to external stresses has the potential to reveal new stress-responsive gene networks that can be explored further for developing climate change resilient crops.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
72
|
Yang XF, Wang H, Huang Y, Huang JH, Ren HL, Xu Q, Su XM, Wang AM, Ren F, Zhou MS. Myeloid Angiotensin II Type 1 Receptor Mediates Macrophage Polarization and Promotes Vascular Injury in DOCA/Salt Hypertensive Mice. Front Pharmacol 2022; 13:879693. [PMID: 35721173 PMCID: PMC9204513 DOI: 10.3389/fphar.2022.879693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the renin–angiotensin system has been implicated in hypertension. Angiotensin (Ang) II is a potent proinflammatory mediator. The present study investigated the role of myeloid angiotensin type 1 receptor (AT1R) in control of macrophage phenotype in vitro and vascular injury in deoxycorticosterone acetate (DOCA)/salt hypertension. In human THP-1/macrophages, Ang II increased mRNA expressions of M1 cytokines and decreased M2 cytokine expressions. Overexpression of AT1R further increased Ang II-induced expressions of M1 cytokines and decreased M2 cytokines. Silenced AT1R reversed Ang II-induced changes in M1 and M2 cytokines. Ang II upregulated hypoxia-inducible factor (HIF)1α, toll-like receptor (TLR)4, and the ratio of pIκB/IκB, which were prevented by silenced AT1R. Silenced HIF1α prevented Ang II activation of the TLR4/NFκB pathway. Furthermore, Ang II increased HIF1α via reactive oxygen species-dependent reduction in prolyl hydroxylase domain protein 2 (PHD2) expression. The expressions of AT1R and HIF1α and the ratio of pIκB/IκB were upregulated in the peritoneal macrophages of DOCA hypertensive mice, and the specific deletion of myeloid AT1R attenuated cardiac and vascular injury and vascular oxidative stress, reduced the recruitment of macrophages and M1 cytokine expressions, and improved endothelial function without significant reduction in blood pressure. Our results demonstrate that Ang II/AT1R controls the macrophage phenotype via stimulating the HIF1α/NFκB pathway, and specific myeloid AT1R KO improves endothelial function, vascular inflammation, and injury in salt-sensitive hypertension. The results support the notion that myeloid AT1R plays an important role in the regulation of the macrophage phenotype, and dysfunction of this receptor may promote vascular dysfunction and injury in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Huan Wang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yue Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Jian-Hua Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Hao-Lin Ren
- Radiology Department of the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Xu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiao-Min Su
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| |
Collapse
|
73
|
Vitamin C Attenuates Oxidative Stress, Inflammation, and Apoptosis Induced by Acute Hypoxia through the Nrf2/Keap1 Signaling Pathway in Gibel Carp (Carassius gibelio). Antioxidants (Basel) 2022; 11:antiox11050935. [PMID: 35624798 PMCID: PMC9137936 DOI: 10.3390/antiox11050935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Previous studies have found that vitamin C (VC) has protective effects in fish. However, the efficacy of VC on hypoxia-induced liver injury in fish remains unknown. Therefore, to investigate the protective mechanism of VC on liver injury after acute hypoxic stimulation in fish, gibel carp were fed a diet containing VC for eight weeks, then were subjected to acute hypoxia stimulation. The specific growth rate of fish was increased by the supplementation of VC. Plasma stress markers (glucose, lactic acid, and cortisol) were decreased by the VC supplementation. Moreover, the levels of the inflammatory cytokines (tnf-α, il-2, il-6, and il-12) were increased by enhancing the Nrf2/Keap1 signaling pathway. Upregulation of the antioxidant enzymes activity (CAT, SOD, and GPx); T-AOC; and anti-inflammatory factors (il-4 and tgf-β) highlighted the antioxidant and anti-inflammatory activities of VC. The results showed that VC reduced the apoptotic index of the fish hypothalamus. The expression of GRP78 protein in the liver and endoplasmic reticulum stress and apoptosis induced by hypoxia were inhibited by VC. Taken together, the results indicate that VC can attenuate oxidative damage, inflammation, and acute hypoxia induced apoptosis in gibel carp via the Nrf2/Keap1 signaling pathway. The results identify a new defense strategy of gibel carp in response to hypoxic conditions.
Collapse
|
74
|
Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. Int J Mol Sci 2022; 23:ijms23063013. [PMID: 35328434 PMCID: PMC8953611 DOI: 10.3390/ijms23063013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glycolysis and ER stress have been considered important drivers of pulmonary fibrosis. However, it is not clear whether glycolysis and ER stress are interconnected and if those interconnections regulate the development of pulmonary fibrosis. Our previous studies found that the expression of LDHA, a key enzyme involved in glycolysis, was increased in silica-induced macrophages and silicotic models, and it was closely related to silicosis fibrosis by participating in inflammatory response. However, whether pharmacological inhibition of LDHA is beneficial to the amelioration of silicosis fibrosis remains unclear. In this study, we investigated the effects of oxamate, a potent inhibitor of LDHA, on the regulation of glycolysis and ER stress in alveolar macrophages and silicotic mice. We found that silica induced the upregulation of glycolysis and the expression of key enzymes directly involved in ER stress in NR8383 macrophages. However, treatment of the macrophages and silicotic mice with oxamate attenuated glycolysis and ER stress by inhibiting LDHA, causing a decrease in the production of lactate. Therefore, oxamate demonstrated an anti-fibrotic role by reducing glycolysis and ER stress in silicotic mice.
Collapse
|
75
|
Hadadi E, Deschoemaeker S, Vicente Venegas G, Laoui D. Heterogeneity and function of macrophages in the breast during homeostasis and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:149-182. [PMID: 35461657 DOI: 10.1016/bs.ircmb.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are diverse immune cells populating all tissues and adopting a unique tissue-specific identity. Breast macrophages play an essential role in the development and function of the mammary gland over one's lifetime. In the recent years, with the development of fate-mapping, imaging and scRNA-seq technologies we grew a better understanding of the origin, heterogeneity and function of mammary macrophages in homeostasis but also during breast cancer development. Here, we aim to provide a comprehensive review of the latest improvements in studying the macrophage heterogeneity in healthy mammary tissues and breast cancer.
Collapse
Affiliation(s)
- Eva Hadadi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie Deschoemaeker
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gerard Vicente Venegas
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
76
|
Gnemmi V, Li Q, Ma Q, De Chiara L, Carangelo G, Li C, Molina-Van den Bosch M, Romagnani P, Anders HJ, Steiger S. Asymptomatic Hyperuricemia Promotes Recovery from Ischemic Organ Injury by Modulating the Phenotype of Macrophages. Cells 2022; 11:cells11040626. [PMID: 35203277 PMCID: PMC8869798 DOI: 10.3390/cells11040626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Acute organ injury, such as acute kidney injury (AKI) and disease (AKD), are major causes of morbidity and mortality worldwide. Hyperuricemia (HU) is common in patients with impaired kidney function but the impact of asymptomatic HU on the different phases of AKI/AKD is incompletely understood. We hypothesized that asymptomatic HU would attenuate AKD because soluble, in contrast to crystalline, uric acid (sUA) can attenuate sterile inflammation. In vitro, 10 mg/dL sUA decreased reactive oxygen species and interleukin-6 production in macrophages, while enhancing fatty acid oxidation as compared with a physiological concentration of 5 mg/dL sUA or medium. In transgenic mice, asymptomatic HU of 7–10 mg/dL did not affect post-ischemic AKI/AKD but accelerated the recovery of kidney excretory function on day 14. Improved functional outcome was associated with better tubular integrity, less peritubular inflammation, and interstitial fibrosis. Mechanistic studies suggested that HU shifted macrophage polarization towards an anti-inflammatory M2-like phenotype characterized by expression of anti-oxidative and metabolic genes as compared with post-ischemic AKI-chronic kidney disease transition in mice without HU. Our data imply that asymptomatic HU acts as anti-oxidant on macrophages and tubular epithelial cells, which endorses the recovery of kidney function and structure upon AKI.
Collapse
Affiliation(s)
- Viviane Gnemmi
- Service d’Anatomie Pathologique, Centre de Biologie Pathologique, CHU Lille, 59037 Lille, France;
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Qiubo Li
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.D.C.); (G.C.); (P.R.)
| | - Giulia Carangelo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.D.C.); (G.C.); (P.R.)
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Mireia Molina-Van den Bosch
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.D.C.); (G.C.); (P.R.)
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (Q.L.); (Q.M.); (C.L.); (M.M.-V.d.B.); (H.-J.A.)
- Correspondence:
| |
Collapse
|
77
|
Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines 2022; 10:biomedicines10020221. [PMID: 35203431 PMCID: PMC8869621 DOI: 10.3390/biomedicines10020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Sympathetic nervous system overdrive with chronic release of catecholamines is the most important neurohormonal mechanism activated to maintain cardiac output in response to heart stress. Beta-adrenergic signaling behaves first as a compensatory pathway improving cardiac contractility and maladaptive remodeling but becomes dysfunctional leading to pathological hypertrophy and heart failure (HF). Cardiac remodeling is a complex inflammatory syndrome where macrophages play a determinant role. This study aimed at characterizing the temporal transcriptomic evolution of cardiac macrophages in mice subjected to beta-adrenergic-stimulation using RNA sequencing. Owing to a comprehensive bibliographic analysis and complementary lipidomic experiments, this study deciphers typical gene profiles in early compensated hypertrophy (ECH) versus late dilated remodeling related to HF. We uncover cardiac hypertrophy- and proliferation-related transcription programs typical of ECH or HF macrophages and identify lipid metabolism-associated and Na+ or K+ channel-related genes as markers of ECH and HF macrophages, respectively. In addition, our results substantiate the key time-dependent role of inflammatory, metabolic, and functional gene regulation in macrophages during beta-adrenergic dependent remodeling. This study provides important and novel knowledge to better understand the prevalent key role of resident macrophages in response to chronically activated beta-adrenergic signaling, an effective diagnostic and therapeutic target in failing hearts.
Collapse
|
78
|
Demirel-Yalciner T, Sozen E, Ozer NK. Endoplasmic Reticulum Stress and miRNA Impairment in Aging and Age-Related Diseases. FRONTIERS IN AGING 2022; 2:790702. [PMID: 35822008 PMCID: PMC9261320 DOI: 10.3389/fragi.2021.790702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Aging is a physiological process defined by decreased cellular and tissue functions. Reduced capacity of protein degradation is one of the important hallmarks of aging that may lead to misfolded protein accumulation and progressive loss of function in organ systems. Recognition of unfolded/misfolded protein aggregates via endoplasmic reticulum (ER) stress sensors activates an adaptive mechanism, the unfolded protein response (UPR). The initial step of UPR is defined by chaperone enhancement, ribosomal translation suppression, and misfolded protein degradation, while prolonged ER stress triggers apoptosis. MicroRNAs (miRNAs) are non-coding RNAs affecting various signaling pathways through degradation or translational inhibition of targeted mRNAs. Therefore, UPR and miRNA impairment in aging and age-related diseases is implicated in various studies. This review will highlight the recent insights in ER stress–miRNAs alterations during aging and age-related diseases, including metabolic, cardiovascular, and neurodegenerative diseases and several cancers.
Collapse
Affiliation(s)
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- *Correspondence: Nesrin Kartal Ozer,
| |
Collapse
|
79
|
Stachyra K, Wiśniewska A, Kiepura A, Kuś K, Rolski F, Czepiel K, Chmura Ł, Majka G, Surmiak M, Polaczek J, van Eldik R, Suski M, Olszanecki R. Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113112. [PMID: 34953274 DOI: 10.1016/j.ecoenv.2021.113112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Exposure to environmental nanoparticles is related to the adverse impact on health, including cardiovascular system. Various forms of nanoparticles have been reported to interact with endothelium and induce inflammation. However, the potential role of nanoparticles in the pathogenesis of atherosclerosis and their mechanisms of action are still unclear. The aim of this study was to investigate the effect of two broadly used nanomaterials, which also occur in natural environment - silicon oxide (SiO2) and ferric oxide (Fe2O3) in the form of nanoparticles (NPs) - on the development of atherosclerosis. METHODS We used apolipoprotein E-knockout mice exposed to silica and ferric oxide nanoparticles in a whole body inhalation chamber. RESULTS Inhaled silica nanoparticles augmented the atherosclerotic lesions and increased the percentage of pro-inflammatory M1 macrophages in both the plaque and the peritoneum in apoE-/- mice. Exposure to ferric oxide nanoparticles did not enhance atherogenesis process, however, it caused significant changes in the atherosclerotic plaque composition (elevated content of CD68-positive macrophages and enlarged necrotic core accompanied by the decreased level of M1 macrophages). Both silica and ferric oxide NPs altered the phenotype of T lymphocytes in the spleen by promoting polarization towards Th17 cells. CONCLUSIONS Exposure to silica and ferric oxide nanoparticles exerts impact on atherosclerosis development and plaque composition. Pro-atherogenic abilities of silica nanoparticles are associated with activation of pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Filip Rolski
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 265 Wielicka Street, 30-663 Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Łukasz Chmura
- Chair of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Grzegorz Majka
- Chair of Immunology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Street, 30-387 Krakow, Poland; Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Krakow, Poland.
| |
Collapse
|
80
|
Bonaterra GA, Struck N, Zuegel S, Schwarz A, Mey L, Schwarzbach H, Strelau J, Kinscherf R. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (Pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord 2021; 21:601. [PMID: 34920697 PMCID: PMC8684150 DOI: 10.1186/s12872-021-02420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is linked to inflammation, cancer, and atherosclerosis. GDF-15 is expressed in most tissues but is extremely induced under pathological conditions. Elevated serum levels are suggested as a risk factor and a marker for cardiovascular diseases. However, the cellular sources and the effects of GDF-15 on the cardiovascular system have not been completely elucidated including progression, and morphology of atherosclerotic plaques. Thus, this work aimed to characterize the influence of GDF-15 deficiency on the morphology of atherosclerotic plaques in blood vessels with low-oxygen blood and low blood pressure as the pulmonary trunk (PT), in hypercholesterolemic ApoE-/- mice. METHODS GDF-15-/- ApoE-/- mice were generated by crossbreeding of ApoE-/-- and GDF-15-/- mice. After feeding a cholesterol-enriched diet (CED) for 20 weeks, samples of the brachiocephalic trunk (BT) and PT were dissected and lumen stenosis (LS) was measured. Furthermore, changes in the cellularity of the PT, amounts of apoptosis-, autophagy-, inflammation- and proliferation-relevant proteins were immunohisto-morphometrically analyzed. Additionally, we examined an atherosclerotic plaque in a human post mortem sample of the pulmonary artery. RESULTS After CED the body weight of GDF-15-/-ApoE-/- was 22.9% higher than ApoE-/-. Double knockout mice showed also an 35.3% increase of plasma triglyceride levels, whereas plasma cholesterol was similar in both genotypes. LS in the BT and PT of GDF-15-/-ApoE-/- mice was significantly reduced by 19.0% and by 6.7% compared to ApoE-/-. Comparing LS in PT and BT of the same genotype revealed a significant 38.8% (ApoE-/-) or 26.4% (GDF-15-/-ApoE-/-) lower LS in the PT. Immunohistomorphometry of atherosclerotic lesions in PT of GDF-15-/-ApoE-/- revealed significantly increased levels (39.8% and 7.3%) of CD68 + macrophages (MΦ) and α-actin + smooth muscle cells than in ApoE-/-. The density of TUNEL + , apoptotic cells was significantly (32.9%) higher in plaques of PT of GDF-15-/-ApoE-/- than in ApoE-/-. Analysis of atherosclerotic lesion of a human pulmonary artery showed sm-α-actin, CD68+, TUNEL+, Ki67+, and APG5L/ATG+ cells as observed in PT. COX-2+ and IL-6+ immunoreactivities were predominantly located in endothelial cells and subendothelial space. In BT and PT of GDF15-/-ApoE-/- mice the necrotic area was 10% and 6.5% lower than in ApoE-/-. In BT and PT of GDF15-/-ApoE-/- we found 40% and 57% less unstable plaques than ApoE-/- mice. CONCLUSIONS Atherosclerotic lesions occur in both, BT and PT, however, the size is smaller in PT, possibly due to the effect of the low-oxygen blood and/or lower blood pressure. GDF-15 is involved in atherosclerotic processes in BT and PT, although different mechanisms (e.g. apoptosis) in these two vessels seem to exist.
Collapse
Affiliation(s)
- G A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany.
| | - N Struck
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - S Zuegel
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - A Schwarz
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - L Mey
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - H Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - J Strelau
- Department of Functional Neuroanatomy, University of Heidelberg, 69120, Heidelberg, Germany
| | - R Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
81
|
Kryvenko V, Vadász I. Mechanisms of Hypercapnia-Induced Endoplasmic Reticulum Dysfunction. Front Physiol 2021; 12:735580. [PMID: 34867444 PMCID: PMC8640499 DOI: 10.3389/fphys.2021.735580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 01/16/2023] Open
Abstract
Protein transcription, translation, and folding occur continuously in every living cell and are essential for physiological functions. About one-third of all proteins of the cellular proteome interacts with the endoplasmic reticulum (ER). The ER is a large, dynamic cellular organelle that orchestrates synthesis, folding, and structural maturation of proteins, regulation of lipid metabolism and additionally functions as a calcium store. Recent evidence suggests that both acute and chronic hypercapnia (elevated levels of CO2) impair ER function by different mechanisms, leading to adaptive and maladaptive regulation of protein folding and maturation. In order to cope with ER stress, cells activate unfolded protein response (UPR) pathways. Initially, during the adaptive phase of ER stress, the UPR mainly functions to restore ER protein-folding homeostasis by decreasing protein synthesis and translation and by activation of ER-associated degradation (ERAD) and autophagy. However, if the initial UPR attempts for alleviating ER stress fail, a maladaptive response is triggered. In this review, we discuss the distinct mechanisms by which elevated CO2 levels affect these molecular pathways in the setting of acute and chronic pulmonary diseases associated with hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
82
|
Zhang HY, Xie QM, Zhao CC, Sha JF, Ruan Y, Wu HM. CpG Oligodeoxynucleotides Attenuate OVA-Induced Allergic Airway Inflammation via Suppressing JNK-Mediated Endoplasmic Reticulum Stress. J Asthma Allergy 2021; 14:1399-1410. [PMID: 34848975 PMCID: PMC8619852 DOI: 10.2147/jaa.s334541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose CpG-ODN has been found to attenuate allergic airway inflammation in our previous study. Here, we aimed to further investigate whether CpG-ODN exerts such effect via regulating endoplasmic reticulum (ER) stress and revealed the underlying mechanism. Methods Five-week-old C57BL/6 mice were randomly grouped and treated with or without CpG-ODN or/and SP600125. Meantime, RAW264.7 cells were used to investigate the effect of CpG-ODN on OVA-induced ER stress in vitro. The cellularity of bronchoalveolar lavage fluid (BALF) was classified and counted after Wright-Giemsa staining. HE and PAS staining methods were applied to analyze airway inflammation. The protein levels of IL-4, IL-5, IL-13, p-JNK, JNK, CHOP, XBP1, ATF6α and GRP78 in lung tissues were detected by Western blotting. Correspondingly, the ER stress markers were detected by Western blotting and immunofluorescence in RAW264.7 cells. Results In OVA-induced allergic airway inflammation, CpG-ODN significantly suppressed inflammatory cells infiltration, goblet cell hyperplasia and the protein expression of Th2 cytokines. Moreover, OVA exposure strongly increased the activation of ER stress with higher protein expressions of CHOP, XBP1, ATF6α and GRP78. However, these OVA-induced increase of ER stress markers were markedly suppressed by CpG-ODN treatment. In addition, exposure to OVA significantly increased the phosphorylation of JNK, which was significantly reduced by CpG-ODN treatment. Remarkably, single treatment of SP600125, an antagonist of JNK, functioned similarly as CpG-ODN in mitigating allergic airway inflammation and suppressing OVA-induced activation of ER stress; however, no significant synergistic effect was evidenced by combined treatment of SP600125 and CpG-ODN. Furthermore, in OVA-stimulated RAW264.7 cells, we also found that OVA stimulation increased the expressions of ER stress markers, and CpG-ODN significantly reduced their expression levels via suppressing the phosphorylation of JNK. Conclusion These results indicated that CpG-ODN mitigates allergic airway inflammation via suppressing the activation of JNK-medicated ER stress.
Collapse
Affiliation(s)
- Hai-Yun Zhang
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Hefei, Anhui, People's Republic of China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
83
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
84
|
Janiszewski LN, Minson M, Allen MA, Dowell RD, Palmer AE. Characterization of Global Gene Expression, Regulation of Metal Ions, and Infection Outcomes in Immune-Competent 129S6 Mouse Macrophages. Infect Immun 2021; 89:e0027321. [PMID: 34370511 PMCID: PMC8519282 DOI: 10.1128/iai.00273-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Nutritional immunity involves cellular and physiological responses to invading pathogens, such as limiting iron, increasing exposure to bactericidal copper, and altering zinc to restrict the growth of pathogens. Here, we examine infection of bone marrow-derived macrophages from 129S6/SvEvTac mice by Salmonella enterica serovar Typhimurium. The 129S6/SvEvTac mice possess a functional Slc11a1 (Nramp-1), a phagosomal transporter of divalent cations that plays an important role in modulating metal availability to the pathogen. We carried out global RNA sequencing upon treatment with live or heat-killed Salmonella at 2 h and 18 h postinfection and observed widespread changes in metal transport, metal-dependent genes, and metal homeostasis genes, suggesting significant remodeling of iron, copper, and zinc availability by host cells. Changes in host cell gene expression suggest infection increases cytosolic zinc while simultaneously limiting zinc within the phagosome. Using a genetically encoded sensor, we demonstrate that cytosolic labile zinc increases 45-fold at 12 h postinfection. Further, manipulation of zinc in the medium alters bacterial clearance and replication, with zinc depletion inhibiting both processes. Comparing the transcriptomic changes to published data on infection of C57BL/6 macrophages revealed notable differences in metal regulation and the global immune response. Our results reveal that 129S6 macrophages represent a distinct model system compared to C57BL/6 macrophages. Further, our results indicate that manipulation of zinc at the host-pathogen interface is more nuanced than that of iron or copper. The 129S6 macrophages leverage intricate means of manipulating zinc availability and distribution to limit the pathogen's access to zinc, while simultaneously ensuring sufficient zinc to support the immune response.
Collapse
Affiliation(s)
- Lara N. Janiszewski
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular Cellular Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael Minson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- Department of Molecular Cellular Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- Department of Molecular Cellular Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy E. Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
85
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
86
|
Lei Y, Wan S, Liu H, Zhou H, Chen L, Yang Y, Wu B. ARRB1 suppresses the activation of hepatic macrophages via modulating endoplasmic reticulum stress in lipopolysaccharide-induced acute liver injury. Cell Death Discov 2021; 7:223. [PMID: 34455423 PMCID: PMC8403172 DOI: 10.1038/s41420-021-00615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Acute liver injury (ALI) caused by multiple inflammatory responses is a monocyte-/macrophage-mediated liver injury that is associated with high morbidity and mortality. Liver macrophage activation is a vital event that triggers ALI. However, the mechanism of liver macrophage activation has not been fully elucidated. This study examined the role of β-arrestin1 (ARRB1) in wild-type (WT) and ARRB1-knockout (ARRB1-KO) mouse models of ALI induced by lipopolysaccharide (LPS), and ARRB1-KO mice exhibited more severe inflammatory injury and liver macrophage activation compared to WT mice. We found that LPS treatment reduced the expression level of ARRB1 in Raw264.7 and THP-1 cell lines, and mouse primary hepatic macrophages. Overexpression of ARRB1 in Raw264.7 and THP-1 cell lines significantly attenuated LPS-induced liver macrophage activation, such as transformation in cell morphology and enhanced expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while downregulation of ARRB1 by small interfering RNA and ARRB1 deficiency in primary hepatic macrophages both aggravated macrophage activation. Moreover, overexpression of ARRB1 suppressed LPS-induced endoplasmic reticulum (ER) stress in liver macrophages, and inhibition of ER stress impeded excessive hepatic macrophage activation induced by downregulation of ARRB1. Our data demonstrate that ARRB1 relieves LPS-induced ALI through the ER stress pathway to regulate hepatic macrophage activation and that ARRB1 may be a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Yiming Lei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Sizhe Wan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Haoxiong Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yidong Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China.
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China.
| |
Collapse
|
87
|
Herroon MK, Mecca S, Haimbaugh A, Garmo LC, Rajagurubandara E, Todi SV, Baker TR, Podgorski I. Adipocyte-driven unfolded protein response is a shared transcriptomic signature of metastatic prostate carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119101. [PMID: 34280426 DOI: 10.1016/j.bbamcr.2021.119101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
A critical unknown in the field of skeletal metastases is how cancer cells find a way to thrive under harsh conditions, as exemplified by metastatic colonization of adipocyte-rich bone marrow by prostate carcinoma cells. To begin understanding molecular processes that enable tumor cells to survive and progress in difficult microenvironments such as bone, we performed unbiased examination of the transcriptome of two different prostate cancer cell lines in the absence or presence of bone marrow adipocytes. Our RNAseq analyses and subsequent quantitative PCR and protein-based assays reveal that upregulation of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) genes is a shared signature between metastatic prostate carcinoma cell lines of different origin. Pathway analyses and pharmacological examinations highlight the ER chaperone BIP as an upstream coordinator of this transcriptomic signature. Additional patient-based data support our overall conclusion that ER stress and UPR induction are shared, important factors in the response and adaptation of metastatic tumor cells to their micro-environment. Our studies pave the way for additional mechanistic investigations and offer new clues towards effective therapeutic interventions in metastatic disease.
Collapse
Affiliation(s)
- Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
88
|
Xu C, Dai Y, Bai J, Ren B, Xu J, Gao F, Wang L, Zhang W, Wang R. 17β-oestradiol alleviates endoplasmic reticulum stress injury induced by chronic cerebral hypoperfusion through the Haemoglobin/HIF 1α signalling pathway in ovariectomized rats. Neurochem Int 2021; 148:105119. [PMID: 34224805 DOI: 10.1016/j.neuint.2021.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum stress (ERS) is known to be an essential target in protecting against ischaemic brain injury. In this study, using a vascular dementia (VaD) animal model induced by bilateral common carotid artery occlusion (BCCAO), we evaluated the effect and mechanism of 17β-oestradiol (E2) against VaD by inhibiting ERS at the early stage (14 d, 21 d, 28 d) and late stage (3 m) after BCCAO in the hippocampal CA1 region of ovariectomized rats. The results showed that the activation of the PERK-eIF2α-ATF4-CHOP axis, a typical ERS pathway, was significantly increased at the early and late stages after BCCAO. JNK (c-Jun N-terminal kinase)-cJun, a pro-death pathway, also displayed the same pattern as the ERS axis. E2 treatment profoundly suppressed the impairments caused by BCCAO. Further mechanistic studies revealed that cerebral blood flow (CBF) was sharply decreased at 14 d and returned to the normal level at 21 d after BCCAO. E2 could not change CBF, while it unexpectedly enhanced the ability to carry oxygen. This is evidenced by the fact that the protein expression of haemoglobin α/β (Hα/β), an oxygen carrier, robustly increased at BCCAO 21 d and 3 m after E2 treatment. The oxygen carrier increased strongly after 21 d and 3 m of BCCAO treated with E2. Moreover, E2 correspondingly enhanced the protein expression of hypoxia-inducible factor 1α (HIF 1α) in both the early and late stage after BCCAO in the hippocampal CA1 region. Finally, E2 administration markedly decreased the activities of caspase-8, caspase-3, and caspase-12 and increased the number of NeuN-positive cells. These findings suggest that E2 serves as a neuroprotectant to alleviate VaD by suppressing ERS injury involving the haemoglobin/HIF 1α signalling pathway.
Collapse
Affiliation(s)
- Chao Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Yongxin Dai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Bo Ren
- School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jing Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Wenli Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
89
|
Chen X, Liu Y, Gao Y, Shou S, Chai Y. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol 2021; 96:107791. [PMID: 34162154 DOI: 10.1016/j.intimp.2021.107791] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/31/2022]
Abstract
Sepsis is a life-threatening clinical syndrome caused by infection. Its pathogenesis is complex and entails coagulation dysfunction, inflammation, and immune disorders. Macrophages are important components of innate and adaptive immunity that are highly heterogeneous and plastic. They can polarize into a multi-dimensional spectrum of phenotypes with different functions relating to immune regulation in response to changes in the microenvironment of specific tissues. We reviewed studies that examined the role of macrophage polarization with a focus on the classical activated (M1-like) and alternative activated (M2-like) macrophages as the two main phenotypes involved in the host immune response to sepsis. A complex regulatory network is involved in the process of macrophage polarization, which is influenced by a variety of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. M1-like macrophages release large quantities of pro-inflammatory mediators, while M2-like macrophages release large quantities of anti-inflammatory mediators. An imbalance between M1-like and M2-like macrophages induces the occurrence and development of sepsis. Therefore, targeted regulation of the process of macrophage polarization could be a useful approach to normalize the immune balance of the host, offering a new treatment modality for different stages of sepsis.
Collapse
Affiliation(s)
- Xinsen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
90
|
Chilunda V, Martinez-Aguado P, Xia LC, Cheney L, Murphy A, Veksler V, Ruiz V, Calderon TM, Berman JW. Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Front Immunol 2021; 12:665773. [PMID: 34108966 PMCID: PMC8181441 DOI: 10.3389/fimmu.2021.665773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has caused more than three million deaths globally. The severity of the disease is characterized, in part, by a dysregulated immune response. CD16+ monocytes are innate immune cells involved in inflammatory responses to viral infections, and tissue repair, among other functions. We characterized the transcriptional changes in CD16+ monocytes from PBMC of people with COVID-19, and from healthy individuals using publicly available single cell RNA sequencing data. CD16+ monocytes from people with COVID-19 compared to those from healthy individuals expressed transcriptional changes indicative of increased cell activation, and induction of a migratory phenotype. We also analyzed COVID-19 cases based on severity of the disease and found that mild cases were characterized by upregulation of interferon response and MHC class II related genes, whereas the severe cases had dysregulated expression of mitochondrial and antigen presentation genes, and upregulated inflammatory, cell movement, and apoptotic gene signatures. These results suggest that CD16+ monocytes in people with COVID-19 contribute to a dysregulated host response characterized by decreased antigen presentation, and an elevated inflammatory response with increased monocytic infiltration into tissues. Our results show that there are transcriptomic changes in CD16+ monocytes that may impact the functions of these cells, contributing to the pathogenesis and severity of COVID-19.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Li C. Xia
- Department of Epidemiology and Public Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Aniella Murphy
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Ruiz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina M. Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
91
|
Photobiomodulation induces murine macrophages polarization toward M2 phenotype. Toxicon 2021; 198:171-175. [PMID: 34029603 DOI: 10.1016/j.toxicon.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Photobiomodulation using light-emitting diode (LED) treatment has analgesic and anti-inflammatory effects which can be an effective therapeutic associated with serum therapy for local treatment of snakebites. Here we explored the effects of LED treatment on isolated macrophage under Bothrops jararacussu venom. Results showed that LED induced IL-6 and TNF-α genes down-regulation and, TGF and ARG1 genes up-regulation which indicates a polarization of macrophages to an M2 phenotype contributing to both tissue repair and resolution of inflammation.
Collapse
|
92
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
93
|
West JD, Austin ED, Rizzi EM, Yan L, Tanjore H, Crabtree AL, Moore CS, Muthian G, Carrier EJ, Jacobson DA, Hamid R, Kendall PL, Majka S, Rathinasabapathy A. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci 2021; 22:ijms22095014. [PMID: 34065088 PMCID: PMC8126011 DOI: 10.3390/ijms22095014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we exposed kcnk3fl/fl animals to hypoxia, metabolic diet and low dose lipopolysaccharide (LPS) and performed molecular characterization of their tissue. We also used tissue samples from KCNK3 patients (skin fibroblast derived inducible pluripotent stem cells, blood, lungs, peripheral blood mononuclear cells) and performed microarray, immunohistochemistry (IHC) and mass cytometry time of flight (CyTOF) experiments. Although a hypoxic insult did not alter vascular tone in kcnk3fl/fl mice, RNASeq study of these lungs implied that inflammatory and metabolic factors were altered, and the follow-up diet study demonstrated a dysregulation of bone marrow cells in kcnk3fl/fl mice. Finally, a low dose LPS study clearly showed that inflammation could be a possible second hit driving PAH in kcnk3fl/fl mice. Multiplex, IHC and CyTOF immunophenotyping studies on human samples confirmed the mouse data and strongly indicated that cell mediated, and innate immune responses may drive PAH susceptibility in these patients. In conclusion, loss of function KCNK3 mutation alters various physiological processes from vascular tone to metabolic diet through inflammation. Our data suggests that altered circulating immune cells may drive PAH susceptibility in patients with KCNK3 mutation.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Elise M. Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Ling Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Amber L. Crabtree
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Christy S. Moore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Gladson Muthian
- Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Peggy L. Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Susan Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA;
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
- Correspondence:
| |
Collapse
|
94
|
Sebestyén A, Kopper L, Dankó T, Tímár J. Hypoxia Signaling in Cancer: From Basics to Clinical Practice. Pathol Oncol Res 2021; 27:1609802. [PMID: 34257622 PMCID: PMC8262153 DOI: 10.3389/pore.2021.1609802] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Cancer hypoxia, recognized as one of the most important hallmarks of cancer, affects gene expression, metabolism and ultimately tumor biology-related processes. Major causes of cancer hypoxia are deficient or inappropriate vascularization and systemic hypoxia of the patient (frequently induced by anemia), leading to a unique form of genetic reprogramming by hypoxia induced transcription factors (HIF). However, constitutive activation of oncogene-driven signaling pathways may also activate hypoxia signaling independently of oxygen supply. The consequences of HIF activation in tumors are the angiogenic phenotype, a novel metabolic profile and the immunosuppressive microenvironment. Cancer hypoxia and the induced adaptation mechanisms are two of the major causes of therapy resistance. Accordingly, it seems inevitable to combine various therapeutic modalities of cancer patients by existing anti-hypoxic agents such as anti-angiogenics, anti-anemia therapies or specific signaling pathway inhibitors. It is evident that there is an unmet need in cancer patients to develop targeted therapies of hypoxia to improve efficacies of various anti-cancer therapeutic modalities. The case has been opened recently due to the approval of the first-in-class HIF2α inhibitor.
Collapse
Affiliation(s)
- Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - László Kopper
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
95
|
Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour Hypoxia-Mediated Immunosuppression: Mechanisms and Therapeutic Approaches to Improve Cancer Immunotherapy. Cells 2021; 10:1006. [PMID: 33923305 PMCID: PMC8146304 DOI: 10.3390/cells10051006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. Despite this success, clinical data reveal that durable responses are limited to a minority of patients and malignancies, indicating the presence of underlying resistance mechanisms. Accumulating evidence suggests that tumour hypoxia, a pervasive feature of many solid cancers, is a critical phenomenon involved in suppressing the anti-tumour immune response generated by checkpoint inhibitors. In this review, we discuss the mechanisms associated with hypoxia-mediate immunosuppression and focus on modulating tumour hypoxia as an approach to improve immunotherapy responsiveness.
Collapse
Affiliation(s)
- Zhe Fu
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Alexandra M. Mowday
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jeff B. Smaill
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington 6042, New Zealand; (Z.F.); (I.F.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
| | - Adam V. Patterson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, University of Auckland, Auckland 1142, New Zealand; (A.M.M.); (J.B.S.)
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
96
|
Ulbricht C, Leben R, Rakhymzhan A, Kirchhoff F, Nitschke L, Radbruch H, Niesner RA, Hauser AE. Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. eLife 2021; 10:56020. [PMID: 33749591 PMCID: PMC8060033 DOI: 10.7554/elife.56020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2021] [Indexed: 01/31/2023] Open
Abstract
Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | | | - Lars Nitschke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helena Radbruch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany.,Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| |
Collapse
|
97
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
98
|
Zhang N, Liu C, Jin L, Zhang R, Wang T, Wang Q, Chen J, Yang F, Siebert HC, Zheng X. Ketogenic Diet Elicits Antitumor Properties through Inducing Oxidative Stress, Inhibiting MMP-9 Expression, and Rebalancing M1/M2 Tumor-Associated Macrophage Phenotype in a Mouse Model of Colon Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11182-11196. [PMID: 32786841 DOI: 10.1021/acs.jafc.0c04041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many advanced cancers are characterized by metabolic disorders. A dietary therapeutic strategy was proposed to inhibit tumor growth through administration of low-carbohydrate, average-protein, and high-fat diet, which is also known as ketogenic diet (KD). In vivo antitumor efficacy of KD on transplanted CT26+ tumor cells in BALB/c mice was investigated. The results showed that the KD group had significantly higher blood β-hydroxybutyrate and lower blood glucose levels when compared with the normal diet group. Meanwhile, KD increased intratumor oxidative stress, and TUNEL staining showed KD-induced apoptosis against tumor cells. Interestingly, the distribution of CD16/32+ and iNOS+ M1 tumor-associated macrophages (TAMs) increased in the KD-treated group, with concomitantly less arginase-1+ M2 TAMs. Moreover, KD treatment downregulated the protein expression of matrix metalloproteinase-9 in CT26+ tumor-bearing mice. Western blot analysis demonstrated that the expression levels of HDAC3/PKM2/NF-κB 65/p-Stat3 proteins were reduced in the KD-treated group. Taken together, our results indicated that KD can prevent the progression of colon tumor via inducing intratumor oxidative stress, inhibiting the expression of the MMP-9, and enhancing M2 to M1 TAM polarization. A novel potential mechanism was identified that KD can prevent the progression of colon cancer by regulating the expression of HDAC3/PKM2/NF-κB65/p-Stat3 axis.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ting Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Liaocheng 252059, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jingchao Chen
- Chengdu Kanghong Pharmaceutical Co., Ltd., No. 355, Tengfei Second Road, Shuangliu District, Chengdu 610200, Sichuan Province, China
| | - Fang Yang
- Department of Clinical Nutrition Laboratory, Liaocheng People's Hospital, Liaocheng 252059, China
| | - Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, Kiel 24118, Germany
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
99
|
Wang Y, Han B, Ding J, Qiu C, Wang W. Endoplasmic reticulum stress mediates osteocyte death under oxygen-glucose deprivation in vitro. Acta Histochem 2020; 122:151577. [PMID: 32778239 DOI: 10.1016/j.acthis.2020.151577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
As a vascularized organ, bone is known to be susceptible to ischemia. Ischemic osteonecrosis or skeletal unloading lead to ischemia in bone microenvironment that causes osteocytes to suffer hypoxia and nutrition deprivation. OBJECTIVE To explore the effects of Oxygen-glucose deprivation (OGD) on osteocytes and the potential mechanism. METHODS OGD model was established in cultured MLO-Y4 cell. Cell damage, intracellular oxidative stress and cell apoptosis were detected at different OGD times (0, 2, 4, 8, 12, 24 h), and the changes in endoplasmic reticulum (ER) stress-related indicators were observed. Furthermore, cells were treated with 4-phenylbutyrate sodium (4-PBA) to inhibit ER stress, and cell damage and oxidative stress level were detected. RESULTS The cell viability under OGD exhibited a significantly reduced in a time-dependent manner, and the level of intracellular reactive oxygen species (ROS) were increased, cell apoptosis and ER stress was induced. Inhibition of ER stress can reduce cell death and intracellular ROS levels. CONCLUSION Our study demonstrated that ER stress regulates OGD-induced apoptotic cell death in MLO-Y4 cells via intracellular ROS.
Collapse
|
100
|
Wagner KM, Gomes A, McReynolds CB, Hammock BD. Soluble Epoxide Hydrolase Regulation of Lipid Mediators Limits Pain. Neurotherapeutics 2020; 17:900-916. [PMID: 32875445 PMCID: PMC7609775 DOI: 10.1007/s13311-020-00916-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of lipids in pain signaling is well established and built on decades of knowledge about the pain and inflammation produced by prostaglandin and leukotriene metabolites of cyclooxygenase and lipoxygenase metabolism, respectively. The analgesic properties of other lipid metabolites are more recently coming to light. Lipid metabolites have been observed to act directly at ion channels and G protein-coupled receptors on nociceptive neurons as well as act indirectly at cellular membranes. Cytochrome P450 metabolism of specifically long-chain fatty acids forms epoxide metabolites, the epoxy-fatty acids (EpFA). The biological role of these metabolites has been found to mediate analgesia in several types of pain pathology. EpFA act through a variety of direct and indirect mechanisms to limit pain and inflammation including nuclear receptor agonism, limiting endoplasmic reticulum stress and blocking mitochondrial dysfunction. Small molecule inhibitors of the soluble epoxide hydrolase can stabilize the EpFA in vivo, and this approach has demonstrated relief in preclinical modeled pain pathology. Moreover, the ability to block neuroinflammation extends the potential benefit of targeting soluble epoxide hydrolase to maintain EpFA for neuroprotection in neurodegenerative disease.
Collapse
Affiliation(s)
- Karen M Wagner
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Aldrin Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, USA
| | - Cindy B McReynolds
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, California, 95616, USA.
| |
Collapse
|