51
|
Nagasaka Y, Wepler M, Thoonen R, Sips PY, Allen K, Graw JA, Yao V, Burns SM, Muenster S, Brouckaert P, Miller K, Solt K, Buys ES, Ichinose F, Zapol WM. Sensitivity to Sevoflurane anesthesia is decreased in mice with a congenital deletion of Guanylyl Cyclase-1 alpha. BMC Anesthesiol 2017; 17:76. [PMID: 28615047 PMCID: PMC5471676 DOI: 10.1186/s12871-017-0368-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/31/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Volatile anesthetics increase levels of the neurotransmitter nitric oxide (NO) and the secondary messenger molecule cyclic guanosine monophosphate (cGMP) in the brain. NO activates the enzyme guanylyl cyclase (GC) to produce cGMP. We hypothesized that the NO-GC-cGMP pathway contributes to anesthesia-induced unconsciousness. METHODS Sevoflurane-induced loss and return of righting reflex (LORR and RORR, respectively) were studied in wild-type mice (WT) and in mice congenitally deficient in the GC-1α subunit (GC-1-/- mice). Spatial distributions of GC-1α and the GC-2α subunit in the brain were visualized by in situ hybridization. Brain cGMP levels were measured in WT and GC-1-/- mice after inhaling oxygen with or without 1.2% sevoflurane for 20 min. RESULTS Higher concentrations of sevoflurane were required to induce LORR in GC-1-/- mice than in WT mice (1.5 ± 0.1 vs. 1.1 ± 0.2%, respectively, n = 14 and 14, P < 0.0001). Similarly, RORR occurred at higher concentrations of sevoflurane in GC-1-/- mice than in WT mice (1.0 ± 0.1 vs. 0.8 ± 0.1%, respectively, n = 14 and 14, P < 0.0001). Abundant GC-1α and GC-2α mRNA expression was detected in the cerebral cortex, medial habenula, hippocampus, and cerebellum. Inhaling 1.2% sevoflurane for 20 min increased cGMP levels in the brains of WT mice from 2.6 ± 2.0 to 5.5 ± 3.7 pmol/mg protein (n = 13 and 10, respectively, P = 0.0355) but not in GC-1-/- mice. CONCLUSION Congenital deficiency of GC-1α abolished the ability of sevoflurane anesthesia to increase cGMP levels in the whole brain, and increased the concentration of sevoflurane required to induce LORR. Impaired NO-cGMP signaling raises the threshold for producing sevoflurane-induced unconsciousness in mice.
Collapse
Affiliation(s)
- Yasuko Nagasaka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Wepler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robrecht Thoonen
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Patrick Y Sips
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kaitlin Allen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jan A Graw
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent Yao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Burns
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium and Inflammation Research Center, VIB, Ghent, Belgium
| | - Stefan Muenster
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Brouckaert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
52
|
Loonen AJM, Kupka RW, Ivanova SA. Circuits Regulating Pleasure and Happiness in Bipolar Disorder. Front Neural Circuits 2017; 11:35. [PMID: 28588455 PMCID: PMC5439000 DOI: 10.3389/fncir.2017.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 05/08/2017] [Indexed: 01/21/2023] Open
Abstract
According to our model, the motivation for appetitive-searching vs. distress-avoiding behaviors is regulated by two parallel cortico-striato-thalamo-cortical (CSTC) re-entry circuits that include the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side to the centromedial amygdala on the other side, control the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure); while, hyperactive motivation to exhibit behavior related to avoidance of aversive states results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. We hypothesized that the mechanism inducing the switch from bipolar depression to mania is the most essential characteristic of bipolar disorder. This switch is attributed to a dysfunction of the lateral habenula, which regulates the activity of midbrain centers, including the dopaminergic ventral tegmental area (VTA). From an evolutionary perspective, the activity of the lateral habenula should be regulated by the human homolog of the habenula-projecting globus pallidus, which in turn might be directed by the amygdaloid complex and the phylogenetically old part of the limbic cortex. In bipolar disorder, it is possible that the system regulating the activity of this reward-driven behavior is damaged or the interaction between the medial and lateral habenula may be dysfunctional. This may lead to an adverse coupling between the activities of the misery-fleeing and reward-seeking circuits, which results in independently varying activities.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Groningen Research Institute of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Ralph W. Kupka
- Department of Psychiatry, VU University Medical CenterAmsterdam, Netherlands
| | - Svetlana A. Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research InstituteTomsk, Russia
- Department of Ecology and Basic Safety, National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
53
|
Lima LB, Bueno D, Leite F, Souza S, Gonçalves L, Furigo IC, Donato J, Metzger M. Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol 2017; 525:2411-2442. [DOI: 10.1002/cne.24217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Leandro B. Lima
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Fernanda Leite
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Stefani Souza
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Luciano Gonçalves
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Jose Donato
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| | - Martin Metzger
- Department of Physiology & Biophysics; Institute of Biomedical Sciences, University of São Paulo; São Paulo Brazil
| |
Collapse
|
54
|
Frederick A, Goldsmith J, de Zavalia N, Amir S. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain. PLoS One 2017; 12:e0176279. [PMID: 28423013 PMCID: PMC5397057 DOI: 10.1371/journal.pone.0176279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP) and Enkephalin (Enk), expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis), thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%), and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable). These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.
Collapse
Affiliation(s)
- Ariana Frederick
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Jory Goldsmith
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Nuria de Zavalia
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Shimon Amir
- Centre for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
55
|
Torrisi S, Nord CL, Balderston NL, Roiser JP, Grillon C, Ernst M. Resting state connectivity of the human habenula at ultra-high field. Neuroimage 2017; 147:872-879. [PMID: 27780778 PMCID: PMC5303669 DOI: 10.1016/j.neuroimage.2016.10.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 11/24/2022] Open
Abstract
The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders. Its small size and connection to other small regions prevent standard human imaging from delineating its structure and connectivity with confidence. Resting state functional connectivity is an established method for mapping connections across the brain from a seed region of interest. The present study takes advantage of 7T fMRI to map, for the first time, the habenula resting state network with very high spatial resolution in 32 healthy human participants. Results show novel functional connections in humans, including functional connectivity with the septum and bed nucleus of the stria terminalis (BNST). Results also show many habenula connections previously described only in animal research, such as with the nucleus basalis of Meynert, dorsal raphe, ventral tegmental area (VTA), and periaqueductal grey (PAG). Connectivity with caudate, thalamus and cortical regions such as the anterior cingulate, retrosplenial cortex and auditory cortex are also reported. This work, which demonstrates the power of ultra-high field for mapping human functional connections, is a valuable step toward elucidating subcortical and cortical regions of the habenula network.
Collapse
Affiliation(s)
- Salvatore Torrisi
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Camilla L Nord
- Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK
| | - Nicholas L Balderston
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Jonathan P Roiser
- Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK
| | - Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
56
|
Boulos LJ, Darcq E, Kieffer BL. Translating the Habenula-From Rodents to Humans. Biol Psychiatry 2017; 81:296-305. [PMID: 27527822 PMCID: PMC5143215 DOI: 10.1016/j.biopsych.2016.06.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Abstract
The habenula (Hb) is a central structure connecting forebrain to midbrain regions. This microstructure regulates monoaminergic systems, notably dopamine and serotonin, and integrates cognitive with emotional and sensory processing. Early preclinical data have described Hb as a brain nucleus activated in anticipation of aversive outcomes. Evidence has now accumulated to show that the Hb encodes both rewarding and aversive aspects of external stimuli, thus driving motivated behaviors and decision making. Human Hb research is still nascent but develops rapidly, alongside with the growth of neuroimaging and deep brain stimulation techniques. Not surprisingly, Hb dysfunction has been associated with psychiatric disorders, and studies in patients have established evidence for Hb involvement in major depression, addiction, and schizophrenia, as well as in pain and analgesia. Here, we summarize current knowledge from animal research and overview the existing human literature on anatomy and function of the Hb. We also discuss challenges and future directions in targeting this small brain structure in both rodents and humans. By combining animal data and human experimental studies, this review addresses the translational potential of preclinical Hb research.
Collapse
Affiliation(s)
- Laura-Joy Boulos
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Brigitte Lina Kieffer
- Douglas Hospital Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
57
|
The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci Biobehav Rev 2017; 83:721-735. [PMID: 28223096 DOI: 10.1016/j.neubiorev.2017.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The habenula is an epithalamic structure located at the center of the dorsal diencephalic conduction system, a pathway involved in linking forebrain to midbrain regions. Composed of a medial and lateral subdivisions, the habenula receives inputs from the limbic system and basal ganglia mainly through the stria medullaris (SM), and projects to midbrain regions through the fasciculus retroflexus (FR). An increasing number of studies have implicated this structure in psychiatric disorders associated with dysregulated reward circuitry function, notably mood disorders, schizophrenia, and substance use disorder. However, despite significant progress in research, the mechanisms underlying the relationship between the habenula and the pathophysiology of psychiatric disorders are far from being fully understood, and still need further investigation. This review provides a closer look at key findings from animal and human studies illustrating the role of the habenula in mood disorders, schizophrenia, and substance use disorder, and discusses the clinical potential of using this structure as a therapeutic target.
Collapse
|
58
|
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron 2017; 93:914-928.e4. [PMID: 28190643 DOI: 10.1016/j.neuron.2017.01.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.
Collapse
|
59
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
60
|
Jacinto LR, Mata R, Novais A, Marques F, Sousa N. The habenula as a critical node in chronic stress-related anxiety. Exp Neurol 2016; 289:46-54. [PMID: 27940019 DOI: 10.1016/j.expneurol.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023]
Abstract
The habenula is activated in response to stressful and aversive events, resulting in exploratory inhibition. Although possible mechanisms for habenula activation have been proposed, the effects of chronic stress on the habenular structure have never been studied. Herein, we assessed changes in volume, cell density and dendritic structure of habenular cells after chronic stress exposure using stereological and 3D morphological analysis. This study shows for the first time that there is a hemispherical asymmetry in the medial habenula (MHb) of the adult rat, with the right MHb containing more neurons than its left counterpart. Additionally, it shows that chronic stress induces a bilateral atrophy of both the MHb and the lateral habenula (LHb). This atrophy was accompanied by a reduction of the number of neurons in the right MHb and the number of glial cells in the bilateral LHb, but not by changes in the dendritic arbors of multipolar neurons. Importantly, these structural changes were correlated with elevated levels of serum corticosterone and increased anxious-like behavior in stressed animals. To further assess the role of the habenula in stress-related anxiety, bilateral lesions of the LHb were performed; interestingly, in lesioned animals the chronic stress protocol did not trigger increases in circulating corticosterone or anxious-like behavior. This study highlights the role of the habenula in the stress responses and how its sub-regions are structurally impacted by chronic stress with physiological and behavioral consequences.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Mata
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ashley Novais
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
61
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness: The Evolution of the Amygdalar-Hippocampal-Habenular Connectivity in Vertebrates. Front Neurosci 2016; 10:539. [PMID: 27920666 PMCID: PMC5118621 DOI: 10.3389/fnins.2016.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
Appetitive-searching (reward-seeking) and distress-avoiding (misery-fleeing) behavior are essential for all free moving animals to stay alive and to have offspring. Therefore, even the oldest ocean-dwelling animal creatures, living about 560 million years ago and human ancestors, must have been capable of generating these behaviors. The current article describes the evolution of the forebrain with special reference to the development of the misery-fleeing system. Although, the earliest vertebrate ancestor already possessed a dorsal pallium, which corresponds to the human neocortex, the structure and function of the neocortex was acquired quite recently within the mammalian evolutionary line. Up to, and including, amphibians, the dorsal pallium can be considered to be an extension of the medial pallium, which later develops into the hippocampus. The ventral and lateral pallium largely go up into the corticoid part of the amygdala. The striatopallidum of these early vertebrates becomes extended amygdala, consisting of centromedial amygdala (striatum) connected with the bed nucleus of the stria terminalis (pallidum). This amygdaloid system gives output to hypothalamus and brainstem, but also a connection with the cerebral cortex exists, which in part was created after the development of the more recent cerebral neocortex. Apart from bidirectional connectivity with the hippocampal complex, this route can also be considered to be an output channel as the fornix connects the hippocampus with the medial septum, which is the most important input structure of the medial habenula. The medial habenula regulates the activity of midbrain structures adjusting the intensity of the misery-fleeing response. Within the bed nucleus of the stria terminalis the human homolog of the ancient lateral habenula-projecting globus pallidus may exist; this structure is important for the evaluation of efficacy of the reward-seeking response. The described organization offers a framework for the regulation of the stress response, including the medial habenula and the subgenual cingulate cortex, in which dysfunction may explain the major symptoms of mood and anxiety disorders.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ Westelijk Noord-Brabant (GGZ-WNB)Halsteren, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- Department of Ecology and Basic Safety, National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
62
|
Loonen AJM, Ivanova SA. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front Hum Neurosci 2016; 10:571. [PMID: 27891086 PMCID: PMC5102894 DOI: 10.3389/fnhum.2016.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023] Open
Abstract
According to our model of the regulation of appetitive-searching vs. distress-avoiding behaviors, the motivation to display these essential conducts is regulated by two parallel cortico-striato-thalamo-cortical, re-entry circuits, including the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side, to the centromedial amygdala on the other side, controls the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure). Hyperactive motivation to exhibit behavior related to avoidance of misery results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. In clinical depression, a mismatch exists between the activities of these two circuits: the balance is shifted to the misery-avoiding side. Five theories have been developed to explain the mechanism of depressive mood disorders, including the monoamine, biorhythm, neuro-endocrine, neuro-immune, and kindling/neuroplasticity theories. This paper describes these theories in relationship to the model (described above) of the regulation of reward-seeking vs. misery-avoiding behaviors. Chronic stress that leads to structural changes may induce the mismatch between the two systems. This mismatch leads to lack of pleasure, low energy, and indecisiveness, on one hand, and dysphoria, continuous worrying, and negative expectations on the other hand. The neuroplastic effects of monoamines, cortisol, and cytokines may mediate the induction of these structural alterations. Long-term exposure to stressful situations (particularly experienced during childhood) may lead to increased susceptibility for developing this condition. This hypothesis opens up the possibility of treating depression with psychotherapy. Genetic and other biological factors (toxic, infectious, or traumatic) may increase sensitivity to the induction of relevant neuroplastic changes. Reversal or compensation of these neuroplastic adjustments may explain the effects of biological therapies in treating depression.
Collapse
Affiliation(s)
- Anton J. M. Loonen
- Department of Pharmacy, University of GroningenGroningen, Netherlands
- GGZ WNB, Mental Health HospitalBergen op Zoom, Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of SciencesTomsk, Russia
- National Research Tomsk Polytechnic UniversityTomsk, Russia
| |
Collapse
|
63
|
Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: Circumscribed deficits in the habenula. Schizophr Res 2016; 177:52-58. [PMID: 26948503 DOI: 10.1016/j.schres.2016.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/16/2023]
Abstract
There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease.
Collapse
|
64
|
Development- and experience-dependent plasticity in the dorsomedial habenula. Mol Cell Neurosci 2016; 77:105-112. [PMID: 27793697 DOI: 10.1016/j.mcn.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023] Open
Abstract
Of the two major subdivisions of the habenula, the medial and lateral nuclei, the medial habenula is the least understood in terms of synaptic transmission, intrinsic properties and plasticity. The medial habenula (MHb) is composed of glutamatergic neurons which receive the majority of their inputs from the septal region and project predominantly to the interpeduncular nucleus (IPN). To understand the synaptic transmission, we studied both glutamatergic and GABAergic synaptic transmission in the dorsal region of the medial habenula (dMHb). While glutamatergic transmission dominates during early development, an attenuation of glutamatergic transmission and an enhancement of GABAergic transmission occur during development leading into adulthood. Furthermore, as reported previously, GABAA receptor-mediated transmission is excitatory in the adult dMHb, which is consistent with the reduced expression of the K-Cl co-transporter KCC2. Given the potential role of the dMHb in aversive behaviors, we examined whether fear conditioning or exposure to foot shock affects excitability in dMHb neurons. We observed a suppression of the excitability of dMHb neurons in mice that either underwent fear conditioning or were exposed to foot shock. Furthermore, we observed a suppression of GABAergic but not glutamatergic transmission in the dMHb neurons following fear conditioning. These results suggest that aversive experience produces a suppression of the dMHb neuronal activity. Given that the medial habenula is upstream of the median raphe nucleus which is believed to be involved in the negative regulation of aversive memory, the suppression of dMHb neurons following an aversive experience might play a role in strengthening of aversive memories.
Collapse
|
65
|
Kaniuga E, Taracha E, Stępień T, Wierzba-Bobrowicz T, Płaźnik A, Chrapusta SJ. Rats showing low and high sensitization of frequency-modulated 50-kHz vocalization response to amphetamine differ in amphetamine-induced brain Fos expression. Brain Res 2016; 1648:356-364. [DOI: 10.1016/j.brainres.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
|
66
|
Elmer GI, Brown PL, Shepard PD. Engaging Research Domain Criteria (RDoC): Neurocircuitry in Search of Meaning. Schizophr Bull 2016; 42:1090-5. [PMID: 27412648 PMCID: PMC4988756 DOI: 10.1093/schbul/sbw096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Research Domain Criteria (RDoC) initiative was implemented to reorient the approach to mental health research from one focused on Diagnostic and Statistical Manual of Mental Disorders (DSM) nosology to one oriented to psychological constructs constrained by neurocircuitry and molecular entities. The initiative has generated significant discussion and valuable reflection on the moorings of psychiatric research. The purpose of this article is to illustrate how a basic or clinical investigator can engage RDoC to explore the neurobiological underpinnings of psychopathology and how a research question can be formulated in RDoC's framework. We utilize a brain region with significant growing interest, the habenula, as an example for probing RDoC's utility. Opportunities to enhance neurocircuitry-psychological construct associations and problems associated with neuronal populations that enable bidirectional circuitry influence are discussed. The exercise reveals areas for further development that could move RDoC from a promising research idea to a successfully engaged foundation for catalyzing clinically relevant discoveries.
Collapse
Affiliation(s)
- Greg I. Elmer
- *To whom correspondence should be addressed; MPRC, PO Box 21247, Maple and Locust Streets, Baltimore, MD 21228, USA; tel: 410-402-7576, fax: 410-402-6066, e-mail:
| | | | | |
Collapse
|
67
|
Hétu S, Luo Y, Saez I, D'Ardenne K, Lohrenz T, Montague PR. Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging. Hum Brain Mapp 2016; 37:2602-15. [PMID: 27038008 PMCID: PMC4905773 DOI: 10.1002/hbm.23194] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 02/03/2023] Open
Abstract
The habenula is a hub for cognitive and emotional signals that are relayed to the aminergic centers in the midbrain and, thus, plays an important role in goal‐oriented behaviors. Although it is well described in rodents and non‐human primates, the habenula functional network remains relatively uncharacterized in humans, partly because of the methodological challenges associated with the functional magnetic resonance imaging of small structures in the brain. Using high‐resolution cardiac‐gated resting state imaging in healthy humans and precisely identifying each participants' habenula, we show that the habenula is functionally coupled with the insula, parahippocampus, thalamus, periaqueductal grey, pons, striatum and substantia nigra/ventral tegmental area complex. Furthermore, by separately examining and comparing the functional maps from the left and right habenula, we provide the first evidence of an asymmetry in the functional connectivity of the habenula in humans. Hum Brain Mapp 37:2602–2615, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sébastien Hétu
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Yi Luo
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Ignacio Saez
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Kimberlee D'Ardenne
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Riverside Circle, Roanoke, Virginia, 24016.,Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3BG, United Kingdom
| |
Collapse
|
68
|
P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction. Neural Plast 2016; 2016:1207393. [PMID: 27069691 PMCID: PMC4812485 DOI: 10.1155/2016/1207393] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023] Open
Abstract
ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.
Collapse
|
69
|
Human habenula segmentation using myelin content. Neuroimage 2016; 130:145-156. [PMID: 26826517 DOI: 10.1016/j.neuroimage.2016.01.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
The habenula consists of a pair of small epithalamic nuclei located adjacent to the dorsomedial thalamus. Despite increasing interest in imaging the habenula due to its critical role in mediating subcortical reward circuitry, in vivo neuroimaging research targeting the human habenula has been limited by its small size and low anatomical contrast. In this work, we have developed an objective semi-automated habenula segmentation scheme consisting of histogram-based thresholding, region growing, geometric constraints, and partial volume estimation steps. This segmentation scheme was designed around in vivo 3 T myelin-sensitive images, generated by taking the ratio of high-resolution T1w over T2w images. Due to the high myelin content of the habenula, the contrast-to-noise ratio with the thalamus in the in vivo 3T myelin-sensitive images was significantly higher than the T1w or T2w images alone. In addition, in vivo 7 T myelin-sensitive images (T1w over T2*w ratio images) and ex vivo proton density-weighted images, along with histological evidence from the literature, strongly corroborated the in vivo 3 T habenula myelin contrast used in the proposed segmentation scheme. The proposed segmentation scheme represents a step toward a scalable approach for objective segmentation of the habenula suitable for both morphological evaluation and habenula seed region selection in functional and diffusion MRI applications.
Collapse
|
70
|
Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, Pabian P, Solich J, Papp M, Dziedzicka-Wasylewska M. Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology (Berl) 2016; 233:255-66. [PMID: 26462807 PMCID: PMC4700104 DOI: 10.1007/s00213-015-4103-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE The involvement of somatostatin (SST) and its receptors in the pathophysiology of depression and stress has been evidenced by numerous studies. OBJECTIVES The purpose of the present study was to find whether chronic mild stress (CMS), an animal model of depression, affects the SST receptors in the rat brain and pituitary, as well as the level of SST in plasma. METHODS In CMS model, rats were subjected to 2 weeks of stress and behaviorally characterized using the sucrose consumption test into differently reacting groups based on their response to stress, i.e., stress-reactive (anhedonic), stress-non-reactive (resilient), and invert-reactive rats (characterized by excessive sucrose intake). We measured specific binding of [125I]Tyr3-Octreotide, expression of mRNA encoding sst2R receptors in the rat brains, expression of SST and its receptors in rat pituitary, and the level of SST in the plasma. RESULTS The obtained results show decreases in binding of [125I]Tyr3-Octreotide in most of rat brain regions upon CMS and no significant differences between three stressed groups of animals, except for significant up-regulation of sst2 receptor in medial habenula (MHb) in the stress-reactive group. In the same group of animals, significant increase in plasma SST level was observed. CONCLUSIONS There are two particularly sensitive sites distinguishing the response to stress in CMS model. In the brain, it is MHb, while on the periphery this predictor is SST level in plasma. These changes may broaden an understanding of the mechanisms involved in the stress response and point to the intriguing role of MHb.
Collapse
Affiliation(s)
- A. Faron-Górecka
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - M. Kuśmider
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - M. Kolasa
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - D. Żurawek
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - K. Szafran-Pilch
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - P. Gruca
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - P. Pabian
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - J. Solich
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - M. Papp
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| | - M. Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, Kraków, 31-343 Poland
| |
Collapse
|
71
|
Moreno-Bravo JA, Martinez-Lopez JE, Madrigal MP, Kim M, Mastick GS, Lopez-Bendito G, Martinez S, Puelles E. Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion. Brain Struct Funct 2016; 221:665-78. [PMID: 25366972 PMCID: PMC4485949 DOI: 10.1007/s00429-014-0932-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The retroflex tract contains medial habenula efferents that target the hindbrain interpeduncular complex and surrounding areas. This tract displays a singular course. Initially, habenular axons extend ventralwards in front of the pretectum until they reach the basal plate. Next, they avoid crossing the local floor plate, sharply changing course caudalwards (the retroflexion alluded by the tract name) and navigate strictly antero-posteriorly across basal pretectum, midbrain and isthmus. Once they reach rhombomere 1, the habenular axons criss-cross the floor plate several times within the interpeduncular nuclear complex as they innervate it. Here we described the timing and details of growth phenomena as these axons navigate to their target. The first dorsoventral course apparently obeys Ntn1 attraction. We checked the role of local floor plate signaling in the decision to avoid the thalamic floor plate and bend caudalwards. Analyzing the altered floor and basal plates of Gli2 knockout mice, we found a contralateral projection of most habenular axons, plus ulterior bizarre navigation rostralwards. This crossing phenotype was due to a reduced expression of Slit repulsive cues, suggesting involvement of the floor-derived Robo-Slit system in the normal guidance of this tract. Using Slit and Robo mutant mice, open neural tube and co-culture assays, we determined that Robo1-Slit2 interaction is specifically required for impeding that medial habenular axons cross the thalamic floor plate. This pathfinding mechanism is essential to establish the functionally important habenulo-interpeduncular connection.
Collapse
Affiliation(s)
- Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jesus E Martinez-Lopez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Guillermina Lopez-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain
- Instituto Murciano de Investigación Biomédica IMIB-Arrixaca, Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
72
|
Loonen AJM, Ivanova SA. Circuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates. Front Neurosci 2015; 9:394. [PMID: 26557051 PMCID: PMC4615821 DOI: 10.3389/fnins.2015.00394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancestors, to develop hypotheses addressing how these essential parts of human behavior are regulated and relate to more sophisticated behavioral manifestations such as mood. An animal comparable to lampreys was the earliest known vertebrate with a modern forebrain consisting of old and new cortical parts. Lampreys have a separate dorsal pallium, the forerunner of the most recently developed part of the cerebral cortex. In addition, the lamprey extrapyramidal system (EPS), which regulates movement, is modern. However, in lampreys and their putative forerunners, the hagfishes, the striatum, which is the input part of this EPS, probably corresponds to the human centromedial amygdala, which in higher vertebrates is part of a system mediating fear and anxiety. Both animals have well-developed nuclear habenulae, which are involved in several critical behaviors; in lampreys this system regulates the reward system that reinforces appetitive-seeking behavior or the avoidance system that reinforces flight behavior resulting from negative inputs. Lampreys also have a distinct glutamatergic nucleus, the so-called habenula-projection globus pallidus, which receives input from glutamatergic and GABAergic signals and gives output to the lateral habenula. Via this route, this nucleus influences midbrain monoaminergic nuclei and regulates the food acquisition system. These various structures involved in motor regulation in the lampreys may be conserved in humans and include two complementary mechanisms for reward reinforcement and avoidance behaviors. The first system is associated with experiencing pleasure and the second with happiness. The activities of these mechanisms are regulated by a tract running via the habenula to the upper brainstem. Identifying the human correlate of the lamprey habenula-projecting globus pallidus may help in elucidating the mechanism of the antidepressant effects of glutamatergic drugs.
Collapse
Affiliation(s)
- Anton J M Loonen
- Department of Pharmacy, Geestelijke GezondheidsZorg Westelijk Noord-Brabant Chair of Pharmacotherapy in Psychiatric Patients, University of Groningen Groningen, Netherlands ; Mental Health Institute Westelijk Noord-Brabant Halsteren, Netherlands
| | - Svetlana A Ivanova
- Molecular Biology and Biological Psychiatry, Mental Health Research Institute Tomsk, Russia ; Department of Ecology and Basic Safety, National Research Tomsk Polytechnic University Tomsk, Russia
| |
Collapse
|
73
|
Kuan YS, Roberson S, Akitake CM, Fortuno L, Gamse J, Moens C, Halpern ME. Distinct requirements for Wntless in habenular development. Dev Biol 2015; 406:117-128. [PMID: 26116173 PMCID: PMC4639407 DOI: 10.1016/j.ydbio.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/24/2023]
Abstract
Secreted Wnt proteins play pivotal roles in development, including regulation of cell proliferation, differentiation, progenitor maintenance and tissue patterning. The transmembrane protein Wntless (Wls) is necessary for secretion of most Wnts and essential for effective Wnt signaling. During a mutagenesis screen to identify genes important for development of the habenular nuclei in the dorsal forebrain, we isolated a mutation in the sole wls gene of zebrafish and confirmed its identity with a second, independent allele. Early embryonic development appears normal in homozygous wls mutants, but they later lack the ventral habenular nuclei, form smaller dorsal habenulae and otic vesicles, have truncated jaw and fin cartilages and lack swim bladders. Activation of a reporter for β-catenin-dependent transcription is decreased in wls mutants, indicative of impaired signaling by the canonical Wnt pathway, and expression of Wnt-responsive genes is reduced in the dorsal diencephalon. Wnt signaling was previously implicated in patterning of the zebrafish brain and in the generation of left-right (L-R) differences between the bilaterally paired dorsal habenular nuclei. Outside of the epithalamic region, development of the brain is largely normal in wls mutants and, despite their reduced size, the dorsal habenulae retain L-R asymmetry. We find that homozygous wls mutants show a reduction in two cell populations that contribute to the presumptive dorsal habenulae. The results support distinct temporal requirements for Wls in habenular development and reveal a new role for Wnt signaling in the regulation of dorsal habenular progenitors.
Collapse
Affiliation(s)
- Yung-Shu Kuan
- Department of Embryology, Carnegie Institution for Science, USA
| | - Sara Roberson
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Courtney M. Akitake
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| | - Lea Fortuno
- Department of Embryology, Carnegie Institution for Science, USA
| | - Joshua Gamse
- Department of Biological Sciences, Vanderbilt University, USA
| | - Cecilia Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, USA
- Department of Biology, Johns Hopkins University, USA
| |
Collapse
|
74
|
Tian J, Uchida N. Habenula Lesions Reveal that Multiple Mechanisms Underlie Dopamine Prediction Errors. Neuron 2015; 87:1304-1316. [PMID: 26365765 DOI: 10.1016/j.neuron.2015.08.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Dopamine (DA) neurons are thought to facilitate learning by signaling reward prediction errors (RPEs), the discrepancy between actual and expected reward. However, how RPEs are calculated remains unknown. It has been hypothesized that DA neurons receive RPE signals from the lateral habenula. Here, we tested how lesions of the habenular complex affect the response of optogenetically identified DA neurons in mice. We found that lesions impaired specific aspects of RPE signaling in DA neurons. The inhibitory responses caused by reward omission were greatly diminished while inhibitory responses to aversive stimuli, such as air puff-predictive cues or air puff, remained unimpaired. Furthermore, we found that after habenula lesions, DA neurons' ability to signal graded levels of positive RPEs became unreliable, yet significant excitatory responses still remained. These results demonstrate that the habenula plays a critical role in DA RPE signaling but suggest that it is not the exclusive source of RPE signals.
Collapse
Affiliation(s)
- Ju Tian
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 01238, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 01238, USA.
| |
Collapse
|
75
|
Broms J, Antolin-Fontes B, Tingström A, Ibañez-Tallon I. Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J Comp Neurol 2015; 523:359-80. [PMID: 25116430 PMCID: PMC4270839 DOI: 10.1002/cne.23664] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022]
Abstract
The habenula is a phylogenetically conserved brain structure in the epithalamus. It is a major node in the information flow between fronto-limbic brain regions and monoaminergic brainstem nuclei, and is thus anatomically and functionally ideally positioned to regulate emotional, motivational, and cognitive behaviors. Consequently, the habenula may be critically important in the pathophysiology of psychiatric disorders such as addiction and depression. Here we investigated the expression pattern of GPR151, a G protein-coupled receptor (GPCR), whose mRNA has been identified as highly and specifically enriched in habenular neurons by in situ hybridization and translating ribosome affinity purification (TRAP). In the present immunohistochemical study we demonstrate a pronounced and highly specific expression of the GPR151 protein in the medial and lateral habenula of rodent brain. Specific expression was also seen in efferent habenular fibers projecting to the interpeduncular nucleus, the rostromedial tegmental area, the rhabdoid nucleus, the mesencephalic raphe nuclei, and the dorsal tegmental nucleus. Using confocal microscopy and quantitative colocalization analysis, we found that GPR151-expressing axons and terminals overlap with cholinergic, substance P-ergic, and glutamatergic markers. Virtually identical expression patterns were observed in rat, mouse, and zebrafish brains. Our data demonstrate that GPR151 is highly conserved, specific for a subdivision of the habenular neurocircuitry, and constitutes a promising novel target for psychiatric drug development.
Collapse
Affiliation(s)
- Jonas Broms
- Psychiatric Neuromodulation Unit, Clinical Sciences, Lund University, Lund, Sweden
| | | | - Anders Tingström
- Psychiatric Neuromodulation Unit, Clinical Sciences, Lund University, Lund, Sweden
| | - Ines Ibañez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, U.S.A
| |
Collapse
|
76
|
Salaberry NL, Mendoza J. Insights into the Role of the Habenular Circadian Clock in Addiction. Front Psychiatry 2015; 6:179. [PMID: 26779042 PMCID: PMC4700272 DOI: 10.3389/fpsyt.2015.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Drug addiction is a brain disease involving alterations in anatomy and functional neural communication. Drug intake and toxicity show daily rhythms in both humans and rodents. Evidence concerning the role of clock genes in drug intake has been previously reported. However, the implication of a timekeeping brain locus is much less known. The epithalamic lateral habenula (LHb) is now emerging as a key nucleus in drug intake and addiction. This brain structure modulates the activity of dopaminergic neurons from the ventral tegmental area, a central part of the reward system. Moreover, the LHb has circadian properties: LHb cellular activity (i.e., firing rate and clock genes expression) oscillates in a 24-h range, and the nucleus is affected by photic stimulation and has anatomical connections with the main circadian pacemaker, the suprachiasmatic nucleus. Here, we describe the current insights on the role of the LHb as a circadian oscillator and its possible implications on the rhythmic regulation of the dopaminergic activity and drug intake. These data could inspire new strategies to treat drug addiction, considering circadian timing as a principal factor.
Collapse
Affiliation(s)
- Nora L Salaberry
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg , Strasbourg , France
| | - Jorge Mendoza
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg , Strasbourg , France
| |
Collapse
|
77
|
Abstract
An aversive abstinence syndrome manifests 4-24 h following cessation of chronic use of nicotine-containing products. Symptoms peak on approximately the 3rd day and taper off over the course of the following 3-4 weeks. While the severity of withdrawal symptoms is largely determined by how nicotine is consumed, certain short nucleotide polymorphisms (SNPs) have been shown to predispose individuals to consume larger amounts of nicotine more frequently--as well as to more severe symptoms of withdrawal when trying to quit. Additionally, rodent behavioral models and transgenic mouse models have revealed that specific nicotinic acetylcholine receptor (nAChR) subunits, cellular components, and neuronal circuits are critical to the expression of withdrawal symptoms. Consequently, by continuing to map neuronal circuits and nAChR subpopulations that underlie the nicotine withdrawal syndrome--and by continuing to enumerate genes that predispose carriers to nicotine addiction and exacerbated withdrawal symptoms--it will be possible to pursue personalized therapeutics that more effectively treat nicotine addiction.
Collapse
Affiliation(s)
- Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
78
|
Gardon O, Faget L, Chu Sin Chung P, Matifas A, Massotte D, Kieffer BL. Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 2014; 277:595-609. [PMID: 25086313 PMCID: PMC4164589 DOI: 10.1016/j.neuroscience.2014.07.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
The habenular complex, encompassing medial (MHb) and lateral (LHb) divisions, is a highly conserved epithalamic structure involved in the dorsal diencephalic conduction system (DDC). These brain nuclei regulate information flow between the limbic forebrain and the mid- and hindbrain, integrating cognitive with emotional and sensory processes. The MHb is also one of the strongest expression sites for mu opioid receptors (MORs), which mediate analgesic and rewarding properties of opiates. At present however, anatomical distribution and function of these receptors have been poorly studied in MHb pathways. Here we took advantage of a newly generated MOR-mcherry knock-in mouse line to characterize MOR expression sites in the DDC. MOR-mcherry fluorescent signal is weak in the LHb, but strong expression is visible in the MHb, fasciculus retroflexus (fr) and interpeduncular nucleus (IPN), indicating that MOR is mainly present in the MHb-IPN pathway. MOR-mcherry cell bodies are detected both in basolateral and apical parts of MHb, where the receptor co-localizes with cholinergic and substance P (SP) neurons, respectively, representing two main MHb neuronal populations. MOR-mcherry is expressed in most MHb-SP neurons, and is present in only a subpopulation of MHb-cholinergic neurons. Intense diffuse fluorescence detected in lateral and rostral parts of the IPN further suggests that MOR-mcherry is transported to terminals of these SP and cholinergic neurons. Finally, MOR-mcherry is present in septal regions projecting to the MHb, and in neurons of the central and intermediate IPN. Together, this study describes MOR expression in several compartments of the MHb-IPN circuitry. The remarkably high MOR density in the MHb-IPN pathway suggests that these receptors are in a unique position to mediate analgesic, autonomic and reward responses.
Collapse
Affiliation(s)
- O Gardon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - L Faget
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - P Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - A Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - D Massotte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - B L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France.
| |
Collapse
|
79
|
Dean BJ, Erdogan B, Gamse JT, Wu SY. Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus. Neural Dev 2014; 9:20. [PMID: 25212830 PMCID: PMC4164515 DOI: 10.1186/1749-8104-9-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The conserved habenular nuclei function as a relay system connecting the forebrain with the brain stem. They play crucial roles in various cognitive behaviors by modulating cholinergic, dopaminergic and serotonergic activities. Despite the renewed interest in this conserved forebrain region because of its importance in regulating aversion and reward behaviors, the formation of the habenular nuclei during embryogenesis is poorly understood due to their small size and deep location in the brain, as well as the lack of known markers for habenular progenitors. In zebrafish, the bilateral habenular nuclei are subdivided into dorsal and ventral compartments, are particularly large and found on the dorsal surface of the brain, which facilitates the study of their development. RESULTS Here we examine the expression of a homeodomain transcription factor, dbx1b, and its potential to serve as an early molecular marker of dorsal habenular progenitors. Detailed spatiotemporal expression profiles demonstrate that the expression domain of dbx1b correlates with the presumptive habenular region, and dbx1b-expressing cells are proliferative along the ventricle. A lineage-tracing experiment using the Cre-lox system confirms that all or almost all dorsal habenular neurons are derived from dbx1b-expressing cells. In addition, mutant analysis and pharmacological treatments demonstrate that both initiation and maintenance of dbx1b expression requires precise regulation by fibroblast growth factor (FGF) signaling. CONCLUSIONS We provide clear evidence in support of dbx1b marking the progenitor populations that give rise to the dorsal habenulae. In addition, the expression of dbx1b in the dorsal diencephalon is tightly controlled by FGF signaling.
Collapse
Affiliation(s)
| | | | | | - Shu-Yu Wu
- Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235-1634, USA.
| |
Collapse
|
80
|
deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 2014; 52:636-55. [PMID: 24753112 DOI: 10.1002/dvg.22785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity, and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. Although many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|