51
|
He R, Shi H, Hu M, Zhou Q, Zhang Q, Dang H. Divergent effects of warming on nonstructural carbohydrates in woody plants: a meta-analysis. PHYSIOLOGIA PLANTARUM 2023; 175:e14117. [PMID: 38148215 DOI: 10.1111/ppl.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Nonstructural carbohydrates (NSC, including soluble sugars and starch) are essential for supporting growth and survival of woody plants, and play multifunctional roles in various ecophysiological processes that are being rapidly changed by climate warming. However, it still remains unclear whether there is a consistent response pattern of NSC dynamics in woody plants to climate warming across organ types and species taxa. Here, based on a compiled database of 52 woody plant species worldwide, we conducted a meta-analysis to investigate the effects of experimental warming on NSC dynamics. Our results indicated that the responses of NSC dynamics to warming were primarily driven by the fluctuations of starch, while soluble sugars did not undergo significant changes. The effects of warming on NSC shifted from negative to positive with the extension of warming duration, while the negative warming effects on NSC became more pronounced as warming magnitude increased. Overall, our study showed the divergent responses of NSC and its components in different organs of woody plants to experimental warming, suggesting a potentially changed carbon (C) balance in woody plants in future global warming. Thus, our findings highlight that predicting future changes in plant functions and terrestrial C cycle requires a mechanism understanding of how NSC is linked to a specific global change driver.
Collapse
Affiliation(s)
- Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Man Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
52
|
Xu Z, Yang Y, Yao W, Ye C, Qiao H, Shen J, Ye M. Plant Transpiration-Inspired Biomass-Based Device with Underwater Oleophobicity for Efficient General-Purpose Solar-Driven Oily Wastewater Purification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48336-48345. [PMID: 37793188 DOI: 10.1021/acsami.3c12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The remediation of wastewater containing oily pollutants is imperative to mitigate the serious threats posed to the safety of fresh water, human well-being, and the environment. Current membrane separation technologies are severely restricted by their limitations for separating various types of oily pollutants with low sustainability. Herein, by imitating the plant transpiration in nature, we designed a solar-driven device composed of natural biomass sugar cane stem, chitosan/carboxymethyl cellulose, and graphite powders to separate versatile oily pollutants from the wastewater. Owing to its superior solar absorption capacity, microchannels for water transportation, and underwater oleophobicity, the resultant evaporator not only exhibited an excellent evaporation rate of 1.41 kg m-2 h-1 but also demonstrated an admirable purification efficiency of 99.9% for oily wastewater. Moreover, the device can maintain a stable evaporation rate and the original structure even in oily wastewater containing strong acid, alkali, or hypersaline components. Therefore, this work provides an effective approach to producing clean water from versatile wastewater.
Collapse
Affiliation(s)
- Zhenglong Xu
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Yifan Yang
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Wei Yao
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Chuming Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Haohui Qiao
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Jianfeng Shen
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
| | - Mingxin Ye
- Institute of Special Materials and Technology, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
53
|
Chen X, Chen H, Shen T, Luo Q, Xu M, Yang Z. The miRNA-mRNA Regulatory Modules of Pinus massoniana Lamb. in Response to Drought Stress. Int J Mol Sci 2023; 24:14655. [PMID: 37834103 PMCID: PMC10572226 DOI: 10.3390/ijms241914655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus.
Collapse
Affiliation(s)
- Xinhua Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Tengfei Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China;
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration, Engineering Research Center of Masson Pine of Guangxi, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China; (H.C.); (Q.L.)
| |
Collapse
|
54
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
55
|
Hankin LE, Leger EA, Bisbing SM. Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2897. [PMID: 37305925 DOI: 10.1002/eap.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Forest persistence in regions impacted by increasing water and temperature stress will depend upon species' ability to either rapidly adjust to novel conditions or migrate to track ecological niches. Predicted, rapid climate change is likely to outpace the adaptive and migratory capacity of long-lived isolated tree species, and reforestation may be critical to species' persistence. Facilitating persistence both within and beyond a species' range requires identification of seed lots best adapted to the current and future conditions predicted with rapid climate change. We evaluate variation in emergent seedling performance that leads to differential survival among species and populations for three high elevation five-needle pines. We paired a fully reciprocal field common garden experiment with a greenhouse common garden study to (1) quantify variation in seedling emergence and functional traits, (2) ask how functional traits affect performance under different establishment conditions, and (3) evaluate whether trait and performance variation demonstrates local adaptation and plasticity. Among study species-limber, Great Basin bristlecone, and whitebark pines-we found divergence in emergence and functional traits, though soil moisture was the strongest driver of seedling emergence and abundance across all species. Generalist limber pine had a clear emergence advantage as well as traits associated with drought adaptation, while edaphic specialist bristlecone pine was characterized by low emergence yet high early survival once established. Despite evidence for edaphic specialization, soil characteristics alone did not explain bristlecone success. Across species, trait-environment relationships provided some evidence for local adaptation in drought-adapted traits, but we found no evidence of local adaptation in emergence or survival at this early life stage. For managers looking to promote persistence, sourcing seed from drier environments is likely to impart greater drought resistance into reforestation efforts through strategies such as greater root investment, increasing the probability of early seedling survival. This research demonstrates, through a rigorous reciprocal transplant experimental design, that it may be possible to select climate- and soil-appropriate seed sources for reforestation. However, planting success will ultimately rely on a suitable establishment environment, requiring careful consideration of interannual climate variability for management interventions in these climate and disturbance-impacted tree species.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Elizabeth A Leger
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Sarah M Bisbing
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, Nevada, USA
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| |
Collapse
|
56
|
Crestani G, Cunningham N, Csepregi K, Badmus UO, Jansen MAK. From stressor to protector, UV-induced abiotic stress resistance. Photochem Photobiol Sci 2023; 22:2189-2204. [PMID: 37270745 PMCID: PMC10499975 DOI: 10.1007/s43630-023-00441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland.
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, Pécs, 7624, Hungary
| | - Uthman O Badmus
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| |
Collapse
|
57
|
Qin J, Si J, Jia B, Zhao C, Zhou D, He X, Wang C, Zhu X. Water use strategies of Nitraria tangutorum in the lake-basin region of the Badain Jaran Desert. FRONTIERS IN PLANT SCIENCE 2023; 14:1240656. [PMID: 37649998 PMCID: PMC10465167 DOI: 10.3389/fpls.2023.1240656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Information regarding plant water-use strategies is essential for understanding the hydrological processes and plant survival adaptation mechanisms in desert lake basin regions. To examine the water use strategies of plants in desert lake basin areas, water uptake patterns, water use efficiency, and water potential of Nitraria tangutorum were investigated at different distances from the lake duringhe growing seasons in the lake basin regions of the Badain Jaran Desert. The results indicate that N. tangutorum primarily absorbed groundwater in May (63.8%) and August (53.5%), relied on deep soil water in June (75.1%), and uniformly absorbed soil water from different layers in July. These observations could be explained by periodic fluctuations in the groundwater level and the consequent decrease in soil water availability, as well as plant root adjustments. As soil water availability decreases, N. tangutorum adapts to water variation by increasing its water use efficiency (WUE) and reducing its leaf water potential (Ψ). With intensified water stress, N. tangutorum gradually shifted from adventurous anisohydric regulation to conservative isohydric regulation. Thus, N. tangutorum responds to diverse degrees of environmental changes by altering its water-use strategy. A better understanding of the adaptive water use strategies developed by desert plants under varying water availability conditions provides insight into the diversity of species' reactions to long-term drought and quantifies the hydrological cycle of desert ecosystems against the background of worldwide climate warming.
Collapse
Affiliation(s)
- Jie Qin
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Si
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Bing Jia
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zhao
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Dongmeng Zhou
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui He
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinglin Zhu
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
Kumar R, Sagar V, Verma VC, Kumari M, Gujjar RS, Goswami SK, Kumar Jha S, Pandey H, Dubey AK, Srivastava S, Singh SP, Mall AK, Pathak AD, Singh H, Jha PK, Prasad PVV. Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1225234. [PMID: 37645467 PMCID: PMC10461627 DOI: 10.3389/fpls.2023.1225234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.
Collapse
Affiliation(s)
- Rajeev Kumar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Vidya Sagar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | | | - Mala Kumari
- Integral Institute of Agriculture Science and Technology, Integral University, Lucknow, India
| | - Ranjit Singh Gujjar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sanjay K. Goswami
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sudhir Kumar Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research, Kanpur, India
| | - Himanshu Pandey
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Abhishek Kumar Dubey
- Indian Council of Agricultural Research (ICAR)-Research Complex for Eastern Region, Patna, India
| | - Sangeeta Srivastava
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - S. P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashutosh K. Mall
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashwini Dutt Pathak
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Hemlata Singh
- Department of Botany, Plant Physiology & Biochemistry, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
59
|
Grünhofer P, Heimerich I, Herzig L, Pohl S, Schreiber L. Apoplastic barriers of Populus × canescens roots in reaction to different cultivation conditions and abiotic stress treatments. STRESS BIOLOGY 2023; 3:24. [PMID: 37676401 PMCID: PMC10441858 DOI: 10.1007/s44154-023-00103-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 09/08/2023]
Abstract
Populus is an important tree genus frequently cultivated for economical purposes. However, the high sensitivity of poplars towards water deficit, drought, and salt accumulation significantly affects plant productivity and limits biomass yield. Various cultivation and abiotic stress conditions have been described to significantly induce the formation of apoplastic barriers (Casparian bands and suberin lamellae) in roots of different monocotyledonous crop species. Thus, this study aimed to investigate to which degree the roots of the dicotyledonous gray poplar (Populus × canescens) react to a set of selected cultivation conditions (hydroponics, aeroponics, or soil) and abiotic stress treatments (abscisic acid, oxygen deficiency) because a differing stress response could potentially help in explaining the observed higher stress susceptibility. The apoplastic barriers of poplar roots cultivated in different environments were analyzed by means of histochemistry and gas chromatography and compared to the available literature on monocotyledonous crop species. Overall, dicotyledonous poplar roots showed only a remarkably low induction or enhancement of apoplastic barriers in response to the different cultivation conditions and abiotic stress treatments. The genetic optimization (e.g., overexpression of biosynthesis key genes) of the apoplastic barrier development in poplar roots might result in more stress-tolerant cultivars in the future.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lena Herzig
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
60
|
Avico EH, Acevedo RM, Duarte MJ, Rodrigues Salvador A, Nunes-Nesi A, Ruiz OA, Sansberro PA. Integrating Transcriptional, Metabolic, and Physiological Responses to Drought Stress in Ilex paraguariensis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2404. [PMID: 37446965 DOI: 10.3390/plants12132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The appearance of water stress episodes triggers leaf abscission and decreases Ilex paraguariensis yield. To explore the mechanisms that allow it to overcome dehydration, we investigated how the root gene expression varied between water-stressed and non-stressed plants and how the modulation of gene expression was linked to metabolite composition and physiological status. After water deprivation, 5160 differentially expressed transcripts were obtained through RNA-seq. The functional enrichment of induced transcripts revealed significant transcriptional remodelling of stress-related perception, signalling, transcription, and metabolism. Simultaneously, the induction of the enzyme 9-cis-expoxycarotenoid dioxygenase (NCED) transcripts reflected the central role of the hormone abscisic acid in this response. Consequently, the total content of amino acids and soluble sugars increased, and that of starch decreased. Likewise, osmotic adjustment and radical growth were significantly promoted to preserve cell membranes and water uptake. This study provides a valuable resource for future research to understand the molecular adaptation of I. paraguariensis plants under drought conditions and facilitates the exploration of drought-tolerant candidate genes.
Collapse
Affiliation(s)
- Edgardo H Avico
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - María J Duarte
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Acácio Rodrigues Salvador
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Oscar A Ruiz
- Unidad de Biotecnología 1, IIB-INTECH (UNSAM-CONICET), Chascomús B7130IWA, Argentina
| | - Pedro A Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| |
Collapse
|
61
|
Solly EF, Jaeger ACH, Barthel M, Werner RA, Zürcher A, Hagedorn F, Six J, Hartmann M. Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms. PLANT AND SOIL 2023; 490:499-519. [PMID: 37780069 PMCID: PMC10533586 DOI: 10.1007/s11104-023-06093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 10/03/2023]
Abstract
Background and aims Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06093-5.
Collapse
Affiliation(s)
- Emily F. Solly
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Astrid C. H. Jaeger
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Matti Barthel
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Roland A. Werner
- Department of Environmental Systems Science, Grassland Sciences Group, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Alois Zürcher
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biogeochemistry Group, Zürcherstrasse 111, Birmensdorf, 8903 Switzerland
| | - Johan Six
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Martin Hartmann
- Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
62
|
Arnaud M, Krause S, Norby RJ, Dang TH, Acil N, Kettridge N, Gauci V, Ullah S. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. GLOBAL CHANGE BIOLOGY 2023; 29:3256-3270. [PMID: 36994691 DOI: 10.1111/gcb.16701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m-2 year-1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2 ). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.
Collapse
Affiliation(s)
- Marie Arnaud
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Institute of Ecology and Environmental Sciences Paris (iEES-Paris), Sorbonne University, Paris, France
| | - Stefan Krause
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne, France
| | - Richard J Norby
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Department of Ecology and Evolutionary Biology, University of Tennessee, Tennessee, Knoxville, USA
| | - Thuong Huyen Dang
- Faculty of Geology and Petroleum Engineering, University of Technology, Vietnam National University, Ho Chi Minh City (VNU-HCM), Vietnam
| | - Nezha Acil
- Institute for Environmental Futures, School of Geography, Geology and the Environment, University of Leicester, Space Park Leicester, Leicester, UK
- National Centre for Earth Observation, University of Leicester, Space Park Leicester, Leicester, UK
| | - Nicholas Kettridge
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| | - Vincent Gauci
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| |
Collapse
|
63
|
Kharel B, Rusalepp L, Bhattarai B, Kaasik A, Kupper P, Lutter R, Mänd P, Rohula-Okunev G, Rosenvald K, Tullus A. Effects of air humidity and soil moisture on secondary metabolites in the leaves and roots of Betula pendula of different competitive status. Oecologia 2023:10.1007/s00442-023-05388-9. [PMID: 37246972 DOI: 10.1007/s00442-023-05388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Plant secondary metabolites (PSMs) defend plants against abiotic stresses, including those caused by climate change and against biotic stresses, such as herbivory and competition. There is a trade-off between allocating available carbon to growth and defence in stressful environments. However, our knowledge about trade-off is limited, especially when abiotic and biotic stresses co-occur. We aimed to understand the combined effect of increasing precipitation and humidity, the tree's competitive status, and canopy position on leaf secondary metabolites (LSMs) and fine root secondary metabolites (RSMs) in Betula pendula. We sampled 8-year-old B. pendula trees growing in the free air humidity manipulation (FAHM) experimental site, where treatments included elevated relative air humidity and elevated soil moisture. A high-performance liquid chromatography-quadrupole-time of flight mass spectrometer (HPLC-qTOF-MS) was used to analyse secondary metabolites. Our results showed accumulation of LSM depends on the canopy position and competitive status. Flavonoids (FLA), dihydroxybenzoic acids (HBA), jasmonates (JA) and terpene glucosides (TG) were higher in the upper canopy, and FLA, monoaryl compounds (MAR) and sesquiterpenoids (ST) were higher in dominant trees. The FAHM treatments had a more distinct effect on RSM than on LSM. The RSMs were lower in elevated air humidity and soil moisture conditions than in control conditions. The RSM content depended on the competitive status and was higher in suppressed trees. Our study suggests that young B. pendula will allocate similar amounts of carbon to constitutive chemical leaf defence, but a lower amount to root defence (per fine root biomass) under higher humidity.
Collapse
Affiliation(s)
- Bikash Kharel
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia.
| | - Linda Rusalepp
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
| | - Biplabi Bhattarai
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Reimo Lutter
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Pille Mänd
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Katrin Rosenvald
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
64
|
Chen S, Cao P, Li T, Wang Y, Liu X. Microbial diversity patterns in the root zone of two Meconopsis plants on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15361. [PMID: 37250704 PMCID: PMC10224674 DOI: 10.7717/peerj.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/16/2023] [Indexed: 05/31/2023] Open
Abstract
In the extreme alpine climate of the Qinghai-Tibet Plateau (QTP), plant growth and reproduction are limited by extremely cold temperatures, low soil moisture, and scarce nutrient availability. The root-associated microbiome indirectly promotes plant growth and plays a role in the fitness of plants on the QTP, particularly in Tibetan medicinal plants. Despite the importance of the root-associated microbiome, little is known about the root zone. This study used high-throughput sequencing to investigate two medicinal Meconopsis plants, M. horridula and M. integrifolia, to determine whether habitat or plant identity had a more significant impact on the microbial composition of the roots. The fungal sequences were obtained using ITS-1 and ITS-2, and bacterial sequences were obtained using 16S rRNA. Different microbial patterns were observed in the microbial compositions of fungi and bacteria in the root zones of two Meconopsis plants. In contrast to bacteria, which were not significantly impacted by plant identity or habitat, the fungi in the root zone were significantly impacted by plant identity, but not habitat. In addition, the synergistic effect was more significant than the antagonistic effect in the correlation between fungi and bacteria in the root zone soil. The fungal structure was influenced by total nitrogen and pH, whereas the structure of bacterial communities was influenced by soil moisture and organic matter. Plant identity had a greater influence on fungal structure than habitat in two Meconopsis plants. The dissimilarity of fungal communities suggests that more attention should be paid to fungi-plant interactions.
Collapse
Affiliation(s)
- Shuting Chen
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Ting Li
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Yuyan Wang
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
| | - Xing Liu
- Laboratory of Adaptation and Evolution of Plateau Biota to Extreme Environments, School of Ecology and Environment, Tibet University, Lhasa, China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
65
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
66
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
67
|
Fadiji AE, Yadav AN, Santoyo G, Babalola OO. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: An overview. Microbiol Res 2023; 271:127368. [PMID: 36965460 DOI: 10.1016/j.micres.2023.127368] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Abiotic stress poses a severe danger to agriculture since it negatively impacts cellular homeostasis and eventually stunts plant growth and development. Abiotic stressors like drought and excessive heat are expected to occur more frequently in the future due to climate change, which would reduce the yields of important crops like maize, wheat, and rice which may jeopardize the food security of human populations. The plant microbiomes are a varied and taxonomically organized microbial community that is connected to plants. By supplying nutrients and water to plants, and regulating their physiology and metabolism, plant microbiota frequently helps plants develop and tolerate abiotic stresses, which can boost crop yield under abiotic stresses. In this present study, with emphasis on temperature, salt, and drought stress, we describe current findings on how abiotic stresses impact the plants, microbiomes, microbe-microbe interactions, and plant-microbe interactions as the way microorganisms affect the metabolism and physiology of the plant. We also explore crucial measures that must be taken in applying plant microbiomes in agriculture practices faced with abiotic stresses.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
68
|
Mechanical Stimulation Decreases Auxin and Gibberellic Acid Synthesis but Does Not Affect Auxin Transport in Axillary Buds; It Also Stimulates Peroxidase Activity in Petunia × atkinsiana. Molecules 2023; 28:molecules28062714. [PMID: 36985685 PMCID: PMC10053601 DOI: 10.3390/molecules28062714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Thigmomorphogenesis (or mechanical stimulation-MS) is a term created by Jaffe and means plant response to natural stimuli such as the blow of the wind, strong rain, or touch, resulting in a decrease in length and an increase of branching as well as an increase in the activity of axillary buds. MS is very well known in plant morphology, but physiological processes controlling plant growth are not well discovered yet. In the current study, we tried to find an answer to the question if MS truly may affect auxin synthesis or transport in the early stage of plant growth, and which physiological factors may be responsible for growth arrest in petunia. According to the results of current research, we noticed that MS affects plant growth but does not block auxin transport from the apical bud. MS arrests IAA and GA3 synthesis in MS-treated plants over the longer term. The main factor responsible for the thickening of cell walls and the same strengthening of vascular tissues and growth arrestment, in this case, is peroxidase (POX) activity, but special attention should be also paid to AGPs as signaling molecules which also are directly involved in growth regulation as well as in cell wall modifications.
Collapse
|
69
|
Wu D, Shu M, Moran EV. Heritability of plastic trait changes in drought‐exposed ponderosa pine seedlings. Ecosphere 2023. [DOI: 10.1002/ecs2.4454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Affiliation(s)
- Dean Wu
- School of Natural Sciences University of California Merced Merced California USA
| | - Mengjun Shu
- School of Natural Sciences University of California Merced Merced California USA
| | - Emily V. Moran
- School of Natural Sciences University of California Merced Merced California USA
| |
Collapse
|
70
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
71
|
Ji L, Wang J, Liu Y, Lu Z, Purahong W, Yang Y. Drought- and soil substrate-induced variations in root nonstructural carbohydrates result from fine root morphological and anatomical traits of Juglans mandshurica seedlings. BMC PLANT BIOLOGY 2023; 23:83. [PMID: 36750810 PMCID: PMC9903586 DOI: 10.1186/s12870-022-03987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nonstructural carbohydrates (NSCs) reflect the carbon supply status and affect the construction and development of plants. Previous studies have focused on the dynamics of NSCs among plant organs, however, few studies have paid attention to the synergistic variations between fine root traits and NSCs under drought based on the perspective of branch order roots. This study aims to explore the responses of fine root traits and NSCs among root orders of Juglans mandshurica seedlings under different drought intensities and soil substrates. The 2-year-old J. mandshurica potted seedlings were planted in three different soil substrates (humus, loam and sandy-loam soil) and subjected to four drought intensities (CK, mild drought T1, moderate drought T2 and severe drought T3) for 60 days. RESULTS The root biomass of seedlings in sandy-loam soil under the same drought intensity was higher than that of seedlings in humus soil. With an increase in drought, the root biomass, average diameter, root tissue density and cortex thickness decreased significantly, and the specific root length, stele diameter and conduit density increased. The root NSC contents in humus soil were higher than those in sandy-loam soil. The fine root soluble sugar content in all soil substrates decreased with increasing drought intensity, while the root starch and total NSC contents varied among the different soil substrates. Compared with transportive roots, the morphological and anatomical traits jointly explained the higher variation in NSC contents of the absorptive roots. The anatomical traits explained the higher variation in the NSC content of first five order roots. CONCLUSION Our results suggest that coordinated adaptation of the root traits and NSCs of Manchurian walnut seedlings exposed to water gradients in different soil substrates.
Collapse
Affiliation(s)
- Li Ji
- School of Forestry, Central South University of Forestry and Technology, 410004, Changsha, P.R. China
- Jilin Academy of Forestry, 130033, Changchun, P.R. China
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor- Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Jun Wang
- Jilin Academy of Forestry, 130033, Changchun, P.R. China
| | - Yue Liu
- Jilin Academy of Forestry, 130033, Changchun, P.R. China
| | - Zhimin Lu
- Jilin Academy of Forestry, 130033, Changchun, P.R. China
| | - Witoon Purahong
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor- Lieser-Str. 4, 06120, Halle (Saale), Germany.
| | - Yuchun Yang
- Jilin Academy of Forestry, 130033, Changchun, P.R. China.
| |
Collapse
|
72
|
Jacques C, Girodet S, Leroy F, Pluchon S, Salon C, Prudent M. Memory or acclimation of water stress in pea rely on root system's plasticity and plant's ionome modulation. FRONTIERS IN PLANT SCIENCE 2023; 13:1089720. [PMID: 36762182 PMCID: PMC9905705 DOI: 10.3389/fpls.2022.1089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Peas, as legume crops, could play a major role in the future of food security in the context of worldwide human nutrient deficiencies coupled with the growing need to reduce consumption of animal products. However, pea yields, in terms of quantity and quality (i.e. grain content), are both susceptible to climate change, and more specifically to water deficits, which nowadays occur more frequently during crop growth cycles and tend to last longer. The impact of soil water stress on plant development and plant growth is complex, as its impact varies depending on soil water availability (through the modulation of elements available in the soil), and by the plant's ability to acclimate to continuous stress or to memorize previous stress events. METHOD To identify the strategies underlying these plant responses to water stress events, pea plants were grown in controlled conditions under optimal water treatment and different types of water stress; transient (during vegetative or reproductive periods), recurrent, and continuous (throughout the plant growth cycle). Traits related to water, carbon, and ionome uptake and uses were measured and allowed the identification typical plant strategies to cope with water stress. CONCLUSION Our results highlighted (i) the common responses to the three types of water stress in shoots, involving manganese (Mn) in particular, (ii) the potential implications of boron (B) for root architecture modification under continuous stress, and (iii) the establishment of an "ecophysiological imprint" in the root system via an increase in nodule numbers during the recovery period.
Collapse
Affiliation(s)
- Cécile Jacques
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Fanny Leroy
- Plateforme PLATIN’, US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, TIMAC AGRO, Saint Malo, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
73
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
74
|
Asefa M, Worthy SJ, Cao M, Song X, Lozano YM, Yang J. Above- and below-ground plant traits are not consistent in response to drought and competition treatments. ANNALS OF BOTANY 2022; 130:939-950. [PMID: 36001733 PMCID: PMC9851322 DOI: 10.1093/aob/mcac108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Our understanding of plant responses to biotic and abiotic drivers is largely based on above-ground plant traits, with little focus on below-ground traits despite their key role in water and nutrient uptake. Here, we aimed to understand the extent to which above- and below-ground traits are co-ordinated, and how these traits respond to soil moisture gradients and plant intraspecific competition. METHODS We chose seedlings of five tropical tree species and grew them in a greenhouse for 16 weeks under a soil moisture gradient [low (drought), medium and high (well-watered) moisture levels] with and without intraspecific competition. At harvest, we measured nine above- and five below-ground traits of all seedlings based on standard protocols. KEY RESULTS In response to the soil moisture gradient, above-ground traits are found to be consistent with the leaf economics spectrum, whereas below-ground traits are inconsistent with the root economics spectrum. We found high specific leaf area and total leaf area in well-watered conditions, while high leaf dry matter content, leaf thickness and stem dry matter content were observed in drought conditions. However, below-ground traits showed contrasting patterns, with high specific root length but low root branching index in the low water treatment. The correlations between above- and below-ground traits across the soil moisture gradient were variable, i.e. specific leaf area was positively correlated with specific root length, while it was negatively correlated with root average diameter across moisture levels. However, leaf dry matter content was unexpectedly positively correlated with both specific root length and root branching index. Intraspecific competition has influenced both above- and below-ground traits, but interacted with soil moisture to affect only below-ground traits. Consistent with functional equilibrium theory, more biomass was allocated to roots under drought conditions, and to leaves under sufficient soil moisture conditions. CONCLUSIONS Our results indicate that the response of below-ground traits to plant intraspecific competition and soil moisture conditions may not be inferred using above-ground traits, suggesting that multiple resource use axes are needed to understand plant ecological strategies. Lack of consistent leaf-root trait correlations across the soil moisture gradient highlight the multidimensionality of plant trait relationships which needs more exploration.
Collapse
Affiliation(s)
- Mengesha Asefa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, 196, Ethiopia
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Yudi M Lozano
- Freie Universität Berlin, Institute of Biology, Plant Ecology, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| |
Collapse
|
75
|
Wen X, Wang X, Ye M, Liu H, He W, Wang Y, Li T, Zhao K, Hou G, Chen G, Li X, Fan C. Response strategies of fine root morphology of Cupressus funebris to the different soil environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1077090. [PMID: 36618632 PMCID: PMC9811150 DOI: 10.3389/fpls.2022.1077090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Understanding fine root morphology is crucial to uncover water and nutrient acquisition and transposition of fine roots. However, there is still a lack of knowledge regarding how the soil environment affects the fine root morphology of various root orders in the stable forest ecosystem. Therefore, this experiment assessed the response strategies of fine root morphology (first- to fifth -order fine roots) in four different soil environments. The results showed that fine root morphology was related to soil environment, and there were significant differences in specific root length (SRL), specific surface area (SRA), diameter (D), and root tissue density (RTD) of first- and second -order fine roots. Soil total nitrogen (TN), alkaline nitrogen (AN) and available phosphorus (AP) were positively correlated with SRL and SRA and negatively correlated with D and RTD. Soil moisture (SW) was positively correlated with the D and RTD of first- and second-order fine roots and negatively correlated with the SRL and SRA. Soil temperature (ST), organic carbon (OC), soil bulk density (SBD) and soil porosity (SP) were not significantly correlated with the D, SRL, SRA, and RTD of the first- and second -order fine roots. AN was positively correlated with SRL and SRA and negatively correlated with both D and RTD in the first- and second -order fine roots, and the correlation coefficient was very significant. Therefore, we finally concluded that soil AN was the most critical factor affecting root D, SRL, SRA and RTD of fine roots, and mainly affected the morphology of first- and second -order fine roots. In conclusion, our research provides support for understanding the relationship between fine root morphology and soil environment, and indicates that soil nutrient gradient forms good root morphology at intraspecific scale.
Collapse
Affiliation(s)
- Xiaochen Wen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Mengting Ye
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hai Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenchun He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
76
|
Rauschendorfer J, Rooney R, Külheim C. Strategies to mitigate shifts in red oak (Quercus sect. Lobatae) distribution under a changing climate. TREE PHYSIOLOGY 2022; 42:2383-2400. [PMID: 35867476 DOI: 10.1093/treephys/tpac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Red oaks (Quercus sect. Lobatae) are a taxonomic group of hardwood trees, which occur in swamp forests, subtropical chaparral and savannahs from Columbia to Canada. They cover a wide range of ecological niches, and many species are thought to be able to cope with current trends in climate change. Genus Quercus encompasses ca. 500 species, of which ca. 80 make up sect. Lobatae. Species diversity is greatest within the southeastern USA and within the northern and eastern regions of Mexico. This review discusses the weak reproductive barriers between species of red oaks and the effects this has on speciation and niche range. Distribution and diversity have been shaped by drought adaptations common to the species of sect. Lobatae, which enable them to fill various xeric niches across the continent. Drought adaptive traits of this taxonomic group include deciduousness, deep tap roots, ring-porous xylem, regenerative stump sprouting, greater leaf thickness and smaller stomata. The complex interplay between these anatomical and morphological traits has given red oaks features of drought tolerance and avoidance. Here, we discuss physiological and genetic components of these adaptations to address how many species of sect. Lobatae reside within xeric sites and/or sustain normal metabolic function during drought. Although extensive drought adaptation appears to give sect. Lobatae a resilience to climate change, aging tree stands, oak life history traits and the current genetic structures place many red oak species at risk. Furthermore, oak decline, a complex interaction between abiotic and biotic agents, has severe effects on red oaks and is likely to accelerate species decline and fragmentation. We suggest that assisted migration can be used to avoid species fragmentation and increase climate change resilience of sect. Lobatae.
Collapse
Affiliation(s)
- James Rauschendorfer
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Rebecca Rooney
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Carsten Külheim
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
77
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
78
|
Ulrich DEM, Clendinen CS, Alongi F, Mueller RC, Chu RK, Toyoda J, Gallegos-Graves LV, Goemann HM, Peyton B, Sevanto S, Dunbar J. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Sci Rep 2022; 12:12581. [PMID: 35869127 PMCID: PMC9307599 DOI: 10.1038/s41598-022-16408-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/11/2022] [Indexed: 12/22/2022] Open
Abstract
Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant–microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC–MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.
Collapse
|
79
|
Tahir MS, Karagiannis J, Tian L. HD2A and HD2C co-regulate drought stress response by modulating stomatal closure and root growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1062722. [PMID: 36507458 PMCID: PMC9727301 DOI: 10.3389/fpls.2022.1062722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylase 2 (HD2) is a unique family of histone deacetylases (HDACs) in plants. Despite evidence that certain HD2 family HDACs play an important role in plant growth and stress response, the coordination of HD2s in these processes remains largely unknown. We found that HD2-type, HD2A and HD2C coordinate to play a role in drought stress response in Arabidopsis. We showed that the hd2a.hd2c double mutant (Mac16) exhibit decreased drought survival and increased water loss as compared to the single mutants, hd2a and hd2c. Gene expression analysis showed that the ABI1 and ABI2 genes were upregulated and SLAC1 was downregulated which led to the modified stomatal functioning in the Mac16 as compared to the single mutants. Overexpression of HD2A and HD2C showed enhanced drought survival and decreased water loss. We also showed that the GA2ox1 and GA2ox2 genes, which are involved in the catabolism of bioactive gibberellic acids, were upregulated in the Mac16 as compared to the single mutants, which led to a decreased root growth in the Mac16. Furthermore, we showed that HD2A and HD2C can physically interact and increased genome-wide H3K9 acetylation was observed in the Mac16, compared to the single mutants. Overall, our investigation revealed that HD2A and HD2C coordinate to play a cumulative role in drought stress response and root growth in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
80
|
Wu SL, Lu F, Deng R, Quan LN, Yang HC, Xu ZK. Solar-Driven Evaporators with Thin-Film-Composite Architecture Inspired by Plant Roots for Treating Concentrated Nano-/Submicrometer Emulsions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51555-51563. [PMID: 36345781 DOI: 10.1021/acsami.2c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oil/water separation by porous materials has received growing interest over the past years since the ever-increasing oily wastewater discharges seriously threaten our living environment. Purification of nano-sized and concentrated emulsions remains a big challenge because of the sharp flux decline by blocking the pores and fouling the surfaces of those porous materials. Herein, we propose a solar-driven evaporator possessing thin-film-composite architecture to deal with these two bottlenecks. Inspired by plant roots, our evaporator composes of a large-pore sponge wrapped by a thin hydrogel film, which is constructed by the contra-diffusion and cross-linking of alginate and calcium ions at the sponge surface. The dense superoleophobic hydrogel layer serves as a selective barrier that prevents oil emulsions but allows water permeation, while the inner sponge with large pores facilitates water transport within the evaporator, ensuring sufficient water supply for evaporation. By splitting the single evaporator into an array, the evaporator performs a high evaporation rate of ∼3.10 kg·m-2·h-1 and oil removal efficiency above 99.9% for a variety of oil emulsions. Moreover, it displays a negligible decline in the evaporation rate when treating concentrated emulsions for 8 h.
Collapse
Affiliation(s)
- Shao-Lin Wu
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Feng Lu
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Ran Deng
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Lu-Na Quan
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
81
|
Wilschut RA, De Long JR, Geisen S, Hannula SE, Quist CW, Snoek B, Steinauer K, Wubs ERJ, Yang Q, Thakur MP. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis. Proc Biol Sci 2022; 289:20221178. [PMID: 36196543 PMCID: PMC9533002 DOI: 10.1098/rspb.2022.1178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse- than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.
Collapse
Affiliation(s)
- Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78464, Germany.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Jonathan R De Long
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Louis Bolk Institute, Kosterijland 3-5, Bunnik 3981 AJ, The Netherlands
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Laboratory of Nematology, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Institute of Environmental Sciences, Leiden University, Einsteinweg 2, Leiden 2333CC, The Netherlands
| | - Casper W Quist
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Biosystematics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Basten Snoek
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Katja Steinauer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - E R Jasper Wubs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Sustainable Agroecosystems Group, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, Zürich 8092, Switzerland
| | - Qiang Yang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Madhav P Thakur
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands.,Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
82
|
Raczka NC, Carrara JE, Brzostek ER. Plant-microbial responses to reduced precipitation depend on tree species in a temperate forest. GLOBAL CHANGE BIOLOGY 2022; 28:5820-5830. [PMID: 35833333 DOI: 10.1111/gcb.16340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Given that global change is predicted to increase the frequency and severity of drought in temperate forests, it is critical to understand the degree to which plant belowground responses cascade through the soil system to drive ecosystem responses to water stress. While most research has focused on plant and microbial responses independently of each other, a gap in our understanding lies in the integrated response of plant-microbial interactions to water stress. We investigated the extent to which divergent belowground responses to reduced precipitation between sugar maple trees (Acer saccharum) versus oak trees (Oak spp.) may influence microbial activity via throughfall exclusion in the field. Evidence that oak trees send carbon belowground to prime microbial activity more than maples under ambient conditions and in response to water stress suggests there is the potential for corresponding impacts of reduced precipitation on microbial activity. As such, we tested the hypothesis that differences in belowground C allocation between oaks and maples would stimulate microbial activity in the oak treatment soils and reduce microbial activity in in the sugar maple treatment soils compared to their respective controls. We found that the treatment led to declines in N mineralization, soil respiration, and oxidative enzyme activity in the sugar maple treatment plot. These declines may be due to sugar maple trees reducing root C transfers to the soil. By contrast, the reduced precipitation treatment enhanced soil respiration, as well as rates of N mineralization and peroxidase activity in the oak rhizosphere. This enhanced activity suggests that oak roots provided optimal rhizosphere conditions during water stress to prime microbial activity to support net primary production. With future changes in precipitation predicted for forests in the Eastern US, we show that the strength of plant-microbial interactions drives the degree to which reduced precipitation impacts soil C and nutrient cycling.
Collapse
Affiliation(s)
- Nanette C Raczka
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Joseph E Carrara
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Edward R Brzostek
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
83
|
Zhai J, Li Z, Si J, Zhang S, Han X, Chen X. Structural and Functional Responses of the Heteromorphic Leaves of Different Tree Heights on Populus euphratica Oliv. to Different Soil Moisture Conditions. PLANTS 2022; 11:plants11182376. [PMID: 36145777 PMCID: PMC9505870 DOI: 10.3390/plants11182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Populus euphratica Oliv., a pioneer species of desert riparian forest, is characterized heterophylly. To understand the adaptation strategies of the heteromorphic leaves of P. euphratica to soil drought, we assessed the structural and functional characteristics of the heteromorphic leaves at different heights in suitable soil moisture conditions (groundwater depth 1.5 m) and drought conditions (groundwater depth 5 m), which include morphology, anatomical structure, photosynthetic capacity, water use efficiency, osmotic adjustment capacity, and endogenous hormones. These results indicate that leaf area, leaf thickness, fence tissue, palisade-to-sea ratio, main vein xylem area, vessel area, net photosynthetic rate, transpiration rate, and proline, MDA, IAA, GA3, and ZR contents showed a positive correlation with the tree height under the two soil moisture conditions, but leaf shape index, leaf water potential (LWP), and ABA content showed a decreasing trend. In addition, the main vein vascular bundle area, main vein xylem area, and contents of malondialdehyde, ABA, GA3, and IAA were significantly greater under soil drought conditions than normal soil water content. Under soil drought stress, the heteromorphic leaves of P. euphratica showed more investment in anatomical structure and greater water use efficiency, proline, and hormone contents, and synergistic changes to maintain high photosynthetic efficiency. This is an adaptation strategy to water stress caused by soil drought and tree height changes.
Collapse
Affiliation(s)
- Juntuan Zhai
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Zhijun Li
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
- Correspondence:
| | - Jianhua Si
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shanhe Zhang
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Xiaoli Han
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| | - Xiangxiang Chen
- College of Life Sciences, Tarim University and Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps and Research Center of Populus Euphratica, Alar 843300, China
| |
Collapse
|
84
|
Grünhofer P, Stöcker T, Guo Y, Li R, Lin J, Ranathunge K, Schoof H, Schreiber L. Populus × canescens root suberization in reaction to osmotic and salt stress is limited to the developing younger root tip region. PHYSIOLOGIA PLANTARUM 2022; 174:e13765. [PMID: 36281836 DOI: 10.1111/ppl.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Populus is a valuable and fast-growing tree species commonly cultivated for economic and scientific purposes. But most of the poplar species are sensitive to drought and salt stress. Thus, we compared the physiological effects of osmotic stress (PEG8000) and salt treatment (NaCl) on poplar roots to identify potential strategies for future breeding or genetic engineering approaches. We investigated root anatomy using epifluorescence microscopy, changes in root suberin composition and amount using gas chromatography, transcriptional reprogramming using RNA sequencing, and modifications of root transport physiology using a pressure chamber. Poplar roots reacted to the imposed stress conditions, especially in the developing younger root tip region, with remarkable differences between both types of stress. Overall, the increase in suberin content was surprisingly small, but the expression of key suberin biosynthesis genes was strongly induced. Significant reductions of the radial water transport in roots were only observed for the osmotic and not the hydrostatic hydraulic conductivity. Our data indicate that the genetic enhancement of root suberization processes in poplar might be a promising target to convey increased tolerance, especially against toxic sodium chloride.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Kosala Ranathunge
- UWA School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
85
|
Bhat SA, Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. CHEMOSPHERE 2022; 303:134788. [PMID: 35504464 DOI: 10.1016/j.chemosphere.2022.134788] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, increased waste production and surge in agricultural activities, mining, contaminated irrigation water and industrial effluents contribute to the contamination of water resources due to heavy metal (HM) accumulation. Humans employ HM-contaminated resources to produce food, which eventually accumulates in the food chain. Decontamination of these valuable resources, as well as avoidance of additional contamination has long been needed to avoid detrimental health impacts. Phytoremediation is a realistic and promising strategy for heavy metal removal from polluted areas, based on the employment of hyper-accumulator plant species that are extremely tolerant to HMs present in the environment/soil. Green plants are used to remove, decompose, or detoxify hazardous metals in this technique. For soil decontamination, five types of phytoremediation methods have been used viz. phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation methods, on the other hand, have significant limits in terms of large-scale application, thus biotechnological efforts to modify plants for HM phytoremediation ways are being explored to improve the efficacy of plants as HM decontamination candidates. It is relatively a new technology that is widely regarded as economic, efficient and unique besides being environment friendly. New metal hyperaccumulators with high efficiency are being explored and employed for their use in phytoremediation and phytomining. Therefore, this review comprehensively discusses different strategies and biotechnological approaches for the removal of various HM containments from the environment, with emphasis on the advancements and implications of phytoremediation, along with their applications in cleaning up various toxic pollutants. Moreover, sources, effects of HMs and factors affecting phytoremediation of HMs metals have also been discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Punjab, 144402, India
| | - Syed Anam Ul Haq
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Asif Rafiq
- College of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Mirgund, Baramulla, Jammu and Kashmir, 193121, India
| | - Mudasir Ali
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, Number 56, 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, Number 584, 08230-030, São Paulo, SP, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
86
|
Zhang K, Lan Y, Wu M, Wang L, Liu H, Xiang Y. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:121-134. [PMID: 35835078 DOI: 10.1016/j.plaphy.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1-overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
Collapse
Affiliation(s)
- Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
87
|
Encinas‐Valero M, Esteban R, Hereş A, Vivas M, Fakhet D, Aranjuelo I, Solla A, Moreno G, Curiel Yuste J. Holm oak decline is determined by shifts in fine root phenotypic plasticity in response to belowground stress. THE NEW PHYTOLOGIST 2022; 235:2237-2251. [PMID: 35491749 PMCID: PMC9541754 DOI: 10.1111/nph.18182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.
Collapse
Affiliation(s)
- Manuel Encinas‐Valero
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
| | - Raquel Esteban
- Department of Plant Biology and EcologyUniversity of Basque Country (UPV/EHU)B/Sarriena s/n48940LeioaBizkaiaSpain
| | - Ana‐Maria Hereş
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- Department of Forest SciencesTransilvania University of BraşovSirul Beethoven‐1500123BraşovRomania
| | - María Vivas
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Dorra Fakhet
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB)Consejo Superior de Investigaciones Científicas (CSIC)‐Gobierno de NavarraAvenida Pamplona 12331192MutilvaSpain
| | - Alejandro Solla
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Gerardo Moreno
- Faculty of ForestryInstitute for Dehesa Research (INDEHESA)Universidad de ExtremaduraAvenida Virgen del Puerto 210600PlasenciaCáceresSpain
| | - Jorge Curiel Yuste
- BC3‐Basque Centre for Climate ChangeScientific Campus of the University of the Basque CountryB/Sarriena s/n48940LeioaBizkaiaSpain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5E‐48009BilbaoBizkaiaSpain
| |
Collapse
|
88
|
Parise AG, de Toledo GRA, Oliveira TFDC, Souza GM, Castiello U, Gagliano M, Marder M. Do plants pay attention? A possible phenomenological-empirical approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:11-23. [PMID: 35636584 DOI: 10.1016/j.pbiomolbio.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Attention is the important ability of flexibly controlling limited cognitive resources. It ensures that organisms engage with the activities and stimuli that are relevant to their survival. Despite the cognitive capabilities of plants and their complex behavioural repertoire, the study of attention in plants has been largely neglected. In this article, we advance the hypothesis that plants are endowed with the ability of attaining attentive states. We depart from a transdisciplinary basis of philosophy, psychology, physics and plant ecophysiology to propose a framework that seeks to explain how plant attention might operate and how it could be studied empirically. In particular, the phenomenological approach seems particularly important to explain plant attention theoretically, and plant electrophysiology seems particularly suited to study it empirically. We propose the use of electrophysiological techniques as a viable way for studying it, and we revisit previous work to support our hypothesis. We conclude this essay with some remarks on future directions for the study of plant attention and its implications to botany.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Umberto Castiello
- Neuroscience of Movement Laboratory (NEMO), Department of General Psychology, University of Padova, Padova, Italy
| | - Monica Gagliano
- Biological Intelligence Laboratory (BI Lab), School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Michael Marder
- Ikerbasque: Basque Foundation for Science & Department of Philosophy, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
89
|
Granda E, Antunes C, Máguas C, Castro‐Díez P. Water use partitioning of native and non‐native tree species in riparian ecosystems under contrasting climatic conditions. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Elena Granda
- Departamento de Ciencias de la Vida Universidad de Alcalá Alcalá de Henares Spain
| | - Cristina Antunes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Pilar Castro‐Díez
- Departamento de Ciencias de la Vida Universidad de Alcalá Alcalá de Henares Spain
| |
Collapse
|
90
|
Montagnoli A, Lasserre B, Terzaghi M, Byambadorj SO, Nyam-Osor B, Scippa GS, Chiatante D. Fertilization reduces root architecture plasticity in Ulmus pumila used for afforesting Mongolian semi-arid steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:878299. [PMID: 35958214 PMCID: PMC9359110 DOI: 10.3389/fpls.2022.878299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 06/13/2023]
Abstract
In this study, we assessed the functional and architectural traits in the coarse roots of Ulmus pumila trees, which are used for afforesting the semi-arid steppe of Mongolia. Tree growth was supported by different watering regimes (no watering, 2, 4, and 8 L h-1) and by two types of soil fertilization (NPK and compost). In July, 2019, for each of these treatments six trees, outplanted in 2011 as 2-year-old seedlings from a container nursery, were randomly selected, excavated by hand, and digitized. The build-up of root length correlated positively with increasing levels of watering for both soil depths analyzed. The application of fertilizers led to root growth suppression resulting in a general reduction of root length in a lowered rooting depth. When root system characteristics were analyzed in relation to wind direction, unfertilized trees showed higher root diameter values in both soil layers of leeward quadrants, likely a response to mechanical forces to improve stability. On the contrary, fertilized trees did not show differences in root diameter among the different quadrants underscoring a strong reduction in root plasticity with a lack of morpho-architectural response to the mechanical forces generated by the two prevailing winds. Finally, the root branching density, another important trait for fast dissipation of mechanical forces, was significantly reduced by the fertilization, independently of the quadrants and watering regime. Our results suggest that knowledge of the root response to the afforestation techniques applied in the semi-arid steppe of Mongolia is a necessary step for revealing the susceptibility of this forest shelterbelt to the exacerbating environmental conditions caused by climate change and, thus, to the development of a sustainable and successful strategy to restore degraded lands.
Collapse
Affiliation(s)
- Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Bruno Lasserre
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
91
|
Omae N, Tsuda K. Plant-Microbiota Interactions in Abiotic Stress Environments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:511-526. [PMID: 35322689 DOI: 10.1094/mpmi-11-21-0281-fi] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abiotic stress adversely affects cellular homeostasis and ultimately impairs plant growth, posing a serious threat to agriculture. Climate change modeling predicts increasing occurrences of abiotic stresses such as drought and extreme temperature, resulting in decreasing the yields of major crops such as rice, wheat, and maize, which endangers food security for human populations. Plants are associated with diverse and taxonomically structured microbial communities that are called the plant microbiota. Plant microbiota often assist plant growth and abiotic stress tolerance by providing water and nutrients to plants and modulating plant metabolism and physiology and, thus, offer the potential to increase crop production under abiotic stress. In this review, we summarize recent progress on how abiotic stress affects plants, microbiota, plant-microbe interactions, and microbe-microbe interactions, and how microbes affect plant metabolism and physiology under abiotic stress conditions, with a focus on drought, salt, and temperature stress. We also discuss important steps to utilize plant microbiota in agriculture under abiotic stress.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Natsuki Omae
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
92
|
Chen F, Wang RJ, Wu CJ, Lin M, Yan HW, Xiang Y. SAUR8, a small auxin-up RNA Gene in poplar, confers drought tolerance to transgenic Arabidopsis plants. Gene 2022; 837:146692. [PMID: 35760288 DOI: 10.1016/j.gene.2022.146692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
SAUR (small auxin-up RNA) is an early auxin-responsive gene. In this study, a novel SAUR gene PtSAUR8 was cloned from poplar (Populus trichocarpa), and subcellular location analysis showed that it is targeted to the nuclear membrane. In addition, PtSAUR8 overexpression in Arabidopsis improved the plant resistance to drought stress. Meanwhile, the loss of function mutant saur53 showed more drought sensitivity compared to the WT. PtSAUR8 conferred drought tolerance in transgenic Arabidopsis, as determined through phenotypic and stress-associated physiological indicator analyses, namely, root length, germination rate, relative water content, proline content, CAT content, POD content, malondialdehyde content, hydrogen peroxide content, and relative conductivity. In addition, after the 1 μM abscisic acid (ABA) treatment, the PtSAUR8-OE lines promoted stomata closure. Quantitative fluorescence analysis of related genes induced by drought mutant stress further confirmed that overexpression of PtSAUR8 can improve drought resistance in transgenic Arabidopsis lines. Therefore, PtSAUR8 may play a role in plant drought resistance through ABA-mediated pathways; thus, providing new research materials for molecular breeding of poplar resistance.
Collapse
Affiliation(s)
- Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Rui-Jia Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Cai-Juan Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Han-Wei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
93
|
Eckert C, Wildhagen H, Paulo MJ, Scalabrin S, Ballauff J, Schnabel SK, Vendramin V, Keurentjes JJB, Bogeat-Triboulot MB, Taylor G, Polle A. Genotypic and tissue-specific variation of Populus nigra transcriptome profiles in response to drought. Sci Data 2022; 9:297. [PMID: 35701429 PMCID: PMC9197931 DOI: 10.1038/s41597-022-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Climate change is one of the most important challenges for mankind in the far and near future. In this regard, sustainable production of woody crops on marginal land with low water availability is a major challenge to tackle. This dataset is part of an experiment, in which we exposed three genetically differentiated genotypes of Populus nigra originating from contrasting natural habitats to gradually increasing moderate drought. RNA sequencing was performed on fine roots, developing xylem and leaves of those three genotypes under control and moderate drought conditions in order to get a comprehensive dataset on the transcriptional changes at the whole plant level under water limiting conditions. This dataset has already provided insight in the transcriptional control of saccharification potential of the three Populus genotypes under drought conditions and we suggest that our data will be valuable for further in-depth analysis regarding candidate gene identification or, on a bigger scale, for meta-transcriptome analysis. Measurement(s) | transcriptome | Technology Type(s) | illumina sequencing | Factor Type(s) | treatment | Sample Characteristic - Organism | Populus nigra | Sample Characteristic - Environment | greenhouse experiment |
Collapse
Affiliation(s)
- Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Henning Wildhagen
- HAWK University of Applied Sciences and Arts, Faculty of Resource Management, Büsgenweg 1a, 37077, Göttingen, Germany.
| | - Maria João Paulo
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| | - Sabine K Schnabel
- Biometris, Wageningen UR Wageningen Plant Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Vera Vendramin
- IGA Technology Services, via Jacopo Linussio 51, Udine, Italy
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, One Shields Ave, Davis, CA, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, Göttingen, Germany
| |
Collapse
|
94
|
Solins JP, Cadenasso ML. Urban runoff and stream channel incision interact to influence riparian soils and understory vegetation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2556. [PMID: 35112753 DOI: 10.1002/eap.2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Riparian soil processes and vegetation are sensitive to water availability. Urbanization can alter riparian water availability by modifying stream flows and stream channel morphology. In cities, runoff from impervious surfaces tends to increase stormflow magnitudes, causing stream channels to incise, or downcut. This change in channel morphology has been linked to lowered water tables and drier conditions in temperate urban riparian zones, leading to shifts in riparian nitrogen (N) cycling and vegetation communities. In Mediterranean climates with distinct wet and dry periods, there is an additional dynamic to consider: runoff from urban water use can cause streams to flow when they would otherwise be dry. This dry-season stream flow could create increased, rather than decreased, water availability in urban riparian zones. However, channel incision may counteract this effect. We asked whether dry-season stream flow interacted with channel incision to influence riparian soil characteristics and understory vegetation along streams in Sacramento, California, which has a Mediterranean climate with an intense summer dry season. At 40 stream reaches that varied by severity of downcutting and presence of dry-season flow, we sampled soils and vegetation on top of stream banks and at the margin of the low-flow channel, an important location for nutrient cycling in dry climates. We measured soil moisture, organic matter, and ∂15 N, as well as total and perennial understory vegetation cover. We found that channel characteristics associated with incision limited the influence of dry-season stream flow on soil moisture, and this interaction appears to have lasting effects on soil organic matter and perennial vegetation on bank tops. At the stream margin, channel downcutting was associated with reduced soil organic matter and vegetation cover, while dry-season flow was associated with increased vegetation cover. Values of soil ∂15 N pointed to limited hydrologic linkage between stream flows and riparian bank soils along incised streams. Our findings suggest that channel incision could limit the ability of urban riparian ecosystems to mitigate low-flow water quality. However, where streams are not incised in Mediterranean climates, dry-season flows from urban runoff may actually increase riparian productivity and N cycling above historical levels.
Collapse
Affiliation(s)
- Joanna P Solins
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Mary L Cadenasso
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| |
Collapse
|
95
|
Salesa D, Baeza MJ, Pérez-Ferrándiz E, Santana VM. Longer summer seasons after fire induce permanent drought legacy effects on Mediterranean plant communities dominated by obligate seeders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153655. [PMID: 35124057 DOI: 10.1016/j.scitotenv.2022.153655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The ecological stability of Mediterranean ecosystems is being threatened by climate change. One of the impacts that is expected to be aggravated is the effect of summer drought prolongation toward previous or subsequent seasons by becoming more frequent. This, along with wildfires, could trigger synergistic negative effects on ecosystem regeneration capacity. Here we assessed how extending summer drought in two different ways (to autumn, AutExcl treatment, or bringing it forward to the following spring, SprExcl treatment) would affect plant recovery after an experimental fire carried out in summer in a Mediterranean seeder community. By installing rainout shelters, we assessed differences in seedling emergence, survival and establishment in the main families (Cistaceae, Labiatae, Leguminosae), and the effect on species richness and community composition. We observed that these post-fire dry season extensions reduced the total number of established seedlings and species richness. The most impacting drought treatment was AutExcl. However, the regeneration response was variable depending on the studied family. SprExcl was also determinant for Labiate survival rates. These results suggest that drought events which prolong the usual summer season may have a permanent drought legacy effect on seeder communities as practically all the seeder species populations were established in the first post-fire year. This fact is relevant for Mediterranean ecosystems dominated by seeder species as severer and longer droughts are increasingly recorded and are expected to become more frequent in forthcoming decades.
Collapse
Affiliation(s)
- David Salesa
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain.
| | - M Jaime Baeza
- Departamento de Ecología, Universidad de Alicante, Ap. 99, 03080 Alicante, Spain
| | - E Pérez-Ferrándiz
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain
| | - Victor M Santana
- Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), C/ Charles Darwin 14, 46980 Paterna, Valencia, Spain; Departamento de Ecología, Universidad de Alicante, Ap. 99, 03080 Alicante, Spain
| |
Collapse
|
96
|
Staszel K, Lasota J, Błońska E. Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil. Sci Rep 2022; 12:7635. [PMID: 35538167 PMCID: PMC9090927 DOI: 10.1038/s41598-022-11754-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Root exudation is a key process that determines rhizosphere functions and plant-soil relationships. The present study was conducted with the objectives to (1) determine the root morphology of sessile oak seedlings in relation to drought, (2) assess root exudation and its response to drought, and (3) detect possible changes in the activity of soil enzymes in response to drought enhancement. In the experiment, sessile oak seedlings (Quercus petraea Matt.) were used, and two variants of substrate moisture (25% humidity-dry variant and 55% humidity-fresh variant) on which oaks grew were considered. Exudates were collected using a culture-based cuvette system. Results confirmed the importance of drought in shaping the morphology of roots and root carbon exudation of sessile oak. The oak roots in the dry variant responded with a higher increment in length. In the case of roots growing in higher humidity, a higher specific root area and specific root length were determined. Experimental evidence has demonstrated decreased root exudation under dry conditions, which can lead to a change in enzyme activity. In the study, enzyme activity decreased by 90% for β-D-cellobiosidase (CB), 50% for β-glucosidase (BG) and N-acetyl-β-D-glucosaminidase (NAG), 20% for β-xylosidase (XYL) decreased by, and the activity of arylsulphatase (SP) and phosphatase (PH) decreased by 10%.
Collapse
Affiliation(s)
- Karolina Staszel
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland.
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| | - Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| |
Collapse
|
97
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Root trait shifts towards an avoidance strategy promote productivity and recovery in
C
3
and
C
4
pasture grasses under drought. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manjunatha H. Chandregowda
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Mark G. Tjoelker
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Amber C. Churchill
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
- Department of Ecology, Evolutionary Biology and Behaviour University of Minnesota 140 Gortner Laboratory, 1479 Gortner Ave St. Paul MN USA
| | - Sally A. Power
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| |
Collapse
|
98
|
Fernández de Simón B, Cadahía E, Aranda I. Aerial and underground organs display specific metabolic strategies to cope with water stress under rising atmospheric CO 2 in Fagus sylvatica L. PHYSIOLOGIA PLANTARUM 2022; 174:e13711. [PMID: 35570621 PMCID: PMC9321914 DOI: 10.1111/ppl.13711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Beech is known to be a moderately drought-sensitive tree species, and future increases in atmospheric concentrations of CO2 ([CO2 ]) could influence its ecological interactions, also with changes at the metabolic level. The metabolome of leaves and roots of drought-stressed beech seedlings grown under two different [CO2 ] (400 (aCO2 ) and 800 (eCO2 ) ppm) was analyzed together with gas exchange parameters and water status. Water stress estimated from predawn leaf water potential (Ψpd ) was similar under both [CO2 ], although eCO2 had a positive impact on net photosynthesis and intrinsic water use efficiency. The aerial and underground organs showed different metabolomes. Leaves mainly stored C metabolites, while those of N and P accumulated differentially in roots. Drought triggered the proline and N-rich amino acids biosynthesis in roots through the activation of arginine and proline pathways. Besides the TCA cycle, polyols and soluble sugar biosynthesis were activated in roots, with no clear pattern seen in the leaves, prioritizing the root functioning as metabolites sink. eCO2 slightly altered this metabolic acclimation to drought, reflecting mitigation of its effect. The leaves showed only minor changes, investing C surplus in secondary metabolites and malic acid. The TCA cycle metabolites and osmotically active substances increased in roots, but many other metabolites decreased as if the water stress was dampened. Above- and belowground plant metabolomes were differentially affected by two drivers of climate change, water scarcity and high [CO2 ], showing different chemical responsiveness that could modulate the tree adaptation to future climatic scenarios.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Estrella Cadahía
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| | - Ismael Aranda
- Grupo de Ecología Funcional de Especies ForestalesCentro de Investigacion Forestal (CIFOR‐INIA) CSICMadridSpain
| |
Collapse
|
99
|
Tree growth sensitivity to climate varies across a seasonal precipitation gradient. Oecologia 2022; 198:933-946. [DOI: 10.1007/s00442-022-05156-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
100
|
Beyer CP, Barrientos-Sanhueza C, Ponce E, Pedreschi R, Cuneo IF, Alvaro JE. Differential Hydraulic Properties and Primary Metabolism in Fine Root of Avocado Trees Rootstocks. PLANTS (BASEL, SWITZERLAND) 2022; 11:1059. [PMID: 35448786 PMCID: PMC9031253 DOI: 10.3390/plants11081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Avocados (Persea americana Mill.) are one of the crops with the highest water footprints in Chile and the production is at risk due to severe and frequent droughts. The current production is mostly based on sexually (seed) propagated rootstocks, while clonally propagated rootstocks are on the rise. In a recent study, we found differences in aerial, root growth and water use efficiency between trees grown on these two different rootstocks under controlled continuous fertigation and environmental conditions. In this study, we further describe possible mechanisms which drive the differences. Avocado cv. "Hass" grafted on "Dusa" (D, clonally propagated) and "Mexicola" (M, sexually propagated) rootstocks and different root segments (3, 5 and 8 cm from root tip) were investigated using a combination of hydraulic measurements and polar metabolite (GC-MS) techniques. The results show significant differences in root hydraulic properties, indicating that "Mexicola" fine roots have higher water uptake capacity. The polar metabolites analysis revealed 13 compounds significantly different between rootstocks while nine were found significantly different among root segments. Principal component analysis (PCA) revealed differences between rootstocks and root segments. The data presented here highlight the importance of considering key physiological knowledge in avocado rootstocks breeding programs to be better prepared for future challenging environmental conditions.
Collapse
|