51
|
Abstract
PURPOSE OF REVIEW Amyloid beta (Aβ) plaque accumulation is a hallmark pathology contributing to Alzheimer's disease (AD) and is widely hypothesized to lead to cognitive decline. Decades of research into anti-Aβ immunotherapies provide evidence for increased Aβ clearance from the brain; however, this is frequently accompanied by complicated vascular deficits. This article reviews the history of anti-Aβ immunotherapies and clinical findings and provides recommendations moving forward. RECENT FINDINGS In 20 years of both animal and human studies, anti-Aβ immunotherapies have been a prevalent avenue of reducing hallmark Aβ plaques. In both models and with different anti-Aβ antibody designs, amyloid-related imaging abnormalities (ARIA) indicating severe cerebrovascular compromise have been common and concerning occurrence. ARIA caused by anti-Aβ immunotherapy has been noted since the early 2000s, and the mechanisms driving it are still unknown. Recent approval of aducanumab comes with renewed urgency to consider vascular deficits caused by anti-Aβ immunotherapy.
Collapse
Affiliation(s)
- Kate E Foley
- Sanders-Brown Center On Aging, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center On Aging, Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
52
|
Typiak M, Audzeyenka I, Dubaniewicz A. Presence and possible impact of Fcγ receptors on resident kidney cells in health and disease. Immunol Cell Biol 2022; 100:591-604. [DOI: 10.1111/imcb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of General and Medical Biochemistry, Faculty of Biology University of Gdansk Gdansk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences Gdansk Poland
- Department of Molecular Biotechnology, Faculty of Chemistry University of Gdansk Gdansk Poland
| | - Anna Dubaniewicz
- Department of Pulmonology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
53
|
Oosterhoff JJ, Larsen MD, van der Schoot CE, Vidarsson G. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol 2022; 43:800-814. [PMID: 36008258 PMCID: PMC9395167 DOI: 10.1016/j.it.2022.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Healthy immune responses require efficient protection without excessive inflammation. Recent discoveries on the degree of fucosylation of a human N-linked glycan at a conserved site in the immunoglobulin IgG-Fc domain might add an additional regulatory layer to adaptive humoral immunity. Specifically, afucosylation of IgG-Fc enhances the interaction of IgG with FcγRIII and thereby its activity. Although plasma IgG is generally fucosylated, afucosylated IgG is raised in responses to enveloped viruses and Plasmodium falciparum proteins expressed on infected erythrocytes, as well as during alloimmune responses. Moreover, while afucosylation can exacerbate some infectious diseases (e.g., COVID-19), it also correlates with traits of protective immunity against malaria and HIV-1. Herein we discuss the implications of IgG afucosylation for health and disease, as well as for vaccination.
Collapse
Affiliation(s)
- Janita J Oosterhoff
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
54
|
Suurbaar J, Moussiliou A, Tahar R, Olsen RW, Adams Y, Dalgaard N, Baafour EK, Adukpo S, Hviid L, Kusi KA, Alao J, Ofori MF, Ndam NT, Jensen AR. ICAM-1-binding Plasmodium falciparum erythrocyte membrane protein 1 variants elicits opsonic-phagocytosis IgG responses in Beninese children. Sci Rep 2022; 12:12994. [PMID: 35906450 PMCID: PMC9338288 DOI: 10.1038/s41598-022-16305-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLβ domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLβ-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLβ from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLβ of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.
Collapse
Affiliation(s)
- Jennifer Suurbaar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | | | - Rachida Tahar
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric K Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Selorme Adukpo
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHUMEL), Cotonou, Benin
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Nicaise T Ndam
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Anja R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
55
|
Atwell JE, Lutz CS, Sparrow EG, Feikin DR. Biological factors that may impair transplacental transfer of RSV antibodies: Implications for maternal immunization policy and research priorities for low- and middle-income countries. Vaccine 2022; 40:4361-4370. [PMID: 35725783 PMCID: PMC9348036 DOI: 10.1016/j.vaccine.2022.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading viral cause of acute lower respiratory tract infection (ALRI), including bronchiolitis and pneumonia, in infants and children worldwide. Protection against RSV is primarily antibody mediated and passively acquired RSV neutralizing antibody can protect infants from RSV ALRI. Maternal immunization is an attractive strategy for the prevention of RSV in early infancy when immune responses to active immunization may be suboptimal and most severe RSV disease and death occur. However, several biologic factors have been shown to potentially attenuate or interfere with the transfer of protective naturally acquired antibodies from mother to fetus and could therefore also reduce vaccine effectiveness through impairment of transfer of vaccine-induced antibodies. Many of these factors are prevalent in low- and middle-income countries (LMIC) which experience the greatest burden of RSV-associated mortality; more data are needed to understand these mechanisms in the context of RSV maternal immunization. This review will focus on what is currently known about biologic conditions that may impair RSV antibody transfer, including preterm delivery, low birthweight, maternal HIV infection, placental malaria, and hypergammaglobulinemia (high levels of maternal total IgG). Key data gaps and priority areas for research are highlighted and include improved understanding of the epidemiology of hypergammaglobulinemia and the mechanisms by which it may impair antibody transfer. Key considerations for ensuring optimal vaccine effectiveness in LMICs are also discussed.
Collapse
Affiliation(s)
- Jessica E Atwell
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Chelsea S Lutz
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Global Disease Epidemiology and Control, Baltimore, MD, USA
| | - Erin G Sparrow
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - Daniel R Feikin
- The World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| |
Collapse
|
56
|
Abstract
Dengue is one of the most prevalent mosquito-borne diseases in the world, affecting an estimated 390 million people each year, according to models. For the last two decades, efforts to develop safe and effective vaccines to prevent dengue virus (DENV) infections have faced several challenges, mostly related to the complexity of conducting long-term studies to evaluate vaccine efficacy and safety to rule out the risk of vaccine-induced DHS/DSS, particularly in children. At least seven DENV vaccines have undergone different phases of clinical trials; however, only three of them (Dengvaxia®, TV003, and TAK-003) have showed promising results, and are addressed in detail in this review in terms of their molecular design, efficacy, and immunogenicity. Safety-related challenges during DENV vaccine development are also discussed.
Collapse
|
57
|
Kosuge H, Nagatoishi S, Kiyoshi M, Ishii-Watabe A, Terao Y, Ide T, Tsumoto K. Biophysical Characterization of the Contribution of the Fab Region to the IgG-FcγRIIIa Interaction. Biochemistry 2022; 62:262-269. [PMID: 35605982 PMCID: PMC9850916 DOI: 10.1021/acs.biochem.1c00832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cell-surface receptor FcγRIIIa is crucial to the efficacy of therapeutic antibodies as well as the immune response. The interaction of the Fc region of IgG molecules with FcγRIIIa has been characterized, but until recently, it was thought that the Fab regions were not involved in the interaction. To evaluate the influence of the Fab regions in a biophysical context, we carried out surface plasmon resonance analyses using recombinant FcγRIIIa ligands. A van't Hoff analysis revealed that compared to the interaction of the papain-digested Fc fragment with FcγRIIIa, the interaction of commercially available, full-length rituximab with FcγRIIIa had a more favorable binding enthalpy, a less favorable binding entropy, and a slower off rate. Similar results were obtained from analyses of IgG1 molecules and an IgG1-Fc fragment produced by Expi293 cells. For further validation, we also prepared a maltose-binding protein-linked IgG1-Fc fragment (MBP-Fc). The binding enthalpy of MBP-Fc was nearly equal to that of the IgG1-Fc fragment for the interaction with FcγRIIIa, indicating that such alternatives to the Fab domains as MBP do not positively contribute to the IgG-FcγRIIIa interactions. Our investigation strongly suggests that the Fab region directly interacts with FcγRIIIa, resulting in an increase in the binding enthalpy and a decrease in the dissociation rate, at the expense of favorable binding entropy.
Collapse
Affiliation(s)
- Hirofumi Kosuge
- School
of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- The
Institute of Medical Science, The University
of Tokyo, 4-6-1, Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan,Center
for Drug Design Research, National Institutes
of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki
City, Osaka 567-0085, Japan,
| | - Masato Kiyoshi
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Terao
- Tosoh
Corporation, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Teruhiko Ide
- Tosoh
Corporation, 2743-1, Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Kouhei Tsumoto
- School
of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan,The
Institute of Medical Science, The University
of Tokyo, 4-6-1, Shirokanedai,
Minato-ku, Tokyo 108-8639, Japan,Center
for Drug Design Research, National Institutes
of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki
City, Osaka 567-0085, Japan,
| |
Collapse
|
58
|
Fox A, Liu X, Zolla-Pazner S, Powell RL. Impact of IgG Isotype on the Induction of Antibody-Dependent Cellular Phagocytosis of HIV by Human Milk Leukocytes. Front Immunol 2022; 13:831767. [PMID: 35592337 PMCID: PMC9110811 DOI: 10.3389/fimmu.2022.831767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 100,000 mother-to-child transmission (MTCT) events of HIV via human milk feeding occur each year. However, only about 15% of infants milk-fed by untreated HIV+ mothers become infected, suggesting a protective effect of the milk itself. Infants ingest 105-108 maternal leukocytes daily via milk, which remain functional beyond ingestion. Such function may be elicited by maternal milk antibody (Ab). Though IgA is dominant in milk, most HIV-specific milk Abs are of the IgG subclass, highlighting the importance of investigating the function of each IgG isotype in the milk context. Though Ab effector function mediated by the constant (Fc) domain via interaction with Fc Receptors (FcRs), such as Ab-dependent cellular phagocytosis (ADCP), are critical in protecting against HIV infection, ADCP is largely unexplored as it relates to mitigation of MTCT. Presently we report the ADCP activity of milk leukocytes against HIV particles and immune complexes (ICs), using 57 unique samples from 34 women, elicited by IgG1/2/3/4 of monoclonal (m)Ab 246-D. Granulocyte ADCP of HIV was most potent compared to other phagocytes when elicited by IgG1/3/4. IgG1/3 activated granulocytes similarly, exhibiting 1.6x-4.4x greater activity compared to IgG2/4, and a preference for virus compared to ICs. Notably, CD16- monocyte ADCP of a given target were unaffected by isotype, and CD16+ monocytes were poorly stimulated by IgG1. IgG2/4 elicited potent IC ADCP, and in terms of total leukocyte IC ADCP, IgG4 and IgG3 exhibited similar function, with IgG4 eliciting 1.6x-2.1x greater activity compared to IgG1/IgG2, and CD16+ monocytes most stimulated by IgG2. These data contribute to a more comprehensive understanding of Fc-mediated functionality of milk leukocytes, which is critical in order to develop therapeutic approaches to eliminating this route of MTCT, including mucosal administration of mAbs and/or a maternal vaccination aimed to elicit a potent milk Ab response.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
59
|
Membranous nephropathy: new pathogenic mechanisms and their clinical implications. Nat Rev Nephrol 2022; 18:466-478. [PMID: 35484394 DOI: 10.1038/s41581-022-00564-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
Membranous nephropathy (MN) is characterized histomorphologically by the presence of immune deposits in the subepithelial space of the glomerular filtration barrier; its clinical hallmarks are nephrotic range proteinuria with oedema. In patients with primary MN, autoimmunity is driven by circulating autoantibodies that bind to one or more antigens on the surface of glomerular podocytes. Compared with other autoimmune kidney diseases, the understanding of the pathogenesis of MN has substantially improved in the past decade, thanks to the discovery of pathogenic circulating autoantibodies against phospholipase A2 receptor 1 (PLA2R1) and thrombospondin type 1 domain-containing protein 7A (THSD7A). The subsequent identification of more proteins associated with MN, some of which are also endogenous podocyte antigens, might further advance the clinical characterization of MN, including its diagnosis, treatment and prognosis. Insights from studies in patients with MN, combined with the development of novel in vivo and in vitro experimental models, have potential to improve the management of patients with MN. Characterizing the interaction between autoimmunity and local glomerular lesions provides an opportunity to develop more specific, pathogenesis-based treatments.
Collapse
|
60
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
61
|
Klewinghaus D, Pekar L, Arras P, Krah S, Valldorf B, Kolmar H, Zielonka S. Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of 'Almost Natural' Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection. Front Immunol 2022; 12:801368. [PMID: 35087526 PMCID: PMC8787767 DOI: 10.3389/fimmu.2021.801368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. Interestingly, this type of immunoglobulin usually pairs with the single germline VL gene, V30 that is typically very conserved in sequence. In this work, we have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. After selection, EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. Biochemical characterization of resulting bispecifics revealed highly specific binding to the respective antigens as well as simultaneous binding to both targets. Most importantly, engineered cattle-derived bispecific common light chain molecules elicited potent NK cell redirection and consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of proinflammatory cytokine interferon-γ. Taken together, this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications.
Collapse
Affiliation(s)
- Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
62
|
Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases. Curr Opin Struct Biol 2022; 72:248-259. [PMID: 34998123 PMCID: PMC8860878 DOI: 10.1016/j.sbi.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
Immunoglobulin G (IgG) monoclonal antibodies are a prominent and expanding class of therapeutics used for the treatment of diverse human disorders. The chemical composition of the N-glycan on the fragment crystallizable (Fc) region determines the effector functions through interaction with the Fc gamma receptors and complement proteins. The chemoenzymatic synthesis using endo-β-N-acetylglucosaminidases (ENGases) emerged as a strategy to obtain antibodies with customized glycoforms that modulate their therapeutic activity. We discuss the molecular mechanism by which ENGases recognize different N-glycans and protein substrates, especially those that are specific for IgG antibodies, in order to rationalize the glycoengineering of immunotherapeutic antibodies, which increase the impact on the treatment of myriad diseases.
Collapse
|
63
|
Lampros EA, Kremer PG, Aguilar Díaz de León JS, Roberts ET, Rodriguez Benavente MC, Amster IJ, Barb AW. The antibody-binding Fc gamma receptor IIIa / CD16a is N-glycosylated with high occupancy at all five sites. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:128-135. [PMID: 35712026 PMCID: PMC9193405 DOI: 10.1016/j.crimmu.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The antibody-binding Fc γ receptors (FcγRs) trigger life-saving immune responses and many therapeutic monoclonal antibodies require FcγR engagement for full effect. One proven strategy to improve the efficacy of antibody therapies is to increase receptor binding affinity, in particular binding to FcγRIIIa/CD16a. Currently, affinities are measured using recombinantly-expressed soluble extracellular FcγR domains and CD16a-mediated antibody-dependent immune responses are characterized using cultured cells. It is notable that CD16a is highly processed with multiple N-glycosylation sites, and preventing individual N-glycan modifications affects affinity. Furthermore, multiple groups have demonstrated that CD16a N-glycan composition is variable and composition impacts antibody binding affinity. The level of N-glycosylation at each site is not known though computational prediction indicates low to moderate potential at each site based on primary sequence (40-70%). Here we quantify occupancy of the extracellular domains using complementary mass spectrometry-based methods. All five sites of the tighter-binding CD16a V158 allotype showed 65-100% N-glycan occupancy in proteomics-based experiments. These observations were confirmed using intact protein mass spectrometry that demonstrated the predominant species corresponded to CD16a V158 with five N-glycans, with a smaller contribution from CD16a with four N-glycans. Occupancy was likewise high for the membrane-bound receptor at all detected N-glycosylation sites using CD16a purified from cultured human natural killer cells. Occupancy of the N162 site, critical for antibody binding, appeared independent of N169 occupancy based on analysis of the T171A mutant protein. The weaker-binding CD16a F158 allotype showed higher occupancy of >93% at each site.
Collapse
Affiliation(s)
- Elizabeth A. Lampros
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Paul G. Kremer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | | | | | | | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Corresponding author. 20 E. Green St., Athens, GA, 30605, USA.
| |
Collapse
|
64
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
65
|
Song Y, Wagner J, Katz HE. The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: Anti‐human IgG and human IgG interaction detection based on organic electrochemical transistors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yunjia Song
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Justine Wagner
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
66
|
Tan Q, Dai L, Wang Y, Liu S, Liang T, Luo R, Wang S, Lou N, Chen H, Zhou Y, Zhong Q, Yang J, Xing P, Hu X, Liu Y, Zhou S, Yao J, Wu D, Zhang Z, Tang L, Yu X, Han X, Shi Y. Anti-PD1/PDL1 IgG subclass distribution in ten cancer types and anti-PD1 IgG4 as biomarker for the long time survival in NSCLC with anti-PD1 therapy. Cancer Immunol Immunother 2021; 71:1681-1691. [PMID: 34817638 DOI: 10.1007/s00262-021-03106-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antibodies targeting programmed cell death-1(PD1) and its ligand (PDL1) have revolutionized cancer therapy. However, little is known about the preexisted anti-PD1/PDL1 autoantibodies (AAbs) distribution in multiple cancer types, nor is their potential biomarker role for anti-PD1 therapy. METHOD Plasma anti-PD1/PDL1 AAb IgG and subclasses (IgG1-4) were detected by enzyme-linked immune sorbent assay (ELISA) in 190 cancer patients, covering 10 cancer types (lung, breast, esophageal, colorectal, liver, prostatic, cervical, ovarian, gastric cancers and lymphoma), the comprehensive correlation of AAbs with multiple clinical parameters was analyzed. We further tested these AAbs in 76 non-small cell lung cancer (NSCLC) samples receiving anti-PD1 therapy, the association of AAbs level with survival was analyzed and validated in an independent cohort (n = 32). RESULTS Anti-PD1/PDL1 AAb IgG were globally detected in 10 types of cancer patients. IgG1 and IgG2 were the major subtypes for anti-PD1/PDL1 AAbs. Correlation analysis revealed a distinct landscape between various cancer types. The random forest model indicated that IgG4 subtype was mostly associated with cancer. In discovery cohort of 76 NSCLC patients, high anti-PD1 IgG4 was associated with a reduced overall survival (OS, p = 0.019), not progression-free survival (PFS, p = 0.088). The negative association of anti-PD1 IgG4 with OS was validated in 32 NSCLC patients (p = 0.032). CONCLUSION This study reports for the first time the distribution of preexisted anti-PD1/PDL1 AAb IgG and subclasses across 10 cancer types. Moreover, the anti-PD1 AAb IgG4 subclass was identified to associate with OS, which may serve as a potential biomarker for anti-PD1 therapeutic survival benefit in NSCLC patients.
Collapse
Affiliation(s)
- Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Liyuan Dai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yanrong Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shuxia Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Rongrong Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shasha Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Ning Lou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Qiaofeng Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Di Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| |
Collapse
|
67
|
Charreau B. Cellular and Molecular Crosstalk of Graft Endothelial Cells During AMR: Effector Functions and Mechanisms. Transplantation 2021; 105:e156-e167. [PMID: 33724240 DOI: 10.1097/tp.0000000000003741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Graft endothelial cell (EC) injury is central to the pathogenesis of antibody-mediated rejection (AMR). The ability of donor-specific antibodies (DSA) to bind C1q and activate the classical complement pathway is an efficient predictor of graft rejection highlighting complement-dependent cytotoxicity as a key process operating during AMR. In the past 5 y, clinical studies further established the cellular and molecular signatures of AMR revealing the key contribution of other, IgG-dependent and -independent, effector mechanisms mediated by infiltrating NK cells and macrophages. Beyond binding to alloantigens, DSA IgG can activate NK cells and mediate antibody-dependent cell cytotoxicity through interacting with Fcγ receptors (FcγRs) such as FcγRIIIa (CD16a). FcRn, a nonconventional FcγR that allows IgG recycling, is highly expressed on ECs and may contribute to the long-term persistence of DSA in blood. Activation of NK cells and macrophages results in the production of proinflammatory cytokines such as TNF and IFNγ that induce transient and reversible changes in the EC phenotype and functions promoting coagulation, inflammation, vascular permeability, leukocyte trafficking. MHC class I mismatch between transplant donor and recipient can create a situation of "missing self" allowing NK cells to kill graft ECs. Depending on the microenvironment, cellular proximity with ECs may participate in macrophage polarization toward an M1 proinflammatory or an M2 phenotype favoring inflammation or vascular repair. Monocytes/macrophages participate in the loss of endothelial specificity in the process of endothelial-to-mesenchymal transition involved in renal and cardiac fibrosis and AMR and may differentiate into ECs enabling vessel and graft (re)-endothelialization.
Collapse
Affiliation(s)
- Béatrice Charreau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et en Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
68
|
Onyishi CU, May RC. Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology 2021; 165:143-157. [PMID: 34716931 PMCID: PMC9426616 DOI: 10.1111/imm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose‐binding lectin, Dectin‐2, Toll‐like receptors and macrophage colony‐stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV‐positive and HIV‐negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
69
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
70
|
Chen G, Kong Y, Li Y, Huang A, Wang C, Zhou S, Yang Z, Wu Y, Ren J, Ying T. A Promising Intracellular Protein-Degradation Strategy: TRIMbody-Away Technique Based on Nanobody Fragment. Biomolecules 2021; 11:biom11101512. [PMID: 34680146 PMCID: PMC8533776 DOI: 10.3390/biom11101512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin-proteasome and autophagy-lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies.
Collapse
Affiliation(s)
- Gang Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - You Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Ailing Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Chunyu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Shanshan Zhou
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| | - Jianke Ren
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (G.C.); (Y.K.); (Y.L.); (A.H.); (C.W.); (S.Z.)
- Correspondence: (Y.W.); (J.R.); (T.Y.); Tel.: +86-021-54237761 (Y.W.); +86-021-54920668 (J.R.); +86-021-54237761 (T.Y.)
| |
Collapse
|
71
|
Spanov B, Olaleye O, Lingg N, Bentlage AEH, Govorukhina N, Hermans J, van de Merbel N, Vidarsson G, Jungbauer A, Bischoff R. Change of charge variant composition of trastuzumab upon stressing at physiological conditions. J Chromatogr A 2021; 1655:462506. [PMID: 34492576 DOI: 10.1016/j.chroma.2021.462506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
Cation-exchange chromatography is a widely used approach to study charge heterogeneity of monoclonal antibodies. Heterogeneity may arise both in vitro and in vivo because of the susceptibility of monoclonal antibodies to undergo chemical modifications. Modifications may adversely affect the potency of the drug, induce immunogenicity or affect pharmacokinetics. In this study, we evaluated the application of optimized pH gradient systems for the separation of charge variants of trastuzumab after forced degradation study. pH gradient-based elution resulted in high-resolution separation of some 20 charge variants after 3 weeks at 37°C under physiological conditions. The charge variants were further characterized by LC-MS-based peptide mapping. There was no significant difference in the binding properties to HER2 or a range of Fcγ receptors between non-stressed and stressed trastuzumab.
Collapse
Affiliation(s)
- Baubek Spanov
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Oladapo Olaleye
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jos Hermans
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nico van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands; Bioanalytical Laboratory, PRA Health Sciences, Early Development Services, Westerbrink 3, 9405 BJ Assen, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
72
|
Theocharopoulos C, Lialios PP, Samarkos M, Gogas H, Ziogas DC. Antibody-Drug Conjugates: Functional Principles and Applications in Oncology and Beyond. Vaccines (Basel) 2021; 9:1111. [PMID: 34696218 PMCID: PMC8538104 DOI: 10.3390/vaccines9101111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of precision medicine, antibody-based therapeutics are rapidly enriched with emerging advances and new proof-of-concept formats. In this context, antibody-drug conjugates (ADCs) have evolved to merge the high selectivity and specificity of monoclonal antibodies (mAbs) with the cytotoxic potency of attached payloads. So far, ten ADCs have been approved by FDA for oncological indications and many others are currently being tested in clinical and preclinical level. This paper summarizes the essential components of ADCs, from their functional principles and structure up to their limitations and resistance mechanisms, focusing on all latest bioengineering breakthroughs such as bispecific mAbs, dual-drug platforms as well as novel linkers and conjugation chemistries. In continuation of our recent review on anticancer implication of ADC's technology, further insights regarding their potential usage outside of the oncological spectrum are also presented. Better understanding of immunoconjugates could maximize their efficacy and optimize their safety, extending their use in everyday clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios C. Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 115 27 Athens, Greece; (C.T.); (P.-P.L.); (M.S.); (H.G.)
| |
Collapse
|
73
|
Why current quantitative serology is not quantitative and how systems immunology could provide solutions. Biol Futur 2021; 72:37-44. [PMID: 34554503 PMCID: PMC7896550 DOI: 10.1007/s42977-020-00061-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Determination of the presence of antibodies against infectious agents, self-antigens, allogeneic antigens and environmental antigens is the goal of medical serology. Along with the standardization of these tests the community also started to use the expression “quantitative serology,” referring to the fact that arbitrary units are used for the expression of results. In this review I will argue against the use of the term quantitative serology for current tests. Because each test and each antibody isotype determination uses its own references, the term semiquantitative better describes these methods. The introduction of really quantitative serology could both benefit from and drive forward systems immunological approach to immunity.
Collapse
|
74
|
McGettigan SE, Debes GF. Immunoregulation by antibody secreting cells in inflammation, infection, and cancer. Immunol Rev 2021; 303:103-118. [PMID: 34145601 PMCID: PMC8387433 DOI: 10.1111/imr.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) are considered work horses of the humoral immune response for their tireless effort to produce large amounts of antibodies that fulfill an array of functions in host defense, inflammation, and maintenance of homeostasis. While traditionally considered largely senescent cells, surprising recent findings demonstrate that subsets of ASCs downmodulate ongoing immune responses independent of antibody formation. Such regulatory ASCs produce IL-10 or IL-35 and are implicated in maintaining tissue and immune homeostasis. They also serve to suppress pathogenic leukocytes in infection, allergy, and inflammatory diseases that affect tissues, such as the central nervous system and the respiratory tract. Additionally, regulatory ASCs infiltrate various cancer types and restrict effective anti-tumor T cell responses. While incompletely understood, there is significant overlap in factors that control ASC differentiation, IL-10 expression by B cells and the generation of ASCs that secrete both antibodies and IL-10. In this review, we will cover the biology, phenotype, generation, maintenance and function of regulatory ASCs in various tissues under pathological and steady states. An improved understanding of the development of regulatory ASCs and their biological roles will be critical for generating novel ASC-targeted therapies for the treatment of inflammatory diseases, infection, and cancer.
Collapse
Affiliation(s)
- Shannon E. McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Gudrun F. Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
75
|
Nettey L, Ballard R, Liechti T, Mason RD. OMIP 074: Phenotypic analysis of IgG and IgA subclasses on human B cells. Cytometry A 2021; 99:880-883. [PMID: 33939254 PMCID: PMC8453800 DOI: 10.1002/cyto.a.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022]
Grants
- Intramural Research Program, Vaccine Research Center, NIAID
- CRADA # 2012-2467 We thank Robert S. Balderas, Alan M. Stall, Brent Gaylord, Jacob L. Rabenstein, and Aaron J. Tyznik, of BD Biosciences, for providing conjugated test antibodies and advice on high parameter fluorescence flow cytometry through a Cooperative Research And Development Agreement with the Vaccine Research Center, NIAID, NIH
- NIH HHS
- Research and Development
- BD Biosciences
- NIH HHS
- National Institutes of Health
- Research and Development
- BD Biosciences
Collapse
Affiliation(s)
- Leonard Nettey
- ImmunoTechnology SectionVaccine Research Center, NIAID, NIHBethesdaMarylandUSA
| | - Reid Ballard
- ImmunoTechnology SectionVaccine Research Center, NIAID, NIHBethesdaMarylandUSA
| | - Thomas Liechti
- ImmunoTechnology SectionVaccine Research Center, NIAID, NIHBethesdaMarylandUSA
| | - Rosemarie D. Mason
- ImmunoTechnology SectionVaccine Research Center, NIAID, NIHBethesdaMarylandUSA
| |
Collapse
|
76
|
The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. Int J Mol Sci 2021; 22:ijms22168947. [PMID: 34445651 PMCID: PMC8396266 DOI: 10.3390/ijms22168947] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the approval of the first monoclonal antibody (mAb) in 1986, a huge effort has been made to guarantee safety and efficacy of therapeutic mAbs. As of July 2021, 118 mAbs are approved for the European market for a broad range of clinical indications. In order to ensure clinical efficacy and safety aspects, (pre-)clinical experimental approaches evaluate the respective modes of action (MoA). In addition to antigen-specificity including binding affinity and -avidity, MoA comprise Fc-mediated effector functions such as antibody dependent cellular cytotoxicity (ADCC) and the closely related antibody dependent cellular phagocytosis (ADCP). For this reason, a variety of cell-based assays have been established investigating effector functions of therapeutic mAbs with different effector/target-cell combinations and several readouts including Fcγ receptor (FcγR)-mediated lysis, fluorescence, or luminescence. Optimized FcγR-mediated effector functions regarding clinical safety and efficacy are addressed with modification strategies such as point mutations, altered glycosylation patterns, combination of different Fc subclasses (cross isotypes), and Fc-truncation of the mAb. These strategies opened the field for a next generation of therapeutic mAbs. In conclusion, it is of major importance to consider FcγR-mediated effector functions for the efficacy of therapeutic mAbs.
Collapse
|
77
|
Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, Andersen JT, Sarmento B. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175:113778. [PMID: 33887405 DOI: 10.1016/j.addr.2021.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
Collapse
|
78
|
Oyama S, Yamamoto T, Yamayoshi A. Recent Advances in the Delivery Carriers and Chemical Conjugation Strategies for Nucleic Acid Drugs. Cancers (Basel) 2021; 13:3881. [PMID: 34359781 PMCID: PMC8345803 DOI: 10.3390/cancers13153881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
With the development of new anticancer medicines, novel modalities are being explored for cancer treatment. For many years, conventional modalities, such as small chemical drugs and antibody drugs, have worked by "inhibiting the function" of target proteins. In recent years, however, nucleic acid drugs, such as ASOs and siRNAs, have attracted attention as a new modality for cancer treatment because nucleic acid drugs can directly promote the "loss of function" of target genes. Recently, nucleic acid drugs for use in cancer therapy have been extensively developed and some of them have currently been under investigation in clinical trials. To develop novel nucleic acid drugs for cancer treatment, it is imperative that cancer researchers, including ourselves, cover and understand those latest findings. In this review, we introduce and provide an overview of various DDSs and ligand modification technologies that are being employed to improve the success and development of nucleic acid drugs, then we also discuss the future of nucleic acid drug developments for cancer therapy. It is our belief this review will increase the awareness of nucleic acid drugs worldwide and build momentum for the future development of new cancer-targeted versions of these drugs.
Collapse
Affiliation(s)
- Shota Oyama
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan; (S.O.); (T.Y.)
| | - Tsuyoshi Yamamoto
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan; (S.O.); (T.Y.)
| | - Asako Yamayoshi
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan; (S.O.); (T.Y.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
79
|
Romano A, Storti P, Marchica V, Scandura G, Notarfranchi L, Craviotto L, Di Raimondo F, Giuliani N. Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma. Front Oncol 2021; 11:684561. [PMID: 34307150 PMCID: PMC8297441 DOI: 10.3389/fonc.2021.684561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) directed against antigen-specific of multiple myeloma (MM) cells have Fc-dependent immune effector mechanisms, such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), but the choice of the antigen is crucial for the development of effective immuno-therapy in MM. Recently new immunotherapeutic options in MM patients have been developed against different myeloma-related antigens as drug conjugate-antibody, bispecific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)-T cells. In this review, we will highlight the mechanism of action of immuno-therapy currently available in clinical practice to target CD38, SLAMF7, and BCMA, focusing on the biological role of the targets and on mechanisms of actions of the different immunotherapeutic approaches underlying their advantages and disadvantages with critical review of the literature data.
Collapse
Affiliation(s)
- Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Grazia Scandura
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Luisa Craviotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
- U.O.C. Ematologia, A.O.U. Policlinico–San Marco, Catania, Italy
| | | |
Collapse
|
80
|
Halting targeted and collateral damage to red blood cells by the complement system. Semin Immunopathol 2021; 43:799-816. [PMID: 34191092 PMCID: PMC8243056 DOI: 10.1007/s00281-021-00859-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
The complement system is an important defense mechanism against pathogens; however, in certain pathologies, the system also attacks human cells, such as red blood cells (RBCs). In paroxysmal nocturnal hemoglobinuria (PNH), RBCs lack certain complement regulators which sensitize them to complement-mediated lysis, while in autoimmune hemolytic anemia (AIHA), antibodies against RBCs may initiate complement-mediated hemolysis. In recent years, complement inhibition has improved treatment prospects for these patients, with eculizumab now the standard of care for PNH patients. Current complement inhibitors are however not sufficient for all patients, and they come with high costs, patient burden, and increased infection risk. This review gives an overview of the underlying pathophysiology of complement-mediated hemolysis in PNH and AIHA, the role of therapeutic complement inhibition nowadays, and the high number of complement inhibitors currently under investigation, as for almost every complement protein, an inhibitor is being developed. The focus lies with novel therapeutics that inhibit complement activity specifically in the pathway that causes pathology or those that reduce costs or patient burden through novel administration routes.
Collapse
|
81
|
Fieux M, Le Quellec S, Bartier S, Coste A, Louis B, Giroudon C, Nourredine M, Bequignon E. FcRn as a Transporter for Nasal Delivery of Biologics: A Systematic Review. Int J Mol Sci 2021; 22:6475. [PMID: 34204226 PMCID: PMC8234196 DOI: 10.3390/ijms22126475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
FcRn plays a major role in regulating immune homeostasis, but it is also able to transport biologics across cellular barriers. The question of whether FcRn could be an efficient transporter of biologics across the nasal epithelial barrier is of particular interest, as it would allow a less invasive strategy for the administration of biologics in comparison to subcutaneous, intramuscular or intravenous administrations, which are often used in clinical practice. A focused systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It was registered on the international prospective register of systematic reviews PROSPERO, which helped in identifying articles that met the inclusion criteria. Clinical and preclinical studies involving FcRn and the nasal delivery of biologics were screened, and the risk of bias was assessed across studies using the Oral Health Assessment Tool (OHAT). Among the 12 studies finally included in this systematic review (out of the 758 studies screened), 11 demonstrated efficient transcytosis of biologics through the nasal epithelium. Only three studies evaluated the potential toxicity of biologics' intranasal delivery, and they all showed that it was safe. This systematic review confirmed that FcRn is expressed in the nasal airway and the olfactory epithelium, and that FcRn may play a role in IgG and/or IgG-derived molecule-transcytosis across the airway epithelium. However, additional research is needed to better characterize the pharmacokinetic and pharmacodynamic properties of biologics after their intranasal delivery.
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, D’otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, CEDEX, F-69495 Lyon, France
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Sandra Le Quellec
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Hôpital Cardiologique Louis Pradel, Unité D’hémostase Clinique, CEDEX, F-69500 Bron, France
- EA 4609 Hémostase et Cancer, Université Claude Bernard Lyon 1, F-69372 Lyon, France
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Service D’hématologie Biologique, CEDEX, F-69500 Bron, France
| | - Sophie Bartier
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, F-94000 Créteil, France
| | - André Coste
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| | - Bruno Louis
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
| | - Caroline Giroudon
- Hospices Civils de Lyon, Service de la Documentation Centrale, CEDEX, F-69424 Lyon, France;
| | - Mikail Nourredine
- Université de Lyon, Université Lyon 1, F-69003 Lyon, France; (S.L.Q.); (M.N.)
- Hospices Civils de Lyon, Service de Biostatistique et Bioinformatique, F-69003 Lyon, France
- CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69100 Villeurbanne, France
| | - Emilie Bequignon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Créteil, France; (S.B.); (A.C.); (B.L.); (E.B.)
- CNRS ERL 7000, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Centre Hospitalier Intercommunal de Créteil, F-94010 Créteil, France
| |
Collapse
|
82
|
Ma L, Wang G, Liu S, Bi F, Liu M, Wang G. Intramuscular Expression of Plasmid-Encoded FVII-Fc Immunoconjugate for Tumor Immunotherapy by Targeting Tumoral Blood Vessels and Cells. Front Oncol 2021; 11:638591. [PMID: 34109110 PMCID: PMC8181131 DOI: 10.3389/fonc.2021.638591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Tissue factor (TF) has been confirmed to be specifically expressed by vascular endothelial cells (VECs) in solid tumors and certain types of malignant tumor cells. Coagulation factor VII (FVII) can specifically bind to TF with high affinity, so the FVII-TF interaction provides an ideal target for tumor therapy. Expression of proteins in skeletal muscles is a simple and economical avenue for continuous production of therapeutic molecules. However, it is difficult to treat solid tumors till now due to the limited number of therapeutic proteins produced by the intramuscular gene expression system. Herein, we strived to explore whether anti-tumor effects can be achieved via intramuscular delivery of a plasmid encoding a FVII-guided immunoconjugate (Icon) molecule by a previously established Pluronic L64/electropulse (L/E) technique. Our study exhibited several interesting outcomes. 1) The mouse light chain of FVII (mLFVII) molecule could guide red fluorescent protein (RFP) to accumulate predominantly at tumor sites in a TF-dependent manner. 2) Intramuscular expression of mLFVII-hFc (human IgG1 Fc) Icon could significantly inhibit the growth of both liver and lung cancers in nude mice, and the inhibition extent was proportional to the level of tumor-expressed TF. 3) The number of blood vessels and the amount of blood flow in tumors were significantly decreased in mLFVII-hFc Icon-treated mice. 4) This immunotherapy system did not display obvious side effects. Our study provided an efficient and economical system for tumor immunotherapy by targeting both blood vessels and tumor cells. It is also an open system for synergistic therapy by conveniently integrating other anticancer regimens.
Collapse
Affiliation(s)
- Liping Ma
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Guanru Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Feng Bi
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
84
|
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
85
|
Zheng X, Xu X, Lu F, Wang Q, Zeng Z, Huo X. High serum IgG subclass concentrations in children with e-waste Pb and Cd exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142806. [PMID: 33757236 DOI: 10.1016/j.scitotenv.2020.142806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G (IgG) is the predominant component of the humoral immune system. Epidemiological studies have shown that lead (Pb) or cadmium (Cd) exposure is associated with changes in human IgG levels, and alteration of IgG subclass production can be induced by differential modulation of Th1 and Th2 cytokines caused by Pb or Cd exposure. However, no study has focused on the adverse effects of Pb and Cd co-exposure on IgG subclass production by regulating Th1/Th2 cytokines in children living in electronic waste (e-waste) areas. This study aims to analyze the associations among Pb and Cd in blood, Th1/Th2 cytokines, and IgG subclasses in serum from children. A total of 181 healthy, 2- to 7-year-old children were examined. Of them, 104 were from Guiyu (e-waste exposed group), and the rest were from Haojiang (reference group) in China. Pb and Cd levels in whole blood, cytokines, and IgG subclasses in serum were determined. Exposed children had higher levels of blood Pb and Cd, serum IgG1, IgG1 + IgG2, serum Th1 cytokine interferon-γ (IFN-γ) and lower levels of the Th2 cytokine interleukin (IL)-13. Increased blood Pb levels were positively associated with serum levels of IFN-γ, and negatively associated with serum levels of IL-13. Adjusted linear regression analysis showed that serum levels of IL-13 were negatively associated with serum levels of IgG1 and IgG1 + IgG2. Mediation models indicated that IL-13 had significant mediating effects on the relationships between blood Pb levels and serum IgG1, as well as between blood Pb levels and serum IgG1 + IgG2. Increased blood Cd levels were positively associated with serum levels of IgG1. Our results show heavy metal (particularly Pb) exposure may affect IgG subclass production by regulating Th1/Th2 cytokines in exposed children, thus providing new evidence for a relationship between humoral immune function and environmental exposure.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fangfang Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
86
|
Dutta SD, Patel DK, Ganguly K, Lim KT. Effects of GABA/β-glucan supplements on melatonin and serotonin content extracted from natural resources. PLoS One 2021; 16:e0247890. [PMID: 33667254 PMCID: PMC7935273 DOI: 10.1371/journal.pone.0247890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to monitor the secretion of serotonin and melatonin in the blood serum of rats in the presence of rice bran (RB), and Sarcodon aspratus (S) extracts for sleep promotion. BACKGROUND Sleep is a natural physiological phenomenon, and sleep disorders may cause severe mental hazards leading to excessive daytime sleepiness (EDS). The γ-aminobutyric acid (GABA) and β-glucan are the essential active ingredients of RB and mushroom, respectively, exhibited stress-reduction and nerve stabilizing potential through regulation of melatonin and serotonin hormones. METHODS Cytotoxicity of the extracts (RBS) was evaluated through WST-1 assay. The melatonin and serotonin concentrations in the blood serum were measured through ELISA kits. The Ig ELISA kit measured the immunoglobulin's (IgG, IgM, and IgA) concentrations. RESULTS Improved cell viability was observed in RBS treated groups than control, indicating their biocompatibility. The melatonin and serotonin levels were high in RBS (5:5 and 7:3) treated groups compared to the control. Enhanced expression of immunoglobulin (Ig) A and G level was observed in RBS treated rats. The serotonergic genes (5-HTT, 5-HT 1B, and MAO-A) expression levels were upregulated in RBS treated groups vis-à-vis the control. CONCLUSION Based on these results, we anticipated that RBS supplements could promote the sleep phenomenon by elevating the serotonin/melatonin level in the blood through the serotonergic system. Therefore, RBS supplements can be utilized as functional food material for sleep promotion.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Interdisciplinary Program in Smart Agriculture, Institute of Forest Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
87
|
Choi YJ, Takahashi T, Taki M, Sawada K, Takahashi K. Label-free attomolar protein detection using a MEMS optical interferometric surface-stress immunosensor with a freestanding PMMA/parylene-C nanosheet. Biosens Bioelectron 2021; 172:112778. [PMID: 33157412 DOI: 10.1016/j.bios.2020.112778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
We demonstrated an optical interferometer-based surface-stress immunosensor using freestanding polymethyl methacrylate (PMMA)/parylene-C nanosheet with high sensitivity for detection of biomolecules. PMMA/parylene-C nanosheets were transferred onto a silicon substrate with microcavities to fabricate freestanding submicron-thick membrane with a sealed cavity structure. The adhesive force between the transferred parylene-C and binder parylene-C layer was measured to be 1.06-2.4 N/10 mm by tape test. Evading Debye shielding, these nanomechanical sensors allow detection of the adsorption on the membrane surface through changes in surface stress transduced by the electric charge. We optimized the density of receptors and mode of immobilization for high sensitivity. To evaluate the selectivity of the sensor, membrane deflections induced by various proteins were measured and the spectral shifts showed high selectivity only for the target antigen. The minimum limit of detection (LOD) of the sensor for human serum albumin antigen was 0.1-1 fg/mL (1.5-15 aM), which was 20,000 times lower than that of the conventional micro-cantilever sensor.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan.
| | - Toshiaki Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan
| | - Miki Taki
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempakucho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
88
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
89
|
Hwang K, Yoon JH, Lee JH, Lee S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines 2021; 9:39. [PMID: 33466394 PMCID: PMC7824816 DOI: 10.3390/biomedicines9010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.
Collapse
Affiliation(s)
| | | | | | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; (K.H.); (J.H.Y.); (J.H.L.)
| |
Collapse
|
90
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
91
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
92
|
Brinkhaus M, Douwes RGJ, Bentlage AEH, Temming AR, de Taeye SW, Tammes Buirs M, Gerritsen J, Mok JY, Brasser G, Ligthart PC, van Esch WJE, Verheesen P, de Haard H, Rispens T, Vidarsson G. Glycine 236 in the Lower Hinge Region of Human IgG1 Differentiates FcγR from Complement Effector Function. THE JOURNAL OF IMMUNOLOGY 2020; 205:3456-3467. [PMID: 33188070 DOI: 10.4049/jimmunol.2000961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.
Collapse
Affiliation(s)
- Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Ruben G J Douwes
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands.,Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Matthias Tammes Buirs
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Jacoline Gerritsen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Giso Brasser
- Sanquin Reagents, 1066 CX Amsterdam, the Netherlands
| | - Peter C Ligthart
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, 1066 CX Amsterdam, the Netherlands; and
| | | | | | | | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX, Amsterdam, the Netherlands;
| |
Collapse
|
93
|
Ladel S, Maigler F, Flamm J, Schlossbauer P, Handl A, Hermann R, Herzog H, Hummel T, Mizaikoff B, Schindowski K. Impact of Glycosylation and Species Origin on the Uptake and Permeation of IgGs through the Nasal Airway Mucosa. Pharmaceutics 2020; 12:E1014. [PMID: 33114132 PMCID: PMC7690786 DOI: 10.3390/pharmaceutics12111014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Although we have recently reported the involvement of neonatal Fc receptor (FcRn) in intranasal transport, the transport mechanisms are far from being elucidated. Ex vivo porcine olfactory tissue, primary cells from porcine olfactory epithelium (OEPC) and the human cell line RPMI 2650 were used to evaluate the permeation of porcine and human IgG antibodies through the nasal mucosa. IgGs were used in their wild type and deglycosylated form to investigate the impact of glycosylation. Further, the expression of FcRn and Fc-gamma receptor (FCGR) and their interaction with IgG were analyzed. Comparable permeation rates for human and porcine IgG were observed in OEPC, which display the highest expression of FcRn. Only traces of porcine IgGs could be recovered at the basolateral compartment in ex vivo olfactory tissue, while human IgGs reached far higher levels. Deglycosylated human IgG showed significantly higher permeation in comparison to the wild type in RPMI 2650 and OEPC, but insignificantly elevated in the ex vivo model. An immunoprecipitation with porcine primary cells and tissue identified FCGR2 as a potential interaction partner in the nasal mucosa. Glycosylation sensitive receptors appear to be involved in the uptake, transport, but also degradation of therapeutic IgGs in the airway epithelial layer.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Alina Handl
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Hermann
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| | - Helena Herzog
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany; (S.L.); (F.M.); (J.F.); (P.S.); (A.H.); (R.H.); (H.H.)
| |
Collapse
|
94
|
van der Horst HJ, Nijhof IS, Mutis T, Chamuleau MED. Fc-Engineered Antibodies with Enhanced Fc-Effector Function for the Treatment of B-Cell Malignancies. Cancers (Basel) 2020; 12:E3041. [PMID: 33086644 PMCID: PMC7603375 DOI: 10.3390/cancers12103041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has rapidly changed the field of cancer therapy. In 1997, the CD20-targeting mAb rituximab was the first mAb to be approved by the U.S. Food and Drug Administration (FDA) for treatment of cancer. Within two decades, dozens of mAbs entered the clinic for treatment of several hematological cancers and solid tumors, and numerous more are under clinical investigation. The success of mAbs as cancer therapeutics lies in their ability to induce various cytotoxic machineries against specific targets. These cytotoxic machineries include antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), which are all mediated via the fragment crystallizable (Fc) domain of mAbs. In this review article, we will outline the novel approaches of engineering these Fc domains of mAbs to enhance their Fc-effector function and thereby their anti-tumor potency, with specific focus to summarize their (pre-) clinical status for the treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL), B-cell non-Hodgkin lymphoma (B-NHL), and multiple myeloma (MM).
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, 1081 HV Amsterdam, The Netherlands; (I.S.N.); (T.M.); (M.E.D.C.)
| | | | | | | |
Collapse
|
95
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
96
|
Temming AR, Bentlage AEH, de Taeye SW, Bosman GP, Lissenberg-Thunnissen SN, Derksen NIL, Brasser G, Mok JY, van Esch WJE, Howie HL, Zimring JC, Vidarsson G. Cross-reactivity of mouse IgG subclasses to human Fc gamma receptors: Antibody deglycosylation only eliminates IgG2b binding. Mol Immunol 2020; 127:79-86. [PMID: 32947169 DOI: 10.1016/j.molimm.2020.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Immunoglobulin G (IgG) antibodies are important for protection against pathogens and exert effector functions through binding to IgG-Fc receptors (FcγRs) on myeloid and natural killer cells, resulting in destruction of opsonized target cells. Despite interspecies differences, IgG subclasses and FcγRs show substantial similarities and functional conservation between mammals. Accordingly, binding of human IgG (hIgG) to mouse FcγRs (mFcγRs) has been utilized to study effector functions of hIgG in mice. In other applications, such as immunostaining with mouse IgG monoclonal antibodies (mAbs), these cross-reactivities are undesired and prone to misinterpretation. Despite this drawback, the binding of mouse IgG (mIgG) subclasses to human FcγR (hFcγR) classes has never been fully documented. Here, we report detailed and quantifiable characterization of binding affinities for all mIgG subclasses to hFcγRs, including functional polymorphic variants. mIgG subclasses show the strongest binding to hFcγRIa, with relative affinities mIgG2a = mIgG2c > mIgG3 >> mIgG2b, and no binding by mIgG1. hFcγRIIa/b showed general low reactivities to all mIgG (mIgG1> mIgG2a/c > mIgG2b), with no reactivity to mIgG3. A particularly high affinity was observed for mIgG1 to the hFcγRIIa-R131 polymorphic variant. hFcγRIIIa showed lower binding (mIgG2a/c > mIgG3), slightly favouring binding to the hFcγRIIIa-V158 over the F158 polymorphic variant. No binding was observed of mIgG to hFcγRIIIb. Deglycosylation of mIgG1 did not abrogate binding to hFcγRIIa-R131, nor did deglycosylation of mIgG2a/c and mIgG3 prevent hFcγRIa binding. Importantly, deglycosylation of the least cross-reactive mIgG subclass, mIgG2b, abrogated reactivity to all hFcγRs. Together, these data document for the first time the full spectrum of cross-reactivities of mouse IgG to human FcγRs.
Collapse
Affiliation(s)
- A Robin Temming
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Suzanne N Lissenberg-Thunnissen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents, Amsterdam, The Netherlands
| | | | - Heather L Howie
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - James C Zimring
- Department of Pathology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
97
|
Hofmann T, Krah S, Sellmann C, Zielonka S, Doerner A. Greatest Hits-Innovative Technologies for High Throughput Identification of Bispecific Antibodies. Int J Mol Sci 2020; 21:E6551. [PMID: 32911608 PMCID: PMC7554978 DOI: 10.3390/ijms21186551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Recent years have shown a tremendous increase and diversification in antibody-based therapeutics with advances in production techniques and formats. The plethora of currently investigated bi- to multi-specific antibody architectures can be harnessed to elicit a broad variety of specific modes of actions in oncology and immunology, spanning from enhanced selectivity to effector cell recruitment, all of which cannot be addressed by monospecific antibodies. Despite continuously growing efforts and methodologies, the identification of an optimal bispecific antibody as the best possible combination of two parental monospecific binders, however, remains challenging, due to tedious cloning and production, often resulting in undesired extended development times and increased expenses. Although automated high throughput screening approaches have matured for pharmaceutical small molecule development, it was only recently that protein bioconjugation technologies have been developed for the facile generation of bispecific antibodies in a 'plug and play' manner. In this review, we provide an overview of the most relevant methodologies for bispecific screening purposes-the DuoBody concept, paired light chain single cell production approaches, Sortase A and Transglutaminase, the SpyTag/SpyCatcher system, and inteins-and elaborate on the benefits as well as drawbacks of the different technologies.
Collapse
Affiliation(s)
- Tim Hofmann
- Advanced Cell Culture Technologies, Merck Life Sciences KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany;
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Carolin Sellmann
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany; (S.K.); (C.S.); (S.Z.)
| |
Collapse
|
98
|
Geisen C, North A, Becker L, Brixner V, von Goetz M, Corash L, Benjamin RJ, Mufti N, Seifried E. Prevalence of natural and acquired antibodies to amustaline/glutathione pathogen reduced red blood cells. Transfusion 2020; 60:2389-2398. [PMID: 32692456 DOI: 10.1111/trf.15965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND The INTERCEPT™ Blood System for Red Blood Cells (RBCs) utilizes amustaline (S-303) and glutathione (GSH) to inactivate pathogens and leukocytes in transfused RBCs. Treatment-emergent low titer non-hemolytic antibodies to amustaline/GSH RBC were detected in clinical trials using a prior version of the process. The amustaline/GSH process was re-formulated to decrease S-303 RBC adduct formation. STUDY DESIGN AND METHODS A standard three-cell antibody screening panel was modified to include reagent red cells (RRC) with high (S-303H) or low (S-303L) S-303 adduct density as assessed by flow cytometry, representative of the original and current amustaline/GSH treatment processes, respectively. General hospital and RBC transfusion-dependent patients never exposed, and clinical trial subjects exposed to amustaline/GSH RBC were screened for antibodies to amustaline/GSH RBC using a standardized agglutination assay. RESULTS Twelve (0.1%) of 10,721 general hospital and 5 (0.5%) of 998 repeatedly-transfused patients not previously exposed to amustaline/GSH RBCs expressed natural, low titer (2-32) IgM and/or IgG (non-IgG1 or IgG3 isotype) antibodies with acridine (a structural element of amustaline) (n = 14) or non-acridine (n = 3) specificity. 11 of 17 sera reacted with S-303L panel RRCs. In clinical studies 81 thalassemia and 25 cardiac surgery patients were transfused with a total of 1085 amustaline/GSH RBCs and no natural or treatment-emergent S-303 antibodies were detected. CONCLUSION Standardized RRC screening panels are sensitive for the detection of natural and acquired S-303-specific antibodies. Natural low titer antibodies to amustaline/GSH RBC are present in 0.15% of naïve patients. The clinical relevance of these antibodies appears minimal but is under further investigation.
Collapse
Affiliation(s)
- Christof Geisen
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | - Anne North
- Cerus Corporation, Concord, California, USA
| | - Lisa Becker
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | - Veronika Brixner
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | | | | | | | - Nina Mufti
- Cerus Corporation, Concord, California, USA
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| |
Collapse
|
99
|
Bianchini R, Karagiannis SN, Jordakieva G, Jensen-Jarolim E. The Role of IgG4 in the Fine Tuning of Tolerance in IgE-Mediated Allergy and Cancer. Int J Mol Sci 2020; 21:ijms21145017. [PMID: 32708690 PMCID: PMC7404042 DOI: 10.3390/ijms21145017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Among the four immunoglobulin G (IgG) subclasses, IgG4 is the least represented in serum of a healthy human and it is considered an “odd” antibody. The IgG4 antibody has unique structural features that affect its biological function. These include the ability to undergo antigen-binding fragment (Fab)-arm exchange, to create fragment crystallizable (Fc) – Fc binding with other IgG4 and other IgG subclass antibodies, have a unique affinity profile for Fc gamma receptors (FcγRs) and no binding to complement component C1q. Altogether, these characteristics support anti-inflammatory roles of IgG4 leading to immune tolerance. Under conditions of chronic antigenic stimulation and Th2-type inflammation, both tissue and serum IgG4 levels are increased. This review seeks to highlight how in allergen immunotherapy IgG4 can confer a protective role as a “blocking” antibody and safeguard from subsequent allergen exposure, while IgG4 can confer immunomodulatory functions to support malignancy. While Th2 conditions drive polarization of macrophages to the M2a subtype, chronic antigen stimulation drives B cell class switching to IgG4 to further support phenotypical macrophage changes towards an M2b-like state. M2b-like macrophages can secrete chemokine (C-C motif) ligand 1 (CCL1) and interleukin-10 (IL-10) to support regulatory cell recruitment and to further shape a tolerogenic microenvironment. Thereby, IgG4 have a Janus-faced role, favorable in allergy but detrimental in cancer.
Collapse
Affiliation(s)
- Rodolfo Bianchini
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, Medical University of Vienna and University of Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK;
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, Medical University of Vienna and University of Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
100
|
Ulrich H, Pillat MM, Tárnok A. Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective. Cytometry A 2020; 97:662-667. [PMID: 32506725 PMCID: PMC7300451 DOI: 10.1002/cyto.a.24047] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 pandemic and recurrent dengue epidemics in tropical countries have turned into a global health threat. While both virus-caused infections may only reveal light symptoms, they can also cause severe diseases. Here, we review the possible antibody-dependent enhancement (ADE) occurrence, known for dengue infections, when there is a second infection with a different virus strain. Consequently, preexisting antibodies do not neutralize infection, but enhance it, possibly by triggering Fcγ receptor-mediated virus uptake. No clinical data exist indicating such mechanism for SARS-CoV-2, but previous coronavirus infections or infection of SARS-CoV-2 convalescent with different SARS-CoV-2 strains could promote ADE, as experimentally shown for antibodies against the MERS-CoV or SARS-CoV spike S protein. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of BiochemistryInstitute of Chemistry, University of São PauloSão PauloBrazil
| | - Micheli M. Pillat
- Department of Microbiology and ParasitologyHealth Sciences Center, Federal University of Santa MariaSanta MariaRio Grande do SulBrazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of LeipzigLeipzigGermany
- Department of Therapy ValidationFraunhofer Institute for Cell Therapy and Immunology IZILeipzigGermany
- Department of Precision InstrumentTsinghua UniversityBeijingChina
| |
Collapse
|