51
|
Ramot Y, Zandani G, Madar Z, Deshmukh S, Nyska A. Utilization of a Deep Learning Algorithm for Microscope-Based Fatty Vacuole Quantification in a Fatty Liver Model in Mice. Toxicol Pathol 2020; 48:702-707. [PMID: 32508268 DOI: 10.1177/0192623320926478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quantification of fatty vacuoles in the liver, with differentiation from lumina of liver blood vessels and bile ducts, is an example where the traditional semiquantitative pathology assessment can be enhanced with artificial intelligence (AI) algorithms. Using glass slides of mice liver as a model for nonalcoholic fatty liver disease, a deep learning AI algorithm was developed. This algorithm uses a segmentation framework for vacuole quantification and can be deployed to analyze live histopathology fields during the microscope-based pathology assessment. We compared the manual semiquantitative microscope-based assessment with the quantitative output of the deep learning algorithm. The deep learning algorithm was able to recognize and quantify the percent of fatty vacuoles, exhibiting a strong and significant correlation (r = 0.87, P < .001) between the semiquantitative and quantitative assessment methods. The use of deep learning algorithms for difficult quantifications within the microscope-based pathology assessment can help improve outputs of toxicologic pathology workflows.
Collapse
Affiliation(s)
- Yuval Ramot
- The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Zandani
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zecharia Madar
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Abraham Nyska
- Toxicologic Pathology, Tel Aviv University, Timrat, Israel
| |
Collapse
|
52
|
Ma P, Sun C, Li W, Deng W, Adu‐Frimpong M, Yu J, Xu X. Extraction and structural analysis of Angelica sinensis polysaccharide with low molecular weight and its lipid-lowering effect on nonalcoholic fatty liver disease. Food Sci Nutr 2020; 8:3212-3224. [PMID: 32724586 PMCID: PMC7382173 DOI: 10.1002/fsn3.1581] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the prevalent and typical chronic liver diseases. In this study, we extracted a novel Angelica sinensis polysaccharide (ASP) with low molecular weight (MW) of 3.2 kDa through optimized "one-step" purification process. The major monosaccharide components of ASP were mannose, rhamnose, glucuronic acid, galactose, arabinose, and xylose with weight ratio of 0.23:0.17:14.41:0.39:1.68:0.87, respectively. Herein, "small" ASP could serve as an effective therapeutic option for NAFLD both in free fatty acid-induced L02 models and in high-fat diet-induced mice models. Results revealed that low MW ASP dose-dependently decreased TG, TC in vitro and TG, TC, ALT, HDL-C, and LDL-C in vivo. Oil Red O-positive area and Nile red fluorescence intensity decreased in ASP treatment groups both in vitro and in vivo which suggested ASP could reduce lipid accumulation and fatty regeneration. Hematoxylin-eosin staining results shown a decrease in hepatocytes ballooning indicating that ASP could ameliorate liver lipid degeneration. Briefly, a novel polysaccharide with low MW was successfully obtained which can prospectively act as NAFLD therapy.
Collapse
Affiliation(s)
- Ping Ma
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Congyong Sun
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Wenjing Li
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Wenwen Deng
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Michael Adu‐Frimpong
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Jiangnan Yu
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| | - Ximing Xu
- Key Lab for Drug Delivery and Tissue RegenerationJiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesSchool of PharmacyJiangsu UniversityZhenjiangChina
| |
Collapse
|
53
|
Hong Y, Choi SI, Hong E, Kim GH. Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free-fatty-acid-incubated HEPG2 cells and in high-fat diet-fed mice. J Food Sci 2020; 85:2216-2226. [PMID: 32579753 DOI: 10.1111/1750-3841.15166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is closely related to metabolic syndrome. We investigated the effect of a Psoralea corylifolia L. (PC) seeds extract (PCE) on NAFLD. PC seeds were extracted using different ethanol concentrations to produce five extracts, and the 70% ethanol PCE, which had the highest phenolic content, was used in subsequent in vitro and in vivo experiments. The inhibitory effect of PCE on hepatic steatosis was estimated using HepG2 cells treated with oleic acid (OA). In addition, an in vivo NAFLD model was established using high-fat diet (HFD)-induced obese C57BL/6 mice. Obesity was induced in mice over 14 weeks. PCE (100 or 200 mg/kg/day) was administered orally to mice after 8 weeks of the 14-week treatment period for 6 weeks. PCE suppressed lipid accumulation in OA-treated HepG2 cells. PCE ameliorated the antioxidant activity suppressions induced by the HFD. In addition, both PCE100 and PCE200 groups reduced lipid accumulation and the expression levels of inflammatory proteins as compared with HFD group. PCE administration significantly attenuated hepatic steatosis in liver tissues by decreasing the expression of lipogenic protein sterol regulatory element binding protein 1-c (SREBP-1c) and its downstream protein fatty acid synthase (FAS) in HFD-fed mice and in OA-treated HepG2 cells. Furthermore, PCE administration increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. These results suggest that PCE could be used as a functional material to prevent or ameliorate NAFLD by inhibiting lipid accumulation in liver. PRACTICAL APPLICATION: Psoralea corylifolia L. is rich in polyphenol and other phytochemicals. In this study, we identified the beneficial effects of Psoralea corylifolia L. extract on hepatic steatosis in oleic-acid-induced HepG2 cells and high-fat diet-fed mice. The result of this study will provide the evidence that a Psoralea corylifolia L. extract has potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- YunMin Hong
- Department of Health Functional Materials, Duksung Women's University, Seoul, Republic of Korea
| | - Soo-Im Choi
- Plant Resources Research Institute, Duksung Women's University, Seoul, Republic of Korea.,Department of Food and Nutrition, Duksung Women's University, Seoul, Republic of Korea
| | - Eunyoung Hong
- CJ HealthCare, H&B Research and Development Team, Seoul, Republic of Korea
| | - Gun-Hee Kim
- Department of Food and Nutrition, Duksung Women's University, Seoul, Republic of Korea
| |
Collapse
|
54
|
Wang Z, Li S, Wang R, Guo L, Xu D, Zhang T, Xu Y, Wang W, Wang M, Gan Z, Wang X. The protective effects of the β3 adrenergic receptor agonist BRL37344 against liver steatosis and inflammation in a rat model of high-fat diet-induced nonalcoholic fatty liver disease (NAFLD). Mol Med 2020; 26:54. [PMID: 32503411 PMCID: PMC7275314 DOI: 10.1186/s10020-020-00164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our objective was to investigate the efficacy of the beta-3 adrenergic receptor (β3-AR) agonist BRL37344 for the prevention of liver steatosis and inflammation associated with nonalcoholic fatty liver disease (NAFLD). METHODS Four groups were established: a control group (given a standard diet), a high-fat diet (HFD) group, an HFD + β3-AR agonist (β3-AGO) group, and an HFD + β3-AR antagonist (β3-ANT) group. All rats were fed for 12 weeks. The β3-AR agonist BRL37344 and the antagonist L748337 were administered for the last 4 weeks with Alzet micro-osmotic pumps. The rat body weights (g) were measured at the end of the 4th, 8th, and 12th weeks. At the end of the 12th week, the liver weights were measured. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed with a Hitachi automatic analyzer. The lipid levels of the triglycerides (TGs), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and the concentrations of free fatty acids (FFAs) were also measured. An oil red O kit was used to detect lipid droplet accumulation in hepatocytes. Steatosis, ballooning degeneration and inflammation were histopathologically determined. The protein and mRNA expression levels of β3-AR, peroxisome proliferator-activated receptor-alpha (PPAR-α), peroxisome proliferator-activated receptor-gamma (PPAR-γ), mitochondrial carnitine palmitoyltransferase-1 (mCPT-1), and fatty acid translocase (FAT)/CD36 were measured by western blot analysis and RT-qPCR, respectively. RESULTS After treatment with the β3-AR agonist BRL37344 for 4 weeks, the levels of ALT, AST, TGs, TC, LDL-C and FFAs were decreased in the NAFLD model group compared with the HFD group. Body and liver weights, liver index values and lipid droplet accumulation were lower in the HFD + β3-AGO group than in the HFD group. Decreased NAFLD activity scores (NASs) also showed that liver steatosis and inflammation were ameliorated after treatment with BRL37344. Moreover, the β3-AR antagonist L748337 reversed these effects. Additionally, the protein and gene expression levels of β3-AR, PPAR-α, and mCPT-1 were increased in the HFD + β3-AGO group, whereas those of PPAR-γ and FAT/CD36 were decreased. CONCLUSION The β3-AR agonist BRL37344 is beneficial for reducing liver fat accumulation and for ameliorating liver steatosis and inflammation in NAFLD. These effects may be associated with PPARs/mCPT-1 and FAT/CD36.
Collapse
Affiliation(s)
- Ziwen Wang
- Gastroenterology Department, the First Affiliated Hospital of Harbin Medical University, #23 Postal Street, Harbin, 150001 Heilongjiang China
| | - Shanshan Li
- Gastroenterology Department, the First Affiliated Hospital of Harbin Medical University, #23 Postal Street, Harbin, 150001 Heilongjiang China
| | - Ruifeng Wang
- Gastroenterology Department, the Fourth Affiliated Hospital of Harbin Medical University, #37 Yiyuan Street, Harbin, 150001 Heilongjiang China
| | - Liansheng Guo
- Gastroenterology Department, the First Affiliated Hospital of Harbin Medical University, #23 Postal Street, Harbin, 150001 Heilongjiang China
| | - Dan Xu
- Gastroenterology Department, the First Affiliated Hospital of Harbin Medical University, #23 Postal Street, Harbin, 150001 Heilongjiang China
| | - Tieyuan Zhang
- Harbin Medical University, #157 Baojian Street, Harbin, 150081 Heilongjiang China
| | - Yifan Xu
- Harbin Medical University, #157 Baojian Street, Harbin, 150081 Heilongjiang China
| | - Wenlong Wang
- Harbin Medical University, #157 Baojian Street, Harbin, 150081 Heilongjiang China
| | - Min Wang
- Harbin Medical University, #157 Baojian Street, Harbin, 150081 Heilongjiang China
| | - Zhongwei Gan
- Harbin Medical University, #157 Baojian Street, Harbin, 150081 Heilongjiang China
| | - Xiaobing Wang
- Gastroenterology Department, the First Affiliated Hospital of Harbin Medical University, #23 Postal Street, Harbin, 150001 Heilongjiang China
| |
Collapse
|
55
|
Lee JY, Im AR, Shim KS, Ji KY, Kim KM, Kim YH, Chae S. Beneficial Effects of Insect Extracts on Nonalcoholic Fatty Liver Disease. J Med Food 2020; 23:760-771. [PMID: 32380876 DOI: 10.1089/jmf.2019.4536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It is well known that nonalcoholic fatty liver disease (NAFLD) is a common disease worldwide because of unhealthy changes in dietary habits. In this study, we determined the effects of Tenebrio molitor Linnaeus, 1758 extract (TML) and Allomyrina dichotoma Linnaeus, 1771 larvae extract (ADL) in cellular and animal models. In vitro, TML and ADL treatments did not cause cytotoxicity, but attenuated the accumulation of lipid in HepG2 cells induced by free fatty acids. In vivo, mice were orally treated with TML and ADL for 10 weeks during high-fat diet feeding. TML and ADL administration significantly reduced the weight of body, liver tissue, and adipose tissue. Serum lipid profiles, hepatic functional parameters, and glucose levels were ameliorated by TML and ADL. Moreover, TML and ADL suppressed increased lipogenesis and inflammation-related makers, and improved antioxidant enzyme activity. In liver tissue, the decreased lipid accumulation by administration of TML and ADL was observed using Oil Red O and Hematoxylin and Eosin staining. Therefore, we suggest that TML and ADL may be having a therapeutic potential and is used to develop a therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Joo Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - A-Rang Im
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Ki Shuk Shim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Ki Mo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea.,University of Science and Technology (UST), Korean Medicine Life Science, Daejeon Korea
| | - Yun Hee Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Sungwook Chae
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea.,University of Science and Technology (UST), Korean Medicine Life Science, Daejeon Korea
| |
Collapse
|
56
|
Lu H, Ye C, Feng X, Liu J, Bhaumik M, Xia B, Liu C, Shen Z. Spontaneous Development of Hepatocellular Carcinoma and B-Cell Lymphoma in Mosaic and Heterozygous Brca2 and Cdkn1a Interacting Protein Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1175-1187. [PMID: 32201259 DOI: 10.1016/j.ajpath.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver tumors. Although HCC is associated with chronic viral infections, alcoholic cirrhosis, and nonalcoholic fatty liver disease, genetic factors that contribute to the HCC risk remain unknown. The BRCA2 DNA repair associated (BRCA2) and cyclin-dependent kinase inhibitor 1A (CDKN1A) interacting protein, known as BCCIP, are essential for cell viability and maintenance of genomic stability. In this study, we established a new genetically engineered mouse model with Bccip deficiency. Mosaic or heterozygous Bccip deletion conferred an increased risk of spontaneous liver tumorigenesis and B-cell lymphoma development at old age. These abnormalities are accompanied with chronic inflammation, histologic features of nonalcoholic steatohepatitis, keratin and ubiquitin aggregates within cytoplasmic Mallory-Denk bodies, and changes of the intracellular distribution of high-mobility group box 1 protein. Our study suggests BCCIP dysregulation as a risk factor for HCC and offers a novel mouse model for future investigations of nonviral or nonalcoholic causes of HCC development.
Collapse
Affiliation(s)
- Huimei Lu
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xing Feng
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mantu Bhaumik
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chen Liu
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
57
|
Pompili S, Vetuschi A, Gaudio E, Tessitore A, Capelli R, Alesse E, Latella G, Sferra R, Onori P. Long-term abuse of a high-carbohydrate diet is as harmful as a high-fat diet for development and progression of liver injury in a mouse model of NAFLD/NASH. Nutrition 2020; 75-76:110782. [PMID: 32268264 DOI: 10.1016/j.nut.2020.110782] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease globally. It is caused by a complex network of factors, including diet. The hallmark of NAFLD is the benign accumulation of triacylglycerols, however, this condition may worsen into non-alcoholic steatohepatitis (NASH), a more severe form associated with inflammation and fibrosis. Currently, no therapies are available, and diet modifications are the only strategy. Although there is increasing evidence emerging about how an abuse of carbohydrates could be involved in the progression of liver injury, a comprehensive understanding of the damage induced by an enriched carbohydrate diet is still far from complete. The aim of this study was to investigate and compare the effects of a low-fat/high-carbohydrate diet (LF-HCD) with high-fat (HFD) and standard (SD) diets in a nutritional mouse model of NAFLD/NASH. METHODS Histologic, real-time polymerase chain reaction, and immunohistochemical evaluations were performed. RESULTS The results showed that the prolonged abuse of both LF-HCDs and HFDs induced a significant increase in hepatic steatosis, inflammation, and fibrosis scores compared with SD. At the same time, both LF-HCDs and HFDs led to significant increases in the expression of the molecules involved in the progression of NAFLD that we assessed (perilipin, CD68, TGF-β1, CTGF, leptin, leptin receptor, and α-SMA). CONCLUSIONS The present study highlighted that the simple substitution of fats with carbohydrates is not a proper strategy to prevent or mitigate the progression of NAFLD/NASH. Further studies are required to define the best nutritional strategy to prevent NAFLD and its related metabolic syndrome.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy; Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy.
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
58
|
Pasavei AG, Mohebbati R, Boroumand N, Ghorbani A, Hosseini A, Jamshidi ST, Soukhtanloo M. Anti-Hypolipidemic and Anti-Oxidative Effects of Hydroalcoholic Extract of Origanum majorana on the Hepatosteatosis Induced with High-Fat Diet in Rats. Malays J Med Sci 2020; 27:57-69. [PMID: 32158345 PMCID: PMC7053549 DOI: 10.21315/mjms2020.27.1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction The aim of the current study is to evaluate the antihyperlipidemic and anti-oxidative effects of hydro-alcoholic extract of marjoram (HAEM) in rats fed with a high-fat diet (HFD). Methods In the experimental study, the rats were randomly divided into four groups of five rats in each and fed with high-fat diet for 12 weeks as follows: One group (normal diet group) was fed with a standard diet, one group was fed with HFD, and two groups were fed with HFD and orally fed with 150 and 450 mg/kg/day HAEM. The serum samples and liver tissues were used for measuring the biochemical and oxidative parameters and histopathological studies. HFD induced hepatosteatosis in rats as evidenced by the altered liver enzymes activity, serum lipid profile and oxidative status. Results Serum lipid profile (triglyceride, cholesterol and low-density lipoprotein) in rats fed with HFD + HAEM (150 and 450 mg/kg/day) was significantly decreased. Furthermore, the evaluation of oxidative stress showed a reduction of the malondialdehyde (MDA) level and an increase in ferric-reducing anti-oxidant power. Meanwhile, liver enzyme activities declined in response to HAEM. Conclusion Using the HAEM could be a future therapeutic agent in treating hepatosteatosis and reducing oxidative damages of HFD in the liver.
Collapse
Affiliation(s)
- Abdolmomen Ghaeni Pasavei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadia Boroumand
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Taraz Jamshidi
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Qin Y, Grimm SA, Roberts JD, Chrysovergis K, Wade PA. Alterations in promoter interaction landscape and transcriptional network underlying metabolic adaptation to diet. Nat Commun 2020; 11:962. [PMID: 32075973 PMCID: PMC7031266 DOI: 10.1038/s41467-020-14796-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic adaptation to nutritional state requires alterations in gene expression in key tissues. Here, we investigated chromatin interaction dynamics, as well as alterations in cis-regulatory loci and transcriptional network in a mouse model system. Chronic consumption of a diet high in saturated fat, when compared to a diet high in carbohydrate, led to dramatic reprogramming of the liver transcriptional network. Long-range interaction of promoters with distal regulatory loci, monitored by promoter capture Hi-C, was regulated by metabolic status in distinct fashion depending on diet. Adaptation to a lipid-rich diet, mediated largely by nuclear receptors including Hnf4α, relied on activation of preformed enhancer/promoter loops. Adaptation to carbohydrate-rich diet led to activation of preformed loops and to de novo formation of new promoter/enhancer interactions. These results suggest that adaptation to nutritional changes and metabolic stress occurs through both de novo and pre-existing chromatin interactions which respond differently to metabolic signals. Metabolic adaptation to different diets results in changes to gene expression. Here, the authors characterise the chromatin landscape and transcriptional network in mice on a diet of high saturated fat, compared to a diet high in carbohydrate, finding a dramatic reprogramming of the liver transcriptional network.
Collapse
Affiliation(s)
- Yufeng Qin
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - John D Roberts
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kaliopi Chrysovergis
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
60
|
Abstract
Background and aim: Sodium-glucose cotransporter (SGLT) 2 is responsible for most of the glucose reabsorption in the kidneys and has been proposed as a novel therapeutic target for the treatment of type 2 diabetes. In recent years, nonalcoholic steatohepatitis (NASH), the pathogenesis of which is strongly associated with insulin resistance, obesity, and type 2 diabetes, has become a considerable healthcare burden worldwide. However, there is currently no established pharmacotherapy for NASH. Here, we investigated the therapeutic effects of the SGLT2 selective inhibitor ipragliflozin alone and in combination with metformin on NASH in high fat and cholesterol diet-fed KK/Ay type 2 diabetic mice.Results: This diabetic model had hyperglycemia, insulin resistance, and obesity, and also exhibited steatosis, inflammation, and fibrosis in the liver, pathological features resembling those in human NASH. Four-week repeated administration of ipragliflozin significantly improved not only hyperglycemia, insulin resistance, and obesity but also hyperlipidemia and NASH-associated symptoms including hepatic steatosis and fibrosis. In addition, ipragliflozin attenuated inflammation and oxidative stress in the liver. Repeated administration of metformin also significantly improved symptoms of type 2 diabetes with NASH to a comparable degree to that by ipragliflozin. In addition, combination treatment with ipragliflozin and metformin additively improved these symptoms.Conclusions: These results demonstrate that the SGLT2 selective inhibitor ipragliflozin improves not only hyperglycemia but also NASH in type 2 diabetic mice, suggesting that treatment with ipragliflozin alone and in combination with metformin may be effective for treating type 2 diabetes with NASH.
Collapse
Affiliation(s)
- Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | | |
Collapse
|
61
|
Lee SB, Kim HG, Lee JS, Kim WY, Lee MM, Kim YH, Lee JO, Kim HS, Son CG. Intermittent restraint-induced sympathetic activation attenuates hepatic steatosis and inflammation in a high-fat diet-fed mouse model. Am J Physiol Gastrointest Liver Physiol 2019; 317:G811-G823. [PMID: 31604029 DOI: 10.1152/ajpgi.00047.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is very prevalent worldwide and is associated with insulin resistance and metabolic syndrome. Stress is a physiological and biological response to maintain homeostasis of the body against stressors while severe stress response is an important contributor to various illnesses, including metabolic syndrome and brain disorders. We have evaluated the effects of intermittent restraint stress on NAFLD in a high-fat diet (HFD)-fed mouse model. C57/BL6 mice had free access to a 60% HFD for 8 wk, with or without intermittent restraint stress (3 h) conducted three times a week. HFD administration increased fat accumulation in liver tissues. Unlike the stressed standard diet group, the levels of hepatic total cholesterol and triglycerides were significantly ameliorated in the HFD with stress group compared with the HFD alone group. These beneficial results were in accordance with serum levels of liver enzymes (aspartate transaminase, alanine transaminase) and hepatic levels of TNF-α and oxidative stress parameters (reactive oxygen species, nitric oxide, and malondialdehyde). The intermittent restraint stress significantly attenuated the HFD-derived alterations in serum insulin levels, hepatic protein kinase B activity, and gene expression, especially related to lipogenesis. This intermittent restraint stress also elevated the serum epinephrine concentration and activated the adrenergic receptor β2 or β3 in livers or white adipose tissue (WAT). Activation of energy expenditure markers (uncoupling protein 1, peroxisome proliferator-activated receptor-γ coactivator-1α) in brown adipose tissue and the browning of WAT were also observed in the HFD with stress group. Taken together, our findings showed the beneficial effects of sympathetic activation by intermittent restraint stress on HFD-induced hepatic steatosis and partial inflammation.NEW & NOTEWORTHY In modern society, stress is a part of daily life, and a certain level of stress is inevitable to most of the general population. Uncontrolled severe stress is obviously harmful; however, certain kind/level of stress could be beneficial on lipid metabolism via sympathetic activation. Our data suggest that a sympathetic activation by intermittent restraint stress could play a positive role in maintaining the balance of hepatic lipid metabolism, especially under high-fat diet conditions.
Collapse
Affiliation(s)
- Sung Bae Lee
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Hyeong Geug Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Jin Seok Lee
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Won Yong Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Myong Min Lee
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Yun Hee Kim
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Chang Gue Son
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| |
Collapse
|
62
|
Hong SA, Jung IR, Choi SE, Hwang Y, Lee SJ, Son Y, Heo YJ, Cui R, Han SJ, Kim HJ, Lee KW, Kang Y. Sodium fluorocitrate having inhibitory effect on fatty acid uptake ameliorates high fat diet-induced non-alcoholic fatty liver disease in C57BL/6J mice. Sci Rep 2019; 9:17839. [PMID: 31780766 PMCID: PMC6882787 DOI: 10.1038/s41598-019-54476-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is excessive fat build-up in the liver without alcohol consumption and includes hepatic inflammation and damage. Excessive influx of fatty acids to liver from circulation is thought to be a pathogenic cause for the development of NAFLD. Thus, inhibition of fatty acid intake into hepatocyte would be a maneuver for protection from high fat diet (HFD)-induced NAFLD. This study was initiated to determine whether sodium fluorocitrate (SFC) as a fatty acid uptake inhibitor could prevent palmitate-induced lipotoxicity in hepatocytes and protect the mice from HFD-induced NAFLD. SFC significantly inhibited the cellular uptake of palmitate in HepG2 hepatocytes, and thus prevented palmitate-induced fat accumulation and death in these cells. Single treatment with SFC reduced fasting-induced hepatic steatosis in C57BL/6J mice. Concurrent treatment with SFC for 15 weeks in HFD-fed C57BL/6J mice prevented HFD-induced fat accumulation and stress/inflammatory signal activation in the liver. SFC restored HFD-induced increased levels of serum alanine aminotransferase and aspartate aminotransferases as hepatic injury markers in these mice. SFC treatment also improved HFD-induced hepatic insulin resistance, and thus ameliorated HFD-induced hyperglycemia. In conclusion, inhibition of fatty acid mobilization into liver through SFC treatment can be a strategy to protect from HFD-induced NAFLD.
Collapse
Affiliation(s)
- Seung A Hong
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Ik-Rak Jung
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Yoonjung Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Soo-Jin Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Youngho Son
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Yu Jung Heo
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, 443-749, Republic of Korea
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Rihua Cui
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, 443-749, Republic of Korea.
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, 443-749, Republic of Korea.
| |
Collapse
|
63
|
Chitosan Oligosaccharide Attenuates Nonalcoholic Fatty Liver Disease Induced by High Fat Diet through Reducing Lipid Accumulation, Inflammation and Oxidative Stress in C57BL/6 Mice. Mar Drugs 2019; 17:md17110645. [PMID: 31744059 PMCID: PMC6891487 DOI: 10.3390/md17110645] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease closely associated with metabolic syndrome, but there are no validated pharmacological therapies. The aim of this study was to investigate the effect of chitosan oligosaccharide (COS) on NAFLD. Mice were fed either a control diet or a high-fat diet (HFD) with or without COS (200 or 400 mg/kg body weight (BW)) by oral gavage for seven weeks. Administration with COS significantly lowered serum lipid levels in the HFD-fed mice. The hepatic lipid accumulation was significantly decreased by COS, which was attributed to decreased expressions of lipogenic genes and increased expressions of fatty β-oxidation-related genes. Moreover, pro-inflammatory cytokines, neutrophils infiltration, and macrophage polarization were decreased by COS in the liver. Furthermore, COS ameliorated hepatic oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and upregulating gene expressions of antioxidant enzymes. These beneficial effects were mediated by the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Therefore, COS might be a potent dietary supplement to ameliorate NAFLD.
Collapse
|
64
|
Anti-Obesity Effects of the Flower of Prunus persica in High-Fat Diet-Induced Obese Mice. Nutrients 2019; 11:nu11092176. [PMID: 31514294 PMCID: PMC6770263 DOI: 10.3390/nu11092176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Prunus persica (L.) Batsch is a deciduous fruit tree cultivated worldwide. The flower of P. persica (PPF), commonly called the peach blossom, is currently consumed as a tea for weight loss in East Asia; however, its anti-obesity effects have yet to be demonstrated in vitro or in vivo. Since PPF is rich in phytochemicals with anti-obesity properties, we aimed to investigate the effects of PPF on obesity and its underlying mechanism using a diet-induced obesity model. Male C57BL/6 mice were fed either normal diet, high-fat diet (HFD), or HFD containing 0.2% or 0.6% PPF water extract for 8 weeks. PPF significantly reduced body weight, abdominal fat mass, serum glucose, alanine transaminase and aspartate aminotransferase levels, and liver and spleen weights compared to the HFD control group. Real-time quantitative polymerase chain reaction analysis revealed that PPF suppressed lipogenic gene expression, including stearoyl-CoA desaturase-1 and -2 and fatty acid synthase, and up-regulated the fatty acid β-oxidation gene, carnitine palmitoyltransferase-1, in the liver. Our results suggest that PPF exerts anti-obesity effects in obese mice and these beneficial effects might be mediated through improved hepatic lipid metabolism by reducing lipogenesis and increasing fatty acid oxidation.
Collapse
|
65
|
Koh YM, Jang SW, Ahn TW. Anti-obesity effect of Yangkyuksanwha-tang in high-fat diet-induced obese mice. Altern Ther Health Med 2019; 19:246. [PMID: 31488172 PMCID: PMC6728965 DOI: 10.1186/s12906-019-2669-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Yangkyuksanwha-tang (YST) is an herbal medicine based on Sasang constitutional medicine (SCM) and is widely used in Korean traditional medicine. The aim of the study was to evaluate the effect of YST on obesity in high-fat diet (HFD)-induced obese mice. METHODS We induced obesity in C57bl/6 J mice using a HFD, and then orally administered 300 mg/kg YST for 6 weeks. We measured body weight, food efficiency, organ and fat weight, serum biochemical parameters, and obesity-related gene expression, and carried out histological analysis at the end of the experimental period. RESULTS YST significantly reduced the absolute body weight and food efficiency ratio. The serum, aminotransferase, glucose, total cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels were significantly lower in the YST-treated group than in the control group, whereas the high-density lipoprotein-cholesterol level in the YST-treated group was significantly higher. The YST-treated group also showed a significant reduction in regional fatty tissues and the absolute weight of various organs. We also observed a significantly reduced expression of AP2/FABP4, C/EBP-β, leptin, and SREBP1c/ADD1 mRNA, and significantly increased expression of UCP-2 and adiponectin mRNA in adipose tissue in the YST-treated group. YST also decreased the lipid droplet size and lipid accumulation in the liver, as well as adipocyte size in epididymal adipose tissue. At the dose tested, YST was non-toxic to the liver and kidneys of the mice. CONCLUSION The results imply that YST has anti-obesity effects in obesity-induced mice. Although the number of experimental animals was limited and the drug effects concern mice, rather than humans, which have different constitutions, the study has valuable implications with respect to the general effects of YST.
Collapse
|
66
|
Lee S, Kwak JH, Kim SH, Jeong TB, Son SW, Kim JH, Lim Y, Cho JY, Hwang DY, Kim KS, Jung YS. Comparative study of liver injury induced by high-fat methionine- and choline-deficient diet in ICR mice originating from three different sources. Lab Anim Res 2019; 35:15. [PMID: 32257903 PMCID: PMC7081597 DOI: 10.1186/s42826-019-0016-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It is characterized by the accumulation of lipids without alcohol intake and often progresses to non-alcoholic steatohepatitis (NASH), liver fibrosis, and end-stage liver diseases such as cirrhosis or cancer. Although animal models have greatly contributed to the understanding of NAFLD, studies on the disease progression in humans are still limited. In this study, we used the recently reported high-fat L-methionine-defined and choline-deficient (HFMCD) diet to rapidly induce NASH and compared the responses to HFMCD in ICR mice from three different countries: Korea (supplied by the National Institute of Food and Drug Safety Evaluation), USA, and Japan during 6 weeks. Feeding HFMCD did not cause significant differences in weight gain in comparison with mice fed control diet. Relative weight of the liver increased gradually, while the relative weight of the kidneys remained unchanged. The parameters of liver injury (serum activities of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) increased rapidly from 1 week and remained elevated for as long as 6 weeks. Histopathological analysis showed that the accumulation of hepatic lipids induced by HFMCD was prominent at 1 week after diet supplementation and increased further at 6 weeks. Inflammatory markers were significantly increased in a time-dependent manner by HFMCD. The mRNA levels of TNF-α and IL-6 were elevated approximately 15-fold relative to control diet and that of IL-1β was increased more than 20-folds at 6 week after the onset of HFMCD intake. In addition, mRNA expression of fibrosis markers such as α-SMA, TGFβ1, and Col1a1 were also significantly increased at 6 week. In summary, the responses of Korl:ICR mice by intake of HFMCD diet were similar to those of ICR mice from other sources, which suggests that Korl:ICR mice is also a useful resource to study the pathogenesis of diet-induced NAFLD.
Collapse
Affiliation(s)
- Seunghyun Lee
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jae-Hwan Kwak
- 2College of Pharmacy, Brain Busan 21 Plus Program, Kyungsung University, Busan, South Korea
| | - Sou Hyun Kim
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| | - Tae Bin Jeong
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| | - Seung Won Son
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| | - Joung-Hee Kim
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yong Lim
- 3Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, South Korea
| | - Joon-Yong Cho
- 4Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - Dae Youn Hwang
- 5Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Kil Soo Kim
- 6College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Suk Jung
- 1College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
67
|
Tsai YC, Lin YC, Huang CC, Villaflores OB, Wu TY, Huang SM, Chin TY. Hericium erinaceus Mycelium and Its Isolated Compound, Erinacine A, Ameliorate High-Fat High-Sucrose Diet-Induced Metabolic Dysfunction and Spatial Learning Deficits in Aging Mice. J Med Food 2019; 22:469-478. [DOI: 10.1089/jmf.2018.4288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | | | | | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
68
|
Vidé J, Bonafos B, Fouret G, Benlebna M, Poupon J, Jover B, Casas F, Jouy N, Feillet-Coudray C, Gaillet S, Coudray C. Spirulina platensis and silicon-enriched spirulina equally improve glucose tolerance and decrease the enzymatic activity of hepatic NADPH oxidase in obesogenic diet-fed rats. Food Funct 2019; 9:6165-6178. [PMID: 30431036 DOI: 10.1039/c8fo02037j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of metabolic syndrome components, such as obesity, glucose intolerance and hepatic steatosis, is rapidly increasing and becoming a major issue of public health. The present work was designed to determine the effects of Spirulina platensis (Sp) algae and silicon-enriched Sp on major metabolic syndrome components in obesogenic diet-fed rats. Forty male Wistar rats were divided into 4 groups. Ten rats were fed a control diet and 30 rats were fed a high fat (HF) diet. The HF groups were divided into three groups and supplemented with placebo or Sp or Si-enriched Sp for 12 weeks. Dietary intake and body weight were recorded. Oral glucose tolerance test and surrogate metabolic syndrome (insulin, leptin, adiponectin and lipids), mitochondrial function (enzymatic activity of respiratory chain complexes and β-hydroxyacyl-CoA dehydrogenase), NADPH oxidase activity and several long-established oxidative stress markers were measured in the blood and liver. The HF diet induced obesity, glucose intolerance, hepatic steatosis and huge metabolic alterations, associated with higher NADPH oxidase activity and lower hepatic sulfhydryl group and glutathione contents. Otherwise, the Sp and Sp + Si supplements showed some interesting effects on rat characteristics and particularly on blood and hepatic metabolic parameters. Indeed, the intake of Sp or Sp + Si mainly improved glucose tolerance and decreased the enzymatic activity of hepatic NADPH oxidase. Overall, Si supplementation of spirulina does not appear to have more beneficial effects than spirulina alone. Other experiments with different species of rats/mice, different diets or different durations of diet intake should be undertaken to confirm or invalidate these results.
Collapse
Affiliation(s)
- Joris Vidé
- DMEM, INRA, Univ. Montpellier, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dong TS, Jacobs JP. Nonalcoholic fatty liver disease and the gut microbiome: Are bacteria responsible for fatty liver? Exp Biol Med (Maywood) 2019; 244:408-418. [PMID: 30871368 PMCID: PMC6547005 DOI: 10.1177/1535370219836739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This invited minireview for the upcoming thematic issue on the microbiome addresses the role of the microbiome in nonalcoholic fatty liver disease (NAFLD). The incidence of NAFLD has increased greatly in recent years in parallel with the rise in obesity and is now believed to have a population prevalence of 20-40%. It is anticipated to soon become the primary cause of liver-related morbidity and mortality, and unfortunately, there are few treatment options. Therefore, there is a critical need for improved understanding of NAFLD pathophysiology to provide new avenues for therapeutic intervention. In this paper, we have reviewed evidence from human and animal model studies that have associated microbiome composition and microbial metabolites with development and progression of NAFLD. We have also discussed proposed mechanisms by which the microbiome could contribute to NAFLD pathogenesis and addressed future directions for this field.
Collapse
Affiliation(s)
- Tien S Dong
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan P Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90025, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- University of California Los Angeles Microbiome Center, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
70
|
Kwon EY, Choi MS. Dietary Eriodictyol Alleviates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obese Mice. Int J Mol Sci 2019; 20:ijms20051227. [PMID: 30862092 PMCID: PMC6429409 DOI: 10.3390/ijms20051227] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the molecular mechanisms underlying the anti-obesity effect of flavonoid eriodictyol (ED) supplementation in mice fed with a high-fat diet (HFD). C57BL/6N mice were fed with normal diet (ND), HFD (40 kcal% fat), or HFD + 0.005% (w/w) ED for 16 weeks. In HFD-induced obese mice, dietary ED supplementation significantly alleviated dyslipidemia and adiposity by downregulating the expression of lipogenesis-related genes in white adipose tissue (WAT), while enhancing fecal lipid excretion. ED additionally improved hepatic steatosis and decreased the production of pro-inflammatory cytokines by downregulating the expression of hepatic enzymes and the genes involved in lipogenesis and upregulating the expression of hepatic fatty acid oxidation-related enzymes and genes. In addition, ED improved insulin resistance (IR) by suppressing hepatic gluconeogenesis, enhancing glucose utilization, and modulating the production and release of two incretin hormones, namely gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Taken together, the current findings indicated that ED can protect against diet-induced obesity and related metabolic disturbances, including dyslipidemia, inflammation, fatty liver disease, and IR in diet-induced obese mice.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu 41566, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu 41566, Korea.
| |
Collapse
|
71
|
Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Arch Biochem Biophys 2019; 665:46-56. [PMID: 30797748 DOI: 10.1016/j.abb.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of a high fat and a high sucrosediet in wild type and BDNF (+/-) mice on oxidative stress in epididymal and subcutaneousadipose tissues by measuring different markers of oxidative stress and antioxidant enzymes. Wild type (WT) and BDNF (+/-) male mice were divided into six groups receiving fed control diet (CD), high sucrose diet (HSD), or high fat diet (HFD) for four months. Levels of 3-nitrotyrosine (3-NT) increased in the HFD-fed BDNF (+/-) mice, while 4-hydroxynonenal (4-HNE) levels increased in the CD and HFD-fed BDNF (+/-) groups. Malondialdehyde (MDA) levels decreased in subcutaneous tissue compared to epididymal adipose tissue, independently of diet type. Superoxide dismutase (SOD) activity was reduced by HFD (p < 0.05), butglutathione peroxidase (GSH-Px) activity was increased by HSD in epididymal adipose tissuein BDNF (+/-) mice (p < 0.05). GSH-Px activities was increased by CD and HFD in subcutaneous adipose tissue of BDNF (+/-) (p < 0.05). SOD2 and GSH-Px3 expressions were only decreased by HSD in epididymal and subcutaneous adipose tissues of BDNF (+/-) mice (p < 0.05). In conclusion, reduced BDNF may increase OS in epididymal adipose tissue, but not in subcutaneous adipose tissue following HSD and HFD.
Collapse
Affiliation(s)
- Akın Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, School of Health, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
72
|
Feillet-Coudray C, Fouret G, Vigor C, Bonafos B, Jover B, Blachnio-Zabielska A, Rieusset J, Casas F, Gaillet S, Landrier JF, Durand T, Coudray C. Long-Term Measures of Dyslipidemia, Inflammation, and Oxidative Stress in Rats Fed a High-Fat/High-Fructose Diet. Lipids 2019; 54:81-97. [PMID: 30767221 DOI: 10.1002/lipd.12128] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
Inflammation and oxidative stress are thought to be involved in, or associated with, the development of obesity, dyslipidemia, hepatic steatosis, and insulin resistance. This work was designed to determine the evolution of inflammation and oxidative stress during onset and progression of hepatic steatosis and glucose intolerance. Seventy-five male Wistar rats were divided to control and high-fat high-fructose (HFHFr) groups. A subgroup of each group was sacrificed at 4, 8, 12, 16, and 20 weeks. HFHFr-fed rats exhibited overweight, glucose intolerance, and hepatic steatosis with increased contents of hepatic diacylglycerols and ceramides. The HFHFr diet increased hepatic interleukin 6 (IL-6) protein and adipose tissue CCL5 gene expression and hepatic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity but not mitochondrial reactive oxygen species (ROS) production. The HFHFr diet decreased plasma and liver levels of isoprostanoid metabolites as well as plasma thiobarbituric acid-reactive substance (TBARS) levels. Hepatic glutathione content was decreased with a moderate decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) with the HFHFr diet. Overall, HFHFr diet led to hepatic lipid accumulation and glucose intolerance, which were accompanied by only moderate inflammation and oxidative stress. Most of these changes occurred at the same time and as early as 8 or 12 weeks of diet treatment. This implies that oxidative stress may be the result, not the cause, of these metabolic alterations, and suggests that marked hepatic oxidative stress should probably occur at the end of the steatotic stage to result in frank insulin resistance and steatohepatitis. These findings need to be further evaluated in other animal species as well as in human studies.
Collapse
Affiliation(s)
- Christine Feillet-Coudray
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| | - Gilles Fouret
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34090, Montpellier, France
| | - Béatrice Bonafos
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| | - Bernard Jover
- PhyMedExp, University of Montpellier, INSERM, CNRS, 371 avenue Doyen Gaston Giraud, 34295, Montpellier, France
| | - Agnieszka Blachnio-Zabielska
- Physiology Department, Medical University of Bialystok, Jana Kilińskiego 1, 15-089, Bialystok, Poland.,Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Jana Kilińskiego 1, 15-089, Bialystok, Poland
| | - Jennifer Rieusset
- UMR U1060, INSERM, Faculté de médecine Lyon-Sud, 165 Chemin du Grand Revoyet, 69921 Oullins, France
| | - François Casas
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| | - Sylvie Gaillet
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| | - Jean Francois Landrier
- Aix Marseille University, INSERM, INRA, C2VN, 27 boulevard Jean Moulin 13385, Marseille, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS, ENSCM, 15 Avenue Charles Flahault, 34090, Montpellier, France
| | - Charles Coudray
- DMEM (Dynamique Musculaire & Métabolisme) INRA, University of Montpellier, 2 Place Viala, 34060, Montpellier, France
| |
Collapse
|
73
|
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol Biol Rep 2019; 46:2273-2283. [PMID: 30747384 DOI: 10.1007/s11033-019-04681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.
Collapse
|
74
|
Inula Japonica Thunb. Flower Ethanol Extract Improves Obesity and Exercise Endurance in Mice Fed A High-Fat Diet. Nutrients 2018; 11:nu11010017. [PMID: 30577560 PMCID: PMC6356276 DOI: 10.3390/nu11010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/20/2023] Open
Abstract
Inula japonica Thunb. (Asteraceae) is a flowering plant that grows mainly in Korea, Japan, and China and its flower extract has diverse biological effects such as anti-inflammatory and antioxidative activities. However, the effects on obesity and enhancement of endurance capacity have not been explored yet. This study aims to reveal the effects of I. japonica flower ethanol extract (IJE) on obesity and endurance capacity in high-fat diet (HFD) fed C57BL/6J mice and the mechanism. IJE inhibited lipid accumulation in 3T3-L1 adipocytes in vitro. Also, IJE-fed mice showed reduced body weight gain, hepatic lipid, and body fat mass, and increased muscle weight. IJE reduced lipid accumulation in the liver and adipose tissue by decreasing lipogenic and adipogenic gene expression. Additionally, consumption of low-dose IJE significantly enhanced endurance capacity via increasing AMP-activated protein kinase activity and mRNA levels of Myh7 and Myh2. Luteolin and 1β-hydroxyalantolactone (1β-HA), compounds of IJE, are involved in anti-adipogenesis in the 3T3-L cells and only luteolin increased the protein levels of MHC during C2C12 myoblast differentiation. Collectively, our results suggest that consumption of IJE not only helps to prevent obesity but also enhances endurance capacity reduced by HFD.
Collapse
|
75
|
Sales RC, Medeiros PC, Spreafico F, de Velasco PC, Gonçalves FKA, Martín-Hernández R, Mantilla-Escalante DC, Gil-Zamorano J, Peres WAF, de Souza SAL, Dávalos A, Tavares do Carmo MG. Olive Oil, Palm Oil, and Hybrid Palm Oil Distinctly Modulate Liver Transcriptome and Induce NAFLD in Mice Fed a High-Fat Diet. Int J Mol Sci 2018; 20:ijms20010008. [PMID: 30577497 PMCID: PMC6337378 DOI: 10.3390/ijms20010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. The most severe form is nonalcoholic steatohepatitis (NASH). Among risk factors for the development of NAFLD is excessive lipid intake. Since palm (P) oil is the most consumed oil in the world, we aimed to investigate the effects of high-fat diets made with P oil, hybrid palm (HP) oil, or olive (O) oil in liver. Twenty-four male mice (C57Bl/6J) were fed a high-fat diet (41% fat) containing P, HP, or O oils for 8 weeks and compared to a control (C) group fed a chow diet. Adiposity was measured with computed tomography. Body, adipose tissue, and liver weights, as well as liver fat (Bligh–Dyer), blood lipid profile, glucose, and liver enzymes were measured. Liver histology (hematoxylin–eosin) and transcriptome (microarray-based) were performed. ANOVA tests with Newman–Keuls were used. Body weight was increased in the P group (p < 0.001) and body fat in the O group (C vs. O p ≤ 0.01, P vs. O p ≤ 0.05, HP vs. O p ≤ 0.05). All high-fat diets disturbed the blood lipid profile and glucose, with marked effects of HP on very low-density lipoprotein cholesterol (VLDL), triglycerides, and alkaline phosphatase (p ≤ 0.001). HP had the highest liver fat (42.76 ± 1.58), followed by P (33.94 ± 1.13). O had a fat amount comparable to C (16.46 ± 0.34, 14.71 ± 0.70, respectively). P and HP oils induced hepatocyte ballooning. Transcriptome alterations of the O group were related to amino acid metabolism and fatty acid (FA) metabolism, the P group to calcium ion homeostasis, and HP oil to protein localization. Both P and HP oils induced NASH in mice via disturbed hepatocyte transcription. This raises concerns about the content of these oils in several industrialized foods.
Collapse
Affiliation(s)
- Rafael C Sales
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| | - Priscylla C Medeiros
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, Brazil.
| | - Flavia Spreafico
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain.
| | - Patrícia C de Velasco
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| | - Fernanda K A Gonçalves
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| | - Roberto Martín-Hernández
- GENYAL Platform on Nutrition and Health, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain.
| | - Diana C Mantilla-Escalante
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain.
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain.
| | - Wilza A F Peres
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| | - Sergio A L de Souza
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, Brazil.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain.
| | - Maria G Tavares do Carmo
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
76
|
Hou C, Feng W, Wei S, Wang Y, Xu X, Wei J, Ma Z, Du Y, Guo J, He Y, Kong F, Tang R, Zheng K. Bioinformatics Analysis of Key Differentially Expressed Genes in Nonalcoholic Fatty Liver Disease Mice Models. Gene Expr 2018; 19:25-35. [PMID: 30135001 PMCID: PMC6290321 DOI: 10.3727/105221618x15341831737687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health problem characterized by excessive accumulation of fat in the liver without effect of other pathological factors including hepatitis infection and alcohol abuse. Current studies indicate that gene factors play important roles in the development of NAFLD. However, the molecular characteristics of differentially expressed genes (DEGs) and associated mechanisms with NAFLD have not been well elucidated. Using two microarray data associated with the gene expression profiling in liver tissues of NAFLD mice models, we identified and selected several common key DEGs that contributed to NAFLD. Based on bioinformatics analysis, we discovered that the DEGs were associated with a variety of biological processes, cellular components, and molecular functions and were also related to several significant pathways. Via pathway crosstalk analysis based on overlapping DEGs, we observed that the identified pathways could form large and complex crosstalk networks. Besides, large and complex protein interaction networks of DEGs were further constructed. In addition, many hub host factors with a high degree of connectivity were identified based on interaction networks. Furthermore, significant modules in interaction networks were found, and the DEGs in the identified modules were found to be enriched with distinct pathways. Taken together, these results suggest that the key DEGs, associated pathways, and modules contribute to the development of NAFLD and might be used as novel molecular targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Chao Hou
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenwen Feng
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Shan Wei
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yulin Wang
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xiaoyi Xu
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Jin Wei
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ziliang Ma
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yongsheng Du
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Jialin Guo
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yu He
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- †Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Fanyun Kong
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- ‡National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Renxian Tang
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- ‡National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Kuiyang Zheng
- *Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- ‡National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
77
|
Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci 2018; 19:ijms19123855. [PMID: 30513990 PMCID: PMC6321068 DOI: 10.3390/ijms19123855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Radiation has a wide variety of effects on the liver. Fibrosis is a concern in medical fields as one of the acute effects of high-dose irradiation, such as with cancer radiotherapies. Cancer is also an important concern following exposure to radiation. The liver has an active metabolism and reacts to radiations. In addition, effects are modulated by many environmental factors, such as high-calorie foods or alcohol beverages. Adaptations to other environmental conditions could also influence the effects of radiation. Reactions to radiation may not be optimally regulated under conditions modulated by the environment, possibly leading to dysregulation, disease or cancer. Here, we introduce some reactions to ionizing radiation in the liver, as demonstrated primarily in animal experiments. In addition, modulation of radiation-induced effects in the liver due to factors such as obesity, alcohol drinking, or supplements derived from foods are reviewed. Perspectives on medical applications by modulations of radiation effects are also discussed.
Collapse
|
78
|
Nimri L, Staikin K, Peri I, Yehuda-Shnaidman E, Schwartz B. Ostreolysin induces browning of adipocytes and ameliorates hepatic steatosis. J Gastroenterol Hepatol 2018; 33:1990-2000. [PMID: 29663549 DOI: 10.1111/jgh.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Deposition of excess triglycerides in liver cells, a hallmark of NAFLD, is associated with loss of insulin sensitivity. Ostreolysin (Oly) is a 15-kDa fungal protein known to interact with cholesterol-enriched raft-like membrane domains. We aim to test whether a recombinant version of Oly (rOly) can induce functional changes in vitro in adipocytes or in vivo in mice fed a high-fat diet (HFD). METHODS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly. Male C57BL/6 mice were fed a control or HFD and treated with saline or with rOly (1 mg/kg BW) every other day for 4 weeks. RESULTS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly acquire a browning phenotype through activation of 5' adenosine monophosphate-activated protein kinase and downregulation of tumor necrosis factor α-mediated activation of IκB kinase ε and TANK-binding kinase 1. HFD-fed mice treated with rOly showed a 10% reduction in BW and improved glucose tolerance, which paralleled improved expression of liver and adipose functionality, metabolism, and inflammation status, mimicking the in vitro findings. CONCLUSION This study provides first evidence of rOly's prevention of HFD-induced NAFLD by stimulating liver and adipose muscle tissue functionality and oxidative potential, improving glucose tolerance, and ameliorating the metabolic profile of diet-induced obese mice.
Collapse
Affiliation(s)
- Lili Nimri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katerina Staikin
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
79
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
80
|
Toppo E, Sylvester Darvin S, Esakkimuthu S, Buvanesvaragurunathan K, Ajeesh Krishna T, Antony Caesar S, Stalin A, Balakrishna K, Pandikumar P, Ignacimuthu S, Al-Dhabi N. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomed Pharmacother 2018; 107:979-988. [DOI: 10.1016/j.biopha.2018.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
|
81
|
Chung YH, Bang JS, Kang CM, Goh JW, Lee HS, Hong SM, Kim DS, Park ES, Jung TW, Shin YK, Lee JH, Jeong JH. Aqueous Extract of Humulus japonicus Attenuates Hyperlipidemia and Fatty Liver in Obese Mice. J Med Food 2018; 21:999-1008. [DOI: 10.1089/jmf.2017.4135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Chang Muk Kang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji Won Goh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ho Sung Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Myeong Hong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Seong-nam, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
82
|
Sun C, Chen Z, Wang H, Ding K. Tetrahydropalmatine Prevents High-Fat Diet-Induced Hyperlipidemia in Golden Hamsters (Mesocricetus Auratus). Med Sci Monit 2018; 24:6564-6572. [PMID: 30226834 PMCID: PMC6157085 DOI: 10.12659/msm.910578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Hyperlipidemia is a major cause of atherosclerotic cardiovascular disease. Tetrahydropalmatine (THP) can exhibit hepatoprotective, anti-arrhythmic, and anti-inflammatory activities. The mechanism of THP on the hyperlipidemia remains unknown; therefore, the present study explored the role of THP in hyperlipidemia. Material/Methods We established an animal model of hyperlipidemia by high-fat diet (HFD) feeding. Blood samples were obtained for determination of serum cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), pro-inflammatory cytokines, and CYP7A1 expression. Histology was performed and inflammation was detected in the liver using hematoxylin-eosin (HE) staining and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA and protein levels of TLR4 and TRAF-6 were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Results THP suppressed hepatic lipid accumulation and reduced serum levels of TC, TG, LDL-c, and HDL-c in HFD-fed golden hamsters. THP increased cholesterol 7 α-hydroxylase (CYP7A1) expression and prevented inflammation by the limited reduction in interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expressions in serum and liver. THP slightly increased the ratio of the body/liver weight. THP inhibited the mRNA and protein levels of Toll-like receptor 4 (TLR4) and TNF-receptor associated factor-6 (TRAF-6). Conclusions These results suggest that THP attenuates hyperlipidemia by multiple effects, including hepatoprotective and anti-inflammatory effects. Moreover, THP also suppressed the expressions of TLR4 and TRAF-6 in golden hamsters.
Collapse
Affiliation(s)
- Caihua Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Ke Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
83
|
The Combination of Ephedrae herba and Coicis semen in Gambihwan Attenuates Obesity and Metabolic Syndrome in High-Fat Diet-Induced Obese Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5614091. [PMID: 30210573 PMCID: PMC6120302 DOI: 10.1155/2018/5614091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/27/2022]
Abstract
Gambihwan is a herbal prescription used in Korean medicine to treat obesity. The authors evaluated the effects and mechanisms of two types of Gambihwan (GBH1 and 2) administered to high-fat diet- (HFD-) induced obese mice. Four-week-old C57BL/6 mice were fed a HFD for 8 weeks with or without GBH1 or 2 (100-200 mg/kg/day by oral gavage). All mice were subjected to glucose tolerance testing after the 8-week treatment period and then euthanized. Serum insulin, lipids, and inflammatory cytokine levels were analyzed using commercial kits. Hepatic enzyme levels and lipid profiles were also investigated. Liver section slides were stained with Oil Red O (ORO) or hematoxylin and eosin (H&E) to assess lipid accumulation. GBH1 and 2 both significantly decreased body, liver, or adipose tissue weights in HFD-fed mice and significantly improved glucose tolerance (p<0.05 in all groups). Cholesterol levels in both sera and liver homogenates were significantly decreased by GBH1 and 2 (p<0.05 in all groups). In addition, serum inflammatory cytokines (p<0.05 in 200 mg/kg/day groups) and hepatic enzyme levels were significantly diminished by GBH administration at 200mg/kg/day (p<0.05 in all groups). Furthermore, histologic analyses of liver sections revealed GBH suppressed lipid accumulation. Both GBH types suppressed HFD-induced increases in body weight and obesity-related markers in HFD-fed mice despite the difference in constituents between GBH1 and 2. It is strongly assumed that the combination of Ephedrae herba and Coicis semen exerted the antiobesity effect. The results obtained show that the antiobesity effects of GBH warrant further investigation.
Collapse
|
84
|
Sagae SC, Zanardini B, Ribeiro-Paz ED, Amaral AC, Bronczek GA, Lubaczeuski C, Grassiolli S, Koehler-Santos P, de Oliveira JR, Donadio MVF, Raineki C. Metabolic dysfunction in a rat model of early-life scarcity-adversity: Modulatory role of cafeteria diet. Exp Physiol 2018; 103:1481-1493. [PMID: 30211444 DOI: 10.1113/ep087171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Early-life adversity is associated with increased risk for obesity and metabolic dysfunction. However, it is unclear whether obesity and metabolic dysfunction result from coping strategies to deal with adversity-related emotional dysregulation, a direct programming of systems regulating metabolic function, or a combination of both. What is the main finding and its importance? Early-life adversity increases vulnerability to later-life obesity and metabolic dysfunction, indicating that genetics and adult lifestyle are not the only determinants of obesity and related metabolic dysfunction. Moreover, consumption of cafeteria diet exacerbated metabolic dysfunction associated with early-life adversity, suggesting that poor dietary choices might have a bigger impact in the context of early-life adversity. ABSTRACT Early-life adversity has become recognized as an important factor contributing to adult obesity and associated metabolic dysfunction. However, it is unclear whether obesity and metabolic dysfunction associated with early-life adversity result from coping strategies to deal with adversity-related emotional dysregulation, a direct programming of systems regulating metabolic function, or a combination. Interestingly, both early-life adversity and later-life dietary choices affect immune function, favouring pro-inflammatory mechanisms that are associated with obesity-related metabolic dysfunction. To investigate the unique and/or interactive effects of early-life adversity and later-life dietary choices for increased vulnerability to obesity and metabolic dysfunction, and specifically the role of the immune system in this vulnerability, we combined a naturalistic rat model of early-life scarcity-adversity with a rat model of obesity, the cafeteria diet. Our results indicate that early-life adversity alone induces insulin resistance, reduces pancreatic insulin secretion, plasma concentrations of triglycerides and cholesterol, and increases fasting glucose and tumour necrosis factor-α plasma concentrations. Importantly, animals exposed to adverse rearing were more vulnerable to metabolic dysregulation associated with the cafeteria diet, given that they consumed more energy, showed more severe hepatic steatosis and increased concentrations of the pro-inflammatory cytokine interleukin-1β than normally reared animals fed the cafeteria diet. Together, our results suggest that early-life adversity negatively programmes physiological systems that regulate metabolic function and increases vulnerability to obesity and metabolic dysfunction in adulthood. These results highlight the intrinsic relationship between the quality of the early postnatal environment and later-life dietary choices on adult health outcomes.
Collapse
Affiliation(s)
- Sara C Sagae
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Bárbara Zanardini
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Edson D Ribeiro-Paz
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Ana Claudia Amaral
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Gabriela A Bronczek
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Camila Lubaczeuski
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sabrina Grassiolli
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Patrícia Koehler-Santos
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Centro Infant, Institute of Biomedical Research (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
85
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 925] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
86
|
Zhu B, Dacso CC, O’Malley BW. Unveiling "Musica Universalis" of the Cell: A Brief History of Biological 12-Hour Rhythms. J Endocr Soc 2018; 2:727-752. [PMID: 29978151 PMCID: PMC6025213 DOI: 10.1210/js.2018-00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
"Musica universalis" is an ancient philosophical concept claiming the movements of celestial bodies follow mathematical equations and resonate to produce an inaudible harmony of music, and the harmonious sounds that humans make were an approximation of this larger harmony of the universe. Besides music, electromagnetic waves such as light and electric signals also are presented as harmonic resonances. Despite the seemingly universal theme of harmonic resonance in various disciplines, it was not until recently that the same harmonic resonance was discovered also to exist in biological systems. Contrary to traditional belief that a biological system is either at stead-state or cycles with a single frequency, it is now appreciated that most biological systems have no homeostatic "set point," but rather oscillate as composite rhythms consisting of superimposed oscillations. These oscillations often cycle at different harmonics of the circadian rhythm, and among these, the ~12-hour oscillation is most prevalent. In this review, we focus on these 12-hour oscillations, with special attention to their evolutionary origin, regulation, and functions in mammals, as well as their relationship to the circadian rhythm. We further discuss the potential roles of the 12-hour clock in regulating hepatic steatosis, aging, and the possibility of 12-hour clock-based chronotherapy. Finally, we posit that biological rhythms are also musica universalis: whereas the circadian rhythm is synchronized to the 24-hour light/dark cycle coinciding with the Earth's rotation, the mammalian 12-hour clock may have evolved from the circatidal clock, which is entrained by the 12-hour tidal cues orchestrated by the moon.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
87
|
Pérez-Martínez L, Ochoa-Callejero L, Rubio-Mediavilla S, Narro J, Bernardo I, Oteo JA, Blanco JR. Maraviroc improves hepatic triglyceride content but not inflammation in a murine nonalcoholic fatty liver disease model induced by a chronic exposure to high-fat diet. Transl Res 2018; 196:17-30. [PMID: 29421523 DOI: 10.1016/j.trsl.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the general population. Its severity ranges from simple steatosis to cirrhosis. C-C chemokine ligand type 5 or RANTES (Regulated upon Activation, Normal T-cell Expressed, and Secreted) plays an important role in the progression of hepatic inflammation and fibrosis. Our objective was to examine the preventive and therapeutic effects of maraviroc (MVC), a C-C chemokine receptor 5 antagonist, on liver pathology in an NAFLD mouse model. A total of 60 male C57BL/6 mice were randomly assigned to 1 of 4 groups: (1) high-fat diet (HFD) group or control group, (2) preventive group (HFD group plus MVC in drinking water since the beginning of the study), (3) early-therapeutic group (HFD group plus MVC in drinking starting at week 24 of the study), and (4) late-therapeutic group (HFD group plus MVC in drinking water starting at week 36 of the study). All mice were sacrificed at week 48. The hepatic triglyceride concentration in the HFD group was significantly higher than that in the groups treated with MVC at any time. Gene expression associated with lipogenesis (diacylglycerol acyltransferase 2 and proliferator-activated receptor-γ), insulin resistance (insulin receptor substrate-2), and β-oxidation (carnitine palmitoyltransferase 1A and acyl-CoA oxidase) was significantly reduced in all the groups treated with MVC. In summary, the beneficial effect of MVC on hepatic steatosis is maintained throughout the study.
Collapse
Affiliation(s)
- Laura Pérez-Martínez
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | | | - Judit Narro
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Iván Bernardo
- Biomedical Diagnostic Service, Hospital San Pedro, Logroño, Spain
| | - José-Antonio Oteo
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - José-Ramón Blanco
- Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
88
|
Patel V, Joharapurkar A, Kshirsagar S, Patel M, Sutariya B, Patel H, Pandey D, Patel D, Ranvir R, Kadam S, Bahekar R, Jain M. Coagonist of glucagon-like peptide-1 and glucagon receptors ameliorates nonalcoholic fatty liver disease. Can J Physiol Pharmacol 2018; 96:587-596. [PMID: 29406832 DOI: 10.1139/cjpp-2017-0683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models. GLP-1R agonist exendin-4, glucagon, and coagonist (Aib2 C24 chimera2) were administered to C57BL6/J mice, in which NAFLD was induced by carbon tetrachloride (CCl4) treatment after high-fat diet (HFD) feeding, and choline-deficient, L-amino-acid-defined HFD (CDAHFD) feeding. Repeated dose administration of coagonist significantly attenuated liver inflammation and steatosis induced by acute and long-term treatment with CCl4 in HFD-fed mice. Coagonist markedly attenuated the CDAHFD-induced expression of TIMP-1, MMP-9, TNF-α, MCP-1, COL1A1, and α-SMA. It also inhibited progression of hepatic steatosis and fibrosis in mice. Exendin-4 was better than glucagon, but coagonist was most effective in reduction of hepatic inflammation as well as steatosis. Coagonist of GLP-1R and GCGR improved NAFLD in C57BL6/J mice. This effect is mediated by reduction in lipotoxicity and inflammation in liver.
Collapse
Affiliation(s)
- Vishal Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Amit Joharapurkar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Samadhan Kshirsagar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Maulik Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Brijesh Sutariya
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Hiren Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Dheerendra Pandey
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Dipam Patel
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Ramchandra Ranvir
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Shekhar Kadam
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Rajesh Bahekar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad, 382210, India
| |
Collapse
|
89
|
Animal models of NAFLD from the pathologist's point of view. Biochim Biophys Acta Mol Basis Dis 2018; 1865:929-942. [PMID: 29746920 DOI: 10.1016/j.bbadis.2018.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023]
Abstract
Fatty liver disease is a multifactorial world-wide health problem resulting from a complex interplay between liver, adipose tissue and intestine and initiated by alcohol abuse, overeating, various types of intoxication, adverse drug reactions and genetic or acquired metabolic defects. Depending on etiology fatty liver disease is commonly categorized as alcoholic or non-alcoholic. Both types may progress from simple steatosis to the necro-inflammatory lesion of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH), respectively, and finally to cirrhosis and hepatocellular carcinoma. Animal models are helpful to clarify aspects of pathogenesis and progression. Generally, they are classified as nutritional (dietary), toxin-induced and genetic, respectively, or represent a combination of these factors. Numerous reviews are dealing with NASH animal models designed to imitate as closely as possible the metabolic situation associated with human disease. This review focuses on currently used mouse models of NASH with particular emphasis on liver morphology. Despite metabolic similarities most models (except those with chemically or genetically induced porphyria or keratin 18-deficiency) fail to develop the morphologic key features of NASH, namely hepatocyte ballooning and formation of histologically and immunohistochemically well-defined Mallory-Denk-Bodies (MDBs). Although MDBs are not universally detectable in ballooned hepatocytes in NASH their experimental reproduction and analysis may, however, significantly contribute to our understanding of important pathogenic aspects of NASH despite the obvious differences in etiology.
Collapse
|
90
|
Yang F, Dai Y, Min C, Li X. Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats. Nutr Metab (Lond) 2018; 15:30. [PMID: 29743929 PMCID: PMC5930793 DOI: 10.1186/s12986-018-0272-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Postnatal overfeeding activates tissue glucocorticoid (GC) activity by up-regulating 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and increasing sensitivity to high-fat (HF) diet-induced non-alcoholic fatty liver disease (NAFLD). The present study aimed to evaluate the effects of postnatal overfeeding on GC regulation and lipogenesis in the liver and to observe the impact of GC on hepatocyte lipid metabolism. Methods In vivo, Male Sprague-Dawley rat pup litters were adjusted to litter sizes of three (small litter, SL) or ten (normal litter, NL) on postnatal day 3 and then given standard chow from postnatal week 3 (W3) to W13. In vitro, HepG2 cells were stimulated by GC, mifepristone (Mi) or GC + Mi within 48 h, followed by sodium oleate (OA) intervention (or not) for 24 h. Intracellular lipid droplets, triglyceride (TG) concentrations and gene expression related to lipid metabolism were measured in hepatic tissues or HepG2 cells. Results In vivo, weight gain in the body and liver and TG concentrations in the liver were significantly increased in the SL rats compared to the NL rats at W3 and W13 (p < 0.05); mRNA expression of hepatic 11β-HSD1, acetyl-CoA carboxylase 1 (ACC), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FASN) and their nuclear transcription factor, sterol regulatory element binding protein-1c (SREBP-1c) (p < 0.05), was also increased. In vitro, intracellular lipid droplets and TG content in HepG2 cells increased under stimulation with GC or OA (p < 0.05); the increase was more significant following treatment with GC and OA together (p < 0.05). The ACC, SCD1, FASN and SREBP-1c mRNA expression changes were highly similar to the changes in TG content in cells. All the changes induced by GC disappeared when the glucocorticoid receptor (GR) was blocked by Mi. Conclusions Postnatal overfeeding induced GC overexposure through 11β-HSD1 up-regulation in the liver. GC activated hepatic de novo lipogenesis (DNL) via GR and led to hepatic lipid accumulation, which increased the risk of NAFLD during adulthood.
Collapse
Affiliation(s)
- Fan Yang
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Yanyan Dai
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Cuiting Min
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Xiaonan Li
- 1Department of Child Health Care, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China.,2Institute of Paediatric Research, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| |
Collapse
|
91
|
Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. Int J Obes (Lond) 2018; 42:1544-1555. [PMID: 29717275 PMCID: PMC6160396 DOI: 10.1038/s41366-018-0062-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022]
Abstract
Background/objective: Insulin signals, via the regulation of key enzyme expression, both suppress gluconeogenesis and enhance lipid synthesis in the liver. Animal studies have revealed insulin signaling favoring gluconeogenesis suppression to be selectively impaired in steatotic livers. However, whether, and if so how, such selective insulin resistance occurs in human steatotic livers remains unknown. Our aim was to investigate selective insulin resistance in human livers with non-alcoholic fatty liver disease (NAFLD). Subjects/methods: We examined mRNA expressions of key molecules for insulin signaling, gluconeogenesis and lipogenesis in human liver biopsy samples obtained from 51 non-diabetic subjects: 9 healthy controls and 42 NAFLD patients, and analyzed associations of these molecules with each other and with detailed pathological and clinical biochemistry data. Results: In NAFLD patients, insulin receptor substrate (IRS)-2 expression was decreased, while those of key enzymes for gluconeogenesis were increased. These alterations of IRS-2 and gluconeogenesis enzymes were induced both in simple steatosis (SS) and non-alcoholic steatohepatitis (NASH), while these expression levels did not differ between SS and NASH. Furthermore, alterations in the expressions of IRS-2 and gluconeogenesis enzymes showed strong negative correlations and were concurrently induced in the early histological stage of NAFLD. In contrast, fatty acid synthase (FAS) expression was not decreased in NAFLD, despite IRS-2 downregulation, but correlated strongly with IRS-1 expression. Furthermore, no histological scores were associated with these molecules. Thus, IRS-1 signaling, which is not impaired in NAFLD, appears to modulate FAS expression. Conclusion: These analyses revealed that selective insulin resistance is present in human NAFLD livers and occurs in its early phases. The effect of insulin, during the IRS step, on gene expressions for lipogenesis and gluconeogenesis are apparently distinct and preferential downregulation of IRS-2 may contribute to selective resistance to the suppressive effects of insulin on gluconeogenesis.
Collapse
|
92
|
Woodie LN, Luo Y, Wayne MJ, Graff EC, Ahmed B, O'Neill AM, Greene MW. Restricted feeding for 9h in the active period partially abrogates the detrimental metabolic effects of a Western diet with liquid sugar consumption in mice. Metabolism 2018; 82:1-13. [PMID: 29253490 DOI: 10.1016/j.metabol.2017.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is a major public health concern that can result from diets high in fat and sugar, including sugar sweetened beverages. A proposed treatment for dietary-induced obesity is time-restricted feeding (TRF), which restricts consumption of food to specific times of the 24-hour cycle. Although TRF shows great promise to prevent obesity and the development of chronic disease, the effects of TRF to reverse metabolic changes and the development of NAFLD in animal models of a Western diet with sugary water consumption is not known. OBJECTIVE The objective of the current study was to evaluate the role of TRF in the treatment of obesity and NAFLD through examination of changes in metabolic and histopathologic parameters. METHODS To better understand the role of TRF in the treatment of obesity and NAFLD, we investigated the metabolic phenotype and NAFLD parameters in a mouse model of NAFLD in which obesity and liver steatosis are induced by a Western Diet (WD): a high-fat diet of lard, milkfat and Crisco with sugary drinking water. Mice were subjected to a short-term (4-weeks) and long-term (10-weeks) TRF in which food was restricted to 9h at night. RESULTS Prior to TRF treatment, the WD mice had increased body mass, and exhibited less activity, and higher average daytime energy expenditure (EE) than chow fed mice. Approximately 4- and 10-weeks following TFR treatment, WD-TRF had moderate but not statistically significant weight loss compared to WD-ad libitum (WD-AL) mice. There was a modest but significant reduction in the inguinal adipose tissue weight in both WD-TRF groups compared to the WD-AL groups; however, there was no difference in epididymal and retroperitoneal adipose tissue mass or adipocyte size distribution. In contrast, the diet-induced increase in normalized liver tissue weight, hepatic triglyceride, and NAFLD score was partially abrogated in the 4-week WD-TRF mice, while systemic insulin resistance was partially abrogated and glucose intolerance was completely abrogated in the 10-week WD-TRF mice. Importantly, WD-induced metabolic dysfunction (substrate utilization, energy expenditure, and activity) was partially abrogated by 4- and 10-week TRF. CONCLUSIONS Our results support the hypothesis that TRF aids in reducing the detrimental metabolic effects of consuming a WD with sugary drinking water but does not ameliorate obesity.
Collapse
Affiliation(s)
- Lauren N Woodie
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Yuwen Luo
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Michael J Wayne
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Bulbul Ahmed
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA.
| | - Ann Marie O'Neill
- Department of Biology, Auburn University Montgomery, Montgomery, AL 36117, USA.
| | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
93
|
Song HM, Li X, Liu YY, Lu WP, Cui ZH, Zhou L, Yao D, Zhang HM. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med 2018; 42:193-207. [PMID: 29620148 PMCID: PMC5979837 DOI: 10.3892/ijmm.2018.3593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of liver damage characterized by abnormal hepatic fat accumulation and inflammatory response. Although the molecular mechanisms responsible for the disease are not yet fully understood, the pathogenesis of NAFLD likely involves multiple signals. The identification of effective therapeutic strategies to target these signals is of utmost importance. Carnosic acid (CA), as a phenolic diterpene with anticancer, anti-bacterial, anti-diabetic and neuroprotective properties, is produced by many species of the Lamiaceae family. Myristoylated alanine-rich C-kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. In the present study, wild-type C57BL/6 and MARCKS-deficient mice were randomly divided into the normal chow- or high-fat (HF) diet-fed groups. The HF diet increased the fasting glucose and insulin levels, and promoted glucose intolerance in the wild-type mice. MARCKS deficiency further upregulated intolerance, fasting glucose and insulin. The HF diet also promoted hepatic steatosis, serum alanine transaminase (ALT) and aspartate transaminase (AST) activity, inflammation and lipid accumulation in the wild-type mice. These responses were accelerated in the MARCKS-deficient mice. Importantly, increased inflammation and lipid accumulation were associated with phosphoinositide 3-kinase (PI3K)/AKT, NLR family pyrin domain containing 3 (NLRP3)/nuclear factor-κB (NF-κB) and sterol regulatory element binding protein-1c (SREBP-1c) signaling pathway activation. The mice treated with CA exhibited a significantly improved glucose and insulin tolerance. The production of pro-inflammatory cytokines and lipid accumulation were suppressed by CA. Significantly, MARCKS was reduced in mice fed the HF diet. CA treatment upregulated MARCKS expression compared to the HF group. Furthermore, the activation of the PI3K/AKT, NLRP3/NF-κB and SREBP-1c signaling pathways was inhibited by CA. Taken together, our data suggest that CA suppresses inflammation and lipogenesis in mice fed a HF diet through MARCKS regulation. Thus, CA may be prove to be a useful anti-NAFLD agent.
Collapse
Affiliation(s)
- Hong-Mao Song
- Department of Otolaryngology-Head and Neck Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiang Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yuan-Yuan Liu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wei-Ping Lu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhao-Hui Cui
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Li Zhou
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Di Yao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong-Man Zhang
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
94
|
Zhang X, Xu GB, Zhou D, Pan YX. High-fat diet modifies expression of hepatic cellular senescence gene p16(INK4a) through chromatin modifications in adult male rats. GENES AND NUTRITION 2018; 13:6. [PMID: 29564021 PMCID: PMC5853101 DOI: 10.1186/s12263-018-0595-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Background Liver is the crucial organ as a hub for metabolic reactions. p16(INK4a) is a well-established cyclin-dependent kinase (CDK) inhibitor that plays important role in the molecular pathways of senescence, which lead to irreversible cell cycle arrest with secretion of proinflammatory cytokines and mitochondrial dysfunction. This study tested the hypothesis that cellular senescence regulated by p16(INK4a) is associated with high-fat diet in adult male rats. Methods Sprague Dawley rats were fed a high-fat (HF) diet or a control (C) diet for 9 weeks after weaning. At 12 weeks of age, liver samples of male rats were collected to investigate the key genes and liver physiological status. Results Both mRNA and protein expression level of cellular senescence marker, p16(INK4a), was increased significantly in HF group when compared to C group. A decrease of tri-methylated histone H3 lysine 27 (H3K27Me3) in the coding region of p16(INK4a) was observed. On the other hand, mRNA and protein expression of another inhibitor of cyclin-dependent kinase, p21(Cip1), was decreased significantly in HF group; however, no significant chromatin modification was found in this gene. Histological analysis demonstrated hepatic steatosis in HF group as well as severe fat accumulation. Conclusions Our study demonstrated that HF diet regulated cellular senescence marker p16(INK4a) through chromatin modifications, which may promote hepatic fat accumulation and steatosis.
Collapse
Affiliation(s)
- Xiyuan Zhang
- 1Pediatric Oncology Branch (POB), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892 USA
| | - Guanying Bianca Xu
- 2Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Dan Zhou
- 4Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yuan-Xiang Pan
- 2Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,3Division of Nutritional Sciences (DNS), University of Illinois Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA.,5Illinois Informatics Institute, University of Illinois at Urbana-Champaign, 461 Bevier Hall, MC-182, 905 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
95
|
Zhang D, Yan Y, Tian H, Jiang G, Li X, Liu W. Resveratrol supplementation improves lipid and glucose metabolism in high-fat diet-fed blunt snout bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:163-173. [PMID: 28891024 DOI: 10.1007/s10695-017-0421-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Here, we aimed to investigate whether resveratrol (RSV) can ameliorate high-fat diet (HFD)-induced metabolic disorder in fish. Blunt snout bream (Megalobrama amblycephala) with average weight 27.99 ± 0.56 g were fed a normal fat diet (NFD, 5% fat, w/w), a HFD (11% fat), or a HFD supplemented with 0.04, 0.36, or 1.08% RSV for 10 weeks. As expected, fish fed a HFD developed hepatic steatosis, as shown by elevated hepatic and plasma triglycerides, raised whole body fat, intraperitoneal fat ratio and hepatosomatic index, and increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST). RSV supplementation lessened increases in body mass, whole body fat, and intraperitoneal fat, and alleviated development of hepatic steatosis, elevations of plasma triglyceride and glucose, and abnormalities of ALT and AST in HFD-fed fish. RSV supplementation increased SIRT1 messenger RNA (mRNA) expression and consequently hepatic mRNA expression of adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase (CPT1a), and microsomal triglyceride transfer protein (MTTP), implying upregulation of lipolysis, β-oxidation, and lipid transport, respectively, in the liver. Conversely, hepatic lipoprotein lipase (LPL), sterol regulatory element-binding protein 1 (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), and ATP citrate lyase (ACLY) mRNA expression were decreased, implying suppression of fatty acid uptake, lipogenesis, and fatty acid synthesis. Additionally, RSV downregulated glucokinase (GCK) and sodium-dependent glucose cotransporter 1 (SGLT1) and upregulated glucose transporter 2 (GLUT2) mRNA expression, thus restoring normal glucose fluxes. Thus, RSV improves lipid and glucose metabolisms in blunt snout bream, which are potentially mediated by activation of SIRT1.
Collapse
Affiliation(s)
- Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanan Yan
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyan Tian
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
96
|
Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non-alcoholic fatty liver disease. J Hepatol 2018; 68:230-237. [PMID: 29128391 PMCID: PMC5775040 DOI: 10.1016/j.jhep.2017.10.031] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) can manifest as non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH). NASH is often associated with progressive fibrosis which can lead to cirrhosis and hepatocellular carcinoma (HCC). NASH is increasing as an aetiology for end-stage liver disease as well as HCC. There are currently no approved therapies for NASH. A major barrier to development of therapeutics for NASH is the lack of preclinical models of disease that are appropriately validated to represent the biology and outcomes of human disease. Many in vitro and animal models have been developed. In vitro models do not fully capture the hepatic and extrahepatic milieu of human NASH and large animal models are expensive and logistically difficult to use. Therefore, there is considerable interest in the development and validation of mouse models for NAFLD, including NASH. Several models based on varying genetic or dietary manipulations have been developed. However, the majority do not recreate steatohepatitis, strictly defined as the presence of hepatocellular ballooning with or without Mallory-Denk bodies, accompanied by inflammation in the presence of macrovesicular steatosis. Others lack validation against human disease. Herein, we describe the best practices in development of mouse models of NASH. We further review existing models and the literature supporting their use as a surrogate for human disease. Finally, data on models to evaluate protective genes are discussed. It is hoped that this review will provide guidance for the interpretation of data derived from mouse models and also for the development and validation of newer models.
Collapse
|
97
|
Feksa DL, Coelho RP, Aparecida da Costa Güllich A, Dal Ponte ES, da Costa Escobar Piccoli J, Manfredini V. Extract of Citrus maxima (pummelo) leaves improve hepatoprotective activity in Wistar rats submitted to the induction of non-alcoholic hepatic steatosis. Biomed Pharmacother 2018; 98:338-346. [DOI: 10.1016/j.biopha.2017.12.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
|
98
|
Huang F, Wang J, Yu F, Tang Y, Ding G, Yang Z, Sun Y. Protective Effect of Meretrix meretrix Oligopeptides on High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. Mar Drugs 2018; 16:md16020039. [PMID: 29360762 PMCID: PMC5852467 DOI: 10.3390/md16020039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effects of MMO (Meretrix meretrix oligopeptides) on mice fed a high-fat diet. Mice were fed either a normal control diet (NC) or a high-fat diet (HFD) without or with MMO (50 mg/kg or 250 mg/kg) for four weeks. Levels of ALT, AST, liver tissue GSH-Px, and SOD activities, MDA levels were measured using commercially available kits; HE staining was performed to analyze pathologic changes of the liver; a TEM assay was performed to measure the ultrastructural alterations of the mitochondria, and Western blotting was performed to detect the expression of gene proteins related to lipid metabolism, inflammation, and liver apoptosis. After six weeks, body weight, ALT, AST, and MDA levels were significantly increased, and GSH-Px levels and SOD activities were significantly decreased in the HFD control group compared with the NC group. Consumption of the HFD compared with the NC caused fatty liver abnormal mitochondria with loss of cristae, intramitochondrial granules, and a swollen and rarefied matrix. Administration of MMO significantly decreased body weight gain, and ALT, AST, and MDA levels; increased SOD activity and GSH-Px levels; alleviated fatty liver steatosis; decreased the early apoptosis population; downregulated SREBP-1c, Bax, Caspase-9, Caspase-3, TNF-α, and NF-κB protein levels; and upregulated PPAR-α, Bcl-2, and AMPK-α, compared with the HFD control group. MMO exhibited protective effects in mice with NAFLD by regulating the NF-κB anti-inflammation signaling pathways to inhibit inflammation, regulate AMPK-α, PPAR-α and SREBP-1c to improve lipid metabolism disorder, and regulate Bcl-2/Bax anti-apoptosis signaling pathways to prevent liver cell apoptosis. These results suggest that dietary supplementation with MMO ameliorates high-fat-diet-induced NAFLD.
Collapse
Affiliation(s)
- Fangfang Huang
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Jiajia Wang
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Fangmiao Yu
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Yunping Tang
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Guofang Ding
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Zuisu Yang
- School of Food Science and Pharmacy, Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Yu Sun
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Zhejiang Ocean University Donghai Science and Technology College, Zhoushan 316000, China.
| |
Collapse
|
99
|
Lee MR, Park KI, Ma JY. Leonurus japonicus Houtt Attenuates Nonalcoholic Fatty Liver Disease in Free Fatty Acid-Induced HepG2 Cells and Mice Fed a High-Fat Diet. Nutrients 2017; 10:E20. [PMID: 29295591 PMCID: PMC5793248 DOI: 10.3390/nu10010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
We investigated the effects of a Leonurus japonicus ethanol extract (LJE) on nonalcoholic fatty liver disease (NAFLD). An in vitro model of hepatic steatosis was treated with 1 mM free fatty acid (FFA) in HepG2 cells. An in vivo NAFLD model was established using C57BL/6 mice fed a high-fat diet (HFD) and administered LJE (100 or 200 mg/kg) orally for 14 weeks. LJE treatment suppressed lipid accumulation and intracellular triglyceride levels significantly in a concentration-dependent manner in HepG2 cells. Moreover, LJE significantly reduced the expression of sterol regulatory element binding protein 1-c, and its downstream genes, which are associated with lipogenesis, in HepG2 cells. In HFD-fed mice, LJE treatment decreased body weight significantly and decreased serum alanine transaminase levels to normal values, concurrent with a decrease in hepatic lipid accumulation. Furthermore, LJE supplementation ameliorated insulin sensitivity by decreasing serum glucose and insulin levels. LJE improved hepatic steatosis by increasing the expression of phosphorylated AMP-activated protein kinase and peroxisome proliferator-activated receptor-α in HFD-fed mice and FFA-treated HepG2 cells. The results suggested that LJE might be a potential therapeutic agent to treat NAFLD.
Collapse
Affiliation(s)
- Mi-Ra Lee
- Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu 41062, Korea.
| | - Kwang Il Park
- Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu 41062, Korea.
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, 70 Cheomdan-Ro, Dong-Gu, Daegu 41062, Korea.
| |
Collapse
|
100
|
Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and l-arginine metabolism in mice. J Physiol Biochem 2017; 74:9-16. [DOI: 10.1007/s13105-017-0597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
|