51
|
Shrivastava S, Morris KV. The Multifunctionality of Exosomes; from the Garbage Bin of the Cell to a Next Generation Gene and Cellular Therapy. Genes (Basel) 2021; 12:genes12020173. [PMID: 33513776 PMCID: PMC7912150 DOI: 10.3390/genes12020173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are packaged with a variety of cellular cargo including RNA, DNA, lipids and proteins. For several decades now there has been ongoing debate as to what extent exosomes are the garbage bin of the cell or if these entities function as a distributer of cellular cargo which acts in a meaningful mechanistic way on target cells. Are the contents of exosomes unwanted excess cellular produce or are they selective nucleic acid packaged nanoparticles used to communicate in a paracrine fashion? Overexpressed RNAs and fragments of DNA have been shown to collect into exosomes which are jettisoned from cells in response to particular stimuli to maintain homeostasis suggesting exosomes are functional trash bins of the cell. Other studies however have deciphered selective packaging of particular nucleic acids into exosomes. Nucleic acids packaged into exosomes are increasingly reported to exert transcriptional control on recipient cells, supporting the notion that exosomes may provide a role in signaling and intracellular communication. We survey the literature and conclude that exosomes are multifunctional entities, with a plethora of roles that can each be taken advantage to functionally modulate cells. We also note that the potential utility of developing exosomes as a next generation genetic therapy may in future transform cellular therapies. We also depict three models of methodologies which can be adopted by researchers intending to package nucleic acid in exosomes for developing gene and cell therapy.
Collapse
Affiliation(s)
- Surya Shrivastava
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
- School of Medical Science, Gold Coast Campus, Griffith University, Southport 4222, Australia
- Correspondence:
| |
Collapse
|
52
|
Fenselau C, Ostrand-Rosenberg S. Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol 2021; 359:104258. [PMID: 33338939 PMCID: PMC7802618 DOI: 10.1016/j.cellimm.2020.104258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Collaborative research is reviewed in which mass spectrometry-based proteomics and next generation sequencing were used qualitatively and quantitatively to interrogate proteins and RNAs carried in intact myeloid-derived suppressor cells (MDSC) and exosomes shed in vitro by MDSC. In aggregate exosomes more than 4000 proteins were identified, including annexins and immunosuppressive mediators. Bioassays showed that exosomes induce MDSC chemotaxis dependent on S100A8 and S100A9 in their cargo. Surface selective chemistry identified glycoproteins on MDSC and exosome surfaces, including CD47 and thrombospondin 1, which both facilitate exosome-catalyzed chemotaxis. Large numbers of mRNAs and microRNAs were identified in aggregate exosomes, whose potential functions in receptor cells include angiogenesis, and proinflammatory and immunosuppressive activities. Inflammation was found to have asymmetric effects on MDSC and exosomal cargos. Collectively, our findings indicate that the exosomes shed by MDSC provide divergent and complementary functions that support the immunosuppression and tumor promotion activities of MDSC.
Collapse
Affiliation(s)
- Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, MD 20742, United States; Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States
| |
Collapse
|
53
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
54
|
Pashazadeh M. The role of tumor-isolated exosomes on suppression of immune reactions and cancer progression: A systematic review. Med J Islam Repub Iran 2020; 34:91. [PMID: 33306056 PMCID: PMC7713497 DOI: 10.34171/mjiri.34.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Exosomes are extracellular cells (EVs) emancipated by various cell types and are involved in cell-to-cell transmission. In cancer diseases, exosomes emerge as local and systemic cells to cell mediators of oncogenic information and play a significant role in the advancement of cancer through the horizontal transfer of various molecules, such as proteins and miRNAs.
Methods: In this study, 66 articles from PubMed, MEDLINE, Science Direct, Cochrane, EMBASE, and Scopus were used as English sources.
Results: The biological distribution of cancer cell-derived exosomes in tumor tissue is an important factor in detecting their role in tumor increase; on the other hand, a limited number of studies have examined the biodistribution of exosomes in tumor tissues. While exosomes function as cancer biomarkers and support cancer treatment, we have a long way to improve the antitumor treatment of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Conclusion: This review describes the science and significance of cancer pathogenesis and exosomes relative to cancer treatment resistance.
Collapse
Affiliation(s)
- Mehrdad Pashazadeh
- Immunology Division, Department of Microbiology, Health Science Institute, Bursa Uludag University, Bursa, Turkey.,Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
55
|
Role of Extracellular Vesicles in Epithelial Ovarian Cancer: A Systematic Review. Int J Mol Sci 2020; 21:ijms21228762. [PMID: 33228245 PMCID: PMC7699467 DOI: 10.3390/ijms21228762] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.
Collapse
|
56
|
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19:160. [PMID: 33183286 PMCID: PMC7661275 DOI: 10.1186/s12943-020-01278-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
57
|
Espinosa-Riquer ZP, Segura-Villalobos D, Ramírez-Moreno IG, Pérez Rodríguez MJ, Lamas M, Gonzalez-Espinosa C. Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells 2020; 9:E2411. [PMID: 33158024 PMCID: PMC7693401 DOI: 10.3390/cells9112411] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) constitute an essential cell lineage that participates in innate and adaptive immune responses and whose phenotype and function are influenced by tissue-specific conditions. Their mechanisms of activation in type I hypersensitivity reactions have been the subject of multiple studies, but the signaling pathways behind their activation by innate immunity stimuli are not so well described. Here, we review the recent evidence regarding the main molecular elements and signaling pathways connecting the innate immune receptors and hypoxic microenvironment to cytokine synthesis and the secretion of soluble or exosome-contained mediators in this cell type. When known, the positive and negative control mechanisms of those pathways are presented, together with their possible implications for the understanding of mast cell-driven chronic inflammation. Finally, we discuss the relevance of the knowledge about signaling in this cell type in the recognition of MCs as central elements on innate immunity, whose remarkable plasticity converts them in sensors of micro-environmental discontinuities and controllers of tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Gonzalez-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur. Calzada de los Tenorios No. 235, Col. Granjas Coapa, Mexico City 14330, Mexico; (Z.P.E.-R.); (D.S.-V.); (I.G.R.-M.); (M.J.P.R.); (M.L.)
| |
Collapse
|
58
|
Vukman KV, Ferencz A, Fehér D, Juhos K, Lőrincz P, Visnovitz T, Koncz A, Pálóczi K, Seregélyes G, Försönits A, Khamari D, Galinsoga A, Drahos L, Buzás EI. An implanted device enables in vivo monitoring of extracellular vesicle-mediated spread of pro-inflammatory mast cell response in mice. J Extracell Vesicles 2020; 10:e12023. [PMID: 33708356 PMCID: PMC7890545 DOI: 10.1002/jev2.12023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/12/2022] Open
Abstract
Mast cells have been shown to release extracellular vesicles (EVs) in vitro. However, EV-mediated mast cell communication in vivo remains unexplored. Primary mast cells from GFP-transgenic and wild type mice, were grown in the presence or absence of lipopolysaccharide (LPS), and the secreted EVs were separated from the conditioned media. Mast cell-derived EVs were next cultured with LPS-naïve mast cells, and the induction of TNF-α expression was monitored. In addition, primary mast cells were seeded in diffusion chambers that were implanted into the peritoneal cavities of mice. Diffusion chambers enabled the release of GFP+ mast cell-derived EVs in vivo into the peritoneal cavity. Peritoneal lavage cells were assessed for the uptake of GFP+ EVs and for TNF-α production. In vitro, LPS-stimulated mast cell-derived EVs were efficiently taken up by non-stimulated mast cells, and induced TNF-α expression in a TLR4, JNK and P38 MAPK dependent manner. In vivo, using implanted diffusion chambers, we confirmed the release and transmission of mast cell-derived EVs to other mast cells with subsequent induction of TNF-α expression. These data show an EV-mediated spreading of pro-inflammatory response between mast cells, and provide the first in vivo evidence for the biological role of mast cell-derived EVs.
Collapse
Affiliation(s)
- Krisztina V. Vukman
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Andrea Ferencz
- Department of Surgical Research and TechniquesSemmelweis UniversityBudapestHungary
| | - Daniella Fehér
- Department of Surgical Research and TechniquesSemmelweis UniversityBudapestHungary
| | - Krisztina Juhos
- Department of Surgical Research and TechniquesSemmelweis UniversityBudapestHungary
| | - Péter Lőrincz
- Department of AnatomyCell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | - Tamás Visnovitz
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Anna Koncz
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Krisztina Pálóczi
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Gábor Seregélyes
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - András Försönits
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Delaram Khamari
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - Alicia Galinsoga
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
| | - László Drahos
- MS Proteomics Research GroupHungarian Academy of SciencesInstitute of Organic ChemistryBudapestHungary
| | - Edit I. Buzás
- Department of GeneticsCell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- MTA‐SE Immune‐Proteogenomics Extracellular Vesicle Research GroupBudapestHungary
- HCEMM‐SE Extracellular Vesicle Research GroupBudapestHungary
| |
Collapse
|
59
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
60
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1160] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
61
|
Arteaga-Blanco LA, Mojoli A, Monteiro RQ, Sandim V, Menna-Barreto RFS, Pereira-Dutra FS, Bozza PT, Resende RDO, Bou-Habib DC. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PLoS One 2020; 15:e0237795. [PMID: 32833989 PMCID: PMC7444811 DOI: 10.1371/journal.pone.0237795] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.
Collapse
Affiliation(s)
| | - Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Sandim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
62
|
Chen W, Yang J, Fang H, Li L, Sun J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front Cell Dev Biol 2020; 8:696. [PMID: 32850817 PMCID: PMC7432147 DOI: 10.3389/fcell.2020.00696] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the key components of non-coding RNAs (ncRNAs) with a length of 200 nucleotides. They are transcribed from the so-called “dark matter” of the genome. Increasing evidence have shown that lncRNAs play an important role in the pathophysiology of human diseases, particularly in the development and progression of tumors. Linc-ROR, as a new intergenic non-protein coding RNA, has been considered to be a pivotal regulatory factor that affects the occurrence and development of human tumors, including breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), and so on. Dysregulation of Linc-ROR has been closely related to advanced clinicopathological factors predicting a poor prognosis. Because linc-ROR can regulate cell proliferation, apoptosis, migration, and invasion, it can thus be used as a potential biomarker for patients with tumors and has potential clinical significance as a therapeutic target. This article reviewed the role of linc-ROR in the development of tumors, its related molecular mechanisms, and clinical values.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
63
|
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol 2020; 209:531-543. [PMID: 32507938 PMCID: PMC7395004 DOI: 10.1007/s00430-020-00679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.
Collapse
Affiliation(s)
- Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.
| | - Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
64
|
FcεRI Signaling in the Modulation of Allergic Response: Role of Mast Cell-Derived Exosomes. Int J Mol Sci 2020; 21:ijms21155464. [PMID: 32751734 PMCID: PMC7432241 DOI: 10.3390/ijms21155464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) are immune cells that act as environment resident sentinels playing a crucial role in Th2-mediated immune responses, including allergic reactions. Distinguishing features of MCs are the presence of numerous cytoplasmic granules that encapsulate a wide array of preformed bio-active molecules and the constitutive expression of the high affinity receptor of IgE (FcεRI). Upon FcεRI engagement by means of IgE and multivalent antigens, aggregated receptors trigger biochemical pathways that ultimately lead to the release of granule-stored and newly synthesized pro-inflammatory mediators. Additionally, MCs are also able to release exosomes either constitutively or upon stimulation. Exosomes are nanosized vesicles of endocytic origin endowed with important immunoregulatory properties, and represent an additional way of intercellular communication. Interestingly, exosomes generated upon FcεRI engagement contain co-stimulatory and adhesion molecules, lipid mediators, and MC-specific proteases, as well as receptor subunits together with IgE and antigens. These findings support the notion that FcεRI signaling plays an important role in influencing the composition and functions of exosomes derived by MCs depending on their activation status.
Collapse
|
65
|
Zisi Z, Adamopoulos PG, Kontos CK, Scorilas A. Identification and expression analysis of novel splice variants of the human carcinoembryonic antigen-related cell adhesion molecule 19 (CEACAM19) gene using a high-throughput sequencing approach. Genomics 2020; 112:4268-4276. [PMID: 32659328 DOI: 10.1016/j.ygeno.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023]
Abstract
Alternative splicing is commonly involved in carcinogenesis, being highly implicated in differential expression of cancer-related genes. Recent studies have shown that the human CEACAM19 gene is overexpressed in malignant breast and ovarian tumors, possessing significant biomarker attributes. In the present study, 3' rapid amplification of cDNA ends (3' RACE) and next-generation sequencing (NGS) were used for the detection and identification of novel CEACAM19 transcripts. Bioinformatical analysis of our NGS data revealed novel splice junctions between previously annotated exons and ultimately new exons. Next, fifteen novel CEACAM19 transcripts were identified with Sanger sequencing. Additionally, their expression profile was investigated in a wide panel of human cell lines, using nested PCR with variant-specific primers. The broad expression pattern of the CEACAM19 gene, along with the fact that its overexpression has previously been associated with ovarian and breast cancer progression, indicate the potential of novel CEACAM19 transcripts as putative diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Zafeiro Zisi
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
66
|
Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21124255. [PMID: 32549355 PMCID: PMC7352992 DOI: 10.3390/ijms21124255] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of small membrane vesicles released by all types of cells in both physiological and pathological conditions. EVs shuttle different types of molecules and are able to modify the behavior of target cells by various mechanisms of action. In this review, we have summarized the papers present in the literature, to our acknowledge, that reported the EV effects on liver diseases. EVs purified from serum, stem cells, and hepatocytes were investigated in different experimental in vivo models of liver injury and in particular of liver fibrosis. Despite the different EV origin and the different types of injury (toxic, ischemic, diet induced, and so on), EVs showed an anti-fibrotic effect. In particular, EVs had the capacities to inhibit activation of hepatic stellate cells, one of the major players of liver fibrosis development; to reduce inflammation and apoptosis; to counteract the oxidative stress; and to increase hepatocyte proliferation, contributing to reducing fibrosis and ameliorating liver function and morphology.
Collapse
|
67
|
Chiabotto G, Camussi G, Bruno S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-020-00050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis.
Collapse
|
68
|
Extracellular Vesicles Isolated from Human Induced Pluripotent Stem Cell-Derived Neurons Contain a Transcriptional Network. Neurochem Res 2020; 45:1711-1728. [PMID: 32361798 PMCID: PMC7297870 DOI: 10.1007/s11064-020-03019-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further analyse the mRNA and protein cargo of neuronal EVs, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30–100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons.
Collapse
|
69
|
Budgude P, Kale V, Vaidya A. Mesenchymal stromal cell‐derived extracellular vesicles as cell‐free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biol Int 2020; 44:1078-1102. [DOI: 10.1002/cbin.11313] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
- Symbiosis School of Biological SciencesSymbiosis International (Deemed University) Pune 412115 India
| |
Collapse
|
70
|
Cai M, Shi Y, Zheng T, Hu S, Du K, Ren A, Jia X, Chen S, Wang J, Lai S. Mammary epithelial cell derived exosomal MiR-221 mediates M1 macrophage polarization via SOCS1/STATs to promote inflammatory response. Int Immunopharmacol 2020; 83:106493. [PMID: 32289739 DOI: 10.1016/j.intimp.2020.106493] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023]
Abstract
Lactational mastitis seriously alters the normal physiological function of mammary gland and activates the innate immune. Mammary epithelial cells (MECs) secret cytokines and regulate the function of immune system. However, the mechanism MECs mediated crosstalk with immune cells, such as macrophages, during mastitis is unclear. In this study, mouse mammary epithelial cells (HC11), treated with Lipoteichoic acid (LTA), and macrophages (RAW264.7) were used to mimic intercellular communication. Our results showed that exosomal miR-221 level was up-regulated and reached the peak at 12 h after infected by LTA. The expression of miR-211, CD11b protein and TNF-α mRNA were upregulated and the expression of CD206 protein and Arg-1 mRNA were inhibited in RAW264.7 treated with exosomes. In addition, miR-221 mimics and inhibitors enhanced and depressed HC11-derived exosomal miR-221 level, respectively. After treatment of Exo(mimic) in RAW264.7, the expression of CD11b protein and TNF-α mRNA were up-regulated, the expression of CD206 and Arg-1 mRNA were down-regulated. Additionally, Exo(inhibitor) enhanced CD206 protein and Arg-1 mRNA levels and inhibited CD11b protein and TNF-α mRNA levels. Furthermore, SOCS1 was identified to be a target gene of miR-221 by using Luciferase assays. And western blot assays showed that the expression of p-STAT1 and p-STAT3 were elevated and repressed, respectively. Taken together, we suggest that exosomal miR-221 promotes polarization of M1 macrophages via SOCS1, STAT1 and STAT3. And we reveal a novel crosstalk signaling pathway between mammary epithelial cells and macrophages in the process of inflammation.
Collapse
Affiliation(s)
- Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tianhao Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anyong Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
71
|
Morhayim J, Ghebes CA, Erkeland SJ, Ter Borg MND, Hoogenboezem RM, Bindels EMJ, van Alphen FPJ, Kassem M, van Wijnen AJ, Cornelissen JJ, van Leeuwen JP, van der Eerden BCJ, Voermans C, van de Peppel J, Braakman E. Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support. FASEB J 2020; 34:5435-5452. [PMID: 32086861 PMCID: PMC7136136 DOI: 10.1096/fj.201902610r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Osteolineage cell‐derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non‐stimulatory osteolineage EVs by next‐generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV‐derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood‐derived CD34+ HSPCs with stimulatory EVs‐altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell‐HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.
Collapse
Affiliation(s)
- Jess Morhayim
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mariëtte N D Ter Borg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | - Jan J Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johannes P van Leeuwen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
72
|
Liang Y, Huang S, Qiao L, Peng X, Li C, Lin K, Xie G, Li J, Lin L, Yin Y, Liao H, Li Q, Li L. Characterization of protein, long noncoding RNA and microRNA signatures in extracellular vesicles derived from resting and degranulated mast cells. J Extracell Vesicles 2019; 9:1697583. [PMID: 31853339 PMCID: PMC6913652 DOI: 10.1080/20013078.2019.1697583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Mast cells (MCs) are known to participate in a variety of patho-physiological processes depending largely on the intragranular mediators and the production of cytokines and chemokines during degranulation. Recently, extracellular vesicles (EVs) have been implicated important functions for MCs, but the components of MC-derived EVs have not yet been well-characterized. In this study, we aimed to identify signatures of proteins, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) in EVs derived from resting (Rest-EV) and degranulated (Sti-EV) MCs by differential ultracentrifugation. Using tandem mass tag (TMT)-based quantitative proteomics technology and RNA sequencing, we identified a total of 1988 proteins, 397 lncRNAs, and 272 miRNAs in Rest-EV and Sti-EV. The proteins include common EVs markers (cytoskeletal proteins), MCs markers (FcεRI and tryptase), and some preformed MCs mediators (lysosomal enzymes) as well. The global expression profiles of lncRNAs and miRNAs identified, for the first time, from Rest-EV and Sti-EV, strongly suggest a potential regulatory function of MC-derived EVs. We have also performed Western blotting and qRT-PCR analysis to further verify some of the proteins, lncRNAs, and miRNAs identified from Rest-EV and Sti-EV. Our findings will help to elucidate the functions of MC-derived EVs, and provide a reference dataset for future translational studies involving MC-derived EVs.
Collapse
Affiliation(s)
- Yuting Liang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Sheng Huang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chong Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Kun Lin
- Department of Laboratory Medicine, The Affiliated Hospital of Putian University, Putian Univeristy, Putian, China
| | - Guogang Xie
- Department of Respiratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huanjin Liao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Clinical Laboratory, Shanghai First People's Hospital Baoshan Branch, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
73
|
Emam SE, Abu Lila AS, Elsadek NE, Ando H, Shimizu T, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Ishida T. Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues. Eur J Pharm Biopharm 2019; 145:27-34. [DOI: 10.1016/j.ejpb.2019.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
|
74
|
Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 2019; 4:47. [PMID: 31728212 PMCID: PMC6851157 DOI: 10.1038/s41392-019-0080-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies have reported that exosomes released from various cells can serve as mediators of information exchange between different cells. With further exploration of exosome content, a more accurate molecular mechanism involved in the process of cell-to-cell communication has been revealed; specifically, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are shuttled by exosomes. In addition, exosomal miRNAs and lncRNAs may play vital roles in the pathogenesis of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, and asthma. Consequently, exosomal miRNAs and lncRNAs show promise as diagnostic biomarkers and therapeutic targets in several lung diseases. This review will summarize recent knowledge about the roles of exosomal miRNAs and lncRNAs in lung diseases, which has shed light on the discovery of novel diagnostic methods and treatments for these disorders. Because there is almost no published literature about exosomal lncRNAs in COPD, asthma, interstitial lung disease, or tuberculosis, we summarize the roles of exosomal lncRNAs only in lung cancer in the second section. This may inspire some new ideas for researchers who are interested in whether lncRNAs shuttled by exosomes may play roles in other lung diseases.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Zhengrong Yin
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Jinshuo Fan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Siyu Zhang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Weibing Yang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| |
Collapse
|
75
|
Zhang W, Peng P, Ou X, Shen K, Wu X. Ovarian cancer circulating extracelluar vesicles promote coagulation and have a potential in diagnosis: an iTRAQ based proteomic analysis. BMC Cancer 2019; 19:1095. [PMID: 31718609 PMCID: PMC6852975 DOI: 10.1186/s12885-019-6176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Circulating extracelluar vesicles (EVs) in epithelial ovarian cancer (EOC) patients emanate from multiple cells. These EVs are emerging as a new type of biomarker as they can be obtained by non-invasive approaches. The aim of this study was to investigate circulating EVs from EOC patients and healthy women to evaluate their biological function and potential as diagnostic biomarkers. Methods A quantitative proteomic analysis (iTRAQ) was applied and performed on 10 EOC patients with advanced stage (stage III–IV) and 10 controls. Twenty EOC patients and 20 controls were applied for validation. The candidate proteins were further validated in another 40-paired cohort to investigate their biomarker potential. Coagulation cascades activation was accessed by determining Factor X activity. Results Compared with controls, 200 proteins were upregulated and 208 proteins were downregulated in the EOC group. The most significantly involved pathway is complement and coagulation cascades. ApoE multiplexed with EpCAM, plg, serpinC1 and C1q provide optimal diagnostic information for EOC with AUC = 0.913 (95% confidence interval (CI) =0.848–0.957, p < 0.0001). Level of activated Factor X was significantly higher in EOC group than control (5.35 ± 0.14 vs. 3.69 ± 0.29, p < 0.0001). Conclusions Our study supports the concept of circulating EVs as a tool for non-invasive diagnosis of ovarian cancer. EVs also play pivotal roles in coagulation process, implying the inherent mechanism of generation of thrombus which often occurred in ovarian cancer patients at late stages.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China
| | - Peng Peng
- Department of Obstetrics and Gynecology Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxuan Ou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
76
|
Xiao H, He M, Xie G, Liu Y, Zhao Y, Ye X, Li X, Zhang M. The release of tryptase from mast cells promote tumor cell metastasis via exosomes. BMC Cancer 2019; 19:1015. [PMID: 31664930 PMCID: PMC6819443 DOI: 10.1186/s12885-019-6203-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cancer cells release exosomes and can be taken up by mast cells (MCs), but the potential functional effects of MCs on tumor metastasis remain unknown. Method Exosomes were isolated from the lung adenocarcinoma cell line A549, and the uptake of PKH26-labeled exosomes by bone marrow MCs was examined via flow cytometry and fluorescence microscopy. Cytokines and tryptase in MC supernatant were analyzed using an ELISA kit, and the presence of tryptase was evaluated by Western blotting. Cell proliferation and migration were determined through CCK-8 and transwell assays. Proteins in the tryptase-JAK-STAT signaling pathway were detected by Western blotting. Results In this study, we show that exosomes from A549 cells can be taken up by MCs. Moreover, A549 exosomes contain stem cell factor (SCF) to MCs and subsequently induce the activation of MCs through SCF-KIT signal transduction, which leads to MC degranulation and the release of tryptase. Tryptase accelerates the proliferation and migration of human umbilical vein endothelial cells (HUVECs) through the JAK-STAT signaling pathway. Conclusions Our results reveal a mechanism for metastasis in which exosomes can transfer SCF to and activate MCs, which can affect the release of tryptase and the angiogenesis of HUVECs.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China
| | - Mudan He
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Baoshan Branch, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China
| | - Yanan Liu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuxia Zhao
- College of Clinical Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xiong Ye
- College of Clinical Medicine, Shanghai University of Medicine & Health Science, Shanghai, China.
| | - Xingjing Li
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Baoshan Branch, Shanghai, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
77
|
Hasanin AH, Matboli M, Seleem HS. Hesperidin suppressed hepatic precancerous lesions via modulation of exophagy in rats. J Cell Biochem 2019; 121:1295-1306. [PMID: 31489981 DOI: 10.1002/jcb.29363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
The enormous cost of modern medicines warrants alternative strategies for the better management of hepatocellular carcinoma. Recently, exosomes have been shown to relay the oncogenic information through the horizontal transfer of RNAs between the cells. In this study, we modulated exosomal production and autophagy (exophagy) by the administration of hesperidin and evaluated its effect on the development of hepatic precancerous lesion (HPC) in rats. Diethylnitrosamine and 2-acetylaminofluorene were used in vivo to induce HPC in rats. Rats were allocated into five groups: naïve, HPC, and three hesperidin treated (50, 100, and 200 mg/kg/d; orally) for 4 consecutive days per week for 16 weeks. Liver tissues and blood samples were collected for histopathological, immunohistochemical, and transmission electron microscope examinations, liver function, alfa-fetoprotein level, and isolation of exosomal and autophagy RNAs. Hesperidin administration showed hepato-protective effects and improved the microscopic hepatic features with a decrease in glutathione S-transferase placental precancerous foci and the abundance of exosomes in liver tissues. Hesperidin improved liver function with a significant decrease in alfa-fetoprotein levels. Hesperidin dose-dependently decreased exosomal RAB11A messsenger RNA and long noncoding RNA-RP11-583F2.2 along with the increase in exosomal miR-1298, involved in the exophagy process. In conclusion, hesperidin likely suppresses liver carcinogenesis in rat model via the modulation of exosomal secretion and autophagy.
Collapse
Affiliation(s)
- Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan S Seleem
- Department of Histology, Faculty of Medicine, Menoufia University, Cairo, Egypt.,Histology Department, Faculty of Medicine, Unaizah College of Medicine, Al Qassim University, Buraydah, KSA
| |
Collapse
|
78
|
Lu KC, Zhang Y, Song E. Extracellular RNA: mechanisms of it’s transporting into target cells. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
79
|
Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res 2019; 66:513-520. [PMID: 29882035 DOI: 10.1007/s12026-018-9008-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease which is characterized by neuroaxonal degeneration in the central nervous system. Impaired function of regulatory T cells (Tregs) is believed to be an underlying pathogenic mechanism in MS. Tregs is able to release exosomes, which contain a considerable amount of protein and RNA. Exosomes are capable of transporting their content to other cells where the released content exerts biological functions. Here, we investigated whether Tregs exosomes of RRMS patients or healthy controls might regulate the proliferation or survival of T lymphocytes. Regulatory T cells derived from MS patients or healthy controls were cultured for 3 days and exosomes were purified from supernatants. Treg-derived exosomes were co-cultured with conventional T cells (Tconv). The percentages of Tconv proliferation and apoptosis were measured. Our findings showed that the percentage of proliferation suppression induced by exosomes in patients compared to healthy controls was 8.04 ± 1.17 and 12.5 ± 1.22, respectively, p value = 0.035. Moreover, the rate of Tconv apoptosis induced by exosome of MS patient was less than healthy controls (0.68 ± 0.12 vs. 1.29 ± 0.13; p value = 0.015). Overall, Treg-derived exosomes from MS patients and healthy controls suppressed the proliferation and induced apoptosis in Tconv. However, the effect of MS-derived exosomes was significantly less than healthy controls. Our results point to an alternative Treg inhibitory mechanism which might be important in immunopathogenesis of MS. Although, the cause of the exosomal defect in MS patients is unclear, manipulation of patients' Treg-derived exosomes to restore their suppressive activity might be considered as a potential therapeutic approach. Graphical abstract ᅟ.
Collapse
|
80
|
Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, McIntyre LL, Shelke GV, Hutchins E, Hamamoto A, Calle EN, Crescitelli R, Liao W, Pham V, Yin Y, Jayaraman J, Lakey JRT, Walsh CM, Van Keuren-Jensen K, Lotvall J, Zhao W. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS NANO 2019; 13:6670-6688. [PMID: 31117376 PMCID: PMC6880946 DOI: 10.1021/acsnano.9b01004] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To dissect therapeutic mechanisms of transplanted stem cells and develop exosome-based nanotherapeutics in treating autoimmune and neurodegenerative diseases, we assessed the effect of exosomes secreted from human mesenchymal stem cells (MSCs) in treating multiple sclerosis using an experimental autoimmune encephalomyelitis (EAE) mouse model. We found that intravenous administration of exosomes produced by MSCs stimulated by IFNγ (IFNγ-Exo) (i) reduced the mean clinical score of EAE mice compared to PBS control, (ii) reduced demyelination, (iii) decreased neuroinflammation, and (iv) upregulated the number of CD4+CD25+FOXP3+ regulatory T cells (Tregs) within the spinal cords of EAE mice. Co-culture of IFNγ-Exo with activated peripheral blood mononuclear cells (PBMCs) cells in vitro reduced PBMC proliferation and levels of pro-inflammatory Th1 and Th17 cytokines including IL-6, IL-12p70, IL-17AF, and IL-22 yet increased levels of immunosuppressive cytokine indoleamine 2,3-dioxygenase. IFNγ-Exo could also induce Tregs in vitro in a murine splenocyte culture, likely mediated by a third-party accessory cell type. Further, IFNγ-Exo characterization by deep RNA sequencing suggested that IFNγ-Exo contains anti-inflammatory RNAs, where their inactivation partially hindered the exosomes potential to induce Tregs. Furthermore, we found that IFNγ-Exo harbors multiple anti-inflammatory and neuroprotective proteins. These results not only shed light on stem cell therapeutic mechanisms but also provide evidence that MSC-derived exosomes can potentially serve as cell-free therapies in creating a tolerogenic immune response to treat autoimmune and central nervous system disorders.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - M. Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ashish Yeri
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Cecilia Lässer
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Aude I. Segaliny
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Laura L. McIntyre
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ganesh Vilas Shelke
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Ashley Hamamoto
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erika N. Calle
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Rossella Crescitelli
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Wenbin Liao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Victor Pham
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Yanan Yin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jayapriya Jayaraman
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, Orange, California 92868, United States
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona 85004, United States
| | - Jan Lotvall
- Krefting Research Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, and Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Corresponding Author:
| |
Collapse
|
81
|
Characterization of mRNA profiles of the exosome-like vesicles in porcine follicular fluid. PLoS One 2019; 14:e0217760. [PMID: 31188849 PMCID: PMC6561635 DOI: 10.1371/journal.pone.0217760] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles such as exosomes contain several types of transcripts, including mRNAs and micro RNAs (miRNAs), and have emerged as important mediators of cell-to-cell communication. Exosome-like vesicles were identified in the ovarian follicles of several mammalian species. Although the miRNA contents have been extensively characterized, the detailed investigation of their mRNA profiles is lacking. Here, we characterize the mRNA profiles of exosome-like vesicles in ovarian follicles in a pig model. The mRNA contents of the exosome-like vesicles isolated from porcine follicular fluid were analyzed and compared with those from mural granulosa cells (MGCs) using the Illumina HiSeq platform. Bioinformatics studies suggested that the exosomal mRNAs are enriched in those encoding proteins involved in metabolic, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) -protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) pathways. While the mRNA profile of the exosome-like vesicles resembled that of MGCs, the vesicles contained mRNAs barely detectable in MGCs. Thus, while the majority of the vesicles are likely to be secreted from MGCs, some may originate from other cell types, including theca cells and oocytes, as well as the cells of non-ovarian organs/tissues. Therefore, the mRNA profiles unveiled several novel characteristics of the exosome-like vesicles in ovarian follicles.
Collapse
|
82
|
Tai YL, Chu PY, Lee BH, Chen KC, Yang CY, Kuo WH, Shen TL. Basics and applications of tumor-derived extracellular vesicles. J Biomed Sci 2019; 26:35. [PMID: 31078138 PMCID: PMC6511661 DOI: 10.1186/s12929-019-0533-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicle (EV)-mediated intercellular communication acts as a critical culprit in cancer development. The selective packaging of oncogenic molecules renders tumor-derived EVs capable of altering the tumor microenvironment and thereby modulating cancer developments that may contribute to drug resistance and cancer recurrence. Moreover, the molecular and functional characteristics of cancer through its development and posttreatment evolve over time. Tumor-derived EVs are profoundly involved in this process and can, therefore, provide valuable real-time information to reflect dynamic changes occurring within the body. Because they bear unique molecular profiles or signatures, tumor-derived EVs have been highlighted as valuable diagnostic and predictive biomarkers as well as novel therapeutic targets. In addition, the use of an advanced EV-based drug delivery system for cancer therapeutics has recently been emphasized in both basic and clinical studies. In this review, we highlight comprehensive aspects of tumor-derived EVs in oncogenic processes and their potential clinical applications.
Collapse
Affiliation(s)
- Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pei-Yu Chu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ko-Chien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
83
|
Just J, Munk Ipsen P, Kruhøffer M, Lykkemark S, Skjold T, Schiøtz PO, Hoffmann HJ. Human Mast Cell Sensitization with IgE Increases miRNA-210 Expression. Int Arch Allergy Immunol 2019; 179:102-107. [PMID: 30965334 DOI: 10.1159/000496513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent important post-transcriptional regulators with a dynamic expression profile during health and disease. OBJECTIVES We explored the miRNA profile of human mast cells (MCs) during sen-sitization with IgE, during activation through IgE, and relat ed it to prostaglandin D2 synthesis and histamine release. METHOD We investigated the expression pattern of 762 miRNAs during the IgE-mediated sensitization and activation of MCs cultured from CD133+ stem cells that were isolated from allergic asthmatic patients and nonatopic controls. RESULTS IgE-mediated sensitization increased the expression of miRNA-210 eight-fold. This increase was sustained during IgE-mediated MC activation. Furthermore, we confirmed the increase of the miRNA-132/212 cluster after MC activation. Predicted target genes of miRNA-210/132/212 were enriched in several pathways known to be involved in MC activation. Histamine release was significantly higher in MCs from allergic patients when compared to controls, and a number of miRNAs correlated with histamine release and prostaglandin D2 synthesis during MC activation. CONCLUSION The miRNAs and analysis presented here can help to elucidate the role of miRNAs in mediator release during MC activation. We speculate that miRNA-210 could be important in MC sensitization that leads to allergic symptoms.
Collapse
Affiliation(s)
- Jesper Just
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pernille Munk Ipsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Simon Lykkemark
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tina Skjold
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Oluf Schiøtz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, .,Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark,
| |
Collapse
|
84
|
Wu R, Gao W, Yao K, Ge J. Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases. Front Immunol 2019; 10:648. [PMID: 30984201 PMCID: PMC6449434 DOI: 10.3389/fimmu.2019.00648] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Therapies aimed at minimizing adverse remodeling in cardiovascular diseases on a molecular and cellular basis are urgently needed. Exosomes are nanosized lipid vesicles released from various cells that are able to mediate intercellular signaling and communication via their cargos. It has been increasingly demonstrated that exosomes from cardiomyocytes or stem/progenitor cells can promote cardiac repair and regeneration, but their mechanism has not been fully explained. Immune responses mediated by immune cells also play important and complicated roles in the progression of various cardiovascular diseases such as myocardial infarction and atherosclerosis. Exosomes derived from immune cells have shown pleiotropic effects on these pathological states, whether similar to or different from their parent cells. However, the underlying mechanism remains obscure. In this review, we first describe the biological characteristics and biogenesis of exosomes. Then we critically examine the emerging roles of exosomes in cardiovascular disease; the exosomes we focus on are derived from immune cells such as dendritic cells, macrophages, B cells, T cells, as well as neutrophils and mast cells. Among the cardiovascular diseases we discuss, we mainly focus on myocardial infarction and atherosclerosis. As active intercellular communicators, exosomes from immune cells may offer prospective diagnostic and therapeutic value in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
85
|
Roitbak T. MicroRNAs and Regeneration in Animal Models of CNS Disorders. Neurochem Res 2019; 45:188-203. [PMID: 30877519 DOI: 10.1007/s11064-019-02777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage. The article introduces a brief description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed by an overview of miRNAs involved in the processes associated with CNS repair, including neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative processes during different CNS pathologies. In association with our own studies on miR-155, I introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity. The review concludes with discussion on the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA.
| |
Collapse
|
86
|
Elsemüller AK, Tomalla V, Gärtner U, Troidl K, Jeratsch S, Graumann J, Baal N, Hackstein H, Lasch M, Deindl E, Preissner KT, Fischer S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells. FASEB J 2019; 33:5457-5467. [PMID: 30702929 DOI: 10.1096/fj.201801853rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.
Collapse
Affiliation(s)
| | - Vanessa Tomalla
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Ulrich Gärtner
- Department of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Kerstin Troidl
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nelli Baal
- Department of Clinical Immunology and Transfusion Medicine, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen-Friedrich Alexander University, Erlangen, Germany
| | - Manuel Lasch
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Medical Center of the University of Munich-Ludwig Maximilian University, Munich, Germany; and
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical Faculty, Justus Liebig University, Giessen, Germany
| |
Collapse
|
87
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
88
|
Abstract
In biological systems, extracellular vesicles including exosomes have recently been revealed to play a significant role in the communication between various cells, and the number of papers on this subject has dramatically increased. In current conventional exosome studies, the standard research method is to use liquid biopsies to analyze extracts of various disease exosomes. However, exosomes are only one of many key players in natural cellular interactions. Reproducing the phenomena occurring in vivo and investigating the interactions are required in order to examine their role fully. For exosome research, an alternative to the liquid biopsy method for observing natural interactions is the co-culturing technique. It does not require an exosome extraction procedure, and while the technique has been used in many studies thus far, its application to exosome research has been limited. However, the use of co-culturing technologies is necessary to examine the essential interactions of exosomes. An overview of exosome research methodologies and co-culturing systems is thus provided here.
Collapse
Affiliation(s)
- Takeo Shimasaki
- Medical Research Institute, Kanazawa Medical University.,Department of Gastroenterology, Kanazawa Medical University.,Ginreilab Inc
| | | | | |
Collapse
|
89
|
Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene 2018; 38:1751-1763. [PMID: 30353168 PMCID: PMC6372071 DOI: 10.1038/s41388-018-0540-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 12/20/2022]
Abstract
The role of extracellular vesicles (EVs) as vehicles for cell-to-cell communication between a tumour and its environment is a relatively new concept. The hypothesis that EVs may be critical in co-opting tissues by tumours to generate distant metastatic niches is particularly pertinent to prostate cancer (PCa), where metastatic-tropism to bone predominates over other tissue types. The potential role of EVs as a means of communication between PCa cells and cells of the bone stroma such as osteoblasts, is yet to be fully explored. In this study, we demonstrate that PCa cell EVs both enhance osteoblast viability and produce a significantly more supportive growth environment for PCa cells when grown in co-culture with EV-treated osteoblasts (p < 0.005). Characterisation of the RNA cargo of EVs produced by the bone-metastatic PCa cell line PC3, highlights the EV-RNA cargo is significantly enriched in genes relating to cell surface signalling, cell–cell interaction, and protein translation (p < 0.01). Using novel techniques to track RNA, we demonstrate the delivery of a set of PCa-RNAs to osteoblast via PCa-EVs and show the effect on osteoblast endogenous transcript abundance. Taken together, by using proof-of-concept studies we demonstrate for the first time the contribution of the RNA element of the PCa EV cargo, providing evidence to support PCa EV communication via RNA molecules as a potential novel route to mediate bone metastasis. We propose targeting PCa EVs could offer a potentially important preventative therapy for men at risk of metastatic PCa.
Collapse
|
90
|
Emam SE, Ando H, Lila ASA, Shimizu T, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Sagawa I, Ishida T. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep 2018; 8:14493. [PMID: 30262875 PMCID: PMC6160473 DOI: 10.1038/s41598-018-32861-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
We recently showed that in vitro incubation of cells with liposomes of varying compositions can increase exosome secretion and increase the yield of harvested exosomes (extracellular vesicles, EVs). This might foster their potential therapeutic implementations. In the current study, we investigated the surface proteins and the uptake of the harvested exosomes (EVs) to see if the incubation of cells with liposomes would change the biological properties of these exosomes (EVs). Interestingly, exosomes (EVs) induced by solid cationic liposomes lacked some major exosome marker proteins such as CD9, flotillin-1, annexin-A2 and EGF, and subsequently had lower levels of cellular uptake upon re-incubation with donor cancer cells. However, exosomes (EVs) induced under normal condition and by fluid cationic liposomes, displayed the entire spectrum of proteins, and exhibited higher uptake by the donor cancer cells. Although endocytosis was the major uptake pathway of exosomes (EVs) by tumor cells, endocytosis could occur via more than one mechanism. Higher exosome uptake was observed in donor B16BL6 cells than in allogeneic C26 cells, indicating that donor cells might interact specifically with their exosomes (EVs) and avidly internalize them. Taken together, these results suggest a technique for controlling the characteristics of secreted exosomes (EVs) by incubating donor cancer cells with liposomes of varying physiochemical properties.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, 81442, Saudi Arabia
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Mahmoud A Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ikuko Sagawa
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
91
|
Emam SE, Ando H, Abu Lila AS, Shimizu T, Ukawa M, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Ishida T. A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research. Biol Pharm Bull 2018; 41:733-742. [PMID: 29709910 DOI: 10.1248/bpb.b17-00919] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exosomes are tiny extracellular vesicles that are usually harvested in small quantities. Such small yield has been an obstacle for the expansion of the basic research regarding exosome analysis and applications in drug delivery. To increase exosome yield, we attempted to stimulate tumor cells via the addition of liposomes in vitro. Neutral, cationic-bare or PEGylated liposomes were incubated with four different tumor cell lines. The stimulatory effect of liposomal formulations on exosome secretion and cellular uptake propensity of the collected exosome by mother cells or different cells was evaluated. Both neutral and cationic-bare liposomes enhanced exosome secretion in a dose-dependent manner. Fluid cationic liposomes provided the strongest stimulation. Surprisingly, the PEGylation of bare liposomes diminished exosome secretion. Exosomes harvested in the presence of fluid cationic liposomes showed increased cellular uptake, but solid cationic liposomes did not. Our findings indicate that the physicochemical properties of liposomes determine whether they will act as a stimulant or as a depressant on exosome secretion from tumor cells. Liposomal stimulation may be a useful strategy to increase exosome yield, although further preparation to increase the purity of exosomes may be needed. In addition, fine-tuning of the biological properties of induced exosomes could be achieved via controlling the physicochemical properties of the stimulant liposomes.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Amr Selim Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University.,Department of Pharmaceutics, College of Pharmacy, Hail University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Masami Ukawa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Mahmoud A Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
92
|
Qing L, Chen H, Tang J, Jia X. Exosomes and Their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2018; 32:765-776. [PMID: 30223738 PMCID: PMC6146407 DOI: 10.1177/1545968318798955] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury is a major clinical problem and often results in a poor functional recovery. Despite obvious clinical need, treatment strategies have been largely suboptimal. In the nervous system, exosomes, which are nanosized extracellular vesicles, play a critical role in mediating intercellular communication. More specifically, microRNA carried by exosomes are involved in various key processes such as nerve and vascular regeneration, and exosomes originating from Schwann cells, macrophages, and mesenchymal stem cells can promote peripheral nerve regeneration. In this review, the current knowledge of exosomes' and their miRNA cargo's role in peripheral nerve regeneration are summarized. The possible future roles of exosomes in therapy and the potential for microRNA-containing exosomes to treat peripheral nerve injuries are also discussed.
Collapse
Affiliation(s)
- Liming Qing
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
| | - Juyu Tang
- Department of Hand & Microsurgery, Xiangya Hospital of
Central South University, Changsha, Hunan, 410008
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Orthopedics, University of Maryland School of
Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, Baltimore, MD 21201, USA
- Department of Biomedical Engineering, Johns Hopkins University
School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
93
|
New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett 2018; 431:115-122. [PMID: 29857125 DOI: 10.1016/j.canlet.2018.05.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Exosomes are a group of nano-sized membrane vesicles that transfer proteins, nucleic acids, and lipids to nearby and faraway cells, playing an important role in the intercellular communication within the extracellular environment. Emerging evidences show that exosomes derived from immunocytes, including dendritic cells, T cells, B cells, macrophages, natural killer cells and myeloid-derived suppressor cells, can play an intimate role in the crosstalk among immunocytes in a tumor microenvironment. In this review, we highlight that under tumor conditions, immune cells and tumor cells can be influenced by immunocyte-derived exosomes, resulting in modifications of their phenotype and function. Thus, a better understanding of exosomes derived from different immunocytes would provide novel strategies in generating effective vaccines or improving treatment efficacy in anticancer therapies.
Collapse
|
94
|
Extracellular Vesicles: A New Prospective in Crosstalk between Microenvironment and Stem Cells in Hematological Malignancies. Stem Cells Int 2018; 2018:9863194. [PMID: 29977309 PMCID: PMC5994264 DOI: 10.1155/2018/9863194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment in hematological malignancies (HMs) comprises heterogeneous populations of neoplastic and nonneoplastic cells. Cancer stem cells (CSCs), neoplastic cells, hematopoietic stem cells (HSCs), and mesenchymal stromal/stem cells (MSCs) are all components of this microenvironment. CSCs are the HM initiators and are associated with neoplastic growth and drug resistance, while HSCs are able to reconstitute the entire hematopoietic system; finally, MSCs actively support hematopoiesis. In some HMs, CSCs and neoplastic cells compromise the normal development of HSCs and perturb BM-MSCs. In response, "reprogrammed" MSCs generate a favorable environment to support neoplastic cells. Extracellular vesicles (EVs) are an important cell-to-cell communication type in physiological and pathological conditions. In particular, in HMs, EV secretion participates to unidirectional and bidirectional interactions between neoplastic cells and BM cells. The transfer of EV molecular cargo triggers different responses in target cells; in particular, malignant EVs modify the BM environment in favor of neoplastic cells at the expense of normal HSCs, by interfering with antineoplastic immunity and participating in resistance to treatment. Here, we review the role of EVs in BM cell communication in physiological conditions and in HMs, focusing on the effects of BM niche EVs on HSCs and MSCs.
Collapse
|
95
|
Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66:2267-2278. [PMID: 29726599 DOI: 10.1002/glia.23445] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules that post-transcriptionally regulate protein expression and most biological processes. Mature miRNAs are recruited to the RNA-induced silencing complex (RISC) and target mRNAs via complementary base-pairing, thus resulting in translational inhibition and/or transcript degradation. Here, we present evidence implicating miRNAs within extracellular vesicles (EVs), including microvesicles and exosomes, as mediators of central nervous system (CNS) development, homeostasis, and injury. EVs are extracellular vesicles that are secreted by all cells and represent a novel method of intercellular communication. In glial cells, the transfer of miRNAs via EVs can alter the function of recipient cells and significantly impacts cellular mechanisms involved in both injury and repair. This review discusses the value of information to be gained by studying miRNAs within EVs in the context of CNS diseases and their potential use in the development of novel disease biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
| | - Dylan A Galloway
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Craig S Moore
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
96
|
Yang J, Li C, Zhang L, Wang X. Extracellular Vesicles as Carriers of Non-coding RNAs in Liver Diseases. Front Pharmacol 2018; 9:415. [PMID: 29740327 PMCID: PMC5928552 DOI: 10.3389/fphar.2018.00415] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted from normal, diseased, and transformed cells in vitro and in vivo. EVs have been found to play a critical role in cell-to-cell communication by transferring non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long ncRNAs (lncRNAs) and so on. Emerging evidence shows that transferring biological information through EVs to neighboring cells in intercellular communication not only keep physiological functions, but also participate in the pathogenesis of liver diseases. Liver diseases often promote release of EVs and/or in different cargo sorting into these EVs. Either of these modifications can promote disease pathogenesis. Given this fact, EV-associated ncRNAs, such as miR-192, miR-122 and lncRNA-ROR and so on, can serve as new diagnostic biomarkers and new therapeutic targets for liver disease, because altered EV-associated ncRNAs may reflect the underlying liver disease condition. In this review, we focus on understanding the emerging role of EV-associated ncRNAs in viral hepatitis, liver fibrosis, alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) and discuss their utility in biomarker discovery and therapeutics. A better understanding of this multifaceted pattern of communication between different type cells in liver may contribute to developing novel approaches for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Junfa Yang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Changyao Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
97
|
Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One 2018; 13:e0195969. [PMID: 29689087 PMCID: PMC5918169 DOI: 10.1371/journal.pone.0195969] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
The RNA that is packaged into exosomes is termed as exosomal-shuttle RNA (esRNA); however, the players, which take this subset of RNA (esRNA) into exosomes, remain largely unknown. We hypothesized that RNA binding proteins (RBPs) could serve as key players in this mechanism, by making complexes with RNAs and transporting them into exosomes during the biosynthesis of exosomes. Here, we demonstrate the presence of 30 RBPs in exosomes that were shown to form RNA-RBP complexes with both cellular RNA and exosomal-RNA species. To assess the involvement of these RBPs in RNA-transfer into exosomes, the gene transcripts encoding six of the proteins identified in exosomes (HSP90AB1, XPO5, hnRNPH1, hnRNPM, hnRNPA2B1, and MVP) were silenced by siRNA and subsequent effect on esRNA was assessed. A significant reduction of total esRNA was observed by post-transcriptional silencing of MVP, compared to other RBPs. Furthermore, to confirm the binding of MVP with esRNA, a biotinylated-MVP was transiently expressed in HEK293F cells. Higher levels of esRNA were recovered from MVP that was eluted from exosomes of transfected cells, as compared to those of non-transfected cells. Our data indicate that these RBPs could end up in exosomes together with RNA molecules in the form of RNA-ribonucleoprotein complexes, which could be important for the transport of RNAs into exosomes and the maintenance of RNAs inside exosomes. This type of maintenance may favor the shuttling of RNAs from exosomes to recipient cells in the form of stable complexes.
Collapse
|
98
|
Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater 2018; 71:318-329. [PMID: 29462710 DOI: 10.1016/j.actbio.2018.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Surgical meshes are effective and frequently used to reinforce soft tissues. Fibrin glue (FG) has been widely used for mesh fixation and is also considered an optimal vehicle for stem cell delivery. The aim of this preclinical study was to evaluate the therapeutic effect of MSCs and their exosomes combined with FG for the treatment of incisional hernia. A murine incisional hernia model was used to implant surgical meshes and different treatments with FG, MSCs and exo-MSCs were applied. The implanted meshes were evaluated at day 7 by anatomopathology, cellular analysis of infiltrating leukocytes and gene expression analysis of TH1/TH2 cytokines, MMPs, TIMPs and collagens. Our results demonstrated a significant increase of anti-inflammatory M2 macrophages and TH2 cytokines when MSCs or exo-MSCs were used. Moreover, the analysis of MMPs, TIMPs and collagen exerted significant differences in the extracellular matrix and in the remodeling process. Our in vivo study suggests that the fixation of surgical meshes with FG and MSCs or exo-MSCs will have a beneficial effect for the treatment of incisional hernia in terms of improved outcomes of damaged tissue, and especially, in the modulation of inflammatory responses towards a less aggressive and pro-regenerative profile. STATEMENT OF SIGNIFICANCE The implantation of surgical meshes is the standard procedure to reinforce tissue defects such as hernias. However, an exacerbated and persistent inflammatory response secondary to this implantation is frequently observed, leading to a strong discomfort and chronic pain in the patients. In many cases, an additional surgical intervention is needed to remove the mesh. This study shows that mesenchymal stem cells and their exosomes, combined with a fibrin sealant, can be used for the successful fixation of these meshes. This new therapeutic approach, assayed in a murine model of incisional hernia, favors the modulation of the inflammatory response towards a less aggressive and pro-regenerative profile.
Collapse
|
99
|
Li S, Yao J, Xie M, Liu Y, Zheng M. Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol 2018; 11:54. [PMID: 29642941 PMCID: PMC5896112 DOI: 10.1186/s13045-018-0579-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma remains the sixth most lethal malignancy in the world. While HCC is often diagnosed via current biomarkers at a late stage, early detection of HCC has proven to be very difficult. Recent studies have focused on using exosomal miRNAs in clinical diagnostics and therapeutics, because they have improved stability in exosomes than as free miRNAs themselves. Exosomal miRNAs act through novel mechanisms for inducing cellular responses in a variety of biological circumstances. Dysregulated expression of miRNAs in exosomes can also accelerate HCC progression, including cell proliferation and metastasis, via alteration of a network of genes. Growing evidence demonstrates that exosomal miRNAs can affect many aspects of physiological and pathological conditions in HCC and indicates that miRNAs in exosomes can not only serve as sensitive biomarkers for cancer diagnostics and recurrence but can also potentially be used as therapeutics to target HCC progression. In this review, we summarize the latest findings between exosomal miRNAs and HCC, in order to better comprehend the functions and applications in HCC. Moreover, we discuss critical issues to consider when developing anti-tumor exosomal miRNAs as a novel therapeutic strategy for treating HCC in the clinic.
Collapse
Affiliation(s)
- Shuangshuang Li
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiping Yao
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingjie Xie
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Zheng
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
100
|
Liang Y, Qiao L, Peng X, Cui Z, Yin Y, Liao H, Jiang M, Li L. The chemokine receptor CCR1 is identified in mast cell-derived exosomes. Am J Transl Res 2018; 10:352-367. [PMID: 29511430 PMCID: PMC5835801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.
Collapse
Affiliation(s)
- Yuting Liang
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Xia Peng
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Huanjin Liao
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Min Jiang
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| |
Collapse
|