51
|
Tomaras GD, Haynes BF. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates. Vaccines (Basel) 2015; 2:15-35. [PMID: 24932411 PMCID: PMC4053939 DOI: 10.3390/vaccines2010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA), VAX004 (Vaxgen, Inc.), HIV-1 Vaccine Trials Network (HVTN) 502 (Step), HVTN 503 (Phambili), RV144 (sponsored by the U.S. Military HIV Research Program, MHRP) and HVTN 505). Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates) that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D. Tomaras
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-681-5598; Fax: +1-919-684-5230
| | - Barton F. Haynes
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-681-5598; Fax: +1-919-684-5230
| |
Collapse
|
52
|
Detection of HIV-1-specific T-cell immune responses in highly HIV-exposed uninfected individuals by in-vitro dendritic cell co-culture. AIDS 2015; 29:1309-18. [PMID: 26091301 DOI: 10.1097/qad.0000000000000728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although virus-specific responses are rarely detected by conventional approaches, we report here the detection of T-cell responses in HIV-exposed seronegative (HESN) patients by two distinct assays. METHODS HIV-specific T-cell responses were analyzed by enzyme-linked immunospot in peripheral blood mononuclear cells from HESN patients after a 48-h co-culture with boosted dendritic cells. Additionally, a boosted flow cytometry approach was used to capture antiviral T-cell responses. Host genetic factors and T-cell activation were also analyzed to assess their implication on HIV exposure. RESULTS Of the 45 HESN individuals tested, up to 11 (24.4%) showed at least one response to peptide pools covering HIV Gag and Nef. A positive correlation was observed between the intensity (P = 0.0022) and magnitude (P = 0.0174) of the response detected in the HESN, and the viral load of the HIV-positive partner. Moreover, the result from the boosted flow and cytomix analyses showed a dominant Th1-like response pattern against HIV antigens, especially in CD8 T-cell populations. CONCLUSIONS The combined use of our boosted dendritic cell technique with a boosted flow cytometric approach allows us both to detect specific HIV-positive responses in a higher percentage of HESN patients and to define specific effector function profiles. This study contributes to a better understanding of resistance to HIV infection.
Collapse
|
53
|
Nilsson C, Hejdeman B, Godoy-Ramirez K, Tecleab T, Scarlatti G, Bråve A, Earl PL, Stout RR, Robb ML, Shattock RJ, Biberfeld G, Sandström E, Wahren B. HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial. PLoS One 2015; 10:e0131748. [PMID: 26121679 PMCID: PMC4486388 DOI: 10.1371/journal.pone.0131748] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers. METHODS HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA. RESULTS The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients. CONCLUSION Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) 60284968.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | | | - Teghesti Tecleab
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and infectious diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andreas Bråve
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD, United States of America
| | | | - Merlin L. Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Robin J. Shattock
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Gunnel Biberfeld
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
54
|
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7:50. [PMID: 26019725 PMCID: PMC4445287 DOI: 10.1186/s13073-015-0174-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.
Collapse
Affiliation(s)
- Maggie L Bobbin
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA
| | - John C Burnett
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| | - John J Rossi
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| |
Collapse
|
55
|
Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia. J Virol 2015; 89:7494-505. [PMID: 25972560 DOI: 10.1128/jvi.00438-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are important for our understanding of HIV immunopathology.
Collapse
|
56
|
A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults. PLoS One 2015; 10:e0125954. [PMID: 25961283 PMCID: PMC4427332 DOI: 10.1371/journal.pone.0125954] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445
Collapse
|
57
|
Nguyen HNP, Steede NK, Robinson JE, Landry SJ. Conformational instability governed by disulfide bonds partitions the dominant from subdominant helper T-cell responses specific for HIV-1 envelope glycoprotein gp120. Vaccine 2015; 33:2887-96. [PMID: 25944298 DOI: 10.1016/j.vaccine.2015.04.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/30/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) generate a CD4(+) T-cell response that is dominated by a few epitopes. Immunodominance may be counterproductive because a broad CD4(+) T-cell response is associated with reduced viral load. Previous studies indicated that antigen three-dimensional structure controls antigen processing and presentation and therefore CD4(+) T-cell epitope dominance. Dominant epitopes occur adjacent to the V1-V2, V3, and V4 loops because proteolytic antigen processing in the loops promotes presentation of adjacent sequences. In this study, three gp120 (strain JR-FL) variants were constructed, in which deletions of single outer-domain disulfide bonds were expected to introduce local conformational flexibility and promote presentation of additional CD4(+) T-cell epitopes. Following mucosal immunization of C57BL/6 mice with wild-type or variant gp120 lacking the V3-flanking disulfide bond, the typical pattern of dominant epitopes was observed, suggesting that the disulfide bond posed no barrier to antigen presentation. In mice that lacked gamma interferon-inducible lysosomal thioreductase (GILT), proliferative responses to the typically dominant epitopes of gp120 were selectively depressed, and the dominance pattern was rearranged. Deletion of the V3-flanking disulfide bond or one of the V4-flanking disulfide bonds partially restored highly proliferative responses to the typically dominant epitopes. These results reveal an acute dependence of dominant CD4(+) T-cell responses on the native gp120 conformation.
Collapse
Affiliation(s)
- Hong-Nam P Nguyen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - N Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
58
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
59
|
Abstract
Despite three decades of intensive research efforts, the development of an effective prophylactic vaccine against HIV remains an unrealized goal in the global campaign to contain the HIV/AIDS pandemic. Recent characterization of novel epitopes for inducing broadly neutralizing antibodies has fueled research in the design and synthesis of new, well-defined antigenic constructs for the development of HIV envelope-directed vaccines. The present review will cover previous and recent efforts toward the design of synthetic vaccines based on the HIV viral envelope glycoproteins, with special emphasis on examples from our own laboratories. The biological evaluation of some of the most representative vaccine candidates, in terms of their antigenicity and immunogenicity, will also be discussed to illustrate the current state-of-the-art toward the development of fully synthetic HIV vaccines.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Laboratory for Bioorganic Chemistry, Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, NY 10065, USA
| | | | | |
Collapse
|
60
|
Modulation of SIV and HIV DNA vaccine immunity by Fas-FasL signaling. Viruses 2015; 7:1429-53. [PMID: 25807052 PMCID: PMC4379579 DOI: 10.3390/v7031429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/10/2015] [Accepted: 03/15/2015] [Indexed: 01/14/2023] Open
Abstract
Signaling through the Fas/Apo-1/CD95 death receptor is known to affect virus-specific cell-mediated immune (CMI) responses. We tested whether modulating the Fas-apoptotic pathway can enhance immune responses to DNA vaccination or lymphocytic choriomeningitis virus (LCMV) infection. Mice were electroporated with plasmids expressing a variety of pro- or anti-apoptotic molecules related to Fas signaling and then either LCMV-infected or injected with plasmid DNA expressing SIV or HIV antigens. Whereas Fas or FasL knockout mice had improved CMI, down-regulation of Fas or FasL by shRNA or antibody failed to improve CMI and was accompanied by increases in regulatory T cells (Treg). Two “adjuvant” plasmids were discovered that significantly enhanced plasmid immunizations. The adjuvant effects of Fas-associated death domain (FADD) and of cellular FLICE-inhibitory protein (cFLIP) were consistently accompanied by increased effector memory T lymphocytes and increased T cell proliferation. This adjuvant effect was also observed when comparing murine infections with LCMV-Armstrong and its persisting variant LCMV-Clone 13. LCMV-Armstrong was cleared in 100% of mice nine days after infection, while LCMV-Clone 13 persisted in all mice. However, half of the mice pre-electroporated with FADD or cFLIP plasmids were able to clear LCMV-Clone 13 by day nine, and, in the case of cFLIP, increased viral clearance was accompanied by higher CMI. Our studies imply that molecules in the Fas pathway are likely to affect a number of events in addition to the apoptosis of cells involved in immunity.
Collapse
|
61
|
Ratto-Kim S, de Souza MS, Currier JR, Karasavvas N, Sidney J, Rolland M, Valencia-Micolta A, Madnote S, Sette A, Nitayaphan S, Pitisuttuthum P, Kaewkungwal J, Rerks-Ngarm S, O’Connell R, Michael N, Robb ML, Marovich M, Kim JH. Identification of immunodominant CD4-restricted epitopes co-located with antibody binding sites in individuals vaccinated with ALVAC-HIV and AIDSVAX B/E. PLoS One 2015; 10:e0115582. [PMID: 25665096 PMCID: PMC4321833 DOI: 10.1371/journal.pone.0115582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/29/2014] [Indexed: 11/18/2022] Open
Abstract
We performed fine epitope mapping of the CD4+ responses in the ALVAC-HIV-AIDSVAX B/E prime-boost regimen in the Thai Phase III trial (RV144). Non-transformed Env-specific T cell lines established from RV144 vaccinees were used to determine the fine epitope mapping of the V2 and C1 responses and the HLA class II restriction. Data showed that there are two CD4+ epitopes contained within the V2 loop: one encompassing the α4β7 integrin binding site (AA179-181) and the other nested between two previously described genetic sieve signatures (AA169, AA181). There was no correlation between the frequencies of CD4+ fine epitope responses and binding antibody.
Collapse
Affiliation(s)
- Silvia Ratto-Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
- * E-mail:
| | - Mark S. de Souza
- United States Military HIV Research Program/United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Jeffrey R. Currier
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| | - Nicos Karasavvas
- United States Military HIV Research Program/United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Morgane Rolland
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| | - Anais Valencia-Micolta
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| | - Sirinan Madnote
- United States Military HIV Research Program/United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Sorachai Nitayaphan
- Thai Component, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Punnee Pitisuttuthum
- Vaccine Trials Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jaranit Kaewkungwal
- Centre of Excellence for Biomedical and Public Health Informatics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Robert O’Connell
- United States Military HIV Research Program/United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Nelson Michael
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| | - Merlin L. Robb
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| | - Mary Marovich
- Office of AIDS Research, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Jerome H. Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States of America
| |
Collapse
|
62
|
Edlefsen PT, Rolland M, Hertz T, Tovanabutra S, Gartland AJ, deCamp AC, Magaret CA, Ahmed H, Gottardo R, Juraska M, McCoy C, Larsen BB, Sanders-Buell E, Carrico C, Menis S, Bose M, Arroyo MA, O’Connell RJ, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Rerks-Ngarm S, Robb ML, Kirys T, Georgiev IS, Kwong PD, Scheffler K, Pond SLK, Carlson JM, Michael NL, Schief WR, Mullins JI, Kim JH, Gilbert PB. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial. PLoS Comput Biol 2015; 11:e1003973. [PMID: 25646817 PMCID: PMC4315437 DOI: 10.1371/journal.pcbi.1003973] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/08/2014] [Indexed: 01/25/2023] Open
Abstract
The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.
Collapse
Affiliation(s)
- Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Morgane Rolland
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Tomer Hertz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Andrew J. Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Allan C. deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hasan Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Connor McCoy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brendan B. Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Eric Sanders-Buell
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Chris Carrico
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sergey Menis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - Meera Bose
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | | | | | | | | | | | | | | | - Merlin L. Robb
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Tatsiana Kirys
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Sergei L. Kosakovsky Pond
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan M. Carlson
- eSience Research Group, Microsoft Research, Redmond, Washington, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - William R. Schief
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Silver Spring, Maryland, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
63
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|
64
|
CD8 and CD4 epitope predictions in RV144: no strong evidence of a T-cell driven sieve effect in HIV-1 breakthrough sequences from trial participants. PLoS One 2014; 9:e111334. [PMID: 25350851 PMCID: PMC4211711 DOI: 10.1371/journal.pone.0111334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84–91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants.
Collapse
|
65
|
Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proc Natl Acad Sci U S A 2014; 111:15614-21. [PMID: 25349379 DOI: 10.1073/pnas.1413550111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.
Collapse
|
66
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
67
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
68
|
O'Connell RJ, Kim JH, Excler JL. The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Rev Vaccines 2014; 13:1489-500. [PMID: 25163695 DOI: 10.1586/14760584.2014.951335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the second variable loop (V2) of the HIV-1 gp120 envelope glycoprotein shows substantial sequence diversity between strains, its functional importance imposes critical conservation of structure, and within particular microdomains, of sequence. V2 influences HIV-1 viral entry by contributing to trimer stabilization and co-receptor binding. It is one of 4 key domains targeted by the broadly neutralizing antibodies that arise during HIV-1 infection. HIV-1 uses V1V2 sequence variation and glycosylation to escape neutralizing antibody. In the Thai Phase III HIV-1 vaccine trial, RV144, vaccine-induced IgG against V1V2 inversely correlated with the risk of HIV-1 acquisition, and HIV-1 strains infecting RV144 vaccine recipients differed from those infecting placebo recipients in the V2 domain. Similarly, non-human primate challenge studies demonstrated an inverse correlation between vaccine-induced anti-V2 responses and simian immunodeficiency virus acquisition. We hypothesize that increased magnitude, frequency and duration of vaccine-induced anti-V2 antibody responses should improve efficacy afforded by pox-protein prime-boost HIV vaccine strategies.
Collapse
Affiliation(s)
- Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|
69
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
70
|
Gartland AJ, Li S, McNevin J, Tomaras GD, Gottardo R, Janes H, Fong Y, Morris D, Geraghty DE, Kijak GH, Edlefsen PT, Frahm N, Larsen BB, Tovanabutra S, Sanders-Buell E, deCamp AC, Magaret CA, Ahmed H, Goodridge JP, Chen L, Konopa P, Nariya S, Stoddard JN, Wong K, Zhao H, Deng W, Maust BS, Bose M, Howell S, Bates A, Lazzaro M, O'Sullivan A, Lei E, Bradfield A, Ibitamuno G, Assawadarachai V, O'Connell RJ, deSouza MS, Nitayaphan S, Rerks-Ngarm S, Robb ML, Sidney J, Sette A, Zolla-Pazner S, Montefiori D, McElrath MJ, Mullins JI, Kim JH, Gilbert PB, Hertz T. Analysis of HLA A*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial. J Virol 2014; 88:8242-55. [PMID: 24829343 PMCID: PMC4135964 DOI: 10.1128/jvi.01164-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02(+)) participants than in A*02(-) participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02(+) participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02(+) participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials. IMPORTANCE The RV144 trial was the first to show efficacy against HIV-1 infection. Subsequently, much effort has been directed toward understanding the mechanisms of protection. Here, we conducted a T-cell-based sieve analysis, which compared the genetic sequences of viruses isolated from infected vaccine and placebo recipients. Though we hypothesized that the observed sieve effect indicated postacquisition T-cell selection, we also found that vaccine efficacy was greater for participants who expressed HLA A*02, an allele implicated in the sieve analysis. Though HLA alleles have been associated with disease progression and viral load in HIV-1 infection, these data are the first to suggest the association of a class I HLA allele and vaccine efficacy. While these statistical analyses do not provide mechanistic evidence of protection in RV144, they generate testable hypotheses for the HIV vaccine community and they highlight the importance of assessing the impact of host immune genetics in vaccine-induced immunity and protection. (This study has been registered at ClinicalTrials.gov under registration no. NCT00223080.).
Collapse
Affiliation(s)
- Andrew J Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sue Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daryl Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gustavo H Kijak
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brendan B Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hasan Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Philip Konopa
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Snehal Nariya
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Julia N Stoddard
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Brandon S Maust
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Shana Howell
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Adam Bates
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Michelle Lazzaro
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | - Esther Lei
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Andrea Bradfield
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Grace Ibitamuno
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tomer Hertz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
71
|
Sopper S, Mätz-Rensing K, Mühl T, Heeney J, Stahl-Hennig C, Sauermann U. Host factors determine differential disease progression after infection with nef-deleted simian immunodeficiency virus. J Gen Virol 2014; 95:2273-2284. [PMID: 24928910 PMCID: PMC4165933 DOI: 10.1099/vir.0.066563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infection of macaques with live attenuated simian immunodeficiency virus (SIV) usually results in long-lasting efficient protection against infection with pathogenic immunodeficiency viruses. However, attenuation by deletion of regulatory genes such as nef is not complete, leading to a high viral load and fatal disease in some animals. To characterize immunological parameters and polymorphic host factors, we studied 17 rhesus macaques infected with attenuated SIVmac239ΔNU. Eight animals were able to control viral replication, whereas the remaining animals (non-controllers) displayed variable set-point viral loads. Peak viral load at 2 weeks post-infection (p.i.) correlated significantly with set-point viral load (P<0.0001). CD4(+) T-cell frequencies differed significantly soon after infection between controllers and non-controllers. Abnormal B-cell activation previously ascribed to Nef function could already be observed in non-controllers 8 weeks after infection despite the absence of Nef. Two non-controllers developed an AIDS-like disease within 102 weeks p.i. Virus from these animals transmitted to naïve animals replicated at low levels and the recipients did not develop immunodeficiency. This suggested that host factors determined differential viral load and subsequent disease course. Known Mhc class I alleles associated with disease progression in SIV WT infection only marginally influenced the viral load in Δnef-infected animals. Protection from SIVmac251 was associated with homozygosity for MHC class II in conjunction with a TLR7 polymorphism and showed a trend with initial viral replication. We speculated that host factors whose effects were usually masked by Nef were responsible for the different disease courses in individual animals upon infection with nef-deleted viruses.
Collapse
Affiliation(s)
- Sieghart Sopper
- Tumor Immunology Lab, Hematology and Oncology, Medical University Innsbruck and Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Kerstin Mätz-Rensing
- Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Thorsten Mühl
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Jonathan Heeney
- Department of Veterinary Medicine, The University of Cambridge, Cambridge, UK
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| |
Collapse
|
72
|
Comprehensive analysis of contributions from protein conformational stability and major histocompatibility complex class II-peptide binding affinity to CD4+ epitope immunogenicity in HIV-1 envelope glycoprotein. J Virol 2014; 88:9605-15. [PMID: 24920818 DOI: 10.1128/jvi.00789-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure.
Collapse
|
73
|
Nonneutralizing functional antibodies: a new "old" paradigm for HIV vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1023-36. [PMID: 24920599 DOI: 10.1128/cvi.00230-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials.
Collapse
|
74
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
76
|
Cohen YZ, Dolin R. Novel HIV vaccine strategies: overview and perspective. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:99-112. [PMID: 24757518 DOI: 10.1177/2051013613494535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A human immunodeficiency virus (HIV) vaccine remains a central component in the quest to control the worldwide epidemic. To examine the status of the development of HIV vaccines, we review the results of the efficacy trials carried out to date and the immunologic principles that guided them. Four vaccine concepts have been evaluated in HIV-1 vaccine efficacy trials, and the results of these trials have provided significant information for future vaccine development. While one of these trials demonstrated that a safe and effective HIV vaccine is possible, many questions remain regarding the basis for the observed protection and the most efficient way to stimulate it. Novel HIV vaccine strategies including induction of highly potent broadly neutralizing antibodies, use of novel homologous and heterologous vector systems, and vectored immunoprophylaxis seek to expand and build upon the knowledge gained from these trials.
Collapse
Affiliation(s)
- Yehuda Z Cohen
- Center for Virus and Vaccine Research, Beth Israel Deaconess Medical Center, E/CLS-1003, 330 Brookline Ave, Boston, 02215, USA
| | - Raphael Dolin
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
77
|
|
78
|
Jin Y, Sun C, Feng L, Li P, Xiao L, Ren Y, Wang D, Li C, Chen L. Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS One 2014; 9:e93143. [PMID: 24671203 PMCID: PMC3966893 DOI: 10.1371/journal.pone.0093143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/03/2014] [Indexed: 01/07/2023] Open
Abstract
CD4+ T cell-mediated immunity has increasingly received attention due to its contribution in the control of HIV viral replication; therefore, it is of great significance to improve CD4+ T cell responses to enhance the efficacy of HIV vaccines. Recent studies have suggested that macroautophagy plays a crucial role in modulating adaptive immune responses toward CD4+ T cells or CD8+ T cells. In the present study, a new strategy based on a macroautophagy degradation mechanism is investigated to enhance CD4+ T cell responses against the HIV/SIV gag antigen. Our results showed that when fused to the autophagosome-associated LC3b protein, SIVgag protein can be functionally targeted to autophagosomes, processed by autophagy-mediated degradation in autolysosomes/lysosomes, presented to MHC II compartments and elicit effective potential CD4 T cell responses in vitro. Importantly, compared with the SIVgag protein alone, SIVgag-LC3b fusion antigen can induce a stronger antigen-specific CD4+ T cell response in mice, which is characterized by an enhanced magnitude and polyfunctionality. This study provides insight for the immunological modulation between viral and mammalian cells via autophagy, and it also presents an alternative strategy for the design of new antigens in the development of effective HIV vaccines.
Collapse
Affiliation(s)
- Yi Jin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CS); (LC)
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Lijun Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yizhong Ren
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China (USTC), Hefei, China
| | - Dimin Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (CS); (LC)
| |
Collapse
|
79
|
Structural and biochemical insights into the V/I505T mutation found in the EIAV gp45 vaccine strain. Retrovirology 2014; 11:26. [PMID: 24656154 PMCID: PMC3997929 DOI: 10.1186/1742-4690-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The equine infectious anemia virus (EIAV) is a lentivirus of the Retrovirus family, which causes persistent infection in horses often characterized by recurrent episodes of high fever. It has a similar morphology and life cycle to the human immunodeficiency virus (HIV). Its transmembrane glycoprotein, gp45 (analogous to gp41 in HIV), mediates membrane fusion during the infection. However, the post-fusion conformation of EIAV gp45 has not yet been determined. EIAV is the first member of the lentiviruses for which an effective vaccine has been successfully developed. The attenuated vaccine strain, FDDV, has been produced from a pathogenic strain by a series of passages in donkey dermal cells. We have previously reported that a V/I505T mutation in gp45, in combination with other mutations in gp90, may potentially contribute to the success of the vaccine strain. To this end, we now report on our structural and biochemical studies of the gp45 protein from both wide type and vaccine strain, providing a valuable structural model for the advancement of the EIAV vaccine. RESULTS We resolved crystal structures of the ecto-domain of gp45 from both the wild-type EIAV and the vaccine strain FDDV. We found that the V/I505T mutation in gp45 was located in a highly conserved d position within the heptad repeat, which protruded into a 3-fold symmetry axis within the six-helix bundle. Our crystal structure analyses revealed a shift of a hydrophobic to hydrophilic interaction due to this specific mutation, and further biochemical and virological studies confirmed that the mutation reduced the overall stability of the six-helix bundle in post-fusion conformation. Moreover, we found that altering the temperatures drastically affected the viral infectivity. CONCLUSIONS Our high-resolution crystal structures of gp45 exhibited high conservation between the gp45/gp41 structures of lentiviruses. In addition, a hydrophobic to hydrophilic interaction change in the EIAV vaccine strain was found to modulate the stability and thermal-sensitivity of the overall gp45 structure. Our observations suggest that lowering the stability of the six-helix bundle (post-fusion), which may stabilizes the pre-fusion conformation, might be one of the reasons of acquired dominance for FDDV in viral attenuation.
Collapse
|
80
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
81
|
Kaleebu P, Njai HF, Wang L, Jones N, Ssewanyana I, Richardson P, Kintu K, Emel L, Musoke P, Fowler MG, Ou SS, Guay L, Andrew P, Baglyos L, team HC. Immunogenicity of ALVAC-HIV vCP1521 in infants of HIV-1-infected women in Uganda (HPTN 027): the first pediatric HIV vaccine trial in Africa. J Acquir Immune Defic Syndr 2014; 65:268-77. [PMID: 24091694 PMCID: PMC4171956 DOI: 10.1097/01.qai.0000435600.65845.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Maternal-to-child-transmission of HIV-1 infection remains a significant cause of HIV-1 infection despite successful prevention strategies. Testing protective HIV-1 vaccines remains a critical priority. The immunogenicity of ALVAC-HIV vCP1521 (ALVAC) in infants born to HIV-1-infected women in Uganda was evaluated in the first pediatric HIV-1 vaccine study in Africa. DESIGN HIV Prevention Trials Network 027 was a randomized, double-blind, placebo-controlled phase I trial to evaluate the safety and immunogenicity of ALVAC in 60 infants born to HIV-1-infected mothers with CD4 counts of >500 cells per microliter, which were randomized to the ALVAC vaccine or placebo. ALVAC-HIV vCP1521 is an attenuated recombinant canarypox virus expressing HIV-1 clade E env, clade B gag, and protease gene products. METHODS Infants were vaccinated at birth and 4, 8, and 12 weeks of age with ALVAC or placebo. Cellular and humoral immune responses were evaluated using interferon-γ enzyme-linked immunosorbent spot, carboxyfluorescein diacetate succinimidyl ester proliferation, intracellular cytokine staining, and binding and neutralizing antibody assays. Fisher exact test was used to compare positive responses between the study arms. RESULTS Low levels of antigen-specific CD4 and CD8 T-cell responses (intracellular cytokine assay) were detected at 24 months (CD4-6/36 vaccine vs. 1/9 placebo; CD8-5/36 vaccine vs. 0/9 placebo) of age. There was a nonsignificant trend toward higher cellular immune response rates in vaccine recipients compared with placebo. There were minimal binding antibody responses and no neutralizing antibodies detected. CONCLUSIONS HIV-1-exposed infants are capable of generating low levels of cellular immune responses to ALVAC vaccine, similar to responses seen in adults.
Collapse
Affiliation(s)
- Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Nakiwogo Road, PO Box 49 Entebbe, Uganda
| | - Harr Freeya Njai
- Medical Research Council/Uganda Virus Research Institute, Nakiwogo Road, PO Box 49 Entebbe, Uganda
| | - Lei Wang
- SCHARP, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, LE-400, PO Box 19024, Seattle, WA, USA 98109
| | - Norman Jones
- Viral and Rickettsial Disease Laboratory, 850 Marina Bay Parkway, Richmond, CA, USA 94804
| | - Isaac Ssewanyana
- Joint Clinical Research Center, Plot 101, Upper Lubowa Estates, PO Box 10005, Kampala, Uganda
| | - Paul Richardson
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 313, Baltimore, MD, USA 21287
| | - Kenneth Kintu
- Makerere University-Johns Hopkins University Research Collaboration, PO Box 7072, Kampala, Uganda
| | - Lynda Emel
- SCHARP, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, LE-400, PO Box 19024, Seattle, WA, USA 98109
| | - Philippa Musoke
- Makerere University-Johns Hopkins University Research Collaboration, PO Box 7072, Kampala, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda
| | - Mary Glenn Fowler
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 313, Baltimore, MD, USA 21287
| | - San-San Ou
- SCHARP, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, LE-400, PO Box 19024, Seattle, WA, USA 98109
| | - Laura Guay
- George Washington University School of Public Health and Health Services, 2100 W. Pennsylvania Avenue N.W., 8th Floor, Washington DC, USA 20037
| | | | - Lynn Baglyos
- Sanofi Pasteur, Discovery Drive, Swiftwater, PA, USA 18370
| | - Huyen Cao team
- Viral and Rickettsial Disease Laboratory, 850 Marina Bay Parkway, Richmond, CA, USA 94804
| | | |
Collapse
|
82
|
Nilsson C, Godoy-Ramirez K, Hejdeman B, Bråve A, Gudmundsdotter L, Hallengärd D, Currier JR, Wieczorek L, Hasselrot K, Earl PL, Polonis VR, Marovich MA, Robb ML, Sandström E, Wahren B, Biberfeld G. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res Hum Retroviruses 2014; 30:299-311. [PMID: 24090081 PMCID: PMC3938943 DOI: 10.1089/aid.2013.0149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that an HIV vaccine regimen including three HIV-DNA immunizations and a single HIV-modified vaccinia virus Ankara (MVA) boost was safe and highly immunogenic in Swedish volunteers. A median 38 months after the first HIV-MVA vaccination, 24 volunteers received 10(8) plaque-forming units of HIV-MVA. The vaccine was well tolerated. Two weeks after this HIV-MVA vaccination, 18 (82%) of 22 evaluable vaccinees were interferon (IFN)-γ enzyme-linked immunospot (ELISpot) reactive: 18 to Gag and 10 (45%) to Env. A median minimal epitope count of 4 to Gag or Env was found in a subset of 10 vaccinees. Intracellular cytokine staining revealed CD4(+) and/or CD8(+) T cell responses in 23 (95%) of 24 vaccinees, 19 to Gag and 19 to Env. The frequency of HIV-specific CD4(+) and CD8(+) T cell responses was equally high (75%). A high proportion of CD4(+) and CD8(+) T cell responses to Gag was polyfunctional with production of three or more cytokines (40% and 60%, respectively). Of the Env-specific CD4(+) T cells 40% were polyfunctional. Strong lymphoproliferative responses to Aldrithiol-2 (AT-2)-treated subtype A, B, C, and A_E virus were demonstrable in 21 (95%) of 22 vaccinees. All vaccinees developed binding antibodies to Env and Gag. Neutralizing antibodies were detected in a peripheral blood mononuclear cell (PBMC)-based assay against subtype B and CRF01_AE viruses. The neutralizing antibody response rates were influenced by the vaccine dose and/or mode of delivery used at the previous HIV-MVA vaccination. Thus, a second late HIV-MVA boost induced strong and broad cellular immune responses and improved antibody responses. The data support further exploration of this vaccine concept.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lindvi Gudmundsdotter
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David Hallengärd
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey R. Currier
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Lindsay Wieczorek
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Klara Hasselrot
- Department of Medicine, Infectious Disease Unit, Center for Molecular Medicine (CMM) and Karolinska University Hospital, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Victoria R. Polonis
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Mary A. Marovich
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnel Biberfeld
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
83
|
Buglione-Corbett R, Pouliot K, Marty-Roix R, Li W, West K, Wang S, Morelli AB, Lien E, Lu S. Reduced MyD88 dependency of ISCOMATRIX™ adjuvant in a DNA prime-protein boost HIV vaccine. Hum Vaccin Immunother 2014; 10:1078-90. [PMID: 24513632 DOI: 10.4161/hv.27907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ISCOMATRIX™ adjuvant is an integrated adjuvant system due to its ability to both facilitate antigen delivery and immunomodulate the innate and adaptive immune responses to vaccination. ISCOMATRIX™ adjuvant strongly induces both humoral and cell-mediated immunity in formulation with a range of antigens in pre-clinical and clinical evaluations. In this study, we describe the adaptive and innate immune responses associated with ISCOMATRIX™ adjuvant in the context of a previously described HIV-1 vaccine, DP6-001. The DP6-001 vaccine consists of a unique pentavalent HIV-1 Env DNA prime-protein boost regimen. This study demonstrates the potent induction of vaccine-specific antibodies in a mouse model, as well as broadly neutralizing antibodies in immunized rabbits. In addition, we identify a potentially critical role for DNA priming in the induction of the vaccine-specific immune response as well as the serum cytokine profiles associated with ISCOMATRIX™ adjuvant. Most interestingly, DNA prime immunizations made ISCOMATRIX™ adjuvant less dependent on the central innate immune adaptor MyD88, revealing a previously unknown mechanism that may expand our knowledge on the use of adjuvants.
Collapse
Affiliation(s)
| | - Kimberly Pouliot
- Department of Medicine; Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Robyn Marty-Roix
- Department of Medicine; Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Wei Li
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Kim West
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shixia Wang
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Egil Lien
- Department of Medicine; Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
84
|
Zolla-Pazner S, deCamp A, Gilbert PB, Williams C, Yates NL, Williams WT, Howington R, Fong Y, Morris DE, Soderberg KA, Irene C, Reichman C, Pinter A, Parks R, Pitisuttithum P, Kaewkungwal J, Rerks-Ngarm S, Nitayaphan S, Andrews C, O’Connell RJ, Yang ZY, Nabel GJ, Kim JH, Michael NL, Montefiori DC, Liao HX, Haynes BF, Tomaras GD. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One 2014; 9:e87572. [PMID: 24504509 PMCID: PMC3913641 DOI: 10.1371/journal.pone.0087572] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008-0.05; estimated odds ratios of 0.53-0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. TRIAL REGISTRATION ClinicalTrials.gov NCT00223080.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Department of Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Constance Williams
- New York University School of Medicine, New York, New York, United States of America
| | - Nicole L. Yates
- Duke University, Durham, North Carolina, United States of America
| | | | - Robert Howington
- Duke University, Durham, North Carolina, United States of America
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daryl E. Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Carmela Irene
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Charles Reichman
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Abraham Pinter
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Robert Parks
- Duke University, Durham, North Carolina, United States of America
| | | | | | | | | | - Charla Andrews
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert J. O’Connell
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Zhi-yong Yang
- Virology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J. Nabel
- Virology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Hua-Xin Liao
- Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University, Durham, North Carolina, United States of America
| | | |
Collapse
|
85
|
Zhang J, Alam SM, Bouton-Verville H, Chen Y, Newman A, Stewart S, Jaeger FH, Montefiori DC, Dennison SM, Haynes BF, Verkoczy L. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. THE JOURNAL OF IMMUNOLOGY 2014; 192:1693-706. [PMID: 24465011 DOI: 10.4049/jimmunol.1302511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs), but current immunization strategies fail to induce BnAbs, and for unknown reasons, often induce nonneutralizing Abs instead. To explore potential host genetic contributions controlling Ab responses to the HIV-1 Envelope, we have used congenic strains to identify a critical role for MHC class II restriction in modulating Ab responses to the membrane proximal external region (MPER) of gp41, a key vaccine target. Immunized H-2(d)-congenic strains had more rapid, sustained, and elevated MPER(+) Ab titers than those bearing other haplotypes, regardless of immunogen, adjuvant, or prime or boost regimen used, including formulations designed to provide T cell help. H-2(d)-restricted MPER(+) serum Ab responses depended on CD4 TH interactions with class II (as revealed in immunized intra-H-2(d/b) congenic or CD154(-/-) H-2(d) strains, and by selective abrogation of MPER restimulated, H-2(d)-restricted primed splenocytes by class II-blocking Abs), and failed to neutralize HIV-1 in the TZM-b/l neutralization assay, coinciding with lack of specificity for an aspartate residue in the neutralization core of BnAb 2F5. Unexpectedly, H-2(d)-restricted MPER(+) responses functionally mapped to a core TH epitope partially overlapping the 2F5/z13/4E10 BnAb epitopes as well as nonneutralizing B cell-Ab binding residues. We propose that class II restriction contributes to the general heterogeneity of nonneutralizing gp41 responses induced by Envelope. Moreover, the proximity of TH and B cell epitopes in this restriction may have to be considered in redesigning minimal MPER immunogens aimed at exclusively binding BnAb epitopes and triggering MPER(+) BnAbs.
Collapse
Affiliation(s)
- Jinsong Zhang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Roff SR, Noon-Song EN, Yamamoto JK. The Significance of Interferon-γ in HIV-1 Pathogenesis, Therapy, and Prophylaxis. Front Immunol 2014; 4:498. [PMID: 24454311 PMCID: PMC3888948 DOI: 10.3389/fimmu.2013.00498] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022] Open
Abstract
Interferon-γ (IFNγ) plays various roles in the pathogenesis of HIV/AIDS. In an HIV-1 infected individual, the production of IFNγ is detected as early as the acute phase and continually detected throughout the course of infection. Initially produced to clear the primary infection, IFNγ together with other inflammatory cytokines are involved in establishing a chronic immune activation that exacerbates clinical diseases associated with AIDS. Unlike Type 1 IFNs, IFNγ has no direct antiviral activity against HIV-1 in primary cultures, as supported by the in vivo findings of IFNγ therapy in infected subjects. Results from both in vitro and ex vivo studies show that IFNγ can instead enhance HIV-1 replication and its associated diseases, and therapies aimed at decreasing its production are under consideration. On the other hand, IFNγ has been shown to enhance cytotoxic T lymphocytes and NK cell activities against HIV-1 infected cells. These activities are important in controlling HIV-1 replication in an individual and will most likely play a role in the prophylaxis of an effective vaccine against HIV-1. Additionally, IFNγ has been used in combination with HIV-1 vaccine to augment antiviral immunity. Technological advancements have focused on using IFNγ as a biological marker to analyze the type(s) of immunity generated by candidate HIV vaccines and the levels of immunity restored by anti-retroviral drug therapies or novel immunotherapies. Hence, in addition to its valuable ancillary role as a biological marker for the development of effective HIV-1 prophylactic and therapeutic strategies, IFNγ has a vital role in promoting the pathogenesis of HIV.
Collapse
Affiliation(s)
- Shannon R. Roff
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ezra N. Noon-Song
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Janet K. Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
87
|
Ribeiro SP, de Souza Apostólico J, Almeida RR, Kalil J, Cunha-Neto E, Rosa DS. Bupivacaine enhances the magnitude and longevity of HIV-specific immune response after immunization with a CD4 epitope-based DNA vaccine. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Pre-clinical development of a recombinant, replication-competent adenovirus serotype 4 vector vaccine expressing HIV-1 envelope 1086 clade C. PLoS One 2013; 8:e82380. [PMID: 24312658 PMCID: PMC3849430 DOI: 10.1371/journal.pone.0082380] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. METHODS The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. RESULTS Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. CONCLUSIONS The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.
Collapse
|
89
|
Figueiredo S, Charmeteau B, Surenaud M, Salmon D, Launay O, Guillet JG, Hosmalin A, Gahery H. Memory CD8(+) T cells elicited by HIV-1 lipopeptide vaccines display similar phenotypic profiles but differences in term of magnitude and multifunctionality compared with FLU- or EBV-specific memory T cells in humans. Vaccine 2013; 32:492-501. [PMID: 24291199 DOI: 10.1016/j.vaccine.2013.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/19/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022]
Abstract
Differentiation marker, multifunctionality and magnitude analyses of specific-CD8(+) memory T cells are crucial to improve development of HIV vaccines designed to generate cell-mediated immunity. Therefore, we fully characterized the HIV-specific CD8(+) T cell responses induced in volunteers vaccinated with HIV lipopeptide vaccines for phenotypic markers, tetramer staining, cytokine secretion, and cytotoxic activities. The frequency of ex vivo CD8(+) T cells elicited by lipopeptide vaccines is very rare and central-memory phenotype and functions of these cells were been shown to be important in AIDS immunity. So, we expanded them using specific peptides to compare the memory T cell responses induced in volunteers by HIV vaccines with responses to influenza (FLU) or Epstein Barr virus (EBV). By analyzing the differentiation state of IFN-γ-secreting CD8(+) T cells, we found a CCR7(-)CD45RA(-)CD28(+int)/CD28(-) profile (>85%) belonging to a subset of intermediate-differentiated effector T cells for HIV, FLU, and EBV. We then assessed the quality of the response by measuring various T cell functions. The percentage of single IFN-γ T cell producers in response to HIV was 62% of the total of secreting T cells compared with 35% for FLU and EBV, dual and triple (IFN-γ/IL-2/CD107a) T cell producers could also be detected but at lower levels (8% compared with 37%). Finally, HIV-specific T cells secreted IFN-γ and TNF-α, but not the dual combination like FLU- and EBV-specific T cells. Thus, we found that the functional profile and magnitude of expanded HIV-specific CD8(+) T precursors were more limited than those of to FLU- and EBV-specific CD8(+) T cells. These data show that CD8(+) T cells induced by these HIV vaccines have a similar differentiation profile to FLU and EBV CD8(+) T cells, but that the vaccine potency to induce multifunctional T cells needs to be increased in order to improve vaccination strategies.
Collapse
Affiliation(s)
- Suzanne Figueiredo
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Univ Paris Descartes, Paris, France
| | - Benedicte Charmeteau
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Univ Paris Descartes, Paris, France
| | - Mathieu Surenaud
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Univ Paris Descartes, Paris, France
| | - Dominique Salmon
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Odile Launay
- Inserm CIC BT505, CIC de Vaccinologie Cochin Pasteur, Paris, France
| | - Jean-Gérard Guillet
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Univ Paris Descartes, Paris, France
| | - Anne Hosmalin
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, Paris, France
| | - Hanne Gahery
- Inserm U1016, Institut Cochin, Paris, France; CNRS UMR8104, Paris, France; Univ Paris Descartes, Paris, France; Institut National de Santé et de Recherche Médicale, INSERM U976, Saint-Louis Hospital, Skin Research Center, 75010 Paris, France; Paris Diderot University, Sorbonne Paris Cité, Laboratory of Immunology, Dermatology & Oncology, UMR-S 976, 75010 Paris, France.
| |
Collapse
|
90
|
Resistance to infection, early and persistent suppression of simian immunodeficiency virus SIVmac251 viremia, and significant reduction of tissue viral burden after mucosal vaccination in female rhesus macaques. J Virol 2013; 88:212-24. [PMID: 24155376 DOI: 10.1128/jvi.02523-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The efficacy of oral, intestinal, nasal, and vaginal vaccinations with DNA simian immunodeficiency virus (SIV)/interleukin-2 (IL-2)/IL-15, SIV Gag/Pol/Env recombinant modified vaccinia virus Ankara (rMVA), and AT-2 SIVmac239 inactivated particles was compared in rhesus macaques after low-dose vaginal challenge with SIVmac251. Intestinal immunization provided better protection from infection, as a significantly greater median number of challenges was necessary in this group than in the others. Oral and nasal vaccinations provided the most significant control of disease progression. Fifty percent of the orally and nasally vaccinated animals suppressed viremia to undetectable levels, while this occurred to a significantly lower degree in intestinally and vaginally vaccinated animals and in controls. Viremia remained undetectable after CD8(+) T-cell depletion in seven vaccinated animals that had suppressed viremia after infection, and tissue analysis for SIV DNA and RNA was negative, a result consistent with a significant reduction of viral activity. Regardless of the route of vaccination, mucosal vaccinations prevented loss of CD4(+) central memory and CD4(+)/α4β7(+) T-cell populations and reduced immune activation to different degrees. None of the orally vaccinated animals and only one of the nasally vaccinated animals developed AIDS after 72 to 84 weeks of infection, when the trial was closed. The levels of anti-SIV gamma interferon-positive, CD4(+), and CD8(+) T cells at the time of first challenge inversely correlated with viremia and directly correlated with protection from infection and longer survival.
Collapse
|
91
|
Gupta SK, Nutan. Clinical use of vaginal or rectally applied microbicides in patients suffering from HIV/AIDS. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2013; 5:295-307. [PMID: 24174883 PMCID: PMC3808211 DOI: 10.2147/hiv.s39164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbicides, primarily used as topical pre-exposure prophylaxis, have been proposed to prevent sexual transmission of HIV. This review covers the trends and challenges in the development of safe and effective microbicides to prevent sexual transmission of HIV Initial phases of microbicide development used such surfactants as nonoxynol-9 (N-9), C13G, and sodium lauryl sulfate, aiming to inactivate the virus. Clinical trials of microbicides based on N-9 and C31G failed to inhibit sexual transmission of HIV. On the contrary, N-9 enhanced susceptibility to sexual transmission of HIV-1. Subsequently, microbicides based on polyanions and a variety of other compounds that inhibit the binding, fusion, or entry of virus to the host cells were evaluated for their efficacy in different clinical setups. Most of these trials failed to show either safety or efficacy for prevention of HIV transmission. The next phase of microbicide development involved antiretroviral drugs. Microbicide in the form of 1% tenofovir vaginal gel when tested in a Phase IIb trial (CAPRISA 004) in a coitally dependent manner revealed that tenofovir gel users were 39% less likely to become HIV-infected compared to placebo control. However, in another trial (VOICE MTN 003), tenofovir gel used once daily in a coitally independent mode failed to show any efficacy to prevent HIV infection. Tenofovir gel is currently in a Phase III safety and efficacy trial in South Africa (FACTS 001) employing a coitally dependent dosing regimen. Further, long-acting microbicide-delivery systems (vaginal ring) for slow release of such antiretroviral drugs as dapivirine are also undergoing clinical trials. Discovering new markers as correlates of protective efficacy, novel long-acting delivery systems with improved adherence in the use of microbicides, discovering new compounds effective against a broad spectrum of HIV strains, developing multipurpose technologies incorporating additional features of efficacy against other sexually transmitted infections, and contraception will help in moving the field of microbicide development forward.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
92
|
Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proc Natl Acad Sci U S A 2013; 110:18214-9. [PMID: 24145434 DOI: 10.1073/pnas.1317855110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. Broadly neutralizing antibodies (BnAbs) are not induced by current vaccines, but are found in plasma in ∼20% of HIV-1-infected individuals after several years of infection. One strategy for induction of unfavored antibody responses is to produce homogeneous immunogens that selectively express BnAb epitopes but minimally express dominant strain-specific epitopes. Here we report that synthetic, homogeneously glycosylated peptides that bind avidly to variable loop 1/2 (V1V2) BnAbs PG9 and CH01 bind minimally to strain-specific neutralizing V2 antibodies that are targeted to the same envelope polypeptide site. Both oligomannose derivatization and conformational stabilization by disulfide-linked dimer formation of synthetic V1V2 peptides were required for strong binding of V1V2 BnAbs. An HIV-1 vaccine should target BnAb unmutated common ancestor (UCA) B-cell receptors of naïve B cells, but to date no HIV-1 envelope constructs have been found that bind to the UCA of V1V2 BnAb PG9. We demonstrate herein that V1V2 glycopeptide dimers bearing Man5GlcNAc2 glycan units bind with apparent nanomolar affinities to UCAs of V1V2 BnAbs PG9 and CH01 and with micromolar affinity to the UCA of a V2 strain-specific antibody. The higher-affinity binding of these V1V2 glycopeptides to BnAbs and their UCAs renders these glycopeptide constructs particularly attractive immunogens for targeting subdominant HIV-1 envelope V1V2-neutralizing antibody-producing B cells.
Collapse
|
93
|
Comparative immunogenicity of HIV-1 gp160, gp140 and gp120 expressed by live attenuated newcastle disease virus vector. PLoS One 2013; 8:e78521. [PMID: 24098600 PMCID: PMC3788131 DOI: 10.1371/journal.pone.0078521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022] Open
Abstract
The development of a vaccine against human immunodeficiency virus-1 (HIV-1) capable of inducing broad humoral and cellular responses at both the systemic and mucosal levels will be critical for combating the global AIDS epidemic. We previously demonstrated the ability of Newcastle disease virus (NDV) as a vaccine vector to express oligomeric Env protein gp160 and induce potent humoral and mucosal immune responses. In the present study, we used NDV vaccine strain LaSota as a vector to compare the biochemical and immunogenic properties of vector-expressed gp160, gp120, and two versions of gp140 (a derivative of gp160 made by deleting the transmembrane and cytoplasmic domains), namely: gp140L, which contained the complete membrane-proximal external region (MPER), and gp140S, which lacks the distal half of MPER. We show that, similar to gp160, NDV-expressed gp140S and gp120, but not gp140L, formed higher-order oligomers that retained recognition by conformationally sensitive monoclonal antibodies. Immunization of guinea pigs by the intranasal route with rLaSota/gp140S resulted in significantly greater systemic and mucosal antibody responses compared to the other recombinants. Immunization with rLaSota/140S, rLaSota/140L rLaSota/120 resulted in mixed Th1/Th2 immune responses as compared to Th1-biased immune responses induced by rLaSota/160. Importantly, rLaSota/gp140S induced neutralizing antibody responses to homologous HIV-1 strain BaL.26 and laboratory adapted HIV-1 strain MN.3 that were stronger than those elicited by the other NDV recombinants. Additionally, rLaSota/gp140S induced greater CD4+ and CD8+ T-cell responses in mice. These studies illustrate that rLaSota/gp140S is a promising vaccine candidate to elicit potent mucosal, humoral and cellular immune responses to the HIV-1 Env protein.
Collapse
|
94
|
Buglione-Corbett R, Pouliot K, Marty-Roix R, West K, Wang S, Lien E, Lu S. Serum cytokine profiles associated with specific adjuvants used in a DNA prime-protein boost vaccination strategy. PLoS One 2013; 8:e74820. [PMID: 24019983 PMCID: PMC3760864 DOI: 10.1371/journal.pone.0074820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022] Open
Abstract
In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general.
Collapse
Affiliation(s)
- Rachel Buglione-Corbett
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kimberly Pouliot
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robyn Marty-Roix
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Considerable HIV-1 vaccine development efforts have been deployed over the past decade. Put into perspective, the results from efficacy trials and the identification of correlates of risk have opened large and unforeseen avenues for vaccine development. RECENT FINDINGS The Thai efficacy trial, RV144, provided the first evidence that HIV-1 vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop inversely correlated with a decreased risk of infection, whereas Env-specific IgA directly correlated with risk. Further clinical trials will focus on testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and more durable functional antibody responses (both binding and broadly neutralizing antibodies). Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in addition to humoral responses remain a priority. SUMMARY Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual population in Africa and MSM in Asia. The recent successes leading to novel directions in HIV-1 vaccine development are a result of collaboration and commitment among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and broad collaborative efforts are required to advance new vaccine strategies for higher levels of efficacy.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program (MHRP), Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
96
|
Watanabe K, Murakoshi H, Tamura Y, Koyanagi M, Chikata T, Gatanaga H, Oka S, Takiguchi M. Identification of cross-clade CTL epitopes in HIV-1 clade A/E-infected individuals by using the clade B overlapping peptides. Microbes Infect 2013; 15:874-86. [PMID: 23968885 DOI: 10.1016/j.micinf.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Identification of cross-clade T cell epitopes is one of key factors for the development of a widely applicable AIDS vaccine. We here investigated cross-clade CD8(+) T cell responses between clade B and A/E viruses in chronically HIV-1 clade A/E-infected Japanese individuals. CD8(+) T cell responses to 11-mer overlapping peptides derived from Nef, Gag, and Pol clade B consensus sequences were at a similar level to those to the same peptides found in clade B-infected individuals. Fifteen cross-clade CTL epitopes were identified from 13 regions where the frequency of responders was high in the clade A/E-infected individuals. The sequences of 6 epitopes were conserved between the clade B and clade A/E viruses whereas 9 epitopes had different amino acid sequences between the 2 viruses. CD8(+) T cells specific for the 6 conserved epitopes recognized cells infected with the clade A/E virus, whereas those for 8 diverse epitopes recognized both the clade A/E virus-infected and clade B-infected cells. All of the cross-clade CD8(+) T cells specific for conserved and diverse epitopes were detected in chronically HIV-1 clade A/E-infected individuals. These results show that in addition to conserved regions polymorphic ones across the clades can be targets for cross-clade CTLs.
Collapse
Affiliation(s)
- Koji Watanabe
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Evolutionarily conserved epitopes on human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus reverse transcriptases detected by HIV-1-infected subjects. J Virol 2013; 87:10004-15. [PMID: 23824804 DOI: 10.1128/jvi.00359-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV(+)) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV(+) subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8(+) T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8(+) T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV(+) subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine.
Collapse
|
98
|
Liu Z, Wang S, Zhang Q, Tian M, Hou J, Wang R, Liu C, Ji X, Liu Y, Shao Y. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan. PLoS One 2013; 8:e68115. [PMID: 23840887 PMCID: PMC3698190 DOI: 10.1371/journal.pone.0068115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
The vaccinia virus TianTan (VTT) has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.
Collapse
Affiliation(s)
- Zheng Liu
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Shuhui Wang
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Qicheng Zhang
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Meijuan Tian
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jue Hou
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Rongmin Wang
- Clinical Laboratory, Zhaoyuan CDC, Zhaoyuan, China
| | - Chang Liu
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Xu Ji
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Ying Liu
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| | - Yiming Shao
- Division of Research on Virology and Immunology, State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), China CDC, Beijing, China
| |
Collapse
|
99
|
Saade F, Gorski SA, Petrovsky N. Pushing the frontiers of T-cell vaccines: accurate measurement of human T-cell responses. Expert Rev Vaccines 2013; 11:1459-70. [PMID: 23252389 DOI: 10.1586/erv.12.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response--a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
100
|
Currently available medications in resource-rich settings may not be sufficient for lifelong treatment of HIV. AIDS 2013; 27:1245-51. [PMID: 23276809 DOI: 10.1097/qad.0b013e32835e163d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Combination antiretroviral therapy (cART) has greatly improved the life expectancy of people living with HIV (PLHIV). Our study aims to project the life expectancy of PLHIV in a resource-rich setting in the context of the currently available antiretroviral treatments. METHODS Patient antiretroviral treatment data were sourced from an observational cohort of 3434 predominantly male (94.2%) PLHIV in Australia over the period 1997-2010. These data were analyzed in a computer simulation model to calculate the distribution of time until exhaustion of all treatment options and expected effect on mortality. Standardized mortality ratios were used to simulate expected survival before and after treatment exhaustion. RESULTS We estimated that the median time until exhaustion of currently available treatment options is 45.5 years [interquartile range (IQR) 34.0-61.0 years]. However, 10% of PLHIV are expected to exhaust all currently available cART options after just 25.6 years. PLHIV who start currently available cART regimens at age 20 years are expected to live to a median age of 67.4 (IQR 53.2-77.7) years. This is a substantial improvement on no cART [27.7 (IQR 23.8-32.0) years] but is still substantially less than the median general population mortality age [82.2 (IQR 74.0-87.8) years]. The life expectancy gap between PLHIV and the general population is greatest for those infected at younger ages. CONCLUSION As treatment options are exhausted, a substantial difference in life expectancy between PLHIV and the general population could be expected even in resource-rich settings, particularly for people who acquire HIV at a younger age or who are currently highly treatment experienced.
Collapse
|