51
|
Oscarsson E, Håkansson Å, Andrén Aronsson C, Molin G, Agardh D. Effects of Probiotic Bacteria Lactobacillaceae on the Gut Microbiota in Children With Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Front Nutr 2021; 8:680771. [PMID: 34249990 PMCID: PMC8267153 DOI: 10.3389/fnut.2021.680771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Disturbances of the gut microbiota may influence the development of various autoimmune diseases. This study investigated the effects of supplementations with the probiotic bacteria, Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2, on the microbial community in children with celiac disease autoimmunity (CDA). The study included 78 genetically predisposed children for celiac disease with elevated levels of tissue transglutaminase autoantibodies (tTGA) signaling for ongoing CDA. Among those children, 38 received a placebo and 40 received the probiotic supplement daily for 6 months. Fecal and plasma samples were collected at baseline and after 3 and 6 months, respectively. The bacterial community was investigated with 16S rRNA gene sequencing and terminal restriction fragment length polymorphism (T-RFLP), and tTGA levels were measured in radiobinding assays. In children that received probiotic supplementation, the relative abundance of Lactobacillaceae increased over time, while it remained unchanged in the placebo group. There was no overall correlation between tTGA levels and bacterial genus except for a positive correlation between Dialister and IgG-tTG in the probiotic group. The abundance of specific bacterial amplicon sequence variant (ASV:s) changed during the study in both groups, indicating that specific bacterial strains might be affected by probiotic supplementation.
Collapse
Affiliation(s)
- Elin Oscarsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Åsa Håkansson
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| | - Carin Andrén Aronsson
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Göran Molin
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| | - Daniel Agardh
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
52
|
Zhou N, Zou F, Cheng X, Huang Y, Zou H, Niu Q, Qiu Y, Shan F, Luo A, Teng W, Sun J. Porphyromonas gingivalis induces periodontitis, causes immune imbalance, and promotes rheumatoid arthritis. J Leukoc Biol 2021; 110:461-473. [PMID: 34057740 DOI: 10.1002/jlb.3ma0121-045r] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis induced by bacteria especially Porphyromonas gingivalis (P. gingivalis) is the most prevalent microbial disease worldwide and is a significant risk factor for systemic diseases such as rheumatoid arthritis (RA). RA and periodontitis share similar clinical and pathologic features. Moreover, the prevalence of RA is much higher in patients with periodontitis than in those without periodontitis. To explore the immunologic mechanism of periodontitis involved in RA, we established a mouse model of periodontitis and then induced RA. According to the results of paw thickness, arthritis clinical score, arthritis incidence, microscopic lesion using H&E staining, and micro-CT analysis, periodontitis induced by P. gingivalis promoted the occurrence and development of collagen-induced arthritis (CIA) in mice. Furthermore, periodontitis enhanced the frequency of CD19+ B cells, Th17, Treg, gMDSCs, and mMDSCs, whereas down-regulated IL-10 producing regulatory B cells (B10) in CIA mice preinduced for periodontitis with P. gingivalis. In vitro stimulation with splenic cells revealed that P. gingivalis directly enhanced differentiation of Th17, Treg, and mMDSCs but inhibited the process of B cell differentiation into B10 cells. Considering that adoptive transfer of B10 cells prevent RA development, our study, although preliminary, suggests that down-regulation of B10 cells may be the key mechanism that periodontitis promotes RA as the other main immune suppressive cells such as Treg and MDSCs are up-regulated other than down-regulated in group of P. gingivalis plus CIA.
Collapse
Affiliation(s)
- Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiao Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingru Niu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Teng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
53
|
Yang KT, Wei JCC, Chang R, Lin CC, Chen HH. Association between Appendicitis and Incident Systemic Sclerosis. J Clin Med 2021; 10:jcm10112337. [PMID: 34071779 PMCID: PMC8199283 DOI: 10.3390/jcm10112337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This nationwide study aimed to investigate the association between newly diagnosed systemic sclerosis (SSc) and previous appendicitis history. Methods: A total of 1595 patients who were newly diagnosed with SSc were recruited as the SSc cases from the 2003 to 2012 claims data of the entire population in Taiwan. The other 15,950 individuals who had never been diagnosed with SSc during 2003 and 2012 were selected as the non-SSc controls to match the SSc cases. We defined that the index date as the first date of SSc diagnosis of SSc cases and the first date of ambulatory visit for any reason of non-SSc controls. Conditional logistic regression analysis was applied for the association between appendicitis and the risk of the incident SSc, tested by estimating odds ratios (ORs) with 95% confidence intervals (CIs). Potential confounders, including the Charlson comorbidity index (CCI), a history of periodontal disease, salmonella infection, and intestinal infection, were controlled. We further designed sensitivity analyses by varying the definition of appendicitis according to the status of receiving primary appendectomy. Results: The mean age was 51 years in the case and control groups. Females accounted for 77.5%. A total of 17 (1.1%) out of 1595 SSc cases and 81 (0.5%) out of 15,950 non-SSc controls had a history of appendicitis before the index date had a history of appendicitis. A significant association between appendicitis and the risk of SSc was confirmed (OR, 2.03; 95% CI, 1.14–3.60) after adjusting potential confounders. CCI ≥ 1 (OR, 8.48; 95% CI, 7.50–9.58) and periodontal disease (OR, 1.55; 95% CI, 1.39–1.74) were also significantly associated with the risk of SSc. The association between appendicitis and SSc risk remained robust using various definitions of appendicitis. Conclusion: Our study demonstrated appendicitis was associated with the incident SSc. CCI ≥ 1 and periodontal disease also contributed to the risk of developing SSc.
Collapse
Affiliation(s)
- Kuang-Tsu Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - James Cheng-Chung Wei
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan;
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Recreation Sports Management, Tajen University, Pingtung 90741, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan
| | - Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung 402, Taiwan
- Institute of Public Health and Community Medicine Research Centre, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407224, Taiwan
- Division of General Internal Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Correspondence: or ; Tel.: +886-0988328032 or +886-4-2359-2525 (ext. 3037)
| |
Collapse
|
54
|
Chang SC, Lin SF, Chen ST, Chang PY, Yeh YM, Lo FS, Lu JJ. Alterations of Gut Microbiota in Patients With Graves' Disease. Front Cell Infect Microbiol 2021; 11:663131. [PMID: 34026662 PMCID: PMC8132172 DOI: 10.3389/fcimb.2021.663131] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) is a systemic autoimmune disease characterized by hyperthyroidism. Evidence suggests that alterations to the gut microbiota may be involved in the development of autoimmune disorders. The aim of this study was to characterize the composition of gut microbiota in GD patients. Fecal samples were collected from 55 GD patients and 48 healthy controls. Using 16S rRNA gene amplification and sequencing, the overall bacterial richness and diversity were found to be similar between GD patients and healthy controls. However, principal coordinate analysis and partial least squares-discriminant analysis showed that the overall gut microbiota composition was significantly different (ANOSIM; p < 0.001). The linear discriminant analysis effect size revealed that Firmicutes phylum decreased in GD patients, with a corresponding increase in Bacteroidetes phylum compared to healthy controls. In addition, the families Prevotellaceae, and Veillonellaceae and the genus Prevotella_9 were closely associated with GD patients, while the families Lachnospiraceae and Ruminococcaceae and the genera Faecalibacterium, Lachnospira, and Lachnospiraceae NK4A136 were associated with healthy controls. Metagenomic profiles analysis yielded 22 statistically significant bacterial taxa: 18 taxa were increased and 4 taxa were decreased. Key bacterial taxa with different abundances between the two groups were strongly correlated with GD-associated clinical parameters using Spearman's correlation analysis. Importantly, the discriminant model based on predominant microbiota could effectively distinguish GD patients from healthy controls (AUC = 0.825). Thus, the gut microbiota composition between GD patients and healthy controls is significantly difference, indicating that gut microbiota may play a role in the pathogenesis of GD. Further studies are needed to fully elucidate the role of gut microbiota in the development of GD.
Collapse
Affiliation(s)
- Shih-Cheng Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Fu Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fu-Sung Lo
- Department of Pediatrics, Division of Pediatric Endocrinology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
55
|
Moentadj R, Wang Y, Bowerman K, Rehaume L, Nel H, O Cuiv P, Stephens J, Baharom A, Maradana M, Lakis V, Morrison M, Wells T, Hugenholtz P, Benham H, Le Cao KA, Thomas R. Streptococcus species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Ann Rheum Dis 2021; 80:573-581. [PMID: 33397732 DOI: 10.1136/annrheumdis-2020-219009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.
Collapse
Affiliation(s)
- Rabia Moentadj
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Yiwen Wang
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Bowerman
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Linda Rehaume
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hendrik Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paraic O Cuiv
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Current address: Microba Life Sciences, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Juliette Stephens
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Amalina Baharom
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Muralidhara Maradana
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Vanessa Lakis
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Timothy Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Helen Benham
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Rheumatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kim-Anh Le Cao
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
56
|
Chen L, Zhai Y, Wang Y, Fearon ER, Núñez G, Inohara N, Cho KR. Altering the Microbiome Inhibits Tumorigenesis in a Mouse Model of Oviductal High-Grade Serous Carcinoma. Cancer Res 2021; 81:3309-3318. [PMID: 33863776 DOI: 10.1158/0008-5472.can-21-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
Studies have shown bacteria influence the initiation and progression of cancers arising in sites that harbor rich microbial communities, such as the colon. Little is known about the potential for the microbiome to influence tumorigenesis at sites considered sterile, including the upper female genital tract. The recent identification of distinct bacterial signatures associated with ovarian carcinomas suggests microbiota in the gut, vagina, or elsewhere might contribute to ovarian cancer pathogenesis. Here, we tested whether altering the microbiome affects tumorigenesis in a mouse model of high-grade serous carcinoma (HGSC) based on conditional oviduct-specific inactivation of the Brca1, Trp53, Rb1, and Nf1 tumor suppressor genes. Cohorts of control (n = 20) and antibiotic-treated (n = 23) mice were treated with tamoxifen to induce tumor formation and then monitored for 12 months. The antibiotic cocktail was administered for the first 5 months of the monitoring period in the treatment group. Antibiotic-treated mice had significantly fewer and less advanced tumors than control mice at study endpoint. Antibiotics induced changes in the composition of the intestinal and vaginal microbiota, which were durable in the fecal samples. Clustering analysis showed particular groups of microbiota are associated with the development of HGSC in this model. These findings demonstrate the microbiome influences HGSC pathogenesis in an in vivo model that closely recapitulates the human disease. Because the microbiome can modulate efficacy of cancer chemo- and immunotherapy, our genetically engineered mouse model system may prove useful for testing whether altering the microbiota can improve the heretofore poor response of HGSC to immunotherapies. SIGNIFICANCE: This study provides strong in vivo evidence for a role of the microbiome in ovarian cancer pathogenesis.
Collapse
Affiliation(s)
- Lixing Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yali Zhai
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yisheng Wang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- OBGYN Hospital, Fudan University, Shanghai, China
| | - Eric R Fearon
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Gabriel Núñez
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Kathleen R Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
57
|
Jiménez C, Carvajal D, Hernández M, Valenzuela F, Astorga J, Fernández A. Levels of the interleukins 17A, 22, and 23 and the S100 protein family in the gingival crevicular fluid of psoriatic patients with or without periodontitis. An Bras Dermatol 2021; 96:163-170. [PMID: 33531183 PMCID: PMC8007492 DOI: 10.1016/j.abd.2020.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis and periodontitis are immunologically mediated chronic inflammatory diseases. Epidemiologic evidence has linked both; however, the change of markers in gingival crevicular fluid has been poorly evaluated. OBJECTIVE To evaluate the levels of IL-17A, IL-22, IL-23, S100A7, S100A8, and S100A9 in gingival crevicular fluid of psoriatic and healthy subjects with and without periodontitis and their relations to psoriasis severity. METHODS Cross-sectional study. Sample comprised the following groups: healthy controls without periodontitis or with mild periodontitis (n=21), healthy controls with moderate or severe periodontitis (n=18), individuals with psoriasis without or mild periodontitis (n=11), and individuals with psoriasis and moderate or severe periodontitis (n=32). Levels of IL-17A, IL-22, IL-23, S100A8, and S100A9 were determined by multiplex assay and S100A7 was measured by ELISA. RESULTS No inter-group differences in the levels of IL-17A, IL-22, IL-23, and S100A7 were found. S100A8 levels were higher in psoriatic patients than controls (p<0.05). S100A8 was positively correlated with psoriasis severity in the group with psoriasis (p<0.05). S100A9 exceeded the detection limits. STUDY LIMITATIONS This pilot study presents a small sample size. CONCLUSIONS The concentrations of S100A8 were highest in psoriatic patients regardless of periodontal health/status. S100A8 was associated with the severity of psoriasis. The concentrations of interleukins and S100A7 were similar in psoriatic patients with or without periodontitis vs. healthy controls.
Collapse
Affiliation(s)
- Constanza Jiménez
- Department of Oral Pathology, Faculty of Dentistry, Universidad Andrés Bello, Santiago, Chile
| | - Daniela Carvajal
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Oral Pathology and Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Fernando Valenzuela
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jessica Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alejandra Fernández
- Department of Oral Pathology, Faculty of Dentistry, Universidad Andrés Bello, Santiago, Chile; Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
58
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
59
|
Abstract
Both the gut microbiome and innate immunity are known to differ across biogeographically diverse human populations. The gut microbiome has been shown to directly influence systemic immunity in animal models. The gut microbiome is a well-recognized modulator of host immunity, and its compositions differ between geographically separated human populations. Systemic innate immune responses to microbial derivatives also differ between geographically distinct human populations. However, the potential role of the microbiome in mediating geographically varied immune responses is unexplored. We here applied 16S amplicon sequencing to profile the stool microbiome and, in parallel, measured whole-blood innate immune cytokine responses to several pattern recognition receptor (PRR) agonists among 2-year-old children across biogeographically diverse settings. Microbiomes differed mainly between high- and low-resource environments and were not strongly associated with other demographic factors. We found strong correlations between responses to Toll-like receptor 2 (TLR2) and relative abundances of Bacteroides and Prevotella populations, shared among Canadian and Ecuadorean children. Additional correlations between responses to TLR2 and bacterial populations were specific to individual geographic cohorts. As a proof of concept, we gavaged germfree mice with human donor stools and found murine splenocyte responses to TLR stimulation were consistent with responses of the corresponding human donor populations. This study identified differences in immune responses correlating to gut microbiomes across biogeographically diverse settings and evaluated biological plausibility using a mouse model. This insight paves the way to guide optimization of population-specific interventions aimed to improve child health outcomes.
Collapse
|
60
|
Niccolai E, Russo E, Baldi S, Ricci F, Nannini G, Pedone M, Stingo FC, Taddei A, Ringressi MN, Bechi P, Mengoni A, Fani R, Bacci G, Fagorzi C, Chiellini C, Prisco D, Ramazzotti M, Amedei A. Significant and Conflicting Correlation of IL-9 With Prevotella and Bacteroides in Human Colorectal Cancer. Front Immunol 2021; 11:573158. [PMID: 33488574 PMCID: PMC7820867 DOI: 10.3389/fimmu.2020.573158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background and aim Gut microbiota (GM) can support colorectal cancer (CRC) progression by modulating immune responses through the production of both immunostimulatory and/or immunosuppressive cytokines. The role of IL-9 is paradigmatic because it can either promote tumor progression in hematological malignancies or inhibit tumorigenesis in solid cancers. Therefore, we investigate the microbiota–immunity axis in healthy and tumor mucosa, focusing on the correlation between cytokine profile and GM signature. Methods In this observational study, we collected tumor (CRC) and healthy (CRC-S) mucosa samples from 45 CRC patients, who were undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, we characterized the tissue infiltrating lymphocyte subset profile and the GM composition. Subsequently, we evaluated the CRC and CRC-S molecular inflammatory response and correlated this profile with GM composition, using Dirichlet multinomial regression. Results CRC samples displayed higher percentages of Th17, Th2, and Tregs. Moreover, CRC tissues showed significantly higher levels of MIP-1α, IL-1α, IL-1β, IL-2, IP-10, IL-6, IL-8, IL-17A, IFN-γ, TNF-α, MCP-1, P-selectin, and IL-9. Compared to CRC-S, CRC samples also showed significantly higher levels of the following genera: Fusobacteria, Proteobacteria, Fusobacterium, Ruminococcus2, and Ruminococcus. Finally, the abundance of Prevotella spp. in CRC samples negatively correlated with IL-17A and positively with IL-9. On the contrary, Bacteroides spp. presence negatively correlated with IL-9. Conclusions Our data consolidate antitumor immunity impairment and the presence of a distinct microbiota profile in the tumor microenvironment compared with the healthy mucosa counterpart. Relating the CRC cytokine profile with GM composition, we confirm the presence of bidirectional crosstalk between the immune response and the host’s commensal microorganisms. Indeed, we document, for the first time, that Prevotella spp. and Bacteroides spp. are, respectively, positively and negatively correlated with IL-9, whose role in CRC development is still under debate.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federica Ricci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Matteo Pedone
- Department of Statistics, Computer Science, Applications "G. Parenti", Florence, Italy
| | | | - Antonio Taddei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Paolo Bechi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | | | - Domenico Prisco
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
61
|
Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A, Amend L, Will SE, Hofmann JD, Pils MC, Schmidt-Hohagen K, Neumann-Schaal M, Strowig T. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 2021; 14:113-124. [PMID: 32433514 PMCID: PMC7790746 DOI: 10.1038/s41385-020-0296-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.
Collapse
Affiliation(s)
- Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urmi Roy
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sabine E Will
- Bacterial Metabolomics, Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia D Hofmann
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marina C Pils
- Mouse Pathology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Kerstin Schmidt-Hohagen
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Hannover Medical School, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
| |
Collapse
|
62
|
Buschhart AL, Bolten L, Volzke J, Ekat K, Kneitz S, Mikkat S, Kreikemeyer B, Müller-Hilke B. Periodontal pathogens alter the synovial proteome. Periodontal pathogens do not exacerbate macroscopic arthritis but alter the synovial proteome in mice. PLoS One 2020; 15:e0242868. [PMID: 33382721 PMCID: PMC7774964 DOI: 10.1371/journal.pone.0242868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 01/12/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis (PD) are chronic inflammatory diseases that appear to occur in tandem. However, the mutual impact PD exerts on RA and vice versa has not yet been defined. To address this issue, we set up an animal model and analyzed how two prime inducers of periodontitis—Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa)–differ in their pathogenic potential. Our experimental setup included collagen induced arthritis (CIA) in the mouse, oral inoculation with Pg or Aa to induce alveolar bone loss and the combination of both diseases in inverted orders of events. Neither pathobiont impacted on macroscopic arthritis and arthritis did not exacerbate alveolar bone loss. However, there were subtle differences between Pg and Aa with the former inducing more alveolar bone loss if PD was induced before CIA. On a molecular level, Pg and Aa led to differential expression patterns in the synovial membranes that were reminiscent of cellular and humoral immune responses, respectively. The Pg and Aa specific signatures in the synovial proteomes suggest a role for oral pathogens in shaping disease subtypes and setting the stage for subsequent therapy response.
Collapse
Affiliation(s)
- Anna-Lena Buschhart
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, Rostock, Germany
| | - Lennart Bolten
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, Rostock, Germany
| | - Johann Volzke
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Mikkat
- Core Facility for Proteome Analysis, Center for Medical Research, University Medical Center Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
63
|
Alpízar-Rodríguez D, Finckh A, Gilbert B. The Role of Nutritional Factors and Intestinal Microbiota in Rheumatoid Arthritis Development. Nutrients 2020; 13:nu13010096. [PMID: 33396685 PMCID: PMC7823566 DOI: 10.3390/nu13010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence about the role of nutritional factors and microbiota in autoimmune diseases, and in rheumatoid arthritis (RA) in particular, has grown in recent years, however many controversies remain. The aim of this review is to summarize the role of nutrition and of the intestinal microbiota in the development of RA. We will focus on selected dietary patterns, individual foods and beverages that have been most consistently associated with RA or with the occurrence of systemic autoimmunity associated with RA. We will also review the evidence for a role of the intestinal microbiota in RA development. We propose that diet and digestive microbiota should be considered together in research, as they interact and may both be the target for future preventive interventions in RA.
Collapse
Affiliation(s)
- Deshiré Alpízar-Rodríguez
- Research Unit, Colegio Mexicano de Reumatología, Mexico City 04318, Mexico
- Correspondence: ; Tel.: +52-55-2525-1853
| | - Axel Finckh
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| | - Benoît Gilbert
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| |
Collapse
|
64
|
Tang N, Lu CY, Sue SC, Chen TH, Jan JT, Huang MH, Huang CH, Chen CC, Chiang BL, Huang LM, Wu SC. Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses. Vaccines (Basel) 2020; 8:vaccines8040710. [PMID: 33266210 PMCID: PMC7768441 DOI: 10.3390/vaccines8040710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global health concern. Vaccination remains the primary protective strategy against H5N1 and other novel avian influenza virus infections. We investigated the use of E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant for intranasal immunizations with recombinant HA proteins against H5N1 avian influenza viruses. Use of LTIIb-B5 adjuvant elicited more potent IgG, IgA, and neutralizing antibody titers in both sera and bronchoalveolar lavage fluids, thus increasing protection against lethal virus challenges. LTIIb-B5 mucosal adjuvanticity was found to trigger stronger Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Studies of anti-IL-17A monoclonal antibody depletion and IL-17A knockout mice also suggest the contribution from Th17 cellular response to anti-H5N1 protective immunity. Our results indicate a link between improved protection against H5N1 live virus challenges and increased Th17 response due to the use of LTIIb-B5 mucosal adjuvant with HA subunit proteins.
Collapse
Affiliation(s)
- Neos Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Shih-Che Sue
- Department of Life Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30013, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 202301, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
65
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Tetracycline and multidrug resistance in the oral microbiota: differences between healthy subjects and patients with periodontitis in Spain. J Oral Microbiol 2020; 13:1847431. [PMID: 33391624 PMCID: PMC7717685 DOI: 10.1080/20002297.2020.1847431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Antibiotic resistance is widely found even among bacterial populations not having been exposed to selective pressure by antibiotics, such as tetracycline. In this study we analyzed the tetracycline-resistant subgingival microbiota of healthy subjects and of patients with periodontitis, comparing the prevalence of tet genes and their multidrug resistance profiles. Methods: Samples from 259 volunteers were analyzed, obtaining 813 tetracycline-resistant isolates. The prevalence of 12 antibiotic resistance genes was assessed, and multidrug profiles were built. Each isolate was identified by 16S rRNA sequencing. Differences in qualitative data and quantitative data were evaluated using the chi-square test and the Mann-Whitney-U test, respectively. Results: tet(M) was the most frequently detected tet gene (52.03%). We observed significant differences between the prevalence of tet(M), tet(W), tet(O), tet(32) and tet(L) in both populations studied. Multidrug resistance was largely observed, with resistance to kanamycin being the most detected (83.64%). There were significant differences between the populations in the prevalence of kanamycin, chloramphenicol, and cefotaxime resistance. Resistant isolates showed significantly different prevalence between the two studied groups. Conclusion: The high prevalence of multidrug resistance and tetracycline resistance genes found in the subgingival microbiota, highlights the importance of performing wider and more in-depth analysis of antibiotic resistance in the oral microbiota.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain.,Departament De Genètica I Microbiologia, Universitat Autònoma De Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| |
Collapse
|
66
|
Mei F, Xie M, Huang X, Long Y, Lu X, Wang X, Chen L. Porphyromonas gingivalis and Its Systemic Impact: Current Status. Pathogens 2020; 9:pathogens9110944. [PMID: 33202751 PMCID: PMC7696708 DOI: 10.3390/pathogens9110944] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The relationship between periodontitis and systemic diseases, notably including atherosclerosis and diabetes, has been studied for several years. Porphyromonas gingivalis, a prominent component of oral microorganism communities, is the main pathogen that causes periodontitis. As a result of the extensive analysis of this organism, the evidence of its connection to systemic diseases has become more apparent over the last decade. A significant amount of research has explored the role of Porphyromonas gingivalis in atherosclerosis, Alzheimer's disease, rheumatoid arthritis, diabetes, and adverse pregnancy outcomes, while relatively few studies have examined its contribution to respiratory diseases, nonalcoholic fatty liver disease, and depression. Here, we provide an overview of the current state of knowledge about Porphyromonas gingivalis and its systemic impact in an aim to inform readers of the existing epidemiological evidence and the most recent preclinical studies. Additionally, the possible mechanisms by which Porphyromonas gingivalis is involved in the onset or exacerbation of diseases, together with its effects on systemic health, are covered. Although a few results remain controversial, it is now evident that Porphyromonas gingivalis should be regarded as a modifiable factor for several diseases.
Collapse
Affiliation(s)
- Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yanlin Long
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (X.W.); (L.C.)
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (X.W.); (L.C.)
| |
Collapse
|
67
|
Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M, Bellone M. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer. Front Immunol 2020; 11:565470. [PMID: 33244315 PMCID: PMC7683804 DOI: 10.3389/fimmu.2020.565470] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Collapse
Affiliation(s)
- Arianna Brevi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Laura Lucia Cogrossi
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy.,Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Grazia
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Desirée Masciovecchio
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Daniela Impellizzieri
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Lucrezia Lacanfora
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Grioni
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| | - Matteo Bellone
- Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, I.R.C.C.S. Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
68
|
Prevotella Induces the Production of Th17 Cells in the Colon of Mice. J Immunol Res 2020; 2020:9607328. [PMID: 33204736 PMCID: PMC7657696 DOI: 10.1155/2020/9607328] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Th17-mediated mucosal inflammation is related to increased Prevotella bacterial abundance. The actual involvement of Prevotella in the development and accumulation of intestinal Th17 cells at a steady state, however, remains undefined. Herein, we investigated the role of Prevotella in inducing intestinal Th17 cells in mice. Mice were treated with a combination of broad-spectrum antibiotics (including ampicillin, neomycin sulfate, vancomycin hydrochloride, and metronidazole) in their drinking water for 4 weeks and then gavaged with Prevotella for 4 weeks. After inoculation, 16S rDNA sequencing was used to verify the colonization of Prevotella in the colon of mice. The IL-17A as well as IL-17A-expressing T cells was localized and quantified by an immunofluorescence assay (IFA) of colon sections. Th17 cells in the mesenteric lymph nodes of mice were counted by flow cytometry. Systemic immune response to Prevotella colonization was evaluated based on the serum levels of IL-6, TNF-α, IL-1β, IL-17A, IL-10, IL-4, IFN-γ, and IL-2. Th17-polarizing cytokines (IL-6, TNF-α, IL-1β, and IL-2) induced by Prevotella were evaluated by stimulation of bone marrow-derived dendritic cells (BMDCs). Results revealed that after inoculation, Prevotella successfully colonized the intestine of mice and induced the production and accumulation of colonic Th17 cells in the colon. Moreover, Prevotella elevated some of the Th17-related cytokines in the serum of mice. And Th17-polarizing cytokines (IL-6 and IL-1β) produced by BMDCs were mediated mainly through the interaction between Prevotella and Toll-like receptor 2 (TLR2). In conclusion, our data suggest that Prevotella induces the production of Th17 cells in the colon of mice, thus highlighting the potential role of Prevotella in training the intestinal immune system.
Collapse
|
69
|
Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020; 8:microorganisms8101584. [PMID: 33066697 PMCID: PMC7602465 DOI: 10.3390/microorganisms8101584] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
A diverse and dynamic microbial community (known as microbiota) resides within the pig gastrointestinal tract (GIT). The microbiota contributes to host health and performance by mediating nutrient metabolism, stimulating the immune system, and providing colonization resistance against pathogens. Manipulation of gut microbiota to enhance growth performance and disease resilience in pigs has recently become an active area of research in an era defined by increasing scrutiny of antimicrobial use in swine production. In order to develop microbiota-targeted strategies, or to identify potential next-generation probiotic strains originating from the endogenous members of GIT microbiota in pigs, it is necessary to understand the role of key commensal members in host health. Many, though not all, correlative studies have associated members of the genus Prevotella with positive outcomes in pig production, including growth performance and immune response; therefore, a comprehensive review of the genus in the context of pig production is needed. In the present review, we summarize the current state of knowledge about the genus Prevotella in the intestinal microbial community of pigs, including relevant information from other animal species that provide mechanistic insights, and identify gaps in knowledge that must be addressed before development of Prevotella species as next-generation probiotics can be supported.
Collapse
|
70
|
Alhabashneh R, Alawneh K, Alshami R, Al Naji K. Rheumatoid arthritis and periodontitis: a Jordanian case-control study. J Public Health (Oxf) 2020. [DOI: 10.1007/s10389-019-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
71
|
George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology 2020; 28:1457-1476. [PMID: 32948901 DOI: 10.1007/s10787-020-00757-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA), a multifactorial disease characterized by synovitis, cartilage destruction, bone erosion, and periarticular decalcification, finally results in impairment of joint function. Both genetic and environmental factors are risk factors in the development of RA. Unwanted side effects accompany most of the current treatment strategies, and around 20-40% of patients with RA do not clinically benefit from these treatments. The unmet need for new treatment options for RA has prompted research in the development of novel agents acting through physiologically and pharmacologically relevant targets. Here we discuss in detail three critical pathways, Janus kinase/signal transducer and activator of transcription (JAK/STAT), Th17, and hypoxia-inducible factor (HIF), and their roles as unique therapeutic targets in the field of RA. Some of the less developed but potential targets like nucleotide-binding and oligomerization domain-like receptor containing protein 3 (NLRP3) inflammasome and histone deacetylase 1 (HDAC1) are also discussed.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
| |
Collapse
|
72
|
Bartlett A, Gullickson RG, Singh R, Ro S, Omaye ST. The Link between Oral and Gut Microbiota in Inflammatory Bowel Disease and a Synopsis of Potential Salivary Biomarkers. APPLIED SCIENCES 2020; 10:6421. [DOI: 10.3390/app10186421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this review is to provide recent evidence for the oral–gut axis connection and to discuss gastrointestinal (GI) immune response, inflammatory bowel disease (IBD) pathogenesis, and potential salivary biomarkers for determining GI health. IBD affects an estimated 1.3% of the US adult population. While genetic predisposition and environment play a role, abnormal immune activity and microbiota dysbiosis within the gastrointestinal tract are also linked in IBD pathogenesis. It has been inferred that a reduced overall richness of bacterial species as well as colonization of opportunistic bacteria induce systemic inflammation in the GI tract. Currently, there is supporting evidence that both oral and gut microbiota may be related to the development of IBD. Despite this, there are currently no curative therapies for IBD, and diagnosis requires samples of blood, stool, and invasive diagnostic imaging techniques. Considering the relative ease of collection, emerging evidence of association with non-oral diseases may imply that saliva microbiome research may have the potential for gut diagnostic or prognostic value. This review demonstrates a link between saliva and intestinal profiles in IBD patients, suggesting that saliva sampling has the potential to serve as a non-invasive biomarker for gut diseases such as IBD in the oral–gut axis.
Collapse
Affiliation(s)
- Allison Bartlett
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | | | - Rajan Singh
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology & Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Stanley T. Omaye
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA
- Environmental Sciences Graduate Program, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
73
|
Kleinstein S, Nelson K, Freire M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J Dent Res 2020; 99:1131-1139. [PMID: 32459164 PMCID: PMC7443998 DOI: 10.1177/0022034520926126] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dance between microbes and the immune system takes place in all biological systems, including the human body, but this interaction is especially complex in the primary gateway to the body: the oral cavity. Recent advances in technology have enabled deep sequencing and analysis of members and signals of these communities. In a healthy state, the oral microbiome is composed of commensals, and their genes and phenotypes may be selected by the immune system to survive in symbiosis. These highly regulated signals are modulated by a network of microbial and host metabolites. However, in a diseased state, host-microbial networks lead to dysbiosis and considerable burden to the host prior to systemic impact that extends beyond the oral compartment. Interestingly, we presented data demonstrating similarities between human and mice immune dysbiosis and discussed how this affects the host response to similar pathobionts. The host and microbial signatures of a number of disease states are currently being examined to identify potential correlations. How the oral microbiome interacts with inflammation and the immune system to cause disease remains an area of active research. In this review, we summarize recent advancements in understanding the role of oral microbiota in mediating inflammation and altering systemic health and disease. In line with these findings, it is possible that existing conditions may be resolved by targeting specific immune-microbial markers in a positive way.
Collapse
Affiliation(s)
| | - K.E. Nelson
- J. Craig Venter Institute, La Jolla, CA, USA
| | - M. Freire
- J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
74
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
75
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
76
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 2039] [Impact Index Per Article: 407.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
77
|
Peng HY, Chen SY, Siao SH, Chang JT, Xue TY, Lee YH, Jan MS, Tsay GJ, Zouali M. Targeting a cysteine protease from a pathobiont alleviates experimental arthritis. Arthritis Res Ther 2020; 22:114. [PMID: 32410713 PMCID: PMC7222327 DOI: 10.1186/s13075-020-02205-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Background Several lines of evidence suggest that the pathobiont Porphyromonas gingivalis is involved in the development and/or progression of auto-inflammatory diseases. This bacterium produces cysteine proteases, such as gingipain RgpA, endowed with the potential to induce significant bone loss in model systems and in patients. Objective We sought to gain further insight into the role of this pathobiont in rheumatoid arthritis (RA) and to identify novel therapeutic targets for auto-inflammatory diseases. Methods We profiled the antibody response to RgPA-specific domains in patient sera. We also tested the potential protective effects of RgpA domains in an experimental arthritis model. Results Pre-immunization of rats with purified recombinant RgpA domains alleviated arthritis in the joints of the rodents and reduced bone erosion. Using a functional genomics approach at both the mRNA and protein levels, we report that the pre-immunizations reduced arthritis severity by impacting a matrix metalloprotease characteristic of articular injury, a chemokine known to be involved in recruiting inflammatory cells, and three inflammatory cytokines. Finally, we identified an amino acid motif in the RgpA catalytic domain of P. gingivalis that shares sequence homology with type II collagen. Conclusion We conclude that pre-immunization against gingipain domains can reduce the severity of experimentally induced arthritis. We suggest that targeting gingipain domains by pre-immunization, or, possibly, by small-molecule inhibitors, could reduce the potential of P. gingivalis to translocate to remote tissues and instigate and/or exacerbate pathology in RA, but also in other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hsin-Yi Peng
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yao Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Hong Siao
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | | | - Ting-Yin Xue
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Lee
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology, Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan. .,College of Medicine, China Medical University, Taichung, Taiwan.
| | - Moncef Zouali
- Inserm UMR 1132, F-75475, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
78
|
Bluemel S, Wang L, Kuelbs C, Moncera K, Torralba M, Singh H, Fouts DE, Schnabl B. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 2020; 11:265-275. [PMID: 30982395 PMCID: PMC7524386 DOI: 10.1080/19490976.2019.1595300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver disease is closely related to translocation of bacterial products and bacteria from the intestine to the liver. However, it is not known whether bacterial translocation to the liver depends on certain intestinal microbiota changes that would predispose bacteria to translocate to the liver. In this study, we investigated the microbiota in the jejunum, ileum, cecum, feces and liver of mice subjected to chronic ethanol feeding using a Lieber DeCarli diet model of chronic ethanol feeding for 8 weeks. We demonstrate that chronic ethanol administration changes alpha diversity in the ileum and the liver and leads to compositional changes especially in the ileum. This is largely driven by an increase in gram-negative phyla - the source of endotoxins. Moreover, gram-negative Prevotella not only increased in the mucus layer of the ileum but also in liver samples. These results suggest that bacterial translocation to the liver might be associated with microbiota changes in the distal gastrointestinal tract.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, USA
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, USA
| | - Claire Kuelbs
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | - Kelvin Moncera
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Harinder Singh
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
79
|
Tong Y, Marion T, Schett G, Luo Y, Liu Y. Microbiota and metabolites in rheumatic diseases. Autoimmun Rev 2020; 19:102530. [PMID: 32240855 DOI: 10.1016/j.autrev.2020.102530] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
As a gigantic community in the human body, the microbiota exerts pleiotropic roles in human health and disease ranging from digestion and absorption of nutrients from food, defense against infection of pathogens, to regulation of immune system development and immune homeostasis. Recent advances in "omics" studies and bioinformatics analyses have broadened our insights of the microbiota composition of the inner and other surfaces of the body and their interactions with the host. Apart from the direct contact of microbes at the mucosal barrier, metabolites produced or metabolized by the gut microbes can serve as important immune regulators or initiators in a wide variety of diseases, including gastrointestinal diseases, metabolic disorders and systemic rheumatic diseases. This review focuses on the most recent understanding of how the microbiota and metabolites shape rheumatic diseases. Studies that explore the mechanistic interplay between microbes, metabolites and the host could thereby provide clues for novel methods in the diagnosis, therapy, and prevention of rheumatic diseases.
Collapse
Affiliation(s)
- Yanli Tong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nurnberg, and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
80
|
Abstract
Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-UQ, Faculty of Medicine, University of Queensland, Brisbane, 4102, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
81
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
82
|
Tong Y, Zheng L, Qing P, Zhao H, Li Y, Su L, Zhang Q, Zhao Y, Luo Y, Liu Y. Oral Microbiota Perturbations Are Linked to High Risk for Rheumatoid Arthritis. Front Cell Infect Microbiol 2020; 9:475. [PMID: 32039051 PMCID: PMC6987375 DOI: 10.3389/fcimb.2019.00475] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/24/2019] [Indexed: 02/05/2023] Open
Abstract
Oral microbial dysbiosis is known to increase susceptibility of an individual to develop rheumatoid arthritis (RA). Individuals at-risk of RA may undergo different phases of disease progression. In this study, we aim to investigate whether and whereby the oral microbiome communities alter prior to symptoms of RA. Seventy-nine saliva samples were collected from 29 high-risk individuals, who were positive for anti-citrullinated protein antibodies (ACPA) and have no clinical arthritis, 27 RA patients and 23 healthy controls (HCs). The salivary microbiome was examined using 16S ribosomal RNA gene sequencing. Alpha and beta diversity analysis and the linear discriminant analysis were applied to examine the bacterial diversity, community structure and discriminatory taxa between three groups, respectively. The correlation between salivary bacteria and autoantibodies were analyzed. In the “pre-clinical” stages, salivary microbial diversity was significantly reduced comparing to RA patients and HCs. In contrast to HCs, like RA patients, individuals at high-risk for RA showed a reduction in the abundance of genus Defluviitaleaceae_UCG-011 and the species Neisseria oralis, but an expansion of Prevotella_6. Unexpectedly, the relative abundance of Porphyromonas gingivalis, reported as opportunistic pathogens for RA development, was significantly decreased in high-risk individuals. Additionally, we identified four genera in the saliva from high-risk individuals positively correlated with serum ACPA titers, and the other two genera inversely displayed. In summary, we observed a characteristic compositional change of salivary microbes in individuals at high-risk for RA, suggesting that oral microbiota dysbiosis occurs in the “pre-clinical” stage of RA and are correlated with systemic autoimmune features.
Collapse
Affiliation(s)
- Yanli Tong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Zheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Pingying Qing
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Linchong Su
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Resistin Is Increased in Periodontal Cells and Tissues: In Vitro and In Vivo Studies. Mediators Inflamm 2020; 2020:9817095. [PMID: 32410876 PMCID: PMC7201489 DOI: 10.1155/2020/9817095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Resistin, a proinflammatory adipokine, is elevated in many inflammatory diseases. However, little is known about its performance in periodontitis. The present study is aimed at evaluating resistin expression and synthesis in periodontal cells and tissues under inflammatory/microbial stress in addition to its effects on the periodontium. In vivo, 24 male rats were randomly divided into two groups: control and ligature-induced periodontal disease. After 6 and 12 days, animals were sacrificed to analyze gene expression of adipokines, bone loss, inflammation, and resistin synthesis. In vitro, human periodontal ligament (PDL) fibroblasts were used to evaluate the expression of resistin after inflammatory stimuli. In addition, PDL fibroblasts were exposed to resistin to evaluate its role on soft and hard tissue metabolism markers. The periodontitis group demonstrated significant bone loss, an increase in the number of inflammatory cells and vascular structures, an increase in resistin expression and synthesis, and a decrease in the expression of adiponectin, leptin, and its functional receptor. PDL fibroblasts showed a significant increase in resistin expression and synthesis in response to the inflammatory stimulus by IL-1β. Resistin induced an increase in cytokine expression and a decrease in the regulation of some hard tissue and matrix formation genes in PDL fibroblasts. These data indicate that resistin is produced by periodontal cells and tissues, and this effect is enhanced by inflammatory stimuli. Moreover, resistin seems to interfere with soft and hard tissue metabolism during periodontitis by reducing markers related to matrix formation and bone tissue.
Collapse
|
84
|
Abstract
This study evaluated the arthritogenic effect of lipopolysaccharide (LPS) in a mouse model of periodontal disease. Periodontitis was induced in wild-type CD1 mice by nine LPS injections (10 or 50 ng) into the maxillary mucosa. Untreated mice or injected with LPS at the tail were used as controls. Two weeks after final inoculation, mice were sacrificed to collect blood, maxilla, and paw samples. Development and progression of periodontitis and arthritis were monitored using clinical assessment, micro-computed tomography (micro-CT), ultrasound (US), and histological analysis. CXCL1, IL-1β, IL-6, TNF-α, and anti-citrullinated peptide antibodies (ACPA) serum levels were determined by enzyme immunoassay. Ankle swelling and inflammation manifested after the 5th periodontal injection of 50 ng of LPS and progressed until the end of experiments. Periodontal injection of 10 ng of LPS and LPS tail injection did not induce paw changes. Therefore, the subsequent assessments were conducted only in mice periodontally injected with 50 ng of LPS. Maxillary micro-CT and histological analysis showed that LPS-induced alveolar bone resorption and vascular proliferation in periodontal tissue, but not inflammation. US and histology revealed increased joint space, leukocyte infiltration, synovial proliferation, and mild cartilage and bone destruction in the paws of mice orally injected. Cytokines and ACPA showed a trend towards an increase in LPS mice. This study shows that arthritis and periodontal disease can co-occur in wild-type mice after periodontal injection of LPS at optimal dose. Our model may be useful to improve the understanding of the mechanisms linking periodontitis and arthritis.
Collapse
|
85
|
Host-microbiota interactions in rheumatoid arthritis. Exp Mol Med 2019; 51:1-6. [PMID: 31827063 PMCID: PMC6906371 DOI: 10.1038/s12276-019-0283-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota has been proposed to be an important environmental factor in the development of rheumatoid arthritis (RA). Here, we review a growing body of evidence from human and animal studies that supports the hypothesis that intestinal microbiota play a role in RA. Previous studies from we and others showed an altered composition of the microbiota in early RA patients. A recent study demonstrated that Prevotella species are dominant in the intestine of patients in the preclinical stages of RA. In addition, Prevotella-dominated microbiota isolated from RA patients contributes to the development of Th17 cell-dependent arthritis in SKG mice. Moreover, it was reported that periodontal bacteria correlates with the pathogenesis of RA. In this review, we discuss the link between oral bacteria and the development of arthritis. However, many questions remain to be elucidated in terms of molecular mechanisms for the involvement of intestinal and oral microbiota in RA pathogenesis. Microbes living in the gut and mouth have been implicated in the development of rheumatoid arthritis (RA) and treatments that promote the growth of healthier bacterial communities may help weaken this autoimmune disease. Yuichi Maeda and Kiyoshi Takeda from Osaka University, Japan, review data from mice and humans linking RA to altered microbial compositions in the gut. They focus on a particular bacterium called Prevotella copri, which is found at much higher numbers in the gastrointestinal tracts of people with newly diagnosed RA than in those without the disease. Certain mouth-dwelling bacteria may also help exacerbate RA through the induction of antibodies directed against the host. The exact molecular mechanism by which gut and oral microbes contribute to RA remains unclear.
Collapse
|
86
|
Rantapää Dahlqvist S, Andrade F. Individuals at risk of seropositive rheumatoid arthritis: the evolving story. J Intern Med 2019; 286:627-643. [PMID: 31562671 PMCID: PMC6878216 DOI: 10.1111/joim.12980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aetiology of the autoimmune disease rheumatoid arthritis (RA) involves a complex interplay between genetic and environmental factors that initiate many years before the onset of clinical symptoms. These interactions likely include both protective and susceptibility factors which together determine the risk of developing RA. More than 100 susceptibility loci have been linked to RA. The strongest association is with HLA-DRB1 alleles encoding antigen presenting molecules containing a unique sequence in the peptide-binding grove called the 'shared epitope'. Female sex, infections during childhood, lifestyle habits (e.g. smoking and diet) and distinct microbial agents, amongst many others, are interacting risk factors thought to contribute to RA pathogenesis by dysregulating the immune system in individuals with genetic susceptibility. Interestingly, patients with RA develop autoantibodies many years before the clinical onset of disease, providing strong evidence that the lack of tolerance to arthritogenic antigens is amongst the earliest events in the initiation of seropositive RA. Here, we will discuss the clinical and mechanistic evidence surrounding the role of different environmental and genetic factors in the phases leading to the production of autoantibodies and the initiation of symptomatic RA. Understanding this complexity is critical in order to develop tools to identify drivers of disease initiation and propagation and to develop preventive therapeutics.
Collapse
Affiliation(s)
- S Rantapää Dahlqvist
- Institution of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - F Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
87
|
Pellicano C, Leodori G, Innocenti GP, Gigante A, Rosato E. Microbiome, Autoimmune Diseases and HIV Infection: Friends or Foes? Nutrients 2019; 11:E2629. [PMID: 31684052 PMCID: PMC6893726 DOI: 10.3390/nu11112629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Several studies highlighted the importance of the interaction between microbiota and the immune system in the development and maintenance of the homeostasis of the human organism. Dysbiosis is associated with proinflammatory and pathological state-like metabolic diseases, autoimmune diseases and HIV infection. In this review, we discuss the current understanding of the possible role of dysbiosis in triggering and/or exacerbating symptoms of autoimmune diseases and HIV infection. There are no data about the influence of the microbiome on the development of autoimmune diseases during HIV infection. We can hypothesize that untreated patients may be more susceptible to the development of autoimmune diseases, due to the presence of dysbiosis. Eubiosis, re-established by probiotic administration, can be used to reduce triggers for autoimmune diseases in untreated HIV patients, although clinical studies are needed to evaluate the role of the microbiome in autoimmune diseases in HIV patients.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Giorgia Leodori
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Antonietta Gigante
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| | - Edoardo Rosato
- Department of Translational and Precision Medicine-Scleroderma Unit, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
88
|
de Molon RS, Thurlings RM, Walgreen B, Helsen MM, van der Kraan PM, Cirelli JA, Koenders MI. Systemic Resolvin E1 (RvE1) Treatment Does Not Ameliorate the Severity of Collagen-Induced Arthritis (CIA) in Mice: A Randomized, Prospective, and Controlled Proof of Concept Study. Mediators Inflamm 2019; 2019:5689465. [PMID: 31780864 PMCID: PMC6875002 DOI: 10.1155/2019/5689465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Specialized proresolving mediators (SPRM), which arise from n-3 long-chain polyunsaturated fatty acids (n-3FA), promote resolution of inflammation and may help to prevent progression of an acute inflammatory response into chronic inflammation in patients with arthritis. Thus, this study is aimed at determining whether systemic RvE1 treatment reduces arthritis onset and severity in murine collagen-induced arthritis (CIA) and spontaneous cytokine production by human rheumatoid arthritis (RA) synovial explants. 10-week-old DBA1/J male mice were subjected to CIA and treated systemically with 0.1 μg RvE1, 1 μg RvE1, 5 mg/kg anti-TNF (positive control group), PBS (negative control group), or with a combination of 1 μg of RvE1 plus 5 mg/kg anti-TNF using prophylactic or therapeutic strategies. After CIA immunization, mice were treated twice a week by RvE1 or anti-TNF for 10 days. Arthritis development was assessed by visual scoring of paw swelling and histology of ankle joints. Moreover, human RA synovial explants were incubated with 1 nM, 10 nM, or 100 nM of RvE1, and cytokine levels (IL-1β, IL-6, IL-8, IL-10, INF-γ, and TNF-α) were measured using Luminex bead array. CIA triggered significant inflammation in the synovial cavity, proteoglycan loss, and cartilage and bone destruction in the ankle joints of mice. Prophylactic and therapeutic RvE1 regimens did not ameliorate CIA incidence and severity. Anti-TNF treatment significantly abrogated signs of joint inflammation, bone erosion, and proteoglycan depletion, but additional RvE1 treatment did not further reduce the anti-TNF-mediated suppression of the disease. Treatment with different concentrations of RvE1 did not decrease the expression of proinflammatory cytokines in human RA synovial explants in the studied conditions. Collectively, our findings demonstrated that RvE1 treatment was not an effective approach to treat CIA in DBA1/J mice in both prophylactic and therapeutic strategies. Furthermore, no effects were noticed when human synovial explants were incubated with different concentrations of RvE1.
Collapse
Affiliation(s)
- Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Rogier M. Thurlings
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Birgitte Walgreen
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Monique M. Helsen
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Peter M. van der Kraan
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| |
Collapse
|
89
|
Bertelsen A, Elborn JS, Schock BC. Infection with Prevotella nigrescens induces TLR2 signalling and low levels of p65 mediated inflammation in Cystic Fibrosis bronchial epithelial cells. J Cyst Fibros 2019; 19:211-218. [PMID: 31607634 DOI: 10.1016/j.jcf.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Prevotella spp. are frequently identified in Cystic Fibrosis sputum. This study examined whether infection with Prevotella nigrescens, a frequently identified member of this species, contributes to inflammation in CF bronchial epithelial cells through activation of TLR- and NF-κB signalling pathways. CFBE41o- cells were infected with either P.nigrescens or Pseudomonas aeruginosa and incubated under anaerobic conditions for 4h. P.nigrescens activated TLR2 signalling but not TLR4 signalling while P.aeruginosa activated TLR4 signalling with a lesser effect on TLR2. P.aeruginosa induced significant IκBα phosphorylation 10min post infection with a return to control levels by 30min post infection. A significant induction in nuclear p65 DNA binding was observed at 2h post infection. In contrast, infection with P.nigrescens induced phosphorylation of IκBα 120min post infection, with significant induction in nuclear p65 DNA binding at 4h post infection only. Cytokine gene and protein responses were lower for P.nigrescens compared to P.aeruginosa. This study demonstrates the ability of a clinical P.nigrescens isolate to provoke a delayed NF-κB(p65) driven response through induction in TLR2 signalling and activation of sustained levels of IKKα.
Collapse
Affiliation(s)
- A Bertelsen
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - J S Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - B C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
90
|
Linkage of Periodontitis and Rheumatoid Arthritis: Current Evidence and Potential Biological Interactions. Int J Mol Sci 2019; 20:ijms20184541. [PMID: 31540277 PMCID: PMC6769683 DOI: 10.3390/ijms20184541] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
The association between rheumatoid arthritis (RA) and periodontal disease (PD) has been the focus of numerous investigations driven by their common pathological features. RA is an autoimmune disease characterized by chronic inflammation, the production of anti-citrullinated proteins antibodies (ACPA) leading to synovial joint inflammation and destruction. PD is a chronic inflammatory condition associated with a dysbiotic microbial biofilm affecting the supporting tissues around the teeth leading to the destruction of mineralized and non-mineralized connective tissues. Chronic inflammation associated with both RA and PD is similar in the predominant adaptive immune phenotype, in the imbalance between pro- and anti-inflammatory cytokines and in the role of smoking and genetic background as risk factors. Structural damage that occurs in consequence of chronic inflammation is the ultimate cause of loss of function and disability observed with the progression of RA and PD. Interestingly, the periodontal pathogen Porphyromonas gingivalis has been implicated in the generation of ACPA in RA patients, suggesting a direct biological intersection between PD and RA. However, more studies are warranted to confirm this link, elucidate potential mechanisms involved, and ascertain temporal associations between RA and PD. This review is mainly focused on recent clinical and translational research intends to discuss and provide an overview of the relationship between RA and PD, exploring the similarities in the immune-pathological aspects and the possible mechanisms linking the development and progression of both diseases. In addition, the current available treatments targeting both RA and PD were revised.
Collapse
|
91
|
Gómez-Bañuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Clin Med 2019; 8:jcm8091309. [PMID: 31454946 PMCID: PMC6780899 DOI: 10.3390/jcm8091309] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Amarshi Mukherjee
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
92
|
Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep 2019; 9:11121. [PMID: 31366962 PMCID: PMC6668452 DOI: 10.1038/s41598-019-47204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). We observed that high versus low parasite burdens (measured via parasite egg counts in faecal samples) were associated with specific compositional alterations of the developing microbiome; in particular, the faecal microbiota of animals with heavy worm infection burdens was characterised by lower microbial richness, and alterations to the relative abundances of bacterial taxa with immune-modulatory functions. Amino acids and glucose were increased in faecal samples from the same cohort, which indicated the likely occurrence of intestinal malabsorption. These data support the hypothesis that GI helminth infections in young livestock are associated with significant alterations to the GI microbiota, which may impact on both metabolism and development of acquired immunity. This knowledge will direct future studies aimed to identify the long-term impact of infection-induced alterations of the GI microbiota in young livestock.
Collapse
|
93
|
Lucchino B, Spinelli FR, Iannuccelli C, Guzzo MP, Conti F, Di Franco M. Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis. Cells 2019; 8:E700. [PMID: 31295951 PMCID: PMC6678242 DOI: 10.3390/cells8070700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA-namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa-environment interaction.
Collapse
Affiliation(s)
- Bruno Lucchino
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesca Romani Spinelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristina Iannuccelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Paola Guzzo
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Di Franco
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
94
|
Konkel JE, O'Boyle C, Krishnan S. Distal Consequences of Oral Inflammation. Front Immunol 2019; 10:1403. [PMID: 31293577 PMCID: PMC6603141 DOI: 10.3389/fimmu.2019.01403] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an incredibly prevalent chronic inflammatory disease, which results in the destruction of tooth supporting structures. However, in addition to causing tooth and alveolar bone loss, this oral inflammatory disease has been shown to contribute to disease states and inflammatory pathology at sites distant from the oral cavity. Epidemiological and experimental studies have linked periodontitis to the development and/or exacerbation of a plethora of other chronic diseases ranging from rheumatoid arthritis to Alzheimer's disease. Such studies highlight how the inflammatory status of the oral cavity can have a profound impact on systemic health. In this review we discuss the disease states impacted by periodontitis and explore potential mechanisms whereby oral inflammation could promote loss of homeostasis at distant sites.
Collapse
Affiliation(s)
- Joanne E. Konkel
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| | - Conor O'Boyle
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
95
|
Dehner C, Fine R, Kriegel MA. The microbiome in systemic autoimmune disease: mechanistic insights from recent studies. Curr Opin Rheumatol 2019; 31:201-207. [PMID: 30624285 PMCID: PMC6408954 DOI: 10.1097/bor.0000000000000574] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The resident bacterial communities and the host immune system have coevolved for millennia. However, recent changes in modern societies have disrupted this coevolutionary homeostasis and contributed to a rise in immune-mediated conditions. The purpose of this review is to provide an overview of recently elucidated mechanisms of how certain taxa within the bacterial microbiome propagate autoimmunity. RECENT FINDINGS Interactions between the bacterial microbiome with innate and adaptive immune cells propagate autoreactivity, chronic inflammation, and tissue damage in susceptible hosts. These interactions contribute to autoimmune diseases such as rheumatoid arthritis or systemic lupus erythematosus, which are the focus of this review. Recent findings suggest that autoimmune manifestations in genetically susceptible individuals can arise through cross-reactivity with commensal orthologs of autoantigens or commensal-mediated posttranslational modification of autoantigens. Physiologic responses to gut, oral, or skin commensal bacteria can thus be misdirected toward such autoantigens in susceptible hosts. In addition, recent studies highlight that a breach of the gut barrier and translocation of commensal bacteria to non-gut organs can trigger several autoimmune pathways that can be prevented by commensal vaccination or dietary interventions. SUMMARY Complex host-microbiota interactions contribute to systemic autoimmunity outside the gut. On a molecular level, posttranslational modification of, and cross-reactivity with, autoantigens represent mechanisms of how the microbiota mediates autoimmunity. On a cellular level, translocation of live gut bacteria across a dysfunctional gut barrier allows for direct interactions with immune and tissue cells, instigating autoimmunity systemically.
Collapse
Affiliation(s)
- Carina Dehner
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
96
|
Activation of Toll-like receptor 2 induces B 1 and B 2 kinin receptors in human gingival fibroblasts and in mouse gingiva. Sci Rep 2019; 9:2973. [PMID: 30814538 PMCID: PMC6393418 DOI: 10.1038/s41598-018-37777-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023] Open
Abstract
The regulation of the kallikrein-kinin system is an important mechanism controlling vasodilation and promoting inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) in regulating kinin B1 and B2 receptor expression in human gingival fibroblasts and in mouse gingiva. Both P. gingivalis LPS and the synthetic TLR2 agonist Pam2CSK4 increased kinin receptor transcripts. Silencing of TLR2, but not of TLR4, inhibited the induction of kinin receptor transcripts by both P. gingivalis LPS and Pam2CSK4. Human gingival fibroblasts (HGF) exposed to Pam2CSK4 increased binding sites for bradykinin (BK, B2 receptor agonist) and des-Arg10-Lys-bradykinin (DALBK, B1 receptor agonist). Pre-treatment of HGF for 24 h with Pam2CSK4 resulted in increased PGE2 release in response to BK and DALBK. The increase of B1 and B2 receptor transcripts by P. gingivalis LPS was not blocked by IL-1β neutralizing antibody; TNF-α blocking antibody did not affect B1 receptor up-regulation, but partially blocked increase of B2 receptor mRNA. Injection of P. gingivalis LPS in mouse gingiva induced an increase of B1 and B2 receptor mRNA. These data show that activation of TLR2 in human gingival fibroblasts as well as in mouse gingival tissue leads to increase of B1 and B2 receptor mRNA and protein.
Collapse
|
97
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Azithromycin and erythromycin susceptibility and macrolide resistance genes in Prevotella from patients with periodontal disease. Oral Dis 2019; 25:860-867. [PMID: 30667163 DOI: 10.1111/odi.13043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To study oral Prevotella spp. isolated from patients with chronic periodontitis, to determine their susceptibility to azithromycin and erythromycin and to screen the presence of macrolide resistance genes therein. MATERIAL AND METHODS Isolates with a Prevotella-like morphology were obtained from subgingival samples of 52 patients with chronic periodontitis. Each isolate was identified to the species level by sequencing of the 16S rRNA gene. In 100 Prevotella spp. isolates, azithromycin and erythromycin susceptibility was determined using the E test method, and the screening of erm(A), erm(B), erm(C), erm(F), erm(G), erm(Q) and mef(A) genes was done by PCR. RESULTS Prevotella intermedia and Prevotella nigrescens were the most identified species (33% each). Minimum inhibitory concentrations (MICs) ranges for both antibiotics were 0.016/0.032 to >256 μg/ml. MIC50 values for azithromycin and erythromycin were 1.5 and 1 μg/ml, respectively, and MIC90 values were >256 μg/ml for both antibiotics. Nineteen per cent of the isolates carried erm(B), and 51% carried erm(F). CONCLUSIONS The MIC values found were high compared to previous studies. erm(F) was greatly prevalent, and we describe for the first time the erm(B) gene in Prevotella spp. The presence of either of the genes seems to be associated with a higher degree of resistance to azithromycin and erythromycin.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain
| |
Collapse
|
98
|
du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev 2019; 43:1-18. [PMID: 30219863 DOI: 10.1093/femsre/fuy035] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial communities inhabiting the human body, collectively called the microbiome, are critical modulators of immunity. This notion is underpinned by associations between changes in the microbiome and particular autoimmune disorders. Specifically, in rheumatoid arthritis, one of the most frequently occurring autoimmune disorders worldwide, changes in the oral and gut microbiomes have been implicated in the loss of tolerance against self-antigens and in increased inflammatory events promoting the damage of joints. In the present review, we highlight recently gained insights in the roles of microbes in the etiology of rheumatoid arthritis. In addition, we address important immunomodulatory processes, including biofilm formation and neutrophil function, which have been implicated in host-microbe interactions relevant for rheumatoid arthritis. Lastly, we present recent advances in the development and evaluation of emerging microbiome-based therapeutic approaches. Altogether, we conclude that the key to uncovering the etiopathogenesis of rheumatoid arthritis will lie in the immunomodulatory functions of the oral and gut microbiomes.
Collapse
Affiliation(s)
- Marines du Teil Espina
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Giorgio Gabarrini
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
99
|
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci 2019; 20:E283. [PMID: 30642013 PMCID: PMC6359510 DOI: 10.3390/ijms20020283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autoimmune disorders derive from genetic, stochastic, and environmental factors that all together interact in genetically predisposed individuals. The impact of an imbalanced gut microbiome in the pathogenesis of autoimmunity has been suggested by an increasing amount of experimental evidence, both in animal models and humans. Several physiological mechanisms, including the establishment of immune homeostasis, are influenced by commensal microbiota in the gut. An altered microbiota composition produces effects in the gut immune system, including defective tolerance to food antigens, intestinal inflammation, and enhanced gut permeability. In particular, early findings reported differences in the intestinal microbiome of subjects affected by several autoimmune conditions, including prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence its composition, and putative involvement in the development of autoimmune disorders. In the light of the existing literature, future studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced gut permeability and molecular mechanisms responsible for autoimmunity onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
- VisMederi s.r.l., Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
100
|
Czesnikiewicz-Guzik M, Nosalski R, Mikolajczyk TP, Vidler F, Dohnal T, Dembowska E, Graham D, Harrison DG, Guzik TJ. Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction. Br J Pharmacol 2018; 176:1922-1931. [PMID: 30414380 PMCID: PMC6534780 DOI: 10.1111/bph.14536] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Emerging evidence indicates that hypertension is mediated by immune mechanisms. We hypothesized that exposure to Porphyromonas gingivalis antigens, commonly encountered in periodontal disease, can enhance immune activation in hypertension and exacerbate the elevation in BP, vascular inflammation and vascular dysfunction. Experimental Approach Th1 immune responses were elicited through immunizations using P. gingivalis lysate antigens (10 μg) conjugated with aluminium oxide (50 μg) and IL‐12 (1 μg). The hypertension and vascular endothelial dysfunction evoked by subpressor doses of angiotensin II (0.25 mg·kg−1·day−1) were studied, and vascular inflammation was quantified by flow cytometry and real‐time PCR. Key Results Systemic T‐cell activation, a characteristic of hypertension, was exacerbated by P. gingivalis antigen stimulation. This translated into increased aortic vascular inflammation with enhanced leukocyte, in particular, T‐cell and macrophage infiltration. The expression of the Th1 cytokines, IFN‐γ and TNF‐α, and the transcription factor, TBX21, was increased in aortas of P. gingivalis/IL‐12/aluminium oxide‐immunized mice, while IL‐4 and TGF‐β were unchanged. These immune changes in mice with induced T‐helper‐type 1 immune responses were associated with an enhanced elevation of BP and endothelial dysfunction compared with control mice in response to 2 week infusion of a subpressor dose of angiotensin II. Conclusions and Implications These results support the concept that Th1 immune responses induced by bacterial antigens such as P. gingivalis can increase sensitivity to subpressor pro‐hypertensive insults such as low‐dose angiotensin II, thus providing a mechanistic link between chronic infection, such as periodontitis, and hypertension. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow Dental School and Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz P Mikolajczyk
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Vidler
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz Dohnal
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Elzbieta Dembowska
- Department of Periodontology, Pomeranian Medical University, Szczecin, Poland
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David G Harrison
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|