51
|
Muñoz-Sánchez J, Chánez-Cárdenas ME. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:604981. [PMID: 25136403 PMCID: PMC4127239 DOI: 10.1155/2014/604981] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
Hemeoxygenase (HO) system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.
Collapse
Affiliation(s)
- Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Delegación Tlalpan, DF, Mexico
| |
Collapse
|
52
|
Gun SY, Claser C, Tan KSW, Rénia L. Interferons and interferon regulatory factors in malaria. Mediators Inflamm 2014; 2014:243713. [PMID: 25157202 PMCID: PMC4124246 DOI: 10.1155/2014/243713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
| | - Kevin Shyong Wei Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore 138648
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
53
|
Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol 2014; 5:115. [PMID: 24904418 PMCID: PMC4035012 DOI: 10.3389/fphar.2014.00115] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases.
Collapse
Affiliation(s)
- Fabianno F. Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
54
|
ADAMTS-12: a multifaced metalloproteinase in arthritis and inflammation. Mediators Inflamm 2014; 2014:649718. [PMID: 24876675 PMCID: PMC4020202 DOI: 10.1155/2014/649718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022] Open
Abstract
ADAMTS-12 is a member of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of proteases, which were known to play important roles in various biological and pathological processes, such as development, angiogenesis, inflammation, cancer, arthritis, and atherosclerosis. In this review, we briefly summarize the structural organization of ADAMTS-12; concentrate on the emerging role of ADAMTS-12 in several pathophysiological conditions, including intervertebral disc degeneration, tumorigenesis and angioinhibitory effects, pediatric stroke, gonad differentiation, trophoblast invasion, and genetic linkage to schizophrenia and asthma, with special focus on its role in arthritis and inflammation; and end with the perspective research of ADAMTS-12 and its potential as a promising diagnostic and therapeutic target in various kinds of diseases and conditions.
Collapse
|
55
|
Therapeutic applications of carbon monoxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:360815. [PMID: 24648866 PMCID: PMC3932177 DOI: 10.1155/2013/360815] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/21/2013] [Accepted: 11/05/2013] [Indexed: 11/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a regulated enzyme induced in multiple stress states. Carbon monoxide (CO) is a product of HO catalysis of heme. In many circumstances, CO appears to functionally replace HO-1, and CO is known to have endogenous anti-inflammatory, anti-apoptotic, and antiproliferative effects. CO is well studied in anoxia-reoxygenation and ischemia-reperfusion models and has advanced to phase II trials for treatment of several clinical entities. In alternative injury models, laboratories have used sepsis, acute lung injury, and systemic inflammatory challenges to assess the ability of CO to rescue cells, organs, and organisms. Hopefully, the research supporting the protective effects of CO in animal models will translate into therapeutic benefits for patients. Preclinical studies of CO are now moving towards more complex damage models that reflect polymicrobial sepsis or two-step injuries, such as sepsis complicated by acute respiratory distress syndrome. Furthermore, co-treatment and post-treatment with CO are being explored in which the insult occurs before there is an opportunity to intervene therapeutically. The aim of this review is to discuss the potential therapeutic implications of CO with a focus on lung injury and sepsis-related models.
Collapse
|
56
|
Tripathy S, Mahapatra SK, Chattopadhyay S, Das S, Dash SK, Majumder S, Pramanik P, Roy S. A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Trop 2013; 128:494-503. [PMID: 23906613 DOI: 10.1016/j.actatropica.2013.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Chitosan is a natural polysaccharide that has attracted significant scientific interest during the last two decades and chitosan based nanodrug delivery systems seem to be a hopeful and viable strategy for improving disease treatment. This study aims to evaluate the potency of the polymer based nanochloroquine in application for attenuation of Plasmodium berghei infection in Swiss mice and effectiveness against the parasite induced oxidative stress and deoxyribo nucleic acid (DNA) damage in lymphocytes. Nanoparticle was prepared by ionotropic gelation between chitosan and sodium tripolyphosphate. The chloroquine was treated by the actual drug content of effective nanochloroquine and the nanodrug was charged with its effective dose for fifteen days, after successive infection development in Swiss mice. Gimsa staining of thin smear and flow cytometry analysis was pursued to reveal the parasitemia. Different oxidative markers, inflammatory markers, antioxidant enzymes level and also lymphocytic deoxyribo nucleic acid damage study were performed. The present study reveals the potency of the nanodrug which has been found as more prospective than only chloroquine treatment to combat the parasite infection, oxidative stress as well as inflammation and DNA damage. From the study, we conclude this nanodrug may be applicable as potent therapeutic agent than only chloroquine.
Collapse
Affiliation(s)
- Satyajit Tripathy
- Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Proinflammatory responses of heme in alveolar macrophages: repercussion in lung hemorrhagic episodes. Mediators Inflamm 2013; 2013:946878. [PMID: 23690673 PMCID: PMC3652176 DOI: 10.1155/2013/946878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM) being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM) elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS) and nitric oxide (NO) generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.
Collapse
|
58
|
Neal MD, Raval JS, Triulzi DJ, Simmons RL. Innate immune activation after transfusion of stored red blood cells. Transfus Med Rev 2013; 27:113-8. [PMID: 23434246 DOI: 10.1016/j.tmrv.2013.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023]
Abstract
The transfusion of red blood cells (RBCs), although necessary for treatment of anemia and blood loss, has also been linked to increased morbidity and mortality. RBCs stored for longer durations and transfused in larger volumes are often cited as contributory to adverse outcomes. The potential mechanisms underlying deleterious effects of RBC transfusion are just beginning to be elucidated. In this narrative review, we explore the hypothesis that prolonged RBC storage results in elaboration of substances which may function as danger associated molecular pattern molecules that activate the innate immune system with consequences unfavorable to healthy homeostasis. The nature of these chemical mediators and the biological responses to them offers insight into the mechanisms of these pathological responses. Three major areas of activation of the innate immune apparatus by stored RBCs have been tentatively identified: RBC hemolysis, recipient neutrophil priming, and reactive oxygen species production. The possible mechanisms by which each might perturb the innate immune response are reviewed in a search for potential novel pathways through which transfusion can lead to an altered inflammatory response.
Collapse
Affiliation(s)
- Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
59
|
Nguyen CN, Kim HE, Lee SG. Caffeoylserotonin protects human keratinocyte HaCaT cells against H2 O2 -induced oxidative stress and apoptosis through upregulation of HO-1 expression via activation of the PI3K/Akt/Nrf2 pathway. Phytother Res 2013; 27:1810-8. [PMID: 23418094 DOI: 10.1002/ptr.4931] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 12/30/2022]
Abstract
Caffeoylserotonin (CaS) has strong radical scavenging activity as well as antioxidant activities, protecting cells from lipid peroxidation, intracellular reactive oxygen species generation, DNA damage, and cell death. The molecular mechanism by which CaS protects against oxidative stress is not well understood. Here, we analyzed the cytoprotective activity of CaS in hydrogen peroxide (H2 O2 )-treated keratinocyte HaCaT cells. H2 O2 induced apoptosis in the cells through activation of pro-apoptotic p21, Bax, and caspase-3. Pretreatment with CaS inhibited apoptotic gene expression and activated the anti-apoptotic gene, Bcl-xL. Although CaS did not directly affect heme oxygenase-1 (HO-1) expression, pretreatment with CaS augmented HO-1 expression through an increase in NF-E2-related factor (Nrf2) stability and stimulation of Nrf2 translocation to the nucleus upon H2 O2 exposure. H2 O2 also induced the phosphorylation and subsequent activation of ERK, p38 MAPK, and Akt. Analysis using specific inhibitors of p38 MAPK and Akt demonstrated that only Akt activation was involved in HO-1 and Nrf2 expressions. In addition, PI3K and PKC inhibitors suppressed HO-1/Nrf2 expression and Akt phosphorylation. These results demonstrate that CaS protects against oxidative stress-induced keratinocyte cell death in part through the activation of Nrf2-mediated HO-1 induction via the PI3K/Akt and/or PKC pathways, but not MAPK signaling.
Collapse
Affiliation(s)
- Cam Ngoc Nguyen
- Department of Biotechnology, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju, 500-757, Korea; Bioenergy Research Center, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju, 500-757, Korea
| | | | | |
Collapse
|
60
|
Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, Vilhena TC, Dolabela MF, Green MD. Oxidative stress in malaria. Int J Mol Sci 2012; 13:16346-72. [PMID: 23208374 PMCID: PMC3546694 DOI: 10.3390/ijms131216346] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/08/2012] [Accepted: 11/23/2012] [Indexed: 12/16/2022] Open
Abstract
Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy.
Collapse
Affiliation(s)
- Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Danilo R. Moreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Bruno A. Q. Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Michelli E. S. Ferreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Ana Carolina M. Gonçalves
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Paula S. O. C. Laurindo
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Thyago C. Vilhena
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Maria F. Dolabela
- Pharmacy Faculty, Institute of Health Sciences, Federal University of Para. Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mail:
| | - Michael D. Green
- US Centers for Disease Control and Prevention, 1600 Clifton Road NE, mailstop G49, Atlanta, GA 30329, USA; E-Mail:
| |
Collapse
|
61
|
Barcellos-de-Souza P, Moraes JA, de-Freitas-Junior JCM, Morgado-Díaz JA, Barja-Fidalgo C, Arruda MA. Heme modulates intestinal epithelial cell activation: involvement of NADPHox-derived ROS signaling. Am J Physiol Cell Physiol 2012; 304:C170-9. [PMID: 23114967 DOI: 10.1152/ajpcell.00078.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In many gut chronic inflammatory conditions, intestinal epithelium (IE) is deprived of the protection of the mucus secreted by IE-specialized cells. In these events, bleeding and subsequent lysis of erythrocytes are common. This may lead to the release of high amounts of heme in the intestinal lumen, which interacts with IE. Previous works from our group have shown that heme itself is a proinflammatory molecule, activating a number of phlogistic signaling events in a nicotinamide adenine dinucleotide phosphate oxidase (NADPHox)-dependent manner. In this study, we aim to evaluate the effects of heme upon a well-established nontransformed small intestine epithelial cell lineage (IEC 6). Our results show that free heme evokes intracellular reactive oxygen species (ROS) production by IEC 6 cells, which is inhibited both by pharmacological inhibition with diphenyleneiodonium (10 μM), a NADPHox inhibitor, and small interfering RNA-mediated suppression of NOX1, a constitutive NADPHox isoform present in intestinal epithelial cells. Focal adhesion kinase phosphorylation and actin cytoskeleton polymerization are also induced by heme in a NADPHox-dependent manner. Heme increases monolayer permeability and redistributes key modulators of cell-cell adhesion as zona occludens-1 and E-cadherin proteins via NADPHox signaling. Heme promotes IEC 6 cell migration and proliferation, phenomena also regulated by NADPHox-derived ROS. Heme, in NADPHox-activating concentrations, is able to induce mRNA expression of IL-6, a cytokine implicated in inflammatory and tumorigenic responses. These data indicate a prominent role for heme-derived signaling in the pathophysiology of intestinal mucosa dysfunction and address an important role of NADPHox activity on the pathogenesis of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Pedro Barcellos-de-Souza
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
62
|
Barcellos-de-Souza P, Canetti C, Barja-Fidalgo C, Arruda MA. Leukotriene B4 inhibits neutrophil apoptosis via NADPH oxidase activity: Redox control of NF-κB pathway and mitochondrial stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1990-7. [DOI: 10.1016/j.bbamcr.2012.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/24/2022]
|
63
|
Heme modulates smooth muscle cell proliferation and migration via NADPH oxidase: A counter-regulatory role for heme oxygenase system. Atherosclerosis 2012; 224:394-400. [DOI: 10.1016/j.atherosclerosis.2012.07.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 07/10/2012] [Accepted: 07/23/2012] [Indexed: 11/17/2022]
|
64
|
Moncada-Pazos A, Obaya AJ, Llamazares M, Heljasvaara R, Suárez MF, Colado E, Noël A, Cal S, López-Otín C. ADAMTS-12 metalloprotease is necessary for normal inflammatory response. J Biol Chem 2012; 287:39554-63. [PMID: 23019333 DOI: 10.1074/jbc.m112.408625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
ADAMTSs (a disintegrin and metalloprotease with thrombospondin domains) are a family of enzymes with both proteolytic and protein interaction functions, which have been implicated in distinct pathologies. In this work, we have investigated the putative role of ADAMTS-12 in inflammation by using a mouse model deficient in this metalloprotease. Control and mutant mice were subjected to different experimental conditions to induce colitis, endotoxic sepsis, and pancreatitis. We have observed that Adamts12-deficient mice exhibit more severe inflammation and a delayed recovery from these challenges compared with their wild-type littermates. These changes are accompanied by an increase in inflammatory markers including several cytokines, as assessed by microarray expression analysis and proteomic-based approaches. Interestingly, the clinical symptoms observed in Adamts12-deficient mice are also concomitant with an elevation in the number of neutrophils in affected tissues. Finally, isolation and in vitro culture of human neutrophils demonstrate that the presence of ADAMTS-12 induces neutrophil apoptosis. On the basis of these results, we propose that ADAMTS-12 is implicated in the inflammatory response by modulating normal neutrophil apoptosis.
Collapse
Affiliation(s)
- Angela Moncada-Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Briand VA, Thilakarathne V, Kasi RM, Kumar CV. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin. Talanta 2012; 99:113-8. [DOI: 10.1016/j.talanta.2012.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 01/18/2023]
|
66
|
Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:381-92. [PMID: 22661091 PMCID: PMC3381844 DOI: 10.4049/jimmunol.1200409] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.
Collapse
Affiliation(s)
- Charlotte Allen
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Adam Denes
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
,To whom correspondence should be addressed: Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | - Adam Pierozynski
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marc Monestier
- Department of Microbiology and Immunity, School of Medicine, Temple University, PA 19140
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nancy J. Rothwell
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
67
|
Jelić D, Tatić I, Trzun M, Hrvačić B, Brajša K, Verbanac D, Tomašković M, Čulić O, Antolović R, Glojnarić I, Weygand-Đurašević I, Vladimir-Knežević S, Mildner B. Porphyrins as new endogenous anti-inflammatory agents. Eur J Pharmacol 2012; 691:251-60. [PMID: 22687816 DOI: 10.1016/j.ejphar.2012.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
A series of porphyrins, tetrapyrrole natural organic compounds, are evaluated here as endogenous anti-inflammatory agents. They directly inhibit the activity of Fyn, a non-receptor Src-family tyrosine kinase, triggering anti-inflammatory events associated with down-regulation of T-cell receptor signal transduction, leading to inhibition of tumor necrosis factor alpha (TNF-α) production. This is one of the major pro-inflammatory cytokines, associated with diseases such as diabetes, tumorigenesis, rheumatoid arthritis, and inflammatory bowel disease. Porphyrins, as a chemical class, inhibited Fyn kinase activity in a non-competitive, linear-mixed fashion. In cell-based in vitro experiments on polymorphonuclear cells, porphyrins inhibited TNF-α cytokine production, T-cell proliferation, and the generation of free radicals in the oxidative burst, in a concentration-related manner. In vivo, lipopolysaccharide-induced TNF-α production in mice was inhibited by several of the porphyrins. These findings may be very important for the overall understanding of the role(s) of porphyrins in inflammation and their possible application as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Dubravko Jelić
- GlaxoSmithKline Research Centre Zagreb, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
MO LIQIU, YANG CHUNTAO, GU MOFA, ZHENG DONGDAN, LIN LIN, WANG XIUYU, LAN AIPING, HU FEN, FENG JIANQIANG. PI3K/Akt signaling pathway-induced heme oxygenase-1 upregulation mediates the adaptive cytoprotection of hydrogen peroxide preconditioning against oxidative injury in PC12 cells. Int J Mol Med 2012; 30:314-20. [DOI: 10.3892/ijmm.2012.1002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/02/2012] [Indexed: 11/06/2022] Open
|
69
|
Zhang Y, Huang Y, Deng X, Xu Y, Gao Z, Li H. Iron overload-induced rat liver injury: Involvement of protein tyrosine nitration and the effect of baicalin. Eur J Pharmacol 2012; 680:95-101. [PMID: 22306240 DOI: 10.1016/j.ejphar.2012.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 02/08/2023]
Abstract
Baicalin has been reported to protect against liver injury in iron-overload mice, however, the mechanisms underlying the hepatoprotective properties of baicalin are poorly understood. In this study, we systematically studied the protective effect of baicalin on iron overload induced liver injury, as well as the underlying mechanism based on nitrative stress in rat model. We found that when iron overload rats (500mgiron/kg) were fed baicalin-containing diet (0.3% and 1% w/w) for 45days, baicalin dose dependently protected against iron overload induced liver injury, including alleviation of hepatic pathological damage, decrease of SOD activity, iron content, carbonyl content, and the thiobarbituric acid-reactive substances level in hepatic tissues. It also increased serum iron content, SH content and GPx activity, decreased serum ALT and AST activities. Immunohistochemistry and immunoprecipitation analysis revealed that baicalin could also inhibit iron overload induced protein tyrosine nitration in liver. Moreover, in iron overload rat liver, we found that baicalin decreased the iron overload increased level of glutathione-S-transferases (GSTs) expression, oxidation and nitration. These results suggest that not only oxidative stress, but also nitrative stress, is involved in iron overload induced liver injury, and the underlying mechanism might partially relate to the involvement of GSTs expression and post-translational modification. Baicalin can effectively prevent iron overload caused abnormality and can be a candidate medicine for iron overload diseases.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.
Collapse
|
71
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
72
|
Dyugovskaya L, Polyakov A, Ginsberg D, Lavie P, Lavie L. Molecular Pathways of Spontaneous and TNF-α–Mediated Neutrophil Apoptosis under Intermittent Hypoxia. Am J Respir Cell Mol Biol 2011; 45:154-62. [DOI: 10.1165/rcmb.2010-0025oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
73
|
Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 2011; 18:581-8. [PMID: 21293492 DOI: 10.1038/cdd.2011.1] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are chromatin structures loaded with antimicrobial molecules. They can trap and kill various bacterial, fungal and protozoal pathogens, and their release is one of the first lines of defense against pathogens. In vivo, NETs are released during a form of pathogen-induced cell death, which was recently named NETosis. Ex vivo, both dead and viable neutrophils can be stimulated to release NETs composed of either nuclear or mitochondrial chromatin, respectively. In certain pathological conditions, NETs are associated with severe tissue damage or certain auto-immune diseases. This review describes the recent progress made in the identification of the mechanisms involved in NETosis and discusses its interplay with autophagy and apoptosis.
Collapse
Affiliation(s)
- Q Remijsen
- Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Li H, Smalligan DA, Xie N, Javer A, Zhang Y, Hanley G, Yin D. β-arrestin 2-mediated immune suppression induced by chronic stress. Neuroimmunomodulation 2011; 18:142-9. [PMID: 21228603 PMCID: PMC3031150 DOI: 10.1159/000322868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/12/2010] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Stress, either physical or psychological, can modulate immune function. However, the mechanisms associated with stress-induced immune suppression remain to be elucidated. β-Arrestin 2 serves as adaptor, scaffold, and/or signal transducer. The role of β-arrestin 2 in stress-induced immune suppression is not known yet. METHODS/RESULTS Here, we demonstrate that β-arrestin 2 deficiency in mice increases the sensitivity to the chronic stress-induced reduction in the number of splenocytes. Interestingly, the stress-induced suppression of T helper-type (Th) 1 cytokines and the increased production of Th2 cytokines were greatly enhanced in β-arrestin 2-deficient mice compared with wild-type mice. Moreover, inhibition of PI3K in β-arrestin 2-deficient mice exerts an additive effect on the stress-induced reduction in the number of splenocytes. CONCLUSION Our study demonstrates that a deficiency in β-arrestin 2 augments stress-induced immune suppression.
Collapse
Affiliation(s)
- Hui Li
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Dean Andrew Smalligan
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Nanchang Xie
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Avani Javer
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Yi Zhang
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Gregory Hanley
- Division of Laboratory Animal Resources, James Quillen College of Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | - Deling Yin
- Department of Internal Medicine, East Tennessee State University, Johnson City, Tenn., USA
- *Deling Yin, MD, PhD; Hui Li, MD, PhD, Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614 (USA), Tel. +1 423 439 8826, Fax +1 423 439 6387, E-Mail ;
| |
Collapse
|
76
|
|
77
|
α9β1 integrin engagement inhibits neutrophil spontaneous apoptosis: Involvement of Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:848-57. [DOI: 10.1016/j.bbamcr.2010.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/26/2010] [Accepted: 03/18/2010] [Indexed: 01/13/2023]
|
78
|
Auslander M, Neumann PM, Tom M. The effect of tert-butyl hydroperoxide on hepatic transcriptome expression patterns in the striped sea bream (Lithognathus mormyrus; Teleostei). Free Radic Res 2010; 44:991-1003. [PMID: 20553222 DOI: 10.3109/10715762.2010.492831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study was aimed at examining the effects of tert-butyl hydroperoxide (tBHP) on hepatic transcriptome expression patterns of the teleost fish Lithognathus mormyrus. tBHP is an organic hydro-peroxide, widely used as a model pro-oxidant. It generates the reactive oxygen species (ROS) tert-butoxyl and tert-butylperoxyl. Complementary DNAs of tBHP-treated vs control fish were applied onto a previously produced cDNA microarray of approximately 1500 unique sequences. The effects of the tBHP application were demonstrated by leukocyte infiltration into the liver and by differential expression of various genes, some already known to be involved in ROS-related responses. Indicator genes of putative ROS effects were: aldehyde dehydrogenase 3A2, Heme oxygenase and the hemopexin-like protein. Putative indicators of transendothelial leukocyte migration and function were: p22phox, Rac1 and CD63-like genes. Interestingly, 7-dehydrocholesterol reductase was significantly down-regulated in response to all treatments. Several non-annotated genes revealed uniform directions of differential expression in response to all treatments.
Collapse
|
79
|
Aggeli IK, Kefaloyianni E, Beis I, Gaitanaki C. HOX-1 and COX-2: Two differentially regulated key mediators of skeletal myoblast tolerance under oxidative stress. Free Radic Res 2010; 44:679-93. [DOI: 10.3109/10715761003742985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
80
|
Abstract
Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.
Collapse
|
81
|
Thom SR, Bhopale VM, Milovanova TM, Hardy KR, Logue CJ, Lambert DS, Troxel AB, Ballard K, Eisinger D. Plasma biomarkers in carbon monoxide poisoning. Clin Toxicol (Phila) 2010; 48:47-56. [PMID: 20095814 DOI: 10.3109/15563650903468209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The severity of acute carbon monoxide (CO) poisoning is often based on non-specific clinical criteria because there are no reliable laboratory markers. We hypothesized that a pattern of plasma protein values might objectively discern CO poisoning severity. This was a pilot study to evaluate protein profiles in plasma samples collected from patients at the time of initial hospital evaluation. The goal was to assess whether any values differed from age- and sex-matched controls using a commercially available plasma screening package. METHODS Frozen samples from 63 suspected CO poisoning patients categorized based on clinical signs, symptoms, and blood carboxyhemoglobin level were analyzed along with 42 age- and sex-matched controls using Luminex-based technology to determine the concentration of 180 proteins. RESULTS Significant differences from control values were found for 99 proteins in at least one of five CO poisoning groups. A complex pattern of elevations in acute phase reactants and proteins associated with inflammatory responses including chemokines/cytokines and interleukins, growth factors, hormones, and an array of auto-antibodies was found. Fourteen protein values were significantly different from control in all CO groups, including patients with nominal carboxyhemoglobin elevations and relatively brief intervals of exposure. CONCLUSIONS The data demonstrate the complexity of CO pathophysiology and support a view that exposure causes acute inflammatory events in humans. This pilot study has insufficient power to discern reliable differences among patients who develop neurological sequelae but future trials are warranted to determine whether plasma profiles predict mortality and morbidity risks of CO poisoning.
Collapse
Affiliation(s)
- Stephen R Thom
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
A synthetic analog of 15-epi-lipoxin A4 inhibits human monocyte apoptosis: Involvement of ERK-2 and PI3-kinase. Prostaglandins Other Lipid Mediat 2010; 91:10-7. [DOI: 10.1016/j.prostaglandins.2009.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 01/25/2023]
|
83
|
Pathophisiology of sickle cell disease and new drugs for the treatment. Mediterr J Hematol Infect Dis 2009; 1:e2009024. [PMID: 21415994 PMCID: PMC3033152 DOI: 10.4084/mjhid.2009.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/26/2009] [Indexed: 02/02/2023] Open
Abstract
A homozygous mutation in the gene for β globin, a subunit of adult hemoglobin A (HbA), is the proximate cause of sickle cell disease (SCD). Sickle hemoglobin (HbS) shows peculiar biochemical properties, which lead to polymerizing when deoxygenated. HbS polymerization is associated with a reduction in cell ion and water content (cell dehydration), increased red cell density which further accelerate HbS polymerization. Dense, dehydrated erythrocytes are likely to undergo instant polymerization in conditions of mild hypoxia due to their high HbS concentration, and HbS polymers may be formed under normal oxygen pressure. Pathophysiological studies have shown that the dense, dehydrated red cells may play a central role in acute and chronic clinical manifestations of sickle cell disease, in which intravascular sickling in capillaries and small vessels leads to vaso-occlusion and impaired blood flow in a variety of organs and tissue. The persistent membrane damage associated with HbS polymerization also favors the generation of distorted rigid cells and further contributes to vaso-occlusive crisis (VOCs) and cell destruction in the peripheral circulation. These damaged, dense sickle red cells also show a loss of phospholipid asymmetry with externalization of phosphatidylserine (PS), which is believed to play a significant role in promoting macrophage recognition with removal of erythrocytes (erythrophagocytosis). Vaso-occlusive events in the microcirculation result from a complex scenario involving the interactions between different cell types, including dense, dehydrated sickle cells, reticulocytes, abnormally activated endothelial cells, leukocytes, platelets and plasma factors such as cytokine and oxidized pro-inflammatory lipids. Hydroxycarbamide (hydroxyurea) is currently the only drug approved for chronic administration in adult patients with sickle cell disease to prevent acute painful crises and reduce the incidence of transfusion and acute chest crises. Here, we will focus on consolidated and experimental therapeutic strategies for the treatment of sickle cell disease, including:
agents which reduce or prevent sickle cell dehydration agents which reduce sickle cell-endothelial adhesive events nitric oxide (NO) or NO-related compounds anti-oxidant agents
Correction of the abnormalities ranging from membrane cation transport pathways to red cell-endothelial adhesive events, might constitute new pharmacological targets for treating sickle cell disease.
Collapse
|
84
|
Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition 2009; 26:653-61. [PMID: 20004081 DOI: 10.1016/j.nut.2009.07.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 06/30/2009] [Accepted: 07/08/2009] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Decreased neutrophil apoptosis is implicated in persistent inflammation resulting in systemic inflammatory response syndrome and multiple organ dysfunctions syndromes. Short-chain fatty acids (SCFAs) may be a candidate to control neutrophil apoptosis because SCFAs are normally produced in the gut and related products have been approved for human use. We investigated the effects of SCFAs on apoptosis of activated and non-activated neutrophils and their mechanisms. METHODS Purified neutrophils obtained from healthy volunteers were preincubated for 1 h with or without the G-protein receptor (GPR) inhibitor pertussis toxin (100 ng/mL) or U-73122 (50 ng/mL), extracellular signal-related protein kinase inhibitor PD98059 (10 microM), mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580 (25 microM), Jun kinase inhibitor-I (2 microM), caspase-3 and -7 inhibitor Z-VAD-FMK (100 microM), caspase-8 inhibitor Z-IETD-FMK (50 microM), or caspase-9 inhibitor Z-LEHD-FMK (50 microM). The cells were then cultured with or without SCFAs or trichostatin A, a typical histone deacetylase inhibitor, in the presence or absence of lipopolysaccharide (1 microg/mL) or tumor necrosis factor-alpha (100 ng/mL). Neutrophil apoptosis was assessed by annexin V staining using flow cytometry. The GPR-41 and -43 and apoptosis-related proteins (bax, mcl-1, a1) mRNA were measured by quantitative real-time polymerase chain reaction and the expression of acetylated histone H3 was determined by western blot. RESULTS The caspase inhibitors inhibited butyrate- and propionate-induced neutrophil apoptosis treated or untreated with lipopolysaccharide or tumor necrosis factor-alpha, whereas GPR and MAPK inhibitors had no effect. The mRNA expressions of GPR-43 and a1 protein were reduced by butyrate and propionate. The expressions of acetylated histone H3 were induced by butyrate and propionate. CONCLUSION These results suggest that butyrate and propionate increase apoptosis of neutrophils irrespective of their activation state, by factors other than GPRs and MAPKs, and their mechanisms likely relate to their histone deacetylase inhibition activity, which may control a1 mRNA expression.
Collapse
Affiliation(s)
- Michiko Aoyama
- Division of Nutrition and Metabolism, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | | | | |
Collapse
|
85
|
Wang JY, Lee YT, Chang PF, Chau LY. Hemin promotes proliferation and differentiation of endothelial progenitor cells via activation of AKT and ERK. J Cell Physiol 2009; 219:617-25. [PMID: 19170060 DOI: 10.1002/jcp.21711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increased neovascularization is commonly observed in hemorrhagic plaques and associated with rupture of atherosclerotic lesions. This study aims to investigate whether hemin accumulated at the site of hematoma promotes neovascularization through affecting the growth and function of endothelial progenitor cells (EPCs) and the possible mechanism involved. Here we demonstrated that hemin promoted a significant increase in neovessel formation in matrigel plugs embedded in vivo and enhanced the proliferation and endothelial gene expression in EPCs in vitro. VEGF-induced migration response and the capability to incorporate into the vascular networks were markedly enhanced in hemin-treated EPCs. Hemin induced the phosphorylation of ERK and AKT but not p38 or JNK. The inhibition of AKT or ERK activation significantly attenuated the effect of hemin on cell proliferation. However, the enhanced migration response induced by hemin was significantly suppressed by the inhibition of AKT but not ERK. Hemin induced significant increase in reactive oxygen species (ROS) production and hemin-induced angiogenic response of EPCs was substantially reduced by treatment with N-acetylcysteine. Collectively, these data support that hemin-induced ROS mediates the activation of AKT and ERK signaling pathways, which in turn promotes the cell proliferation and function of EPCs. J. Cell. Physiol. 219: 617-625, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
86
|
Dey S, Guha M, Alam A, Goyal M, Bindu S, Pal C, Maity P, Mitra K, Bandyopadhyay U. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med 2009; 46:271-81. [PMID: 19015023 DOI: 10.1016/j.freeradbiomed.2008.10.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/23/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
Abstract
Activation of the mitochondrial apoptosis pathway by oxidative stress has been implicated in hepatocyte apoptosis during malaria. Because mitochondria are the source and target of reactive oxygen species (ROS), we have investigated whether hepatocyte apoptosis is linked to mitochondrial pathology and mitochondrial ROS generation during malaria. Malarial infection induces mitochondrial pathology by inhibiting mitochondrial respiration, dehydrogenases, and transmembrane potential and damaging the ultrastructure as evident from transmission electron microscopic studies. Mitochondrial GSH depletion and formation of protein carbonyl indicate that mitochondrial pathology is associated with mitochondrial oxidative stress. Fluorescence imaging of hepatocytes documents intramitochondrial superoxide anion (O(2)(-)) generation during malaria. O(2)(-) inactivates mitochondrial aconitase to release iron from iron-sulfur clusters, which forms the hydroxyl radical ((.)OH) interacting with H(2)O(2) produced concurrently. Malarial infection inactivates mitochondrial aconitase, and carbonylation of aconitase is evident from Western immunoblotting. The release of iron has been documented by fluorescence imaging of hepatocytes using Phen Green SK, and mitochondrial (.)OH generation has been confirmed. During malaria, the depletion of cardiolipin and formation of the mitochondrial permeability transition pore favor cytochrome c release to activate caspase-9. Interestingly, mitochondrial (.)OH generation correlates with the activation of both caspase-9 and caspase-3 with the progress of malarial infection, indicating the critical role of (.)OH.
Collapse
Affiliation(s)
- Sumanta Dey
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Setty BNY, Betal SG, Zhang J, Stuart MJ. Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. J Thromb Haemost 2008; 6:2202-9. [PMID: 18983524 DOI: 10.1111/j.1538-7836.2008.03177.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We explored the possibility that heme, an inflammatory mediator and a product of intravascular hemolysis in patients with hemolytic anemia including sickle cell disease, could modulate hemostasis by an effect on endothelial tissue factor (TF) expression. METHODS Levels of TF mRNA, protein and procoagulant activity were measured in heme-treated endothelial cells. RESULTS Heme induces TF expression on the surface of both macrovascular and microvascular endothelial cells in a concentration-dependent manner, with 12-fold to 50-fold induction being noted (enzyme-linked immunosorbent assay) between 1 and 100 microm heme (P < 0.05). Complementary flow cytometry studies showed that the heme-mediated endothelial TF expression was quantitatively similar to that of tumor necrosis factor-alpha (TNF-alpha). Heme also upregulated the expression of TF mRNA (8-fold to 26-fold), protein (20-fold to 39-fold) and procoagulant activity (5-fold to 13-fold) in endothelial cells in a time-dependent manner. The time-course of heme-mediated TF antigen expression paralleled the induction of procoagulant activity, with antibody blocking studies demonstrating specificity for TF protein. Interleukin (IL)-1alpha, and TNF-alpha are not involved in mediating the heme effect, as antibodies against these cytokines and IL-1-receptor antagonist failed to block heme-induced TF expression. Inhibition of heme-induced TF mRNA expression by sulfasalazine and curcumin suggested that the transcription factor nuclear factor kappaB is involved in mediating heme-induced TF expression in endothelial cells. CONCLUSIONS Our results demonstrate that heme induces TF expression by directly activating endothelial cells, and that heme-induced endothelial TF expression may provide a pathophysiologic link between the intravascular hemolytic milieu and the hemostatic perturbations previously noted in patients with hemolytic anemia including sickle cell disease.
Collapse
Affiliation(s)
- B N Y Setty
- Marian Anderson Comprehensive Sickle Cell Anemia Care and Research Center, Department of Pediatrics, Division of Research Hematology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
88
|
Piantadosi CA. Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic Biol Med 2008; 45:562-9. [PMID: 18549826 PMCID: PMC2570053 DOI: 10.1016/j.freeradbiomed.2008.05.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022]
Abstract
The ubiquitous gas, carbon monoxide (CO), is of substantial biological importance, but apart from its affinity for reduced transition metals, particularly heme-iron, it is surprisingly nonreactive-as is the ferrous-carbonyl-in living systems. CO does form strong complexes with heme proteins for which molecular O2 is the preferred ligand and to which are attributed diverse physiological, adaptive, and toxic effects. Lately, it has become apparent that both exogenous and endogenous CO produced by heme oxygenase engender a prooxidant milieu in aerobic mammalian cells which initiates signaling related to reactive oxygen species (ROS) generation. ROS signaling contingent on CO can be segregated by CO concentration-time effects on cellular function, by the location of heme proteins, e.g., mitochondrial or nonmitochondrial sites, or by specific oxidation-reduction (redox) reactions. The fundamental responses to CO involve overt physiological regulatory events, such as activation of redox-sensitive transcription factors or stress-activated kinases, which institute compensatory expression of antioxidant enzymes and other adaptations to oxidative stress. In contrast, responses originating from highly elevated or protracted CO exposures tend to be nonspecific, produce untoward biological oxidations, and interfere with homeostasis. This brief overview provides a conceptual framework for understanding CO biology in terms of this physiological-pathological hierarchy.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, Box 3315 CR II Building White Zone, Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|
89
|
Zhang Y, Foster R, Sun X, Yin Q, Li Y, Hanley G, Stuart C, Gan Y, Li C, Zhang Z, Yin D. Restraint stress induces lymphocyte reduction through p53 and PI3K/NF-kappaB pathways. J Neuroimmunol 2008; 200:71-6. [PMID: 18653242 DOI: 10.1016/j.jneuroim.2008.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/07/2008] [Accepted: 06/09/2008] [Indexed: 12/19/2022]
Abstract
Restraint stress, either physical or psychological, can modulate immune function. However, the mechanisms associated with stress-induced lymphocyte reduction remains to be elucidated. We have previously shown that chronic stress induces Fas-mediated lymphocyte reduction. Here, we investigated the mechanisms by which restraint stress modulates lymphocyte reduction. Our data have shown that inhibition of p53 by the p53 inhibitor PFT-alpha attenuates stress-induced reduction in lymphocyte numbers. These results were verified using p53 knockout mice, suggesting a pivotal role of p53 in this process. In addition our data have indicated that PI3K/nuclear factor kappa B (NF-kappaB) signaling pathway plays an important role in the stress-induced lymphocyte reduction. Our study thus demonstrates that restraint stress promotes lymphocyte reduction through p53 and PI3K/NF-kappaB pathways.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
A central role for free heme in the pathogenesis of severe malaria: the missing link? J Mol Med (Berl) 2008; 86:1097-111. [PMID: 18641963 DOI: 10.1007/s00109-008-0368-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/10/2008] [Accepted: 05/09/2008] [Indexed: 12/14/2022]
Abstract
Malaria, the disease caused by Plasmodium infection, is endemic to poverty in so-called underdeveloped countries. Plasmodium falciparum, the main infectious Plasmodium species in sub-Saharan countries, can trigger the development of severe malaria, including cerebral malaria, a neurological syndrome that claims the lives of more than one million children (<5 years old) per year. Attempts to eradicate Plasmodium infection, and in particular its lethal outcomes, have so far been unsuccessful. Using well-established rodent models of malaria infection, we found that survival of a Plasmodium-infected host is strictly dependent on the host's ability to up-regulate the expression of heme oxygenase-1 (HO-1 encoded by the gene Hmox1). HO-1 is a stress-responsive enzyme that catabolizes free heme into biliverdin, via a reaction that releases Fe and generates the gas carbon monoxide (CO). Generation of CO through heme catabolism by HO-1 prevents the onset of cerebral malaria. The protective effect of CO is mediated via its binding to cell-free hemoglobin (Hb) released from infected red blood cells during the blood stage of Plasmodium infection. Binding of CO to cell-free Hb prevents heme release and thus generation of free heme, which we found to play a central role in the pathogenesis of cerebral malaria. We will address hereby how defense mechanisms that prevent the deleterious effects of free heme, including the expression of HO-1, impact on the pathologic outcome of Plasmodium infection and how these may be used therapeutically to suppress its lethal outcomes.
Collapse
|
91
|
Afonso L, Borges VM, Cruz H, Ribeiro-Gomes FL, DosReis GA, Dutra AN, Clarêncio J, de Oliveira CI, Barral A, Barral-Netto M, Brodskyn CI. Interactions with apoptotic but not with necrotic neutrophils increase parasite burden in human macrophages infected with Leishmania amazonensis. J Leukoc Biol 2008; 84:389-96. [PMID: 18483206 DOI: 10.1189/jlb.0108018] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are involved in the initial steps of most responses to pathogens. In the present study, we evaluated the effects of the interaction of apoptotic vs. necrotic human neutrophils on macrophage infection by Leishmania amazonensis. Phagocytosis of apoptotic, but not viable, neutrophils by Leishmania-infected macrophages led to an increase in parasite burden via a mechanism dependent on TGF-beta1 and PGE2. Conversely, infected macrophages' uptake of necrotic neutrophils induced killing of L. amazonensis. Leishmanicidal activity was dependent on TNF-alpha and neutrophilic elastase. Nitric oxide was not involved in the killing of parasites, but the interaction of necrotic neutrophils with infected macrophages resulted in high superoxide production, a process reversed by catalase, an inhibitor of reactive oxygen intermediate production. Initial events after Leishmania infection involve interactions with neutrophils; we demonstrate that phagocytosis of these cells in an apoptotic or necrotic stage can influence the outcome of infection, driving either parasite survival or destruction.
Collapse
Affiliation(s)
- Lilian Afonso
- Centro de Pesquisas Gonçalo Moniz-Fundação Oswaldo Cruz (CPqGM)- Fundação Oswaldo Cruz (FIOCRUZ), Salvador-BA, 40295-001, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Reactive oxygen species (ROS) released from activated phagocytes are involved in the innate immune defense against pathogens. However, when released in excess and when the antioxidant systems are impaired, ROS may induce cellular and tissue damage and dissociation of iron ions or iron containing compounds (heme) from protein-bound state. Free iron ions and free heme are prooxidative. Immunoglobulins usually perform their biological functions at sites of inflammation, where they may encounter reactive oxygen species and/or redox active compounds. It has been demonstrated that the exposure of some antibodies to heme, to transition metal ions or to reactive oxygen species induces an appearance of new binding specificities for various autoantigens. This review article is devoted to the interplay between redox active agents and antibodies. The biological significance of the appearance of new antigen binding specificities on antibodies after exposure to redox-active agents is discussed.
Collapse
|
93
|
Abstract
Neutrophil constitutive death is a critical cellular process for modulating neutrophil number and function, and it plays an essential role in neutrophil homeostasis and the resolution of inflammation. Neutrophils die due to programmed cell death or apoptosis. In this article, we review recent studies on the mechanism of neutrophil apoptosis. The involvement of caspase, calpain, reactive oxygen species, cellular survival/death signaling pathways, mitochondria, and BCL-2 family member proteins are discussed. The fate of neutrophils can be influenced within the inflammatory microenvironment. We summarize the current understanding regarding the modulation of neutrophil apoptotic death by various extracellular stimuli such as proinflammatory cytokines, cell adhesion, phagocytosis, red blood cells, and platelets. The involvement of neutrophil apoptosis in infectious and inflammatory diseases is also addressed.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
94
|
Chow JM, Huang GC, Lin HY, Shen SC, Yang LY, Chen YC. Cytotoxic effects of metal protoporphyrins in glioblastoma cells: Roles of albumin, reactive oxygen species, and heme oxygenase-1. Toxicol Lett 2008; 177:97-107. [DOI: 10.1016/j.toxlet.2008.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/24/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
|
95
|
Lagan AL, Melley DD, Evans TW, Quinlan GJ. Pathogenesis of the systemic inflammatory syndrome and acute lung injury: role of iron mobilization and decompartmentalization. Am J Physiol Lung Cell Mol Physiol 2008; 294:L161-74. [DOI: 10.1152/ajplung.00169.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Changes in iron homeostatic responses routinely accompany infectious or proinflammatory insults. The systemic inflammatory response syndrome (SIRS) and the development of acute lung injury (ALI) feature pronounced systemic and lung-specific alterations in iron/heme mobilization and decompartmentalization; such responses may be of pathological significance for both the onset and progression of acute inflammation. The potential for excessive iron-catalyzed oxidative stress, altered proinflammatory redox signaling, and provision of iron as a microbial growth factor represent obvious adverse aspects of altered in vivo iron handling. The release of hemoglobin during hemolytic disease or surgical procedures such as those utilizing cardiopulmonary bypass procedures further impacts on iron mobilization, turnover, and storage with associated implications. Genetic predisposition may ultimately determine the extent to which SIRS and related syndromes develop in response to such changes. The design of specific therapeutic interventions based on endogenous stratagems to limit adverse aspects of altered iron handling may prove of therapeutic benefit for the treatment of SIRS and ALI.
Collapse
|
96
|
Cañas N, Valero T, Villarroya M, Montell E, Vergés J, García AG, López MG. Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther 2007; 323:946-53. [PMID: 17885094 DOI: 10.1124/jpet.107.123505] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We investigated the mechanism of the neuroprotective properties of chondroitin sulfate (CS), an endogenous perineuronal net glycosaminoglycan, in human neuroblastoma SH-SY5Y cells subjected to oxidative stress. Preincubation with CS for 24 h afforded concentration-dependent protection against H2O2-induced toxicity (50 microM for 24 h) measured as lactic dehydrogenase released to the incubation media; cell death was prevented at the concentrations of 600 and 1000 microM. Cell death caused by a combination of 10 microM rotenone plus 1 microM oligomycin-A (Rot/oligo) was also reduced by CS at concentrations ranging from 0.3 to 100 microM; in this toxicity model, maximum protection was achieved at 3 microM (48%). No significant protection was observed in a cell death model of Ca2+ overload (70 mM K+, for 24 h). H2O2 and Rot/oligo generated reactive oxygen species (ROS) measured as an increase in the fluorescence of dichlorofluorescein diacetate-loaded cells. CS drastically reduced ROS generation induced by both H2O2 (extracellular ROS) and Rot/oligo (intracellular ROS). CS also increased the expression of phosphorylated Akt and heme oxygenase-1 by 2-fold. The protective effects of CS were prevented by chelerythrine, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), cycloheximide, and Sn(IV)-protoporphyrin IX. Taken together, these results show that CS can protect SH-SY5Y cells under oxidative stress conditions by activating protein kinase C, which phosphorylates Akt that, via the phosphatidylinositol 3-kinase/Akt pathway, induces the synthesis of the antioxidant protein heme oxygenase-1.
Collapse
Affiliation(s)
- Noelia Cañas
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
97
|
Wang H, Zhou Q, Kesinger JW, Norris C, Valdez C. Heme regulates exocrine peptidase precursor genes in zebrafish. Exp Biol Med (Maywood) 2007; 232:1170-80. [PMID: 17895525 DOI: 10.3181/0703-rm-77] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously determined that yquem harbors a mutation in the gene encoding uroporphyrinogen decarboxylase (UROD), the fifth enzyme in heme biosynthesis, and established zebrafish yquem (yqe(tp61)) as a vertebrate model for human hepatoery-thropoietic porphyria (HEP). Here we report that six exocrine peptidase precursor genes, carboxypeptidase A, trypsin precursor, trypsin like, chymotrypsinogen B1, chymotrypsinogen 1-like, and elastase 2 like, are downregulated in yquem/urod (-/-), identified initially by microarray analysis of yquem/urod zebrafish and, subsequently, confirmed by in situ hybridization. We then determined downregulation of these six zymogens specifically in the exocrine pancreas of sauternes (sau(tb223)) larvae, carrying a mutation in the gene encoding delta-amino-levulinate synthase (ALAS2), the first enzyme in heme biosynthesis. We also found that ptf1a, a transcription factor regulating exocrine zymogens, is downregulated in both yquem/urod (-/-) and sau/alas2 (-/-) larvae. Further, hemin treatment rescues expression of ptf1a and these six zymogens in both yquem/urod (-/-) and sauternes/alas2 (-/-) larvae. Thus, it appears that heme deficiency downregulates ptf1a, which, in turn, leads to downregulation of exocrine zymogens. Our findings provide a better understanding of heme deficiency pathogenesis and enhance our ability to diagnose and treat patients with porphyria or pancreatic diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research & Technology Center, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
98
|
Rossi AG, Hallett JM, Sawatzky DA, Teixeira MM, Haslett C. Modulation of granulocyte apoptosis can influence the resolution of inflammation. Biochem Soc Trans 2007; 35:288-91. [PMID: 17371262 DOI: 10.1042/bst0350288] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apoptosis of granulocytes and the subsequent clearance of apoptotic cells are important processes for the successful resolution of inflammation. Signalling pathways, including those involving NF-kappaB (nuclear factor kappaB), MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase) have been shown to be key regulators of inflammatory cell survival and apoptosis in vitro. In addition, manipulation of such pathways in vivo has indicated that they also play a role in the resolution of inflammation. Furthermore, manipulation of proteins directly involved in the control of apoptosis, such as Bcl-2 family members and caspases, can be targeted in vivo to influence inflammatory resolution. Recently, it has been shown that CDK (cyclin-dependent kinase) inhibitor drugs induce caspase-dependent human neutrophil apoptosis possibly by altering levels of the anti-apoptotic Bcl-2 family member, Mcl-1. Importantly, CDK inhibitor drugs augment the resolution of established 'neutrophil-dominant' inflammation by promoting apoptosis of neutrophils. Thus manipulation of apoptotic pathways, together with ensuring macrophage clearance of apoptotic cells, appears to be a viable pharmacological target for reducing established inflammation.
Collapse
Affiliation(s)
- A G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
99
|
Ozdogu H, Boga C, Sozer O, Sezgin N, Kizilkilic E, Maytalman E, Yalcintas D. The apoptosis of blood polymorphonuclear leukocytes in sickle cell disease. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:276-80. [PMID: 17111385 DOI: 10.1002/cyto.b.20160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The apoptosis of human polymorphonuclear leukocytes (PMNs) in patients with sickle cell disease (SCD) is not well understood. The goal of this study was to examine the apoptosis of PMNs in patients with SCD and in controls. METHODS Flow cytometric quantitation of PMN apoptosis was performed in 17 patients during and after sickle cell vasoocclusive crisis and in 17 healthy volunteers. Plasma nitric oxide concentrations were also measured in patients with SCD. RESULTS The mean of annexin-V and annexin-V/PI staining (early and late apoptotic cells) increased to a greater degree in patients with SCD than in healthy controls for patients with SCD during and after vasoocclusive crisis. The mean of PI staining showing dead cells was higher only in patients after SCD crisis than in healthy controls. In the SCD groups during and after vasoocclusive crisis, there was no difference between PMN apoptosis levels. Furthermore, plasma nitric oxide concentrations were not correlated with PMN apoptosis. CONCLUSIONS There was an evidence that the alteration of blood PMN apoptosis could contribute to the pathogenetic mechanisms of vasoocclusion in patients with SCD. This can be attributed to the effects of numerous inflammatory mediators rather than simply the effects of nitric oxide.
Collapse
Affiliation(s)
- Hakan Ozdogu
- Department of Hematology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
100
|
Dimitrov JD, Roumenina LT, Doltchinkova VR, Mihaylova NM, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. Antibodies Use Heme as a Cofactor to Extend Their Pathogen Elimination Activity and to Acquire New Effector Functions. J Biol Chem 2007; 282:26696-26706. [PMID: 17636257 DOI: 10.1074/jbc.m702751200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various pathological processes are accompanied by release of high amounts of free heme into the circulation. We demonstrated by kinetic, thermodynamic, and spectroscopic analyses that antibodies have an intrinsic ability to bind heme. This binding resulted in a decrease in the conformational freedom of the antibody paratopes and in a change in the nature of the noncovalent forces responsible for the antigen binding. The antibodies use the molecular imprint of the heme molecule to interact with an enlarged panel of structurally unrelated epitopes. Upon heme binding, monoclonal as well as pooled immunoglobulin G gained an ability to interact with previously unrecognized bacterial antigens and intact bacteria. IgG-heme complexes had an enhanced ability to trigger complement-mediated bacterial killing. It was also shown that heme, bound to immunoglobulins, acted as a cofactor in redox reactions. The potentiation of the antibacterial activity of IgG after contact with heme may represent a novel and inducible innate-type defense mechanism against invading pathogens.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France.
| | - Lubka T Roumenina
- Department of Biochemistry, Sofia University, St. Kliment Ohridsky, 1164 Sofia, Bulgaria
| | - Virjinia R Doltchinkova
- Department of Biophysics and Radiobiology, Sofia University, St. Kliment Ohridski, 1164 Sofia, Bulgaria
| | - Nikolina M Mihaylova
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Sebastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, F-75006 Paris, France; Université Paris Descartes, UMR S 872, F-75006 Paris, France; INSERM, U872, F-75006 Paris, France
| | - Tchavdar L Vassilev
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|