1201
|
Sathawane D, Kharat RS, Halder S, Roy S, Swami R, Patel R, Saha B. Monocyte CD40 expression in head and neck squamous cell carcinoma (HNSCC). Hum Immunol 2012; 74:1-5. [PMID: 23000501 DOI: 10.1016/j.humimm.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
CD40, an antigen-presenting cell expressed costimulatory receptor molecule, binds to T cell expressed CD40-ligand (CD40-L). Using a mouse tumor model, we showed previously that lower CD40/CD40-L expression levels promoted tumor growth whereas higher CD40/CD40-L expression levels led to tumor regression indicating duality in CD40 functions. Whether CD40/CD40-L expressions are regulated in cancer patients is unknown. Herein, we show that the CD40 and CD40-L expressions on monocytes and T cells, respectively, decrease as the head and neck squamous cell carcinoma (HNSCC) patients progress from stage-I through stage-IV suggesting a novel CD40/CD40-L expression based staging of HNSCC tumor. The staging is confirmed by TNM and histo-pathological staging. The levels of soluble CD40 (sCD40) and sCD40-L are also modulated in patients' plasma. As CD40 expressing monocytes increase in the post-operative patients, CD40 expression levels are possibly regulated by tumor load. This change is accompanied by increased IL-12 expressing monocytes and decreased IL-10 expression levels. Thus, our findings on CD40/CD40-L expression in HNSCC patients bear significant implications.
Collapse
|
1202
|
Theocharides APA, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JCY. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. ACTA ACUST UNITED AC 2012; 209:1883-99. [PMID: 22945919 PMCID: PMC3457732 DOI: 10.1084/jem.20120502] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of macrophage SIRPα–CD47 interactions mediates phagocytosis and clearance of acute myeloid leukemia stem cells. Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα–CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Collapse
Affiliation(s)
- Alexandre P A Theocharides
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1203
|
Broos S, Sandin LC, Apel J, Tötterman TH, Akagi T, Akashi M, Borrebaeck CA, Ellmark P, Lindstedt M. Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(γ-glutamic acid) nanoparticles. Biomaterials 2012; 33:6230-9. [DOI: 10.1016/j.biomaterials.2012.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/05/2012] [Indexed: 12/25/2022]
|
1204
|
Emerging frontiers in pancreatic cancer research: elaboration of key genes, cells and the extracellular milieu. Curr Opin Gastroenterol 2012; 28:516-22. [PMID: 22759592 PMCID: PMC3680108 DOI: 10.1097/mog.0b013e3283567f69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW We review recent literature with a view to forge an integrative understanding of the molecular, cellular and extracellular milieu of pancreatic cancer, and discuss them in the context of development of novel, personalized therapeutic options. RECENT FINDINGS Pancreatic tumorigenesis, examined using genetically engineered mouse models, appears to be driven by local inflammation, in concert with the 'big four' mutations involving oncogenic KRAS, SMAD4, CDKN2A, and TP53, through induction of epithelial-to-mesenchymal transition (EMT) and cancer stem cells, and accompanied by metastasis. High-throughput sequencing of pancreatic ductal adenocarcinoma as well as neuroendocrine tumors and rarer subtypes of cancers of the pancreas has revealed several novel mutations in genes like PALB2, guanine nucleotide-binding protein, alpha stimulating, death-domain-associated protein, α thalassemia/mental retardation syndrome X linked, switch/sucrose nonfermentable pathway related, and in genes in the ubiquitin-dependent pathways such as USP9X. Therapeutic targeting of the tumor-stroma axis by cytokines and immune response modulators and the role of autophagy in pancreatic cancer are some other salient themes explored in the recent publications. SUMMARY Recent publications shed new light on the mutational landscape of pancreatic cancer and further delineate the distinctive pancreatic cancer-stroma ecosystem as determined by the dynamic interplay of inflammation, hallmark mutations, EMT, and cancer stem cells.
Collapse
|
1205
|
Dimou A, Syrigos KN, Saif MW. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Ther Adv Med Oncol 2012; 4:271-9. [PMID: 22942909 PMCID: PMC3424495 DOI: 10.1177/1758834012446008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer has historically proven resistant to anticancer agents. On the one hand, drugs might be more efficient if higher levels could be achieved at the tumor site rather than the normal tissues. On the other hand, the thick stroma and the relative absence of abundant vessels may account at least partially for the failure of successive clinical trials to demonstrate effective treatments in this type of malignancy. In this context, the development and testing in clinical trials of treatment strategies that aim to optimize drug delivery is an important target in improving the prognosis of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Anastasios Dimou
- Department of Medicine, Albert Einstein Medical Center, Philadelphia, PA, USA
| | | | | |
Collapse
|
1206
|
Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin 2012; 62:309-35. [PMID: 22576456 PMCID: PMC3445708 DOI: 10.3322/caac.20132] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The immunotherapy of cancer has made significant strides in the past few years due to improved understanding of the underlying principles of tumor biology and immunology. These principles have been critical in the development of immunotherapy in the laboratory and in the implementation of immunotherapy in the clinic. This improved understanding of immunotherapy, enhanced by increased insights into the mechanism of tumor immune response and its evasion by tumors, now permits manipulation of this interaction and elucidates the therapeutic role of immunity in cancer. Also important, this improved understanding of immunotherapy and the mechanisms underlying immunity in cancer has fueled an expanding array of new therapeutic agents for a variety of cancers. Pegylated interferon-α2b as an adjuvant therapy and ipilimumab as therapy for advanced disease, both of which were approved by the United States Food and Drug Administration for melanoma in March 2011, are 2 prime examples of how an increased understanding of the principles of tumor biology and immunology have been translated successfully from the laboratory to the clinical setting. Principles that guide the development and application of immunotherapy include antibodies, cytokines, vaccines, and cellular therapies. The identification and further elucidation of the role of immunotherapy in different tumor types, and the development of strategies for combining immunotherapy with cytotoxic and molecularly targeted agents for future multimodal therapy for cancer will enable even greater progress and ultimately lead to improved outcomes for patients receiving cancer immunotherapy.
Collapse
Affiliation(s)
- John M Kirkwood
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
1207
|
O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, Uppaluri R, Andrews DM, Ngiow SF, Teng MWL, Smyth MJ, Schreiber RD, Bui JD. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. ACTA ACUST UNITED AC 2012; 209:1869-82. [PMID: 22927549 PMCID: PMC3457735 DOI: 10.1084/jem.20112738] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the absence of adaptive immunity, NK cells polarize M1 macrophages to facilitate cancer immunoediting. Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3′methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2−/−, and RAG2−/−x γc−/− mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2−/−x γc−/− mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting.
Collapse
Affiliation(s)
- Timothy O'Sullivan
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1208
|
Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, Berthold F, Hadjidaniel M, Liu CWY, Metelitsa LS, Pique-Regi R, Wakamatsu P, Villablanca JG, Kreissman SG, Matthay KK, Shimada H, London WB, Sposto R, Seeger RC. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 2012; 30:3525-32. [PMID: 22927533 DOI: 10.1200/jco.2011.40.9169] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Children diagnosed at age ≥ 18 months with metastatic MYCN-nonamplified neuroblastoma (NBL-NA) are at high risk for disease relapse, whereas those diagnosed at age < 18 months are nearly always cured. In this study, we investigated the hypothesis that expression of genes related to tumor-associated inflammatory cells correlates with the observed differences in survival by age at diagnosis and contributes to a prognostic signature. METHODS Tumor-associated macrophages (TAMs) in localized and metastatic neuroblastomas (n = 71) were assessed by immunohistochemistry. Expression of 44 genes representing tumor and inflammatory cells was quantified in 133 metastatic NBL-NAs to assess age-dependent expression and to develop a logistic regression model to provide low- and high-risk scores for predicting progression-free survival (PFS). Tumors from high-risk patients enrolled onto two additional studies (n = 91) served as independent validation cohorts. RESULTS Metastatic neuroblastomas had higher infiltration of TAMs than locoregional tumors, and metastatic tumors diagnosed in patients at age ≥ 18 months had higher expression of inflammation-related genes than those in patients diagnosed at age < 18 months. Expression of genes representing TAMs (CD33/CD16/IL6R/IL10/FCGR3) contributed to 25% of the accuracy of a novel 14-gene tumor classification score. PFS at 5 years for children diagnosed at age ≥ 18 months with NBL-NA with a low- versus high-risk score was 47% versus 12%, 57% versus 8%, and 50% versus 20% in three independent clinical trials, respectively. CONCLUSION These data suggest that interactions between tumor and inflammatory cells may contribute to the clinical metastatic neuroblastoma phenotype, improve prognostication, and reveal novel therapeutic targets.
Collapse
|
1209
|
Jinushi M, Baghdadi M, Chiba S, Yoshiyama H. Regulation of cancer stem cell activities by tumor-associated macrophages. Am J Cancer Res 2012; 2:529-539. [PMID: 22957305 PMCID: PMC3433107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023] Open
Abstract
Recent studies revealed that tumor-associated macrophages play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. However, the role of cancer stem cells in the tumorigenic activities of tumor-associated macrophages during the course of transformation and treatment remains largely unknown. Recent studies have clarified the functional aspects of tumor-associated macrophages in the regulation of the tumorigenic activities and anticancer drug responsiveness of cancer stem cells through complex networks formed by distinct sets of cytokines, chemokines and growth factors. In this article we discuss recent advances and future perspectives regarding the molecular interplay between cancer stem cells and tumor-associated macrophages and provide future perspective about the therapeutic implication against treatment-resistant variants of cancer.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Research Center for Infection-associated cancer, Institute for Genetic Medicine, Hokkaido University Sapporo, Japan
| | | | | | | |
Collapse
|
1210
|
The mesenchyme in malignancy: a partner in the initiation, progression and dissemination of cancer. Pharmacol Ther 2012; 136:131-41. [PMID: 22921882 DOI: 10.1016/j.pharmthera.2012.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/13/2023]
Abstract
The tumor microenvironment presents an exciting opportunity for innovative prognostic and therapeutic approaches to human cancer. The diverse cellular and extracellular contribution to tumor growth argues that prevention and cure of human cancers will result only from a multifaceted approach to cancer therapy. In this review we provide a foundation for considering the mesenchymal contribution to the tumor microenvironment. We address normal mesenchymal development, physiological interactions between the epithelium and stroma and the cellular hierarchy within these compartments. We focus on cancer-associated fibroblasts in gastrointestinal malignancy but our models have also been informed by other tumor systems. The review provides a framework for characterizing the overall biological contribution of the mesenchyme to human disease. Understanding the biological heterogeneity of specific mesenchymal cells in cancer will provide new opportunities for targeted cancer prevention and therapy.
Collapse
|
1211
|
Fransen MF, Arens R, Melief CJ. Local targets for immune therapy to cancer: Tumor draining lymph nodes and tumor microenvironment. Int J Cancer 2012; 132:1971-6. [DOI: 10.1002/ijc.27755] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/18/2012] [Indexed: 12/22/2022]
|
1212
|
In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 2012; 7:e42656. [PMID: 22880072 PMCID: PMC3412794 DOI: 10.1371/journal.pone.0042656] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/10/2012] [Indexed: 02/07/2023] Open
Abstract
The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs), reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM) in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.
Collapse
|
1213
|
Bensinger W, Maziarz RT, Jagannath S, Spencer A, Durrant S, Becker PS, Ewald B, Bilic S, Rediske J, Baeck J, Stadtmauer EA. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol 2012; 159:58-66. [PMID: 22861192 DOI: 10.1111/j.1365-2141.2012.09251.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022]
Abstract
In this open-label, multicentre, phase 1 study a fully human anti-CD40 antagonist monoclonal antibody, lucatumumab, was evaluated in patients with relapsed/refractory multiple myeloma (MM). The primary objective was to determine the maximum tolerated dose (MTD) based on dose-limiting toxicities (DLTs). Secondary objectives included safety, pharmacokinetics, pharmacodynamics and antimyeloma activity. Twenty-eight patients, enrolled using a standard '3 + 3' dose escalation, received one or two (n = 3) cycles of lucatumumab 1·0, 3·0, 4·5 or 6·0 mg/kg once weekly for 4 weeks. Common lucatumumab-related adverse events were reversible, mild-to-moderate infusion reactions. Severe adverse events were anaemia, chills, hypercalcaemia and pyrexia (7% each). DLTs included grade 4 thrombocytopenia, grade 3 increased alanine aminotransferase and grade 4 increased lipase (n = 1 each). The MTD was 4·5 mg/kg. At doses ≥3·0 mg/kg, sustained receptor occupancy (≥87%), observed throughout weekly infusions up to 5 weeks after the last infusion, correlated with an estimated half-life of 4-19 d. Twelve patients (43%) had stable disease, and one patient (4%) maintained a partial response for ≥8 months. These findings indicate that single-agent lucatumumab was well tolerated up to 4·5 mg/kg with modest clinical activity in relapsed/refractory MM, warranting further study as a combination therapy.
Collapse
Affiliation(s)
- William Bensinger
- Clinical Research Division, Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1214
|
Gu L, Ruff LE, Qin Z, Corr MP, Hedrick SM, Sailor MJ. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3981-7. [PMID: 22689074 PMCID: PMC3517000 DOI: 10.1002/adma.201200776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Indexed: 05/18/2023]
Abstract
One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as self-malignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30-40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs.
Collapse
Affiliation(s)
- Luo Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Laura E. Ruff
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Zhengtao Qin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Maripat P. Corr
- School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Stephen M. Hedrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael J. Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
1215
|
Costello E, Greenhalf W, Neoptolemos JP. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 2012; 9:435-44. [PMID: 22733351 DOI: 10.1038/nrgastro.2012.119] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Late diagnosis of pancreatic ductal adenocarcinoma (pancreatic cancer) and the limited response to current treatments results in an exceptionally poor prognosis. Advances in our understanding of the molecular events underpinning pancreatic cancer development and metastasis offer the hope of tangible benefits for patients. In-depth mutational analyses have shed light on the genetic abnormalities in pancreatic cancer, providing potential treatment targets. New biological studies in patients and in mouse models have advanced our knowledge of the timing of metastasis of pancreatic cancer, highlighting new directions for the way in which patients are treated. Furthermore, our increasing understanding of the molecular events in tumorigenesis is leading to the identification of biomarkers that enable us to predict response to treatment. A major drawback, however, is the general lack of an adequate systematic approach to advancing the use of biomarkers in cancer drug development, highlighted in a Cancer Biomarkers Collaborative consensus report. In this Review, we summarize the latest insights into the biology of pancreatic cancer, and their repercussions for treatment. We provide an overview of current treatments and, finally, we discuss novel therapeutic approaches, including the role of biomarkers in therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Eithne Costello
- National Institute for Health Research Pancreas Biomedical Research Unit and Liverpool Cancer Research UK Centre, Department of Molecular, University of Liverpool, Liverpool, L69 3GA, UK
| | | | | |
Collapse
|
1216
|
Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, Friess H. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 2012; 9:454-67. [PMID: 22710569 DOI: 10.1038/nrgastro.2012.115] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer-stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 12, 81675 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
1217
|
Abstract
Cancer vaccines have shown success in curing tumors in preclinical models. Accumulating evidence also supports their ability to induce immune responses in patients. In many cases, these responses correlate with improved clinical outcomes. However, cancer vaccines have not yet demonstrated their true potential in clinical trials. This is likely due to the difficulty in mounting a significant anti-tumor response in patients with advanced disease because of pre-existing tolerance mechanisms that are actively turning off immune recognition in cancer patients. This review will examine the recent progress being made in the design and implementation of whole cell cancer vaccines, one vaccine approach that simultaneously targets multiple tumor antigens to activate the immune response. These vaccines have been shown to induce antigen-specific T-cell responses. Preclinical studies evaluating these vaccines given in sequence with other agents and cancer treatment modalities support the use of immunomodulating doses of chemotherapy and radiation, as well as immune-modulating pathway-targeted monoclonal antibodies, to enhance the efficacy of cancer vaccines. Based on emerging preclinical data, clinical trials are currently exploring the use of combinatorial immune-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Bridget P Keenan
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
1218
|
Karthaus N, Torensma R, Tel J. Deciphering the message broadcast by tumor-infiltrating dendritic cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:733-42. [PMID: 22796439 DOI: 10.1016/j.ajpath.2012.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/25/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023]
Abstract
Human dendritic cells (DCs) infiltrate solid tumors, but this infiltration occurs in favorable and unfavorable disease prognoses. The statistical inference is that tumor-infiltrating DCs (TIDCs) play no conclusive role in predicting disease progression. This is remarkable because DCs are highly specialized antigen-presenting cells linking innate and adaptive immunity. DCs either boost the immune system (enhancing immunity) or dampen it (leading to tolerance). This dual effect explains the dual outcomes of cancer progression. The reverse functional characteristics of DCs depend on their maturation status. This review elaborates on the markers used to detect DCs in tumors. In many cases, the identification of DCs in human cancers relies on staining for S-100 and CD1a. These two markers are mainly expressed by Langerhans cells, which are one of several functionally different DC subsets. The activation status of DCs is based on the expression of CD83, DC-SIGN, and DC-LAMP, which are nonspecific markers of DC maturation. The detection of TIDCs has not kept pace with the increased knowledge about the identification of DC subsets and their maturation status. Therefore, it is difficult to draw a conclusion about the performance of DCs in tumors. We suggest a novel selection of markers to distinguish human DC subsets and maturation states. The use of these biomarkers will be of pivotal importance to scrutinize the prognostic significance of TIDCs.
Collapse
Affiliation(s)
- Nina Karthaus
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | |
Collapse
|
1219
|
Evans A, Costello E. The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 2012; 3:270. [PMID: 22969725 PMCID: PMC3431795 DOI: 10.3389/fphys.2012.00270] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) microenvironment accommodates a variety of cell types and a plethora of complex interactions between tumor cells, host cells and extracellular matrix (ECM) components. Here we review the role of inflammatory cells, in particular mast cells, myeloid-derived suppressor cells, macrophages, T regulatory cells, T helper cells and neutrophils. The picture that emerges is that of a tumor microenvironment, in which the immune response is actively suppressed, and inflammatory cells contribute in a variety of ways to tumor progression.
Collapse
Affiliation(s)
- Anthony Evans
- Liverpool Cancer Research UK Centre, University of Liverpool Liverpool, UK
| | | |
Collapse
|
1220
|
Monjazeb AM, Hsiao HH, Sckisel GD, Murphy WJ. The role of antigen-specific and non-specific immunotherapy in the treatment of cancer. J Immunotoxicol 2012; 9:248-58. [PMID: 22734880 DOI: 10.3109/1547691x.2012.685527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy in the treatment of cancer is increasing, particularly with the recent FDA approval of sipuleucel-T and ipilimumab. The efficacy of anti-tumor immunotherapies has been modest compared to their theoretical and pre-clinical promise. This review evaluates the promise and pitfalls of immunotherapy and highlight some of the obstacles to improving anti-tumor immunotherapy: the need for technical refinement of therapies, the need for an increased understanding of how best to combine therapies with traditional cytotoxic therapies, the inability of patients to mount an effective immune response either due to disease burden or tumor induced immune suppression, the significant toxicities associated with many immunotherapies, and the lack of strongly immunogenic antigens required by many therapies. Further, antigen-non-specific immunotherapies, including cytokines such as interleukins and interferons, immuno-stimulatory agents such as CpG oligonucleotides, or BCG, antibodies targeted against receptors such as the agonistic CD40 or inhibitory CTLA-4 antibodies, and enzyme inhibitors such as those targeting cyclo-oxygenase or indolamine-2,3-dioxygenase are discussed. In addition, potential mechanisms of these therapies such as direct anti-tumor effects, reversal of immune suppression, activation of innate immunity, and antigen-non-specific T-cell activation are reviewed. We also appraise the potential of these antigen-non-specific therapies to overcome some of the previously described pitfalls of immunotherapy. Lastly, we discuss a recent series of studies from our laboratory demonstrating the importance of antigen-non-specific 'bystander activation' of memory T-lymphocytes by immunomodulatory therapies such as interleukin-2 and the antigen-non-specific anti-tumor effects of these cells.
Collapse
Affiliation(s)
- Arta M Monjazeb
- Department of Radiation Oncology, University of California at Davis, Sacramento, CA, USA
| | | | | | | |
Collapse
|
1221
|
New roads open up for implementing immunotherapy in mesothelioma. Clin Dev Immunol 2012; 2012:927240. [PMID: 22778767 PMCID: PMC3388483 DOI: 10.1155/2012/927240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/17/2012] [Indexed: 12/18/2022]
Abstract
Treatment options for malignant mesothelioma are limited, and the results with conventional therapies have been rather disappointing to this date. Chemotherapy is the only evidence-based treatment for mesothelioma patients in good clinical condition, with an increase in median survival of only 2 months. Therefore, there is urgent need for a different approach to battle this malignancy.
As chronic inflammation precedes mesothelioma, the immune system plays a key role in the initiation of this type of tumour. Also, many immunological cell types can be found within the tumour at different stages of the disease. However, mesothelioma cells can evade the surveillance capacity of the immune system. They build a protective tumour microenvironment to harness themselves against the immune system's attacks, in which they even abuse immune cells to act against the antitumour immune response.
In our opinion, modulating the immune system simultaneously with the targeting of mesothelioma tumour cells might prove to be a superior treatment. However, this strategy is challenging since the tumour microenvironment possesses numerous forms of defence strategies. In this paper, we will discuss the interplay between immunological cells that can either inhibit or stimulate tumour growth and the challenges associated with immunotherapy. We will provide possible strategies and discuss opportunities to overcome these problems.
Collapse
|
1222
|
The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody. Protein Cell 2012; 3:441-9. [PMID: 22717982 DOI: 10.1007/s13238-012-2044-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023] Open
Abstract
It has been well established that immune surveillance plays critical roles in preventing the occurrence and progression of tumor. More and more evidence in recent years showed the host anti-tumor immune responses also play important roles in the chemotherapy and radiotherapy of cancers. Our previous study found that tumor- targeting therapy of anti-HER2/neu mAb is mediated by CD8(+) T cell responses. However, we found here that enhancement of CD8(+) T cell responses by combination therapy with IL-15R/IL-15 fusion protein or anti-CD40, which are strong stimultors for T cell responses, failed to promote the tumor therapeutic effects of anti-HER2/neu mAb. Analysis of tumor microenviornment showed that tumor tissues were heavily infiltrated with the immunosuppressive macrophages and most tumor infiltrating T cells, especially CD8(+) T cells, expressed high level of inhibitory co-signaling receptor PD-1. These data suggest that tumor microenvironment is dominated by the immunosuppressive strategies, which thwart anti-tumor immune responses. Therefore, the successful tumor therapy should be the removal of inhibitory signals in the tumor microenvironment in combination with other therapeutic strategies.
Collapse
|
1223
|
Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21:822-35. [PMID: 22698406 PMCID: PMC3575028 DOI: 10.1016/j.ccr.2012.04.025] [Citation(s) in RCA: 744] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 02/04/2012] [Accepted: 04/09/2012] [Indexed: 02/07/2023]
Abstract
Cancer-associated inflammation is thought to be a barrier to immune surveillance, particularly in pancreatic ductal adenocarcinoma (PDA). Gr-1(+) CD11b(+) cells are a key feature of cancer inflammation in PDA, but remain poorly understood. Using a genetically engineered mouse model of PDA, we show that tumor-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) is necessary and sufficient to drive the development of Gr-1(+) CD11b(+) cells that suppressed antigen-specific T cells. In vivo, abrogation of tumor-derived GM-CSF inhibited the recruitment of Gr-1(+) CD11b(+) cells to the tumor microenvironment and blocked tumor development-a finding that was dependent on CD8(+) T cells. In humans, PDA tumor cells prominently expressed GM-CSF in vivo. Thus, tumor-derived GM-CSF is an important regulator of inflammation and immune suppression within the tumor microenvironment.
Collapse
Affiliation(s)
- Lauren J. Bayne
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Gregory L. Beatty
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Division of Hematology-Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Nirag Jhala
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Carolyn E. Clark
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Andrew D. Rhim
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ben Z. Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Robert H. Vonderheide
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Division of Hematology-Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
1224
|
Kroesen M, Lindau D, Hoogerbrugge P, Adema GJ. Immunocombination therapy for high-risk neuroblastoma. Immunotherapy 2012; 4:163-74. [PMID: 22394368 DOI: 10.2217/imt.11.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma (NBL) is an aggressive malignancy of the sympathetic nervous system. Advanced-stage NBLs prove fatal in approximately 50% of patients within 5 years. Therefore, new treatment modalities are urgently needed. Immunotherapy is a treatment modality that can be combined with established forms of treatment. Administration of monoclonal antibodies or dendritic cell-based therapies alone can lead to favorable clinical outcomes in individual cancer patients; for example patients with melanoma, lymphoma and NBL. However, clinical benefit is still limited to a minority of patients, and further improvements are clearly needed. In this article, we review the most commonly used approaches to treat patients with NBL and highlight the prerequisites and opportunities of cell-based immunotherapy, involving both innate and adaptive immune-effector cells. Furthermore, we discuss the potential of the combined application of immunotherapy and novel tumor-targeted therapies for the treatment of both cancer in general and NBL in particular.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences/278 TIL, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
1225
|
Gough MJ, Crittenden MR. Immune system plays an important role in the success and failure of conventional cancer therapy. Immunotherapy 2012; 4:125-8. [PMID: 22339452 DOI: 10.2217/imt.11.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
1226
|
Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012; 2012:124187. [PMID: 22778760 PMCID: PMC3386616 DOI: 10.1155/2012/124187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed the evolvement of cancer immunotherapy as an increasingly effective therapeutic modality, evidenced by the approval of two immune-based products by the FDA, that is, the cancer vaccine Provenge (sipuleucel-T) for prostate cancer and the antagonist antibody against cytotoxic T-lymphocyte antigen-4 (CTLA-4) ipilimumab for advanced melanoma. In addition, the clinical evaluations of a variety of promising immunotherapy drugs are well under way. Benefiting from more efficacious immunotherapeutic agents and treatment strategies, a number of recent clinical studies have achieved unprecedented therapeutic outcomes in some patients with certain types of cancers. Despite these advances, however, the efficacy of most cancer immunotherapies currently under clinical development has been modest. A recurring scenario is that therapeutic maneuvers initially led to measurable antitumor immune responses in cancer patients but ultimately failed to improve patient outcomes. It is increasingly recognized that tumor cells can antagonize therapy-induced immune attacks through a variety of counterregulation mechanisms, which represent a fundamental barrier to the success of cancer immunotherapy. Herein we summarize the findings from some recent preclinical and clinical studies, focusing on how tumor cells advance their survival and expansion by hijacking therapy-induced immune effector mechanisms that would otherwise mediate their destruction.
Collapse
|
1227
|
Martinez Forero I, Okada H, Topalian SL, Gajewski TF, Korman AJ, Melero I. Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting Bethesda, November 3, 2011. J Transl Med 2012; 10:108. [PMID: 22640522 PMCID: PMC3404934 DOI: 10.1186/1479-5876-10-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/28/2012] [Indexed: 12/21/2022] Open
Abstract
Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and “perceived” business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace.
Collapse
Affiliation(s)
- Ivan Martinez Forero
- Centro de Investigacion Medica Aplicada, Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
1228
|
Sha W, Brüne B, Weigert A. The multi-faceted roles of prostaglandin E2 in cancer-infiltrating mononuclear phagocyte biology. Immunobiology 2012; 217:1225-32. [PMID: 22727331 DOI: 10.1016/j.imbio.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 12/14/2022]
Abstract
Extensive research in the last two decades implemented that the inflammatory cell infiltrate, especially in solid tumors, is a major determinant for patient prognosis. Mononuclear phagocytes, i.e. monocytes/macrophages, dendritic cells and myeloid-derived suppressor cells, constitute the majority of tumor-associated immune cells. Instead of inducing anti-tumor immunity, mononuclear phagocytes are functionally subverted by tumor microenvironmental factors to support each stage of oncogenesis. Although mechanisms how tumors program their inflammatory infiltrate to support tumor development are ill-defined, few master regulators are beginning to emerge. One of them is the inflammatory eicosanoid prostaglandin E(2) (PGE(2)), produced by tumor cells or the infiltrating immune cells. In this review we summarize the impact of PGE(2) on mononuclear phagocytes in inflammation and cancer and discuss potential implications for cancer therapy.
Collapse
Affiliation(s)
- Weixiao Sha
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
1229
|
Jamieson NB, Mohamed M, Oien KA, Foulis AK, Dickson EJ, Imrie CW, Carter CR, McKay CJ, McMillan DC. The Relationship Between Tumor Inflammatory Cell Infiltrate and Outcome in Patients with Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 2012; 19:3581-90. [DOI: 10.1245/s10434-012-2370-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 12/31/2022]
|
1230
|
Pérez-Mancera PA, Guerra C, Barbacid M, Tuveson DA. What we have learned about pancreatic cancer from mouse models. Gastroenterology 2012; 142:1079-92. [PMID: 22406637 DOI: 10.1053/j.gastro.2012.03.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Pedro A Pérez-Mancera
- Li Ka Shing Centre, Cambridge Research Institute, and Department of Oncology, Cancer Research UK, Cambridge, England
| | | | | | | |
Collapse
|
1231
|
Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. CANCER IMMUNITY 2012; 12:14. [PMID: 22896759 PMCID: PMC3380347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Andrew M. Scott
- Ludwig Institute for Cancer Research, Melbourne, Australia
- University of Melbourne and Centre for PET, Austin Hospital, Melbourne, Australia
| | - James P. Allison
- Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jedd D. Wolchok
- Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Medical College of Cornell University, New York, NY, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Ludwig Institute for Cancer Research at Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
1232
|
Moschonas A, Ioannou M, Eliopoulos AG. CD40 stimulates a "feed-forward" NF-κB-driven molecular pathway that regulates IFN-β expression in carcinoma cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5521-7. [PMID: 22547704 DOI: 10.4049/jimmunol.1200133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IFN-β and the CD40L (CD154) share important roles in the antiviral and antitumor immune responses. In this study, we show that CD40 receptor occupancy results in IFN-β upregulation through an unconventional "feed-forward" mechanism, which is orchestrated by canonical NF-κB and involves the sequential de novo synthesis of IFN regulatory factor (IRF)1 and Viperin (RSAD2), an IRF1 target. RelA (p65) NF-κB, IRF1, and Viperin-dependent IRF7 binding to the IFN-β promoter largely controls its activity. However, full activation of IFN-β also requires the parallel engagement of noncanonical NF-κB2 signaling leading to p52 recruitment to the IFN-β promoter. These data define a novel link between CD40 signaling and IFN-β expression and provide a telling example of how signal propagation can be exploited to ensure efficient regulation of gene expression.
Collapse
Affiliation(s)
- Aristides Moschonas
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, 71003 Heraklion, Crete, Greece
| | | | | |
Collapse
|
1233
|
Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta Rev Cancer 2012; 1826:170-8. [PMID: 22521638 DOI: 10.1016/j.bbcan.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has two exceptional features. First, it is a highly lethal disease, with a median survival of less than 6 months and a 5-year survival rate less than 5%. Second, PDA tumor cells are surrounded by an extensive stroma, which accounts for up to 90% of the tumor volume. It is well recognized that stromal microenvironment can accelerate malignant transformation, tumor growth and progression. More importantly, the interaction loop between PDA and its stroma greatly contributes to tumor growth and progression. We propose that the extensive stroma of PDA is closely linked to its poor prognosis. An improved understanding of the mechanisms that contribute to pancreatic tumor growth and progression is therefore urgently needed. Targeting the stroma may thus provide novel prevention, earlier detection and therapeutic options to this deadly malignancy. Accordingly, in this review, we will summarize the mechanism of PDA stroma formation, the role of the stroma in tumor progression and therapy resistance and the potential of stroma-targeted therapeutics strategies.
Collapse
|
1234
|
Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ. Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res 2012; 72:2937-48. [PMID: 22505652 DOI: 10.1158/0008-5472.can-11-3368] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New therapies for chronic lymphocytic leukemia (CLL) are needed, particularly those that can eradicate residual disease and elicit anti-CLL immune responses. CD40 ligation on CLL cells, which can be achieved using adenovirus encoding chimeric CD154 (Ad-ISF35), enhances their ability to function as antigen-presenting cells and increases their sensitivity to clearance by immune-effector mechanisms. In this study, we report the results of a first-in-man phase I trial of intranodal direct injection (IDI) of Ad-ISF35 in patients with CLL to evaluate toxicity, safety, and tolerability. Fifteen patients received a single IDI of 1 × 10(10) to 33 × 10(10) Ad-ISF35 viral particles (vp), with a defined maximum tolerated dose as 1 × 10(11) vp. Although the most common adverse events were transient grade 1 to 2 pain at the injection site and flu-like symptoms following IDI, some patients receiving the highest dose had transient, asymptomatic grade 3 to 4 hypophosphatemia, neutropenia, or transaminitis. Increased expression of death receptor, immune costimulatory molecules, and Ad-ISF35 vector DNA was detected in circulating CLL cells. Notably, we also observed preliminary clinical responses, including reductions in leukemia cell counts, lymphadenopathy, and splenomegaly. Six patients did not require additional therapy for more than 6 months, and three achieved a partial remission. In conclusion, Ad-ISF35 IDI was safely delivered in patients with CLLs and induced systemic biologic and clinical responses. These results provide the rationale for phase II studies in CLLs, lymphomas, and CD40-expressing solid tumors.
Collapse
Affiliation(s)
- Januario E Castro
- University of California San Diego Moores Cancer Center, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
1235
|
Toward integrative cancer immunotherapy: targeting the tumor microenvironment. J Transl Med 2012; 10:70. [PMID: 22490302 PMCID: PMC3341195 DOI: 10.1186/1479-5876-10-70] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022] Open
Abstract
The development of cancer has historically been attributed to genomic alterations of normal host cells. Accordingly, the aim of most traditional cancer therapies has been to destroy the transformed cells themselves. There is now widespread appreciation that the progressive growth and metastatic spread of cancer cells requires the cooperation of normal host cells (endothelial cells, fibroblasts, other mesenchymal cells, and immune cells), both local to, and at sites distant from, the site at which malignant transformation occurs. It is the balance of these cellular interactions that both determines the natural history of the cancer, and influences its response to therapy. This active tumor-host dynamic has stimulated interest in the tumor microenvironment as a key target for both cancer diagnosis and therapy. Recent data has demonstrated both that the presence of CD8+ T cells within a tumor is associated with a good prognosis, and that the eradication of all malignantly transformed cells within a tumor requires that the intra-tumoral concentration of cytolytically active CD8+ effector T cells remain above a critical concentration until every tumor cell has been killed. These findings have stimulated two initiatives in the field of cancer immunotherapy that focus on the tumor microenvironment. The first is the development of the immune score as part of the routine diagnostic and prognostic evaluation of human cancers, and the second is the development of combinatorial immune-based therapies that reduce tumor-associated immune suppression to unleash pre-existing or therapeutically-induced tumor immunity. In support of these efforts, the Society for the Immunotherapy of Cancer (SITC) is sponsoring a workshop entitled "Focus on the Target: The Tumor Microenvironment" to be held October 24-25, 2012 in Bethesda, Maryland. This meeting should support development of the immune score, and result in a position paper highlighting opportunities for the development of integrative cancer immunotherapies that sculpt the tumor microenvironment to promote definitive tumor rejection.
Collapse
|
1236
|
De Palma M, Hanahan D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol 2012; 6:111-27. [PMID: 22360993 PMCID: PMC5528366 DOI: 10.1016/j.molonc.2012.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/29/2012] [Indexed: 12/14/2022] Open
Abstract
It is a time of great promise and expectation for the applications of knowledge about mechanisms of cancer toward more effective and enduring therapies for human disease. Conceptualizations such as the hallmarks of cancer are providing an organizing principle with which to distill and rationalize the abject complexities of cancer phenotypes and genotypes across the spectrum of the human disease. A countervailing reality, however, involves the variable and often transitory responses to most mechanism-based targeted therapies, returning full circle to the complexity, arguing that the unique biology and genetics of a patient's tumor will in the future necessarily need to be incorporated into the decisions about optimal treatment strategies, the frontier of personalized cancer medicine. This perspective highlights considerations, metrics, and methods that may prove instrumental in charting the landscape of evaluating individual tumors so to better inform diagnosis, prognosis, and therapy. Integral to the consideration is remarkable heterogeneity and variability, evidently embedded in cancer cells, but likely also in the cell types composing the supportive and interactive stroma of the tumor microenvironment (e.g., leukocytes and fibroblasts), whose diversity in form, regulation, function, and abundance may prove to rival that of the cancer cells themselves. By comprehensively interrogating both parenchyma and stroma of patients' cancers with a suite of parametric tools, the promise of mechanism-based therapy may truly be realized.
Collapse
Affiliation(s)
- Michele De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Douglas Hanahan
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
1237
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
1238
|
Abstract
Despite significant scientific knowledge in the field of cancer immunology, therapeutic strategies using cancer vaccines to generate anti-tumor immunity have historically resulted in only modest clinical benefit. Disappointing results from prior cancer vaccine trials are likely due to multifactorial causes. Perhaps the most important is the role of inherent tumor-induced immune suppression and enhanced immunologic tolerance. Current research directed toward understanding the mechanisms of immunologic tolerance has led to the development of promising therapeutic immune regulatory antibodies that inhibit immunologic checkpoints and subsequently enhance immunologic anti-tumor activity. This review discusses the prior challenges associated with cancer vaccines and describes how, by breaking immune inhibition and facilitating immune stimulation, immune regulatory antibodies show great promise in the treatment of a variety of tumors.
Collapse
|
1239
|
Abstract
The use of monoclonal antibodies (mAbs) for cancer therapy has achieved considerable success in recent years. Antibody-drug conjugates are powerful new treatment options for lymphomas and solid tumours, and immunomodulatory antibodies have also recently achieved remarkable clinical success. The development of therapeutic antibodies requires a deep understanding of cancer serology, protein-engineering techniques, mechanisms of action and resistance, and the interplay between the immune system and cancer cells. This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.
Collapse
Affiliation(s)
- Andrew M Scott
- Ludwig Institute for Cancer Research; University of Melbourne; and Centre for PET, Austin Hospital, Melbourne, Victoria 3084, Australia.
| | | | | |
Collapse
|
1240
|
Abstract
Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.
Collapse
|
1241
|
De Palma M. Partners in crime: VEGF and IL-4 conscript tumour-promoting macrophages. J Pathol 2012; 227:4-7. [DOI: 10.1002/path.4008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 12/15/2022]
|
1242
|
Drutman SB, Kendall JC, Trombetta ES. Inflammatory spleen monocytes can upregulate CD11c expression without converting into dendritic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3603-10. [PMID: 22442444 DOI: 10.4049/jimmunol.1102741] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monocytes can differentiate into various cell types with unique specializations depending on their environment. Under certain inflammatory conditions, monocytes upregulate expression of the dendritic cell marker CD11c together with MHC and costimulatory molecules. These phenotypic changes indicate monocyte differentiation into a specialized subset of dendritic cells (DCs), often referred to as monocyte-derived DCs or inflammatory DCs (iDCs), considered important mediators of immune responses under inflammatory conditions triggered by infection or vaccination. To characterize the relative contribution of cDCs and iDCs under conditions that induce strong immunity to coadministered Ags, we analyzed the behavior of spleen monocytes in response to anti-CD40 treatment. We found that under sterile inflammation in mice triggered by CD40 ligation, spleen monocytes can rapidly and uniformly exhibit signs of activation, including a surface phenotype typically associated with their conversion into DCs. These inflammatory monocytes remain closely related to their monocytic lineage, preserving expression of CD115, scavenging function, tissue distribution and poor capacity for Ag presentation characteristic of their monocyte precursors. In addition, 3-4 d after delivery of the inflammatory stimuli, these cells reverted to a monocyte-associated phenotype typical of the steady state. These findings indicate that, in response to anti-CD40 treatment, spleen monocytes are activated and express certain DC surface markers without acquiring functional characteristics associated with DCs.
Collapse
Affiliation(s)
- Scott B Drutman
- Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
1243
|
Cook N, Frese KK, Bapiro TE, Jacobetz MA, Gopinathan A, Miller JL, Rao SS, Demuth T, Howat WJ, Jodrell DI, Tuveson DA. Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma. J Exp Med 2012; 209:437-44. [PMID: 22351932 PMCID: PMC3302221 DOI: 10.1084/jem.20111923] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/23/2012] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease that is refractory to medical intervention. Notch pathway antagonism has been shown to prevent pancreatic preneoplasia progression in mouse models, but potential benefits in the setting of an established PDA tumor have not been established. We demonstrate that the gamma secretase inhibitor MRK003 effectively inhibits intratumoral Notch signaling in the KPC mouse model of advanced PDA. Although MRK003 monotherapy fails to extend the lifespan of KPC mice, the combination of MRK003 with the chemotherapeutic gemcitabine prolongs survival. Combination treatment kills tumor endothelial cells and synergistically promotes widespread hypoxic necrosis. These results indicate that the paucivascular nature of PDA can be exploited as a therapeutic vulnerability, and the dual targeting of the tumor endothelium and neoplastic cells by gamma secretase inhibition constitutes a rationale for clinical translation.
Collapse
Affiliation(s)
- Natalie Cook
- Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1244
|
Intratumoral delivery of CD154 homolog (Ad-ISF35) induces tumor regression: analysis of vector biodistribution, persistence and gene expression. Cancer Gene Ther 2012; 19:336-44. [PMID: 22402624 DOI: 10.1038/cgt.2012.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ad-ISF35 is an adenovirus (Ad) vector that encodes a mouse-human chimeric CD154. Ad-ISF35 induces activation of chronic lymphocytic leukemia (CLL) cells converting them into CLL cells capable of promoting immune recognition and anti-leukemia T-cell activation. Clinical trials in humans treated with Ad-ISF35-transduced leukemia cells or intranodal injection of Ad-ISF35 have shown objective clinical responses. To better understand the biology of Ad-ISF35 and to contribute to its clinical development, we preformed studies to evaluate biodistribution, persistence and toxicity of repeat dose intratumoral administration of Ad-ISF35 in a mouse model. Ad-ISF35 intratumoral administration induced tumor regression in more than 80% of mice bearing A20 tumors. There were no abnormalities in the serum chemistry. Mice receiving Ad-ISF35 presented severe extramedullary hematopoiesis and follicular hyperplasia in the spleen and extramedullary hematopoiesis with lymphoid hyperplasia in lymph nodes. After Ad-ISF35 injection, the vector was found primarily in the injected tumors with a biodistribution pattern that showed a rapid clearance with no evidence of Ad-ISF35 accumulation or persistence in the injected tumor or peripheral organs. Furthermore, pre-existing antibodies against Ad-5 did not abrogate Ad-ISF35 anti-tumor activity. In conclusion, intratumoral administration of Ad-ISF35 induced tumor regression in A20 tumor bearing mice without toxicities and with no evidence of vector accumulation or persistence.
Collapse
|
1245
|
Rakhmilevich AL, Baldeshwiler MJ, Van De Voort TJ, Felder MAR, Yang RK, Kalogriopoulos NA, Koslov DS, Van Rooijen N, Sondel PM. Tumor-associated myeloid cells can be activated in vitro and in vivo to mediate antitumor effects. Cancer Immunol Immunother 2012; 61:1683-97. [PMID: 22392192 DOI: 10.1007/s00262-012-1236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022]
Abstract
Tumor growth is often accompanied by the accumulation of myeloid cells in the tumors and lymphoid organs. These cells can suppress T cell immunity, thereby posing an obstacle to T cell-targeted cancer immunotherapy. In this study, we tested the possibility of activating tumor-associated myeloid cells to mediate antitumor effects. Using the peritoneal model of B16 melanoma, we show that peritoneal cells (PEC) in tumor-bearing mice (TBM) had reduced ability to secrete nitric oxide (NO) following in vitro stimulation with interferon gamma and lipopolysaccharide, as compared to PEC from control mice. This reduced function of PEC was accompanied by the influx of CD11b(+) Gr-1(+) myeloid cells to the peritoneal cavity. Nonadherent PEC were responsible for most of the NO production in TBM, whereas in naïve mice NO was mainly secreted by adherent CD11b(+) F4/80(+) macrophages. Sorted CD11b(+) Gr-1(-) monocytic and CD11b(+) Gr-1(+) granulocytic PEC from TBM had a reduced ability to secrete NO following in vitro stimulation (compared to naïve PEC), but effectively suppressed proliferation of tumor cells in vitro. In vivo, treatment of mice bearing established peritoneal B16 tumors with anti-CD40 and CpG resulted in activation of tumor-associated PEC, reduction in local tumor burden and prolongation of mouse survival. Inhibition of NO did not abrogate the antitumor effects of stimulated myeloid cells. Taken together, the results indicate that in tumor-bearing hosts, tumor-associated myeloid cells can be activated to mediate antitumor effects.
Collapse
Affiliation(s)
- Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin, 4136 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1246
|
Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 2012; 167:195-205. [PMID: 22235995 DOI: 10.1111/j.1365-2249.2011.04515.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mononuclear phagocytes are cells of the innate immunity that defend the host against harmful pathogens and heal tissues after injury. Contrary to expectations, in malignancies, tumour-associated macrophages (TAM) promote disease progression by supporting cancer cell survival, proliferation and invasion. TAM and related myeloid cells [Tie2(+) monocytes and myeloid-derived suppressor cells (MDSC)] also promote tumour angiogenesis and suppress adaptive immune responses. These divergent biological activities are mediated by macrophages/myeloid cells with distinct functional polarization, which are ultimately dictated by microenvironmental cues. Clinical and experimental evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of macrophages in tumours is considered a promising therapeutic strategy: depletion of TAM or their 're-education' as anti-tumour effectors is under clinical investigation and will hopefully contribute to the success of conventional anti-cancer treatments.
Collapse
Affiliation(s)
- P Allavena
- Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute Department of Translational Medicine, University of Milan, Milan, Rozzano, Italy.
| | | |
Collapse
|
1247
|
Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33:119-26. [PMID: 22277903 PMCID: PMC3294003 DOI: 10.1016/j.it.2011.12.001] [Citation(s) in RCA: 680] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022]
Abstract
Of the multiple unique stromal cell types common to solid tumors, tumor-associated macrophages (TAMs) are significant for fostering tumor progression. The protumor properties of TAMs derive from regulation of angiogenic programming, production of soluble mediators that support proliferation, survival and invasion of malignant cells, and direct and indirect suppression of cytotoxic T cell activity. These varied activities are dependent on the polarization state of TAMs that is regulated in part by local concentrations of cytokines and chemokines, as well as varied interactions of TAMs with normal and degraded components of the extracellular matrix. Targeting molecular pathways regulating TAM polarization holds great promise for anticancer therapy.
Collapse
Affiliation(s)
- Brian Ruffell
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Nesrine I. Affara
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| |
Collapse
|
1248
|
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122:787-95. [PMID: 22378047 DOI: 10.1172/jci59643] [Citation(s) in RCA: 4672] [Impact Index Per Article: 359.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Istituto Clinico Humanitas IRCCS, Rozzano, Italy.
| | | |
Collapse
|
1249
|
Van Laethem JL, Verslype C, Iovanna JL, Michl P, Conroy T, Louvet C, Hammel P, Mitry E, Ducreux M, Maraculla T, Uhl W, Van Tienhoven G, Bachet JB, Maréchal R, Hendlisz A, Bali M, Demetter P, Ulrich F, Aust D, Luttges J, Peeters M, Mauer M, Roth A, Neoptolemos JP, Lutz M. New strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Ann Oncol 2012; 23:570-576. [PMID: 21810728 DOI: 10.1093/annonc/mdr351] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the treatment of pancreatic ductal adenocarcinoma (PDAC) remains a huge challenge, it is entering a new era with the development of new strategies and trial designs. Because there is an increasing number of novel therapeutic agents and potential combinations available to test in patients with PDAC, the identification of robust prognostic and predictive markers and of new targets and relevant pathways is a top priority as well as the design of adequate trials incorporating molecular-driven hypothesis. We presently report a consensus strategy for research in pancreatic cancer that was developed by a multidisciplinary panel of experts from different European institutions and collaborative groups involved in pancreatic cancer. The expert panel embraces the concept of exploratory early proof of concept studies, based on the prediction of response to novel agents and combinations, and randomised phase II studies permitting the selection of the best therapeutic approach to go forward into phase III, where the recommended primary end point remains overall survival. Trials should contain as many translational components as possible, relying on standardised tissue and blood processing and robust biobanking, and including dynamic imaging. Attention should not only be paid to the pancreatic cancer cells but also to microenvironmental factors and stem/stellate cells.
Collapse
Affiliation(s)
- J-L Van Laethem
- Gastrointestinal Cancer Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels.
| | - C Verslype
- Department of Hepatology, Universitair Ziekenhuis Gasthuisberg, Leuven, Belgium
| | - J L Iovanna
- Institut National de la Santé et de la Recherche Médicale, Marseille, France
| | - P Michl
- Department of Gastroenterology and Endocrinology, University of Marburg, Marburg, Germany
| | - T Conroy
- Nancy University and Department of Medical Oncology, Centre Alexis Vautrin, Nancy
| | - C Louvet
- Digestive Surgery Department, Institut Mutualiste Montsouris, Paris
| | - P Hammel
- Gastroenterology Department, Hôpital Beaujon, Clichy
| | - E Mitry
- Medical Oncology Department, Institut Curie, Hôpital René-Huguenin, Saint-Cloud
| | - M Ducreux
- Digestive Oncology Department, Institut G. Roussy, Villejuif, France
| | - T Maraculla
- Medical Oncology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - W Uhl
- Department of Surgery, St Josef-Hospital, Ruhr-University, Bochum, Germany
| | - G Van Tienhoven
- Department of Radiation Oncology, Academic Medical Centre, Amsterdam, The Netherlands
| | - J B Bachet
- Department of Gastroenterology, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - R Maréchal
- Department of Gastroenterology and Hepato-Pancreatology, Gastrointestinal Cancer Unit, Hôpital Universitaire Erasme, Brussels
| | - A Hendlisz
- Department of Gastroenterology, Institut J. Bordet, Brussels
| | - M Bali
- Department of Medical Imaging, Hôpital Erasme, Brussels, Belgium
| | - P Demetter
- Gastrointestinal Cancer Unit, Hôpital Erasme, Université Libre de Bruxelles, Brussels
| | - F Ulrich
- Department of General and Visceral Surgery, J. W. Goethe University Medical Center, Frankfurt
| | - D Aust
- Institute of Pathology, University Hospital Carl Gustav Carus, Dresden
| | - J Luttges
- Caritasklinik St Theresia, Saarbrücken, Germany
| | - M Peeters
- Department of Oncology, Universitair Ziekenhuis Antwerpen, Edegem
| | - M Mauer
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - A Roth
- Department of Surgery, Clinic for Visceral and Transplantation Surgery, Hôpital Universitaire de Genève, Geneva, Switzerland
| | - J P Neoptolemos
- Department of Surgery, University of Liverpool, Liverpool, UK
| | - M Lutz
- Caritasklinik St Theresia, Saarbrücken, Germany
| |
Collapse
|
1250
|
Schmieder A, Michel J, Schönhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 2012; 22:289-97. [PMID: 22349514 DOI: 10.1016/j.semcancer.2012.02.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 01/17/2023]
Abstract
Tumor microenvironment is composed of proliferating neoplastic cells, a vascular network of endothelial cells, extra cellular matrix produced by fibroblasts, cellular compartments of adaptive immunity like lymphocytes and dendritic cells as well as cells of innate immunity, e.g., natural killer cells and macrophages. Many pre-clinical and clinical studies demonstrate an inversed correlation between macrophage infiltrate and patients' prognosis indicating a macrophage supporting role for tumor progression as producers of growth and angiogenic factors and as regulators of tissue remodelling. Based on in vitro models, macrophages have been classified in pro-inflammatory, classically activated macrophages (M1; stimulated by IFN-γ or LPS) and anti-inflammatory, alternatively activated macrophages (M2; stimulated by either IL-4/IL-13, IL-1β/LPS in combination with immune complexes or by IL-10/TGFβ/glucocorticoids). Tumor escape has been linked with a switch from M1 activation in the early tumor initiation process towards M2-like phenotype during tumor progression, a process that highlights the heterogeneity and plasticity of macrophage activation and which offers a possible therapeutic target directed against reversing the TAM phenotype in the tumor. Here, we review different tumor-environmental stimuli and signalling cascades involved in this switch in differentiation and the so connected gene regulation in TAMs. In addition, therapeutic applications deducted from this differentiation and gene regulatory processes are presented. Data from pre-clinical as well as clinical studies clearly support the notion, that TAMs are excellent novel therapeutic targets for the fight against cancer.
Collapse
Affiliation(s)
- Astrid Schmieder
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|