1351
|
Bramlett KS, Wu Y, Burris TP. Ligands Specify Coactivator Nuclear Receptor (NR) Box Affinity for Estrogen Receptor Subtypes. Mol Endocrinol 2001; 15:909-22. [PMID: 11376110 DOI: 10.1210/mend.15.6.0649] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Nuclear receptors (NRs) require coactivators to efficiently activate transcription of their target genes. Many coactivators including the p160 proteins utilize a short NR box motif to recognize the ligand-binding domain of the NR when it is activated by ligand. To investigate the ability of various ligands to specify the affinity of NR boxes for a ligand-bound NR, we compared the capacity of p160 NR boxes to be recruited to estrogen receptor (ERα) and ERβ in the presence of 17β-estradiol, diethylstilbestrol, and genestein. A time-resolved fluorescence-based binding assay was used to determine the dissociation constants for the 10 NR boxes derived from the three p160 coactivators for both ER subtypes in the presence of the each of the agonists. While the affinity of some NR boxes for ER was independent of the agonist, we identified several NR boxes that had significantly different affinities for ER depending on which agonist was bound to the receptor. Therefore, an agonist may specify the affinity of an NR for various NR boxes and thus regulate the coactivator selectivity of the receptor.
Collapse
Affiliation(s)
- K S Bramlett
- Gene Regulation, Bone, and Inflammation Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
1352
|
Giwercman YL, Nikoshkov A, Byström B, Arver S, Wedell A. A novel mutation (N233K) in the transactivating domain and the N756S mutation in the ligand binding domain of the androgen receptor gene are associated with male infertility. Clin Endocrinol (Oxf) 2001; 54:827-34. [PMID: 11422119 DOI: 10.1046/j.1365-2265.2001.01308.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Resistance to androgens has been suggested as a possible cause of male infertility. This hypothesis is based mainly on binding studies in genital skin fibroblasts but the molecular evidence is sparse. DESIGN Molecular studies of the androgen receptor gene were performed in 10 azoo- or oligozoospermic men, presenting with clinical signs of low androgen activity-poor virilization and high serum LH despite elevated testosterone levels, but without genital malformations. PATIENTS Ten men with serum LH >10 IU/l and testosterone >30 nmol/l as well as a low sperm concentration < 20 x 106/ml. MEASUREMENTS Genomic DNA was prepared from peripheral leucocytes and PCR-amplification of the coding region of androgen receptor was performed, followed by direct sequencing. Identified mutations were reconstructed by site-directed mutagenesis and the functional properties of the mutants were analysed, using transient expression in COS-1 cells and subsequent transactivation assays. Hormone binding assays were performed in genital skin fibroblasts from the patients. RESULTS Two of the 10 men were shown to have a mutation in the androgen receptor gene. Subject 1, who presented with azoospermia, serum testosterone (T) 50 nmol/l and LH 20 IU/l, had a mutation in exon 1, changing amino acid asparagine 233 to lysine (N233K). In fibroblasts cultured from genital skin, the receptor affinity for 5alpha-dihydrotestosterone (DHT) was normal as compared to healthy controls, but the receptor-hormone complex was thermolabile at 42 degrees C. Subject 2 exhibited severe oligozoospermia and a similar endocrine pattern (T = 50 nmol/l and LH = 25 IU/l). He had a mutation in exon 5 changing asparagine 756 to serine (N756S). The affinity for DHT in cultured genital fibroblasts from this patient was reduced. Transactivation was abnormal for both mutants, N233K reaching 46% and N756S 38% of wild type activity when stimulated with 10 nmol/l DHT. CONCLUSIONS Androgen receptor mutations may affect sperm production without resulting in genital malformations. Thus, in infertile men with a clinical presentation of poor androgen activity and an endocrine profile compatible with androgen resistance, mutations in the androgen receptor should be taken into consideration.
Collapse
Affiliation(s)
- Y L Giwercman
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
1353
|
Mullick J, Anandatheerthavarada HK, Amuthan G, Bhagwat SV, Biswas G, Camasamudram V, Bhat NK, Reddy SE, Rao V, Avadhani NG. Physical interaction and functional synergy between glucocorticoid receptor and Ets2 proteins for transcription activation of the rat cytochrome P-450c27 promoter. J Biol Chem 2001; 276:18007-17. [PMID: 11279115 DOI: 10.1074/jbc.m100671200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrate that dexamethasone-mediated transcription activation of the cytochrome P-450c27 promoter involves a physical interaction and functional synergy between glucocorticoid receptor (GR) and Ets2 factor. Ets2 protein binding to a "weak" Ets-like site of the promoter is dependent on GR bound to the adjacent cryptic glucocorticoid response element. Coimmunoprecipitation and chemical cross-linking experiments show physical interaction between GR and Ets2 proteins. Mutational analyses show synergistic effects of Ets2 and GR in dexamethasone-mediated activation of the cytochrome P-450c27 promoter. The DNA-binding domain of GR, lacking the transcription activation and ligand-binding domains, was fully active in synergistic activation of the promoter with intact Ets2. The DNA-binding domain of Ets2 lacking the transcription activation domain showed a dominant negative effect on the transcription activity. Finally, a fusion protein consisting of the GR DNA-binding domain and the transcription activation domain of Ets2 fully supported the transcription activity, suggesting a novel synergy between the two proteins, which does not require the transactivation domain of GR. Our results also provide new insights on the role of putative weak consensus Ets sites in transcription activation, possibly through synergistic interaction with other gene-specific transcription activators.
Collapse
Affiliation(s)
- J Mullick
- Department of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1354
|
Yoh SM, Privalsky ML. Transcriptional repression by thyroid hormone receptors. A role for receptor homodimers in the recruitment of SMRT corepressor. J Biol Chem 2001; 276:16857-67. [PMID: 11278601 DOI: 10.1074/jbc.m010022200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear hormone receptors, such as the thyroid hormone receptors (T3Rs) and retinoid X receptors (RXRs), are ligand-regulated transcription factors that control key aspects of metazoan gene expression. T3Rs can bind to DNA either as receptor homodimers or as heterodimers with RXRs. Once bound to DNA, nuclear hormone receptors regulate target gene expression by recruiting auxiliary proteins, denoted corepressors and coactivators. We report here that T3R homodimers assembled on DNA exhibit particularly strong interactions with the SMRT corepressor, whereas T3R.RXR heterodimers are inefficient at binding to SMRT. Mutants of T3R that exhibit enhanced repression properties, such as the v-Erb A oncoprotein or the T3Rbeta-Delta432 mutant found in human resistance to thyroid hormone syndrome, display enhanced homodimerization properties and exhibit unusually strong interactions with the SMRT corepressor. Significantly, the topology of a DNA binding site can determine whether that site recruits primarily homodimers or heterodimers and therefore whether corepressor is efficiently or inefficiently recruited to the resulting receptor-DNA complex. We suggest that T3R homodimers, and not heterodimers, may be important mediators of transcriptional repression and that the nature of the DNA binding site, by selecting for receptor homodimers or heterodimers, can influence the ability of the receptor to recruit corepressor.
Collapse
Affiliation(s)
- S M Yoh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
1355
|
Abstract
The estrogen receptor mediates breast cell proliferation and is the principal target for chemotherapy of breast carcinoma. Previous studies have demonstrated that the estrogen receptor binds to calmodulin-Sepharose in vitro. However, the association of endogenous calmodulin with endogenous estrogen receptors in intact cells has not been reported, and the function of the interaction is obscure. Here we demonstrate by co-immunoprecipitation from MCF-7 human breast epithelial cells that endogenous estrogen receptors bind to endogenous calmodulin. Estradiol treatment of the cells had no significant effect on the interaction. However, incubation of the cells with tamoxifen enhanced by 5-10-fold the association of calmodulin with the estrogen receptor and increased the total cellular content of estrogen receptors by 1.5-2-fold. In contrast, the structurally distinct calmodulin antagonists trifluoperazine and CGS9343B attenuated the interaction between calmodulin and the estrogen receptor and dramatically reduced the number of estrogen receptors in the cell. Neither of these agents altered the amount of estrogen receptor mRNA, suggesting that calmodulin stabilizes the protein. This hypothesis is supported by the observation that, in the presence of Ca2+, calmodulin protected estrogen receptors from in vitro proteolysis by trypsin. Furthermore, overexpression of wild type calmodulin, but not a mutant calmodulin incapable of binding Ca2+, increased the concentration of estrogen receptors in MCF-7 cells, whereas transient expression of a calmodulin inhibitor peptide reduced the estrogen receptor concentration. These data demonstrate that calmodulin binds to the estrogen receptor in intact cells in a Ca2+-dependent, but estradiol-independent, manner, thereby modulating the stability and the steady state level of estrogen receptors.
Collapse
Affiliation(s)
- Z Li
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
1356
|
Dean DA, Urban G, Aragon IV, Swingle M, Miller B, Rusconi S, Bueno M, Dean NM, Honkanen RE. Serine/threonine protein phosphatase 5 (PP5) participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling. BMC Cell Biol 2001; 2:6. [PMID: 11389770 PMCID: PMC32197 DOI: 10.1186/1471-2121-2-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2000] [Accepted: 05/17/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In most cells glucocorticoid receptors (GR) reside predominantly in the cytoplasm. Upon hormone binding, the GR translocates into the nucleus, where the hormone-activated GR-complex regulates the transcription of GR-responsive genes. Serine/threonine protein phosphatase type 5 (PP5) associates with the GR-heat-shock protein-90 complex, and the suppression of PP5 expression with ISIS 15534 stimulates the activity of GR-responsive reporter plasmids, without affecting the binding of hormone to the GR. RESULTS To further characterize the mechanism by which PP5 affects GR-induced gene expression, we employed immunofluorescence microscopy to track the movement of a GR-green fluorescent fusion protein (GR-GFP) that retained hormone binding, nuclear translocation activity and specific DNA binding activity, but is incapable of transactivation. In the absence of glucocorticoids, GR-GFP localized mainly in the cytoplasm. Treatment with dexamethasone results in the efficient translocation of GR-GFPs into the nucleus. The nuclear accumulation of GR-GFP, without the addition of glucocorticoids, was also observed when the expression of PP5 was suppressed by treatment with ISIS 15534. In contrast, ISIS 15534 treatment had no apparent effect on calcium induced nuclear translocation of NFAT-GFP. CONCLUSION These studies suggest that PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling, and that the GR-induced transcriptional activity observed when the expression of PP5 is suppressed by treatment with ISIS 15534 results from the nuclear accumulation of GR in a form that is capable of binding DNA yet still requires agonist to elicit maximal transcriptional activation.
Collapse
Affiliation(s)
- David A Dean
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Gudrun Urban
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688 USA
| | - Ileana V Aragon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688 USA
| | - Mark Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688 USA
| | - Beth Miller
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688 USA
| | - Sandro Rusconi
- Institut de Biochimie, University of Fribourg, Perolles, CH-1700 Fribourg, Switzerland
| | - Manuel Bueno
- Institut de Biochimie, University of Fribourg, Perolles, CH-1700 Fribourg, Switzerland
| | - Nicholas M Dean
- Department of Pharmacology, ISIS Pharmaceuticals, Carlsbad, California 92008 USA
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688 USA
| |
Collapse
|
1357
|
Zhao HH, Herrera RE, Coronado-Heinsohn E, Yang MC, Ludes-Meyers JH, Seybold-Tilson KJ, Nawaz Z, Yee D, Barr FG, Diab SG, Brown PH, Fuqua SA, Osborne CK. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem 2001; 276:27907-12. [PMID: 11353774 DOI: 10.1074/jbc.m104278200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a search for novel transcriptional intermediary factors for the estrogen receptor (ER), we used the ligand-binding domain and hinge region of ER as bait in a yeast two-hybrid screen of a cDNA library derived from tamoxifen-resistant MCF-7 human breast tumors from an in vivo athymic nude mouse model. Here we report the isolation and characterization of the forkhead homologue in rhabdomyosarcoma (FKHR), a recently described member of the hepatocyte nuclear factor 3/forkhead homeotic gene family, as a nuclear hormone receptor (NR) intermediary protein. FKHR interacts with both steroid and nonsteroid NRs, although the effect of ligand on this interaction varies by receptor type. The interaction of FKHR with ER is enhanced by estrogen, whereas its interaction with thyroid hormone receptor and retinoic acid receptor is ligand-independent. In addition, FKHR differentially regulates the transactivation mediated by different NRs. Transient transfection of FKHR into mammalian cells dramatically represses transcription mediated by the ER, glucocorticoid receptor, and progesterone receptor. In contrast, FKHR stimulates rather than represses retinoic acid receptor- and thyroid hormone receptor-mediated transactivation. Most intriguingly, overexpression of FKHR dramatically inhibits the proliferation of ER-dependent MCF-7 breast cancer cells. Therefore, FKHR represents a bifunctional NR intermediary protein that can act as either a coactivator or corepressor, depending on the receptor type.
Collapse
Affiliation(s)
- H H Zhao
- Division of Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1358
|
Affiliation(s)
- M L Privalsky
- Section of Microbiology, Division of Biological Sciences, One Shield Avenue, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
1359
|
Singh AK. Development of QSAR models to predict estrogenic, carcinogenic, and cancer protective effects of phytoestrogens. Cancer Invest 2001; 19:201-16. [PMID: 11296624 DOI: 10.1081/cnv-100000155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An integrated QSAR model has been formulated to predict estrogenic, carcinogenic, and cancer protective effects of phytoestrogens (PE). Relative binding of PEs to estrogen receptors ER alpha and ER beta exhibited a parabolic relationship with dipole moment (mu). The high-affinity binding of PEs to ER alpha correlated with Dif0 (0 chi-0 chi v difference index encoding nonsigma electronic charge), while the low-affinity binding of PEs to ER alpha correlated with H bonding (positive coefficient) and % hydrophilic surface (negative coefficient). The high-affinity binding of PEs to ER beta correlated with molecular with (MWd) and Dif0, while the low-affinity binding of PEs to ER beta correlated with H bonding (positive coefficient) and hydrophilic-lipophilic balance (negative coefficient). Thus an increase in electronic or ionic charge, formation of H bonds, or a decrease in hydrophilic property of PEs may increase their binding to ER. The relative transcription activity (RTA) of ER alpha correlated with Dif0-Dif1, while RTA of ER beta correlated with H bonding and polarity. The PE-induced stimulation of DNA synthesis in estrogen-sensitive breast cancer (BC) cells correlated positively with (MD*4 chi v) where MD is molecular depth and 4 chi v is the valence of a 4th order fragment. IC50 for PE-induced inhibition of DNA synthesis in estrogen-sensitive BC cells correlated with (MD*Log P) and Dif3 (3 chi-3 chi v difference index encoding nonsigma electronic charge of fragments consisting of four atoms and three bonds) and Dif3(2). IC50 for PE-induced inhibition of DNA synthesis in estrogen-independent cancer cell lines correlated with (MD*Log P) and 1/water solubility. Thus molecular shape and molecular connectivity of PEs play a key role in modulating estrogen-induced transactivation activity and DNA synthesis in BC cells.
Collapse
Affiliation(s)
- A K Singh
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, St. Paul, Minnesota, USA
| |
Collapse
|
1360
|
Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 2001; 276:15345-53. [PMID: 11278661 DOI: 10.1074/jbc.m010311200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a hormone-dependent transcription factor that plays important roles in male sexual differentiation and development. Transcription activation by steroid hormone receptors, such as the androgen receptor, is mediated through interaction with cofactors. We recently identified a novel AR-interacting protein, provisionally termed PAK6, that shares a high degree of sequence similarity with p21-activated kinases (PAKs). PAK6 is a 75-kDa protein that contains a putative amino-terminal Cdc42/Rac interactive binding motif and a carboxyl-terminal kinase domain. A domain-specific and ligand-dependent interaction between AR and PAK6 was further confirmed in vivo and in vitro. Northern blot analysis revealed that PAK6 is highly expressed in testis and prostate tissues. Most importantly, immunofluorescence studies showed that PAK6 cotranslocates into the nucleus with AR in response to androgen. Transient transfection experiments showed that PAK6 specifically repressed AR-mediated transcription. This report identifies a novel function for a PAK-homologous protein and suggests a potential unique mechanism by which other signal transduction pathways may cross-talk with AR pathways to regulate AR function in normal and malignant prostate cells.
Collapse
Affiliation(s)
- F Yang
- Liem Sioe Liong Molecular Biology Laboratory, Departments of Surgery and Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
1361
|
Williams M. Receptor nomenclature guidelines. CURRENT PROTOCOLS IN PHARMACOLOGY 2001; Appendix 1:1B. [PMID: 21965062 DOI: 10.1002/0471141755.pha01bs06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Receptors are typically characterized via two distinct approaches: (1) the identification and pharmacological characterization of a receptor-mediated response using classical pharmacological and/or radioligand approaches in tissues and animal models using selective agonist and antagonist ligands, and; (2) the cloning and expression of proteins with structural homology to known receptors, the function of which is subsequently established by studying the structure activity relationship (SAR) of receptor-mediated responses. An additional means to characterize receptors proceeded, and evolved, with the structural approach, namely classification in terms of signal transduction mechanisms. The International Union of Pharmacology (IUPHAR) created guidelines and selected working groups for each receptor family to establish a common nomenclature system. Reports from those groups that have reached some degree of consensus have been summarized in this appendix.
Collapse
Affiliation(s)
- M Williams
- Abbott Laboratories, Abbott Park, Illinois, USA
| |
Collapse
|
1362
|
Abstract
Modulatory signal transduction commonly requires efficient "on demand" assembly of specific multicomponent cellular machines that convert signals to cellular actions. This article suggests that for these signaling machines to detect and respond to fluctuations in signal strength, they must be continuously disassembled in an energy-dependent process that probably involves molecular chaperones.
Collapse
Affiliation(s)
- B C Freeman
- Dept of Cellular and Molecular Pharmacology, University of California-San Francisco, 513 Parnassus, San Francisco, CA 94143-0450, USA
| | | |
Collapse
|
1363
|
Shi Y, Koh JT. Selective regulation of gene expression by an orthogonal estrogen receptor–ligand pair created by polar-group exchange. ACTA ACUST UNITED AC 2001; 8:501-10. [PMID: 11358696 DOI: 10.1016/s1074-5521(01)00028-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators in eukaryotes. Hormone receptors have been engineered to selectively respond to synthetic ligands and used as remote regulators of gene expression for the study of gene function and as potential regulators of gene therapies. RESULTS In this work, a new ligand-receptor engineering strategy called 'polar-group exchange' is used to create a mutant form of the estrogen receptor, ER(Glu353-->Ala), which lacks a carboxyl group critical for high-affinity binding of estradiol, but is able to transactivate in response to nanomolar concentrations of a carboxylate-functionalized estrogen analog, ES8. ES8 activates ER(Glu353-->Ala) at concentrations that do not appreciably activate the 'wild-type' receptor ER(wt). Two similar carboxylate-functionalized ligands, ES6 and ES7, do not induce transactivation function. Similar selectivities are observed in ligand-binding assays in vitro, which follow the trends predicted by molecular modeling. CONCLUSION Polar-group exchange is an effective strategy for rationally engineering ligand-receptor pairs. The ER(E353A)/ES8 ligand-receptor pair should constitute a unique and functionally orthogonal ligand-dependent transcriptional regulator.
Collapse
Affiliation(s)
- Y Shi
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, DE, USA
| | | |
Collapse
|
1364
|
Sahlin L, Meikle A, Tasende C, Lindberg M, Masironi B, Eriksson H. Regulation of insulin-like growth factor-I and thioredoxin expression by estradiol in the reproductive tract of the prepubertal female lamb. J Steroid Biochem Mol Biol 2001; 77:123-8. [PMID: 11377977 DOI: 10.1016/s0960-0760(01)00042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Estradiol (E(2)) has been shown to be an important uterine growth promoting molecule in the ovariectomized (ovx) rat, which increases the mRNA levels of insulin-like growth factor-I (IGF-I) and the redox enzyme thioredoxin. The aim of this study was to explore the role of E(2) in the regulation of IGF-I and thioredoxin in the reproductive tract of the prepubertal female lamb. Twenty 3-month-old lambs were treated with i.m. injections of E(2) at 24 h intervals. The animals were sacrificed 12 or 24 h after the last injection, and 72 h was the longest treatment period. The mRNA levels of thioredoxin and IGF-I were determined by a solution hybridization technique. There was a 5-fold increase in the cervical IGF-I mRNA level 12 h after the first E(2) injection. The uterine IGF-I mRNA level was doubled after 12 h and this increase was maintained during the rest of the experimental period. The IGF-I mRNA level in the oviducts was more than doubled 12 and 24 h after the E(2) injection, then the level decreased towards the initial level. The thioredoxin mRNA level in the cervix was increased 4-fold after 24 h, whereas no significant effect was seen in the uterus. The thioredoxin mRNA level in the oviduct was more than doubled 12 and 24 h after the first E(2) injection. Thus, estradiol regulates the expression of IGF-I and thioredoxin in the reproductive tract of prepubertal lambs.
Collapse
Affiliation(s)
- L Sahlin
- Department of Woman and Child Health, Division for Reproductive Endocrinology, Karolinska Hospital, L5:01, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
1365
|
Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL. Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 2001; 276:13615-21. [PMID: 11278408 DOI: 10.1074/jbc.m008384200] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the classical signaling pathway, the estrogen receptor (ER) binds directly to estrogen response elements (EREs) to regulate gene transcription. To test the hypothesis that the nonclassical pathway involves ER interactions with other proteins rather than direct binding to DNA, mutations were introduced into the DNA binding domain (DBD) of the mouse ERalpha. The effects of these DBD mutations were examined in DNA binding assays using reporter constructs containing either EREs (classical) or AP1 (nonclassical) response elements. Using the AP1 reporter, there was a reversal of ER action relative to that seen with the ERE reporter. Estradiol induced suppression, and the antiestrogen ICI 182,780 stimulated transcription of the AP1 reporter. DBD mutations in the proximal (P-box) of the first zinc finger of the ER (E207A/G208A and E207G/G208S) eliminated ERE binding. These mutants were inactive using the ERE reporter but retained partial or full activity with the AP1 reporter. The DBD mutant ERs interacted with Jun when tested in mammalian cell two-hybrid assays. Two mutations (K366D and I362R) in the ER ligand binding domain known to alter coactivator interactions impaired transcriptional responses using either the ERE or AP1 reporters. We concluded that ER action through the AP1 response element involves interactions with other promoter-bound proteins instead of, or in addition to, direct binding to DNA. Interactions with coactivators were required for both pathways. These data supported a model in which ER-mediated transcriptional activation or repression is dependent on the ligand and the nature of the response element in the target gene.
Collapse
Affiliation(s)
- M Jakacka
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
1366
|
Lutz W, Kohno K, Kumar R. The role of heat shock protein 70 in vitamin D receptor function. Biochem Biophys Res Commun 2001; 282:1211-9. [PMID: 11302745 DOI: 10.1006/bbrc.2001.4711] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously demonstrated that the 1alpha,25-dihydroxyvitamin D(3) receptor (VDR) interacts with the constitutive heat shock protein, hsc70 in vitro, and with DnaK (Biochem. Biophys. Res. Commun. 260, 446-452, 1999). The biological significance of VDR-heat shock protein interactions, however, is unknown. To examine the role of such interactions in eukaryotic cells, we heterologously expressed VDR and RXRalpha together with a vitamin D-responsive reporter system in Saccharomyces cerevisiae and examined the consequences of heat shock protein 70 gene (SSA) deletion in these cells. We show that heterologously expressed VDR associates with the yeast cytosolic hsp70 protein, Ssa1p. Deletion of the SSA2, SSA3, and SSA4 genes and reduction of Ssa1p activity, reduces the intracellular concentrations of the VDR and its heterodimeric partner, RXRalpha and reduces the activity of a vitamin D-dependent gene. Hsp70-like chaperone proteins play a role in controlling concentrations of the VDR within the cell.
Collapse
Affiliation(s)
- W Lutz
- Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
1367
|
Han G, Foster BA, Mistry S, Buchanan G, Harris JM, Tilley WD, Greenberg NM. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem 2001; 276:11204-13. [PMID: 11063747 DOI: 10.1074/jbc.m008207200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate the relationship between somatic mutation in the androgen receptor (AR) and the emergence of androgen-independent prostate cancer. Here we report the identification, isolation, and characterization of distinct classes of AR variants from spontaneous prostate tumors in the TRAMP model. Using cDNA cloning, single stranded conformation polymorphism and sequencing strategies, 15 unique somatic mutations in the AR were identified in prostate tumors obtained from eight TRAMP mice between 24 and 29 weeks of age. At least one mutation was isolated from each mouse. All mutations were single base substitutions, 10 were missense and 5 were silent. Nine mutations in the AR were identified in tumors of four mice that were castrated at 12 weeks of age. Interestingly, the majority of mutations (seven out of nine, 78%) identified in the androgen-independent tumors colocalized in the AR transactivation domain. The remaining mutations colocalized in the AR ligand binding domain. In general, the AR variants demonstrated promoter-, cell-, and cofactor-specific activities in response to various hormones. All AR variants isolated in this study maintained strong sensitivity for androgens, and four AR variants isolated from castrated mice demonstrated increased activities in the absence of ligand. The K638M and F677S variants demonstrated increased activities in response to androgen, and K638M also demonstrated increased response to estradiol. In the presence of AR coactivator ARA70 the E231G variant demonstrated increased activity in response to both androgen and estradiol. However, in the presence of AR coactivator ARA160 the E231G variant was selectively responsive to androgen. Collectively these analyses not only indicate that somatic mutations in the AR gene occur spontaneously in TRAMP tumors but also how changes in the hormonal environment may drive the selection of spontaneous somatic mutations that provide a growth advantage.
Collapse
Affiliation(s)
- G Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
1368
|
Levine JE, Chappell PE, Schneider JS, Sleiter NC, Szabo M. Progesterone receptors as neuroendocrine integrators. Front Neuroendocrinol 2001; 22:69-106. [PMID: 11259133 DOI: 10.1006/frne.2001.0210] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular progesterone receptors (PRs) are ligand-inducible transcription factors that mediate the majority of the effects of progesterone (P) on neuroendocrine functions. During the past decade, evidence has accumulated which suggest that PRs can also be activated independently of P, by signals propagated through membrane-bound receptors to the interior of cells. The activation of PRs by this type of "cross-talk" mechanism has been implicated in the physiological regulation of several important neuroendocrine processes, including estrous behavior and periovulatory hormone secretions. We review evidence that both ligand-dependent and ligand-independent activation of PRs occurs in central neurons and in anterior pituitary cells and that the convergence and summation of these signals at the PR serves to integrate neural and endocrine signals which direct several critically important neuroendocrine processes. An integrative function for PRs is reviewed in several physiological contexts, including the display of lordosis behavior in female rodents, the neurosecretion of gonadotropin-releasing hormone surges, secretion of preovulatory gonadotropin surges, and release of periovulatory follicle stimulating hormone surges. The weight of evidence indicates that cross talk at the intracellular PR is an essential component of the integrative mechanisms that direct each of these neuroendocrine events. The recurrence of PR's integrative actions in several different physiological contexts suggests that other intracellular steroid receptors similarly function as integrators of neural and endocrine signals in other neuroendocrine processes.
Collapse
Affiliation(s)
- J E Levine
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | |
Collapse
|
1369
|
Grad JM, Cepero E, Boise LH. Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat 2001; 4:85-91. [PMID: 11512525 DOI: 10.1054/drup.2001.0192] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemoresistant cells have acquired the ability to evade the action of multiple classes of anti-neoplastic compounds. One mechanism by which tumor cells survive in the presence of chemotherapy is by increasing their apoptotic threshold. Since mitochondria are central players in drug-induced apoptosis, recent efforts to eradicate chemorefractory cells have focused on the identification of compounds that directly affect mitochondrial function. A number of reports indicate that mitochondria are direct targets for multiple classes of experimental compounds. A few clinically available anticancer agents like DNA damaging compounds and anti-microtubule agents are also reported to act directly on mitochondria. The purpose of this mini-review is to discuss recent advances in the interactions between anti-cancer agents and mitochondria, and highlight potential mitochondrial targets for novel chemotherapeutic interventions.
Collapse
Affiliation(s)
- J M Grad
- Department of Microbiology and Immunology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
1370
|
Tremblay A, Giguère V. Contribution of steroid receptor coactivator-1 and CREB binding protein in ligand-independent activity of estrogen receptor beta. J Steroid Biochem Mol Biol 2001; 77:19-27. [PMID: 11358671 DOI: 10.1016/s0960-0760(01)00031-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Estrogens are essential regulators in the development and control of reproductive functions. The estrogenic signal is now known to be transduced by two estrogen receptors, ERalpha and ERbeta. Hormone-dependent transcriptional activation of ER and other nuclear receptors involves assembly of a coactivation complex which includes various cofactors such as the steroid receptor-coactivators (SRC) and CREB binding protein (CBP). Our findings on ERbeta have revealed a ligand-independent activation pathway which involves growth factor-mediated phosphorylation of ERbeta activation function-1 (AF-1) and subsequent recruitment of SRC-1 independently of the presence of estrogens. The presence of the cointegrator CBP is also shown to potentiate the SRC-1-mediated ERbeta ligand-independent activation, suggesting that CBP may participate in unliganded ERbeta coactivation. These findings demonstrate the ability of alternate signaling pathways to mediate coregulator assembly, hence resulting in ligand-independent activation of ERbeta.
Collapse
Affiliation(s)
- A Tremblay
- Ste-Justine Hospital Research Center, University of Montreal, Montréal, QC, Canada H3T 1C5.
| | | |
Collapse
|
1371
|
Zhou Y, Gross W, Hong SH, Privalsky ML. The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell Biochem 2001; 220:1-13. [PMID: 11451368 PMCID: PMC2655343 DOI: 10.1023/a:1011087910699] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Silencing-Mediator for Retinoid/Thyroid hormone receptors (SMRT) interacts with, and mediates transcriptional repression by, a variety of eukaryotic transcription factors, including the nuclear hormone receptors. The ability of SMRT to function as a transcriptional 'corepressor' is regulated by a variety of signal transduction pathways. We report here that SMRT is a phosphoprotein in vivo, and is also phosphorylated in vitro by unfractionated cell extracts. A major site of phosphorylation of SMRT is a protein kinase CK2 motif centered on serine 1492, and located within a C-terminal SMRT domain that mediates interaction of the corepressor with the nuclear hormone receptors. Phosphorylation of SMRT by CK2 stabilizes the ability of the SMRT protein to interact with nuclear hormone receptors. Our results indicate that SMRT is a member of an expanding family of transcriptional regulators that are modified, and potentially regulated, in response to protein kinase CK2.
Collapse
Affiliation(s)
- Y Zhou
- Division of Biological Sciences, University of California at Davis, 95616, USA
| | | | | | | |
Collapse
|
1372
|
Krebs CJ, Pfaff DW. Expression of the SCAMP-4 gene, a new member of the secretory carrier membrane protein family, is repressed by progesterone in brain regions associated with female sexual behavior. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:144-54. [PMID: 11295240 DOI: 10.1016/s0169-328x(01)00043-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rodent female reproductive behavior is facilitated by the genomic targets of estrogen (E) and progesterone (P) in neuroendocrine regions of the brain. Using the differential display-PCR technique to identify these targets we discovered a novel hormone-sensitive mRNA in the female rat brain that is substantially reduced in the ventromedial hypothalamus (VMH) after 3 h of P treatment, following 24 h of E priming. Northern blots show that it is a single transcript of approximately 1.7 kb. The sequence of the corresponding full-length cDNA indicates that this gene is the rat homolog of mouse SCAMP-4, the fourth member identified in a family of proteins known as secretory carrier membrane proteins (SCAMPs). In situ hybridization studies show that SCAMP-4 mRNA is relatively low throughout the rat forebrain, with the highest levels observed in the VMH, habenula and hippocampus. The SCAMP-4 message is also less abundant in the habenula and VMH during proestrus, when circulating levels of E and P are at their peak, than during diestrus-1 when circulating hormone levels are low. Amino acid sequence analysis indicates that SCAMP-4 lacks the putative calcium binding and leucine zipper structures, as well as protein-protein interacting NPF domains common among most SCAMP family members, but is the only member identified to date to contain a putative protein kinase C (PKC) phosphorylation site. Fluorescent microscopy of cells transfected with a SCAMP-4/GFP fusion construct reveals distinct fluorescence in subcellular aggregates that may contain secretory vesicles. In addition to our results in the VMH, the finding of high levels of SCAMP-4 message in the habenula, a brain area rich in mast cells, together with previous reports linking mast cell secretion with courtship behavior also suggest a possible role for SCAMP-4 in reproductive behaviors associated with mast cell activity in the central nervous system (CNS).
Collapse
Affiliation(s)
- C J Krebs
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
1373
|
Mendelsohn LG. Prostate cancer and the androgen receptor: strategies for the development of novel therapeutics. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 55:213-33. [PMID: 11127964 DOI: 10.1007/978-3-0348-8385-6_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The early demonstrations that prostate cancer was hormone-sensitive initiated a therapeutic strategy of hormone ablation that is still in use today. Although chemical or surgical castration reduces androgen stimulation of the androgen receptor (AR) and produces tumor regression, little survival benefit is achieved. Patients with metastatic cancer eventually relapse as their tumors progress to hormone independence. The AR is a member of the steroid receptor family; however, it manifests many unique features including: N-terminal, C-terminal interactions and antiparallel dimerization, unique N-terminal domains for co-factor recruitment, AR-specific co-activators and upstream promoter/enhancer response elements that amplify AR-mediated responses. The AR is regulated by phosphorylation and cross-talk with several signaling pathways, including MAP kinases, PKA and PKC. Non-genomic effects of AR to regulate transcription factors elk-1 and -2 have also been demonstrated. These unique features suggest mechanisms by which novel therapeutics might target and influence AR-mediated actions. Progress in this direction has been realized with the recent synthesis of non-steroidal androgen agonists that may have tissue-selective effects.
Collapse
Affiliation(s)
- L G Mendelsohn
- Cancer Research Division, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| |
Collapse
|
1374
|
Borthwick EB, Zeke T, Prescott AR, Cohen PT. Nuclear localization of protein phosphatase 5 is dependent on the carboxy-terminal region. FEBS Lett 2001; 491:279-84. [PMID: 11240142 DOI: 10.1016/s0014-5793(01)02177-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endogenous and overexpressed protein phosphatase 5 (PP5) localizes to the nucleus and cytoplasm of HeLa cells, while the overexpressed TPR domain of PP5 is restricted to the cytoplasm. Deletion and mutational analysis of human PP5 demonstrates that the C-terminal amino acids 420-499 are essential for nuclear localization and PP5 activity is not required. Since the phosphatase domain terminates at 473, these studies suggest that the highly conserved section (476-491) with the eukaryotic consensus FXAVPHPXPhiXPMAYAN is required for nuclear localization of PP5. Bacterially expressed PP5 is inhibited by several tumor promoters but not by the anticancer drug fostriecin.
Collapse
Affiliation(s)
- E B Borthwick
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, MSI/WTB Complex, University of Dundee, Dow Street, DD1 5EH, Scotland, Dundee, UK
| | | | | | | |
Collapse
|
1375
|
de Santa Barbara P, Méjean C, Moniot B, Malclès MH, Berta P, Boizet-Bonhoure B. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 2001; 64:775-83. [PMID: 11207191 DOI: 10.1095/biolreprod64.3.775] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In mammals, male sex determination is initiated by SRY (sex-determining region of the Y chromosome) gene expression and followed by testicular development. This study describes specific down-regulation of the human SRY gene transcription by cAMP stimulation using reverse transcription-polymerase chain reaction experiments. Using transfection experiments, conserved nuclear hormone receptor (NHR1) and Sp1 consensus binding sites were identified as essential for this cAMP transcriptional response. Steroidogenic factor-1 (SF-1), a component of the sex-determination cascade, binds specifically to the NHR1 site and activates the SRY promoter. Activation of SF-1 was abolished by cAMP pretreatment of the cells, suggesting a possible effect of cAMP on the SF-1 protein itself. Indeed, human SF-1 protein contains at least two in vitro cAMP-dependent protein kinase (PKA) phosphorylation sites, leading after phosphorylation to a modification of both DNA-binding activity and interaction with general transcription factors such as Sp1. Taken together, these data suggest that cAMP responsiveness of human SRY promoter involves both SF-1 and Sp1 sites and could act via PKA phosphorylation of the SF-1 protein itself.
Collapse
Affiliation(s)
- P de Santa Barbara
- Human Molecular Genetics Group, Institut de Génétique Humaine, CNRS UPR1142, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
1376
|
Hsia SC, Wang H, Shi YB. Involvement of chromatin and histone acetylation in the regulation of HIV-LTR by thyroid hormone receptor. Cell Res 2001; 11:8-16. [PMID: 11305329 DOI: 10.1038/sj.cr.7290061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The HIV-1 LTR controls the expression of HIV-1 viral genes and thus is critical for viral propagation and pathology. Numerous host factors have been shown to participate in the regulation of the LTR promoter. Among them is the thyroid hormone (T3) receptor (TR). TR has been shown to bind to the critical region of the promoter that contain the NFbB and Sp1 binding sites. Interestingly, earlier transient transfection studies in tissue culture cells have yielded contradicting conclusions on the role of TR in LTR regulation, likely due to the use of different cell types and/or lack of proper chromatin organization. Here, using the frog oocyte as a model system that allows replication-coupled chromatin assembly, mimicking that in somatic cells, we demonstrate that unliganded heterodimers of TR and RXR (9-cis retinoic acid receptor) repress LTR while the addition of T3 relieves the repression and further activates the promoter. More importantly, we show that chromatin and unliganded TR/RXR synergize to repress the promoter in a histone deacetylase-dependent manner.
Collapse
Affiliation(s)
- S C Hsia
- Unit on Molecular Morphogenesis, Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA
| | | | | |
Collapse
|
1377
|
Bailly-Maitre B, de Sousa G, Boulukos K, Gugenheim J, Rahmani R. Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction. Cell Death Differ 2001; 8:279-88. [PMID: 11319611 DOI: 10.1038/sj.cdd.4400815] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2000] [Accepted: 11/09/2000] [Indexed: 12/16/2022] Open
Abstract
We examined the effects of dexamethasone (DEX) on the apoptotic process in primary cultures of human and rat hepatocytes. DEX prolonged cell viability, inhibited the development of an apoptotic morphology, and stabilised the expression of procaspase-3 in both human and rat hepatocytes. In addition, the inhibition of apoptosis by DEX was strongly correlated with a decrease of caspase-3-like protease activity. Moreover, DEX treatment increased the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in human and rat hepatocytes, respectively, whereas the expression of pro-apoptotic proteins Bcl-xS or Bad was not detected or remained unchanged. The bcl-xL transcript is regulated at the transcriptional level and its expression paralleled that of Bcl-xL protein in DEX-treated rat hepatocytes. Taken together, these results indicate that this glucocorticoid exerts a protective role on cell survival and it delays apoptosis of human and rat hepatocytes by modulating caspase-3-like protease activity and bcl-2 and bcl-x gene expression.
Collapse
Affiliation(s)
- B Bailly-Maitre
- Laboratoire de Pharmaco-Toxicologie Cellulaire et Moléculaire, INRA, 06606 Antibes, France
| | | | | | | | | |
Collapse
|
1378
|
Quaedackers ME, Van Den Brink CE, Wissink S, Schreurs RH, Gustafsson JA, Van Der Saag PT, Van Der Burg BB. 4-hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. Endocrinology 2001; 142:1156-66. [PMID: 11181531 DOI: 10.1210/endo.142.3.8003] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are important mediators of bone homeostasis, and postmenopausal estrogen replacement therapy is extensively used to prevent osteoporosis. The biological effects of estrogen are mediated by receptors belonging to the superfamily of steroid/thyroid nuclear receptors, estrogen receptor (ER)alpha and ER beta. ER alpha, not only trans-activates target genes in a hormone-specific fashion, but it can also neutralize other transcriptional activators, such as nuclear factor (NF)-kappa B, causing repression of their target genes. A major mechanism by which estrogens prevent osteoporosis seems to be repression of transcription of NF-kappa B target genes, such as the osteoclast-activating cytokines interleukin-6 and interleukin-1. To study the capacity of both ERs in repression of NF-kappa B signaling in bone cells, we first carried out transient transfections with ER alpha or ER beta of the human osteoblastic U2-OS cell line, in which endogenous NF-kappa B was stimulated by tumor necrosis factor alpha. Repression by ER alpha was already observed without 17 beta-estradiol, whereas addition of the ligand increased repression to 90%. ER beta, however, was able to repress NF-kappa B activity only in the presence of ligand. Because it is known that some antiestrogens can also display tissue-specific agonistic properties, 4-hydroxytamoxifen was tested for its capacity in repressing NF-kappa B activity and was found to be active (albeit less efficient than 17 beta-estradiol) and, interestingly, only with ER alpha. The pure antagonist ICI 164,384 was incapable of repressing through any ER subtypes. Deletion analysis and the use of receptor ER alpha/ER beta-chimeras showed that the A/B domain, containing activation function-1, is essential for this suppressive action. Next, we developed stable transfectants of the human osteoblastic U2-OS cell line containing ER alpha or ER beta in combination with an NF-kappa B luciferase reporter construct. In these cell lines, repression of NF-kappa B activity was only mediated through ER alpha and not through ER beta. These findings offer new insights into the specific role of both ER subtypes in bone homeostasis and could eventually help in developing more specific medical intervention strategies for osteoporosis.
Collapse
Affiliation(s)
- M E Quaedackers
- Hubrecht Laboratory , Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
1379
|
Wallberg AE, Wright A, Gustafsson JA. Chromatin-remodeling complexes involved in gene activation by the glucocorticoid receptor. VITAMINS AND HORMONES 2001; 60:75-122. [PMID: 11037622 DOI: 10.1016/s0083-6729(00)60017-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A E Wallberg
- Karolinska Institute, Department of Biosciences, NOVUM, Huddinge, Sweden
| | | | | |
Collapse
|
1380
|
Damjanovski S, Amano T, Li Q, Ueda S, Shi YB, Ishizuya-Oka A. Role of ECM remodeling in thyroid hormone-dependent apoptosis during anuran metamorphosis. Ann N Y Acad Sci 2001; 926:180-91. [PMID: 11193034 DOI: 10.1111/j.1749-6632.2000.tb05611.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Programmed cell death or apoptosis is an important aspect in organogenesis and tissue remodeling. It is precisely controlled both temporally and spatially during development. Amphibian metamorphosis is an excellent model to study developmental control of apoptosis in vertebrates. This process involves the transformation of essentially every organ/tissue as tadpoles change to frogs, yet is controlled by a single hormone, thyroid hormone (TH). Although different organs and tissues undergo vastly different developmental changes, including de novo development and total resorption, most require apoptotic elimination of at least some cell types. Such properties and the dependence on TH make frog metamorphosis a unique model to isolate and functionally characterize genes participating in the regulation of tissue specific cell death during organ development in vertebrates. Indeed, molecular studies of the TH-dependent gene regulation cascade have led to the discovery of a group of genes encoding matrix metalloproteinases (MMPs) participating in metamorphosis. In vivo and in vitro studies have provided strong evidence to support a role of MMP-mediated remodeling of the extracellular matrix in regulating apoptotic tissue remodeling during metamorphosis.
Collapse
Affiliation(s)
- S Damjanovski
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
1381
|
Abstract
Breast cancer, which is the most common neoplastic disease in females and accounts for up to one third of all new cases of women's cancer in North America, continues to rise in incidence. In addition, the mortality caused by this disease has remained almost unchanged for the past 5 decades, becoming only second to lung cancer as a cause of cancer-related death. The failure in eradicating this disease is largely due to the lack of identification of a specific etiologic agent, the precise time of initiation, and the molecular mechanisms responsible for cancer initiation and progression. Despite the numerous uncertainties surrounding the origin of cancer, there is substantial evidence that breast cancer risk relates to endocrinologic and reproductive factors. The development of breast cancer strongly depends on the ovary and on endocrine conditions modulated by ovarian function, such as early menarche, late menopause, and parity. However, the specific hormone or hormone combinations responsible for cancer initiation have not been identified, and their role as protective or risk factors is still incompletely understood. A highly significant female hormone is estrogen, which is involved in the development of a variety of cancers, but it is still unclear whether estrogens are carcinogenic to the human breast. An understanding of whether estrogens cause mutations, and, if so, whether they act through hormonal effects activated by receptor binding, cytochrome P450-mediated metabolic activation, or compromise the DNA repair system, is essential for determining whether this steroid hormone is involved in the initiation or progression of breast cancer. This knowledge has to be based on a multidisciplinary approach encompassing studies of the development of the breast, influence of hormones on the differentiation of individual structures, and their interrelations in the pathogenesis of breast cancer. The analysis of the mechanisms involved would require confirmation in the adequate in vitro models and determination of the role played by genomic alterations in both cancer initiation and progression.
Collapse
Affiliation(s)
- J Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
1382
|
Krishnan V, Heath H, Bryant HU. Mechanism of action of estrogens and selective estrogen receptor modulators. VITAMINS AND HORMONES 2001; 60:123-47. [PMID: 11037623 DOI: 10.1016/s0083-6729(00)60018-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Estrogen, one of several sex steroid hormones, mediates its actions through the estrogen receptor. The estrogen receptor (ER) has two subtypes, ER alpha and ER beta, each of which predominates in specific tissues and organs. Cofactor proteins interact with the ER to maximize ligand-dependent transactivation of target-gene promoters. The estrogen response element is the final step in estrogen-mediated gene regulation, and current research is focused on alternate response elements. The resulting biologic action can vary according to the specific type of ER, cofactor milieu, response element, and ligand. Selective estrogen receptor modulators (SERMs) exhibit tissue-specific estrogen agonist or antagonist activity. The SERM raloxifene, which binds to ER and targets a distinct DNA element, may distinguish agonist vs antagonist activity by ER subtype and has unique activity among other SERMs because of its molecular conformation. Phytoestrogens, a potential alternative to hormone replacement therapy and for cancer prevention, do not consistently mimic estrogen's activity. Different types of phytoestrogens have different potencies, and taking high-dose supplements after menopause may not emulate the apparent benefits of lifelong consumption of phytoestrogen-rich diets. In conclusion, the complexity of estrogen action--through different ER subtypes, with various cofactors, on alternate response element--is further enhanced by ligands with selective estrogen activity. Additional research is needed to elucidate these pathways and the resulting biological effects.
Collapse
Affiliation(s)
- V Krishnan
- Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
1383
|
Abstract
The expression of mammalian genes is regulated primarily at the level of initiation of transcription. The regulatory structure of the mammalian genes consists of the sequence coding for a protein, a proximal upstream promoter sequence which binds the general (basal) transcription factors and a distant enhancer sequence which binds the inducible transcription factors. The general transcription factors are proteins which combine with the RNA polymerase at the promoter to form the initiation complex. Binding of the inducible transcription factors at short DNA sequences, named response elements, mostly enhances or rarely represses the formation of the initiation complex. Transcription factors share common structural motifs; the most frequent are zinc finger, leucine zipper and helix-loop-helix structures. Inducible transcription factors are activated to bind their target response elements on DNA by protein kinases, by binding of activating or removal of inhibitory factors, or by de novo protein synthesis. Inducible transcription factors are activated by hormones or growth factors addressing a number of genes which share common response elements. Steroid and thyroid hormones combine with intracellular receptors to form active transcription factors. Other transcription factors are activated by protein kinases which are themselves activated by hormones through cell membrane receptors and further cellular signaling paths. Whereas the main level of transcriptional control is the initiation of RNA synthesis, in some instances genes are also regulated by alternative splicing of the primary transcript or control of translation into proteins. Large-scale silencing of genes is mediated by the packing of DNA in highly condensed heterochromatin structures and DNA methylation at cytosines in defined guanine-cytosine (GC)-sequences.
Collapse
Affiliation(s)
- D Beyersmann
- Department of Biology and Chemistry, University of Bremen, Germany
| |
Collapse
|
1384
|
Maggi A. Estrogens, apoptosis and cells of neural origin. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:115-23. [PMID: 10961424 DOI: 10.1007/978-3-7091-6781-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In view of the relevant complexity of estradiol actions in the nervous system, we have proposed to utilize a reductionist approach and gain an insight on its role in neural cells via the identification of the genes target for this hormone. Once obtained a biochemical footprint of the responses elicited by E2 in the neural target cells we believe that the physiological effects exerted by this hormone will be more easily elucidated; in addition, we might find novel targets for drugs aimed at mimicking or blocking E2 effects. We here summarize preliminary results obtained in the cell line SK-ER3 appropriately engineered by us to express the ERalpha. We show that nip-2, one of the genes found to be regulated by E2, is involved in the mechanisms leading to cell death. This finding led us to investigate on estrogen effects on SK-ER3 apoptosis. We found that E2 has a significant anti-apoptotic activity in SKER3 cells. These results are in line with the recent reports from other laboratories indicating that E2 may prevent death of neural cells exposed to toxic stimuli. We conclude that these initial studies seem to support the strategy of our research and underline the strength of inverse genetics in the study of the physiology of sex hormone activities.
Collapse
Affiliation(s)
- A Maggi
- Center Milan Molecular Pharmacology Laboratory, Institute of Pharmacological Sciences, University of Milan, Italy
| |
Collapse
|
1385
|
Wang Q, Fondell JD. Generation of a mammalian cell line stably expressing a tetracycline-regulated epitope-tagged human androgen receptor: implications for steroid hormone receptor research. Anal Biochem 2001; 289:217-30. [PMID: 11161315 DOI: 10.1006/abio.2000.4960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is hormone-activated transcription factor that regulates the expression of genes involved in differentiation, development, and maintenance of male reproductive functions. To establish a useful model system for studying molecular mechanisms of AR action, we generated a HeLa-derived cell line (termed E19) that stably expresses human AR. Because overexpression of AR in cultured cells can be cytotoxic, we placed AR expression under the control of a tetracycline-regulated promoter. The stably expressed AR also contains an N-terminal FLAG-epitope tag (f:AR) that provides an advantageous method for immunopurification. We show that f:AR expression in E19 cells can be precisely modulated by varying the concentration of tetracycline or its chemical derivative doxycycline in the growth media. The functional activity of E19-expressed f:AR is demonstrated in vivo by its ability to activate transiently transfected AR reporter genes in an androgen-dependent manner, and in vitro by its ability to specifically bind AR-response elements using DNA-mobility shift assays. We further show that f:AR in androgen-stimulated E19 cells is markedly phosphorylated and coimmunopurifies with the transcriptional coactivator CREB-binding protein (CBP). The implications of these findings on steroid receptor research and the identification of receptor coregulatory factors will be discussed.
Collapse
Affiliation(s)
- Q Wang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
1386
|
Masuyama H, Hiramatsu Y, Mizutani Y, Inoshita H, Kudo T. The expression of pregnane X receptor and its target gene, cytochrome P450 3A1, in perinatal mouse. Mol Cell Endocrinol 2001; 172:47-56. [PMID: 11165039 DOI: 10.1016/s0303-7207(00)00395-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, pregnane X receptor (PXR) has been described to mediate the genomic effects of several steroid hormones, such as progesterone (P), glucocorticoid (Dex), pregnenolone (Preg), and xenobiotics through the cytochrome P-450 3A gene family (CYP3A), which are monooxygenases, responsible for the oxidative metabolism of some endogenous substrates and xenobiotics. In the present study, we used a transient transfection reporter gene expression assay of COS-7 cells to demonstrate that P, Dex and Preg significantly stimulate PXR-mediated transcription at relatively high concentration comparable with that of progesterone near term pregnancy. In yeast two-hybrid protein interaction assay, PXR interacted with nuclear receptor coactivator proteins, SRC1, RIP140, and SUG1 in a ligand-dependent manner. The expression of PXR mRNA was observed in the liver, intestine, uterus, ovary and placenta. The expressions of PXR mRNA in the liver and ovary increased towards term about fifty-fold compared with that of non-pregnancy and decreased postpartum. Its expression in the placenta was not drastically changed towards term. CYP3A, a target gene of PXR, was also expressed in the liver, ovary, and placenta. The expressions of CYP3A mRNA as well as PXR in the liver and ovary increased about 20-fold during prenatal period. These data suggest that PXR may play certain roles in perinatal period, possibly in the protection of the feto-maternal system from the toxic effect of endogenous steroids and foreign substrates.
Collapse
Affiliation(s)
- H Masuyama
- Department of Obstetrics and Gynecology, Okayama University Medical School, 2-5-1, Shikata, 700-8558, Okayama, Japan.
| | | | | | | | | |
Collapse
|
1387
|
Wang F, Samudio I, Safe S. Transcriptional activation of cathepsin D gene expression by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Cell Endocrinol 2001; 172:91-103. [PMID: 11165043 DOI: 10.1016/s0303-7207(00)00379-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
17beta-estradiol (E2) induces cathepsin D gene expression in MCF-7 human breast cancer cells and this response is inhibited by aryl hydrocarbon receptor (AhR) agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Analysis of the cathepsin D gene promoter initially identified a pentanucleotide GCGTG core dioxin responsive element (DRE) that blocked E2 action by inhibiting formation of a transcriptionally active estrogen receptor (ER)-Sp1 complex. A second functional downstream inhibitory DRE (iDRE2) (-130 to -126) has now been identified in the cathepsin D gene promoter and inhibition of E2-induced transactivation involves inhibitory AhR crosstalk with the E2-responsive adenovirus major late promoter element (MLPE) at -124 to -104 in the cathepsin D gene promoter. The MLPE site primarily binds USF1/USF2 and ERalpha, and gel mobility shift and DNA footprinting assays show that the AhR complex decreases binding of these transcription factors to the MLPE.
Collapse
Affiliation(s)
- F Wang
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
1388
|
Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172057 PMCID: PMC29363 DOI: 10.1073/pnas.041483198] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estradiol protects against brain injury, neurodegeneration, and cognitive decline. Our previous work demonstrates that physiological levels of estradiol protect against stroke injury and that this protection may be mediated through receptor-dependent alterations of gene expression. In this report, we tested the hypothesis that estrogen receptors play a pivotal role in mediating neuroprotective actions of estradiol and dissected the potential biological roles of each estrogen receptor (ER) subtype, ER alpha and ER beta, in the injured brain. To investigate and delineate these mechanisms, we used ER alpha-knockout (ER alpha KO) and ER beta-knockout (ER beta KO) mice in an animal model of stroke. We performed our studies by using a controlled endocrine paradigm, because endogenous levels of estradiol differ dramatically among ER alpha KO, ER beta KO, and wild-type mice. We ovariectomized ER alpha KO, ER beta KO, and the respective wild-type mice and implanted them with capsules filled with oil (vehicle) or a dose of 17 beta-estradiol that produces physiological hormone levels in serum. One week later, mice underwent ischemia. Our results demonstrate that deletion of ER alpha completely abolishes the protective actions of estradiol in all regions of the brain; whereas the ability of estradiol to protect against brain injury is totally preserved in the absence of ER beta. Thus, our results clearly establish that the ER alpha subtype is a critical mechanistic link in mediating the protective effects of physiological levels of estradiol in brain injury. Our discovery that ER alpha mediates protection of the brain carries far-reaching implications for the selective targeting of ERs in the treatment and prevention of neural dysfunction associated with normal aging or brain injury.
Collapse
|
1389
|
Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM. Estrogen receptor , not , is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci U S A 2001; 98:1952-7. [PMID: 11172057 PMCID: PMC29363 DOI: 10.1073/pnas.98.4.1952] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estradiol protects against brain injury, neurodegeneration, and cognitive decline. Our previous work demonstrates that physiological levels of estradiol protect against stroke injury and that this protection may be mediated through receptor-dependent alterations of gene expression. In this report, we tested the hypothesis that estrogen receptors play a pivotal role in mediating neuroprotective actions of estradiol and dissected the potential biological roles of each estrogen receptor (ER) subtype, ER alpha and ER beta, in the injured brain. To investigate and delineate these mechanisms, we used ER alpha-knockout (ER alpha KO) and ER beta-knockout (ER beta KO) mice in an animal model of stroke. We performed our studies by using a controlled endocrine paradigm, because endogenous levels of estradiol differ dramatically among ER alpha KO, ER beta KO, and wild-type mice. We ovariectomized ER alpha KO, ER beta KO, and the respective wild-type mice and implanted them with capsules filled with oil (vehicle) or a dose of 17 beta-estradiol that produces physiological hormone levels in serum. One week later, mice underwent ischemia. Our results demonstrate that deletion of ER alpha completely abolishes the protective actions of estradiol in all regions of the brain; whereas the ability of estradiol to protect against brain injury is totally preserved in the absence of ER beta. Thus, our results clearly establish that the ER alpha subtype is a critical mechanistic link in mediating the protective effects of physiological levels of estradiol in brain injury. Our discovery that ER alpha mediates protection of the brain carries far-reaching implications for the selective targeting of ERs in the treatment and prevention of neural dysfunction associated with normal aging or brain injury.
Collapse
Affiliation(s)
- D B Dubal
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
1390
|
Pike AC, Brzozowski AM, Walton J, Hubbard RE, Thorsell AG, Li YL, Gustafsson JA, Carlquist M. Structural insights into the mode of action of a pure antiestrogen. Structure 2001; 9:145-53. [PMID: 11250199 DOI: 10.1016/s0969-2126(01)00568-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Estrogens exert their effects on target tissues by binding to a nuclear transcription factor termed the estrogen receptor (ER). Previous structural studies have demonstrated that each class of ER ligand (agonist, partial agonist, and SERM antagonist) induces distinctive orientations in the receptor's carboxy-terminal transactivation helix. The conformation of this portion of the receptor determines whether ER can recruit and interact with the components of the transcriptional machinery, thereby facilitating target gene expression. RESULTS We have determined the structure of rat ERbeta ligand binding domain (LBD) in complex with the pure antiestrogen ICI 164,384 at 2.3 A resolution. The binding of this compound to the receptor completely abolishes the association between the transactivation helix (H12) and the rest of the LBD. The structure reveals that the terminal portion of ICI's bulky side chain substituent protrudes from the hormone binding pocket, binds along the coactivator recruitment site, and physically prevents H12 from adopting either its characteristic agonist or AF2 antagonist orientation. CONCLUSIONS The binding mode adopted by the pure antiestrogen is similar to that seen for other ER antagonists. However, the size and resultant positioning of the ligand's side chain substituent produces a receptor conformation that is distinct from that adopted in the presence of other classes of ER ligands. The novel observation that binding of ICI results in the complete destabilization of H12 provides some indications as to a possible mechanism for pure receptor antagonism.
Collapse
Affiliation(s)
- A C Pike
- Structural Biology Laboratory, Chemistry Department, University of York, Heslington, YO10 5DD, York, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1391
|
Jacquot Y, Bermont L, Giorgi H, Refouvelet B, Adessi GL, Daubrosse E, Xicluna A. Substituted benzopyranobenzothiazinones. Synthesis and estrogenic activity on MCF-7 breast carcinoma cells. Eur J Med Chem 2001; 36:127-36. [PMID: 11311744 DOI: 10.1016/s0223-5234(00)01207-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the search for new agents with estrogenic activity mediated by estrogen receptors (ER), six 6,12-dihydro-1-benzopyrano[3,4-b][1,4]benzothiazin-6-ones 3a-f were synthesized. These compounds were readily prepared by the addition of 2-aminothiophenol 2 to substituted 4-hydroxycoumarin derivatives 1a-e. The estrogenic effect has been evaluated on the proliferation of MCF-7 breast adenocarcinoma cells and the specificity of described compounds was evaluated by the inhibition of their effect by ICI 182,780, an antiestrogenic compound. Among the compounds tested, 6,12-dihydro-3-methoxy-1-benzopyrano[3,4-b][1,4]benzothiazin-6-one 3e and 6,12-dihydro-3-hydroxy-1-benzopyrano[3,4-b][1,4]benzothiazin-6-one 3f exhibited an ER-dependent proliferation and a high binding affinity to ER, but a moderate capacity to activate the transcription of a reporter gene. Their pharmacological profiles are defined by their binding properties and their mechanism of action by computational modelling studies.
Collapse
Affiliation(s)
- Y Jacquot
- Equipe de Chimie Therapeutique, Faculté de Médecine et de Pharmacie, Place Saint-Jacques, F-25030, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
1392
|
Haelens A, Verrijdt G, Callewaert L, Peeters B, Rombauts W, Claessens F. Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene. Biochem J 2001; 353:611-20. [PMID: 11171058 PMCID: PMC1221607 DOI: 10.1042/0264-6021:3530611] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Androgens and glucocorticoids are steroid hormones, which exert their effects in vivo by binding and activating their cognate receptors. These intracellular receptors are transcription factors that can bind specific DNA sequences, called hormone response elements, located near the target genes. Although the androgen receptor (AR) and the glucocorticoid receptor (GR) bind the same consensus DNA sequence, androgen-specific responses can be achieved by non-conventional androgen response elements (AREs). Here we determine the specificity mechanism of such a selective element recently identified in the first exon of the human gene for secretory component (sc ARE). This sc ARE consists of two receptor-binding hexamers separated by three nucleotides. The DNA-binding domains of the AR and GR both bind the sc ARE, but, although the AR fragment dimerizes on the element, the GR fragment does not. Comparing the affinities of the DNA-binding domains for mutant forms of the sc ARE revealed that dimeric GR binding is actively excluded by the left hexamer and more precisely by the presence of a G residue at position -3, relative to the central spacer nucleotide. Inserting a G at this position changed a non-selective element into an androgen-selective one. We postulate that the AR recognizes the sc ARE as a direct repeat of two 5'-TGTTCT-3'-like core sequences instead of the classical inverted repeat. Direct repeat binding is not possible for the GR, thus explaining the selectivity of the sc ARE. This alternative dimerization by the AR on the sc ARE is also indicated by the DNA-binding characteristics of receptor fragments in which the dimerization interfaces were swapped. In addition, the flanking and spacer sequences seem to affect the functionality of the sc ARE.
Collapse
Affiliation(s)
- A Haelens
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
1393
|
Abstract
Aldosterone regulates renal sodium reabsorption through binding to the mineralocorticoid receptor (MR). Because the glucocorticoid receptor (GR) is expressed together with the MR in aldosterone target cells, glucocorticoid hormones bound to GR may also intervene to modulate physiological functions in these cells. In addition, each steroid can bind both receptors, and the MR has equal affinity for aldosterone and glucocorticoid hormones. Several cellular and molecular mechanisms intervene to allow specific aldosterone regulatory effects, despite the large prevalence of glucocorticoid hormones in the plasma. They include the local metabolism of the glucocorticoid hormones into inactive derivatives by the enzyme 11beta-hydroxysteroid dehydrogenase; the intrinsic properties of the MR that discriminate between ligands through differential contacts; the possibility of forming homo- or heterodimers between MR and GR, leading to differential transactivation properties; and the interactions of MR and GR with other regulatory transcription factors. The relative contribution of each of these successive mechanisms may vary among aldosterone target cells (epithelial vs. nonepithelial) and according to the hormonal context. All these phenomena allow fine tuning of cellular functions depending on the degree of cooperation between corticosteroid hormones and other factors (hormonal or tissue specific). Such interactions may be altered in pathophysiological situations.
Collapse
Affiliation(s)
- N Farman
- Institut National de la Santé et de la Recherche Médicale U-478, Faculté de Médecine X. Bichat-Institut Fédératif de Recherches 02, 75870 Paris Cedex 18, France.
| | | |
Collapse
|
1394
|
Auger AP, Hexter DP, McCarthy MM. Sex difference in the phosphorylation of cAMP response element binding protein (CREB) in neonatal rat brain. Brain Res 2001; 890:110-7. [PMID: 11164773 DOI: 10.1016/s0006-8993(00)03151-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On the day of birth, a surge in testicular testosterone release in male rats is critical for sexual differentiation of the brain. Steroid hormones function by binding to intracellular steroid receptors and altering gene expression; however, little is known about the signal transduction pathways altered as a consequence of steroid hormone action in developing brain. We investigated whether the increase in testosterone at birth alters the phosphorylation of CREB, a major signal transduction protein. Adjacent brain sections from male and female pups were immunocytochemically stained for serine(133) phosphorylated CREB (pCREB) or total CREB on the day of birth. Males had more pCREB-immunoreactive positive cells than females in the medial preoptic area, ventromedial nucleus of the hypothalamus, the arcuate nucleus, and the CA1 region of the hippocampus, but not in two thalamic nuclei. There was no sex difference in total CREB immunoreactive cell number. To determine if the sex difference in pCREB persisted 24 h after birth and whether the difference was due to testosterone, newborn female pups were injected with 100 microg of testosterone propionate, and male and control female pups were injected with vehicle. Twenty-four hours later, adjacent brain sections were immunocytochemically stained for either pCREB or CREB. We found that males and testosterone-treated females had more pCREB in the ventromedial nucleus of the hypothalamus contrasted to control females. There were no group differences in pCREB or CREB in any other area examined. These results indicate that some of the effects of testosterone in developing brain occur via pathways associated with the phosphorylation of CREB.
Collapse
Affiliation(s)
- A P Auger
- Department of Physiology, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
1395
|
Koh SS, Chen D, Lee YH, Stallcup MR. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 2001; 276:1089-98. [PMID: 11050077 DOI: 10.1074/jbc.m004228200] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptors (NRs) activate gene transcription by binding to specific enhancer elements and recruiting coactivators of the p160 family to promoters of target genes. The p160 coactivators in turn enhance transcription by recruiting secondary coactivators, including histone acetyltransferases such as CREB-binding protein (CBP) and p300/CBP-associated factor (p/CAF), as well as the recently identified protein methyltransferase, coactivator-associated arginine methyltransferase 1 (CARM1). In the current study, protein arginine methyltransferase 1 (PRMT1), another arginine-specific protein methyltransferase that shares a region of high homology with CARM1, was also found to act as a coactivator for NRs. PRMT1, like CARM1, bound to the C-terminal AD2 activation domain of p160 coactivators and thereby enhanced the activity of NRs in transient transfection assays. The shape of the graphs of reporter gene activity versus the amounts of CARM1 or PRMT1 expression vector indicated a cooperative relationship between coactivator concentration and activity. Moreover, CARM1 and PRMT1 acted in a synergistic manner to enhance reporter gene activation by both hormone-dependent and orphan NRs. The synergy was most evident at low levels of transfected NR expression vectors, where activation of reporter genes was almost completely dependent on the presence of NR and all three exogenously supplied coactivators, i.e. GRIP1, CARM1, and PRMT1. In contrast, with the higher levels of NR expression vectors typically used in transient transfection assays, NR activity was much less dependent on the combination of coactivators, suggesting that target gene activation occurs by different mechanisms at high versus low cellular concentrations of NR. Because multiple coactivators are presumably required to mediate transcriptional activation of native genes in vivo, the low-NR conditions may provide a more physiologically relevant assay for coactivator function.
Collapse
Affiliation(s)
- S S Koh
- Department of Pathology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
1396
|
New MI, Nimkarn S, Brandon DD, Cunningham-Rundles S, Wilson RC, Newfield RS, Vandermeulen J, Barron N, Russo C, Loriaux DL, O'Malley B. Resistance to multiple steroids in two sisters. J Steroid Biochem Mol Biol 2001; 76:161-6. [PMID: 11384874 DOI: 10.1016/s0960-0760(01)00045-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A 14-year-old Native American girl from the Iroquois Nation was referred as a potential patient with the syndrome of Apparent Mineralocorticoid Excess. Instead, her evaluation revealed resistance to glucocorticoids, mineralocorticoids, and androgens. She lacked Cushingoid features in spite of significantly high cortisol levels. Menstruation was regular and there was no clinical evidence of masculinization despite high serum androgen levels in the male range. The patient's sister had similar clinical features. Partial resistance to exogenous glucocorticoid and mineralocorticoid administration was well demonstrated in both patients. It is proposed that these patients represent the first cases of partial resistance to multiple steroids, possibly owing to a coactivator defect.
Collapse
Affiliation(s)
- M I New
- Department of Pediatrics, Division of Pediatric Endocrinology, The New York Presbyterian Hospital-Weill Medical College of Cornell University, 525 East 68th Street, Room M-622, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1397
|
Abstract
This review highlights recent evidence from clinical and basic science studies supporting a role for estrogen in neuroprotection. Accumulated clinical evidence suggests that estrogen exposure decreases the risk and delays the onset and progression of Alzheimer's disease and schizophrenia, and may also enhance recovery from traumatic neurological injury such as stroke. Recent basic science studies show that not only does exogenous estradiol decrease the response to various forms of insult, but the brain itself upregulates both estrogen synthesis and estrogen receptor expression at sites of injury. Thus, our view of the role of estrogen in neural function must be broadened to include not only its function in neuroendocrine regulation and reproductive behaviors, but also to include a direct protective role in response to degenerative disease or injury. Estrogen may play this protective role through several routes. Key among these are estrogen dependent alterations in cell survival, axonal sprouting, regenerative responses, enhanced synaptic transmission and enhanced neurogenesis. Some of the mechanisms underlying these effects are independent of the classically defined nuclear estrogen receptors and involve unidentified membrane receptors, direct modulation of neurotransmitter receptor function, or the known anti-oxidant activities of estrogen. Other neuroprotective effects of estrogen do depend on the classical nuclear estrogen receptor, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that estrogen receptors in the membrane or cytoplasm alter phosphorylation cascades through direct interactions with protein kinases or that estrogen receptor signaling may converge with signaling by other trophic molecules to confer resistance to injury. Although there is clear evidence that estradiol exposure can be deleterious to some neuronal populations, the potential clinical benefits of estrogen treatment for enhancing cognitive function may outweigh the associated central and peripheral risks. Exciting and important avenues for future investigation into the protective effects of estrogen include the optimal ligand and doses that can be used clinically to confer benefit without undue risk, modulation of neurotrophin and neurotrophin receptor expression, interaction of estrogen with regulated cofactors and coactivators that couple estrogen receptors to basal transcriptional machinery, interactions of estrogen with other survival and regeneration promoting factors, potential estrogenic effects on neuronal replenishment, and modulation of phenotypic choices by neural stem cells.
Collapse
|
1398
|
Bryant HU. Mechanism of action and preclinical profile of raloxifene, a selective estrogen receptor modulation. Rev Endocr Metab Disord 2001; 2:129-38. [PMID: 11704975 DOI: 10.1023/a:1010019410881] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Raloxifene possesses a complex pharmacology with tissue-selective estrogen agonist and antagonist effects. At the center of these effects resides the high affinity interaction of raloxifene with the ER. The ability of raloxifene to compete with estrogen for ER binding accounts for the estrogen antagonist effects of raloxifene in uterine and mammary tissue. Since the precise mechanism for the agonist effect of estrogen on the skeleton remains uncertain, it is difficult to unequivocally cite a single estrogen-like mechanism for raloxifene in bone. However, multiple lines of evidence clearly indicate that the estrogen agonist effect of raloxifene on bone is also mediated via an interaction with ER. The data showing non-additivity of raloxifene and estrogen effects in bone, and those showing the requirement for a pituitary hormone in the anti-estrogenic action of raloxifene and estrogen are particularly important. Thus, global evaluation of the similarities and parallel responses of raloxifene and estrogen in bone and the cardiovascular system, as summarized above, strongly support a similar mechanistic basis for the agonist effects of these agents on the skeleton.
Collapse
Affiliation(s)
- H U Bryant
- Endocrine Research Division, Lilly Research Laboratories, Indianapolis, IN, USA
| |
Collapse
|
1399
|
Pavao M, Traish AM. Estrogen receptor antibodies: specificity and utility in detection, localization and analyses of estrogen receptor alpha and beta. Steroids 2001; 66:1-16. [PMID: 11090653 DOI: 10.1016/s0039-128x(00)00143-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of estrogens in regulating cellular metabolism in many tissues is well documented. Estrogens regulate cellular activity by interacting with specific intracellular receptor proteins. Two estrogen receptor (ER) isoforms have been isolated, cloned and characterized. Estrogen receptor alpha (ERalpha) and beta (ERbeta) are ligand dependent transcriptional activators, which regulate gene expression via complex mechanisms requiring ligand binding, transformation, dimerization, and interaction with specific unique cis DNA hormone response elements (EREs) and co-activators and co-repressors. Studies of ER structure and function have been tremendously facilitated by the development of molecular and biologic probes. Cloning and functional studies of the ERalpha and ERbeta have delineated some of the structural requirements involved in receptor function. Immunochemical analyses together with biochemical and molecular approaches have contributed to our understanding of ER structure and function. Although antibodies to ER have been developed and utilized for the past two decades, there has yet to be a comprehensive review that discusses the utility and usefulness of these antibodies in receptor detection and analysis. In this review, we summarize a plethora of information concerning the development and characterization of site-directed monoclonal and polyclonal antibodies to the ERalpha and ERbeta. We provide critical discussion on the characteristics and utility of ER antibodies in analyses, characterization and localization of ER isoforms in various tissues. We also provide a comparison of the potential utility of the available antibodies in various immunochemical assays. An epitope map detailing the specific sites of antibody-receptor interactions is constructed based on the available information. The advent of antibodies with high specificity and titer had facilitated detection of ER isoforms in normal and neoplastic tissues. The advent of new antibodies remains a powerful tool for assessment of ER expression and post-translational modification and receptor function in many experimental systems.
Collapse
Affiliation(s)
- M Pavao
- Department of Biochemistry, Center for Advanced Biomedical Research, Boston University School of Medicine, 700 Albany Street, W-607, Boston, MA 02118, USA
| | | |
Collapse
|
1400
|
Abstract
Thyroid storm and myxedema coma are uncommon problems in the ICU, but both usually present with typical findings, and when recognized early, are treatable. Thus, rapid recognition with early institution of therapy may be life saving. It is always important to search diligently to determine the underlying cause of the decompensation and to treat that aggressively.
Collapse
Affiliation(s)
- M D Ringel
- Uniformed Services University of the Health Sciences, Washington, DC, USA.
| |
Collapse
|