101
|
Soares J, Costa VM, Gaspar H, Santos S, Bastos MDL, Carvalho F, Capela JP. Adverse outcome pathways induced by 3,4-dimethylmethcathinone and 4-methylmethcathinone in differentiated human SH-SY5Y neuronal cells. Arch Toxicol 2020; 94:2481-2503. [PMID: 32382956 DOI: 10.1007/s00204-020-02761-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Cathinones (β-keto amphetamines), widely abused in recreational settings, have been shown similar or even worse toxicological profile than classical amphetamines. In the present study, the cytotoxicity of two β-keto amphetamines [3,4-dimethylmethcathinone (3,4-DMMC) and 4-methylmethcathinone (4-MMC)], was evaluated in differentiated dopaminergic SH-SY5Y cells in comparison to methamphetamine (METH). MTT reduction and NR uptake assays revealed that both cathinones and METH induced cytotoxicity in a concentration- and time-dependent manner. Pre-treatment with trolox (antioxidant) partially prevented the cytotoxicity induced by all tested drugs, while N-acetyl-L-cysteine (NAC; antioxidant and glutathione precursor) and GBR 12909 (dopamine transporter inhibitor) partially prevented the cytotoxicity induced by cathinones, as evaluated by the MTT reduction assay. Unlike METH, cathinones induced oxidative stress evidenced by the increase on intracellular levels of reactive oxygen species (ROS), and also by the decrease of intracellular glutathione levels. Trolox prevented, partially but significantly, the ROS generation elicited by cathinones, while NAC inhibited it completely. All tested drugs induced mitochondrial dysfunction, since they led to mitochondrial membrane depolarization and to intracellular ATP depletion. Activation of caspase-3, indicative of apoptosis, was seen both for cathinones and METH, and confirmed by annexin V and propidium iodide positive staining. Autophagy was also activated by all drugs tested. Pre-incubation with bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, only protected against the cytotoxicity induced by METH, which indicates dissimilar toxicological pathways for the tested drugs. In conclusion, the mitochondrial impairment and oxidative stress observed for the tested cathinones may be key factors for their neurotoxicity, but different outcome pathways seem to be involved in the adverse effects, when compared to METH.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Gaspar
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Susana Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
102
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
103
|
Ogunsina M, Samadder P, Idowu T, Nachtigal M, Schweizer F, Arthur G. Syntheses of L-Rhamnose-Linked Amino Glycerolipids and Their Cytotoxic Activities against Human Cancer Cells. Molecules 2020; 25:molecules25030566. [PMID: 32012953 PMCID: PMC7037447 DOI: 10.3390/molecules25030566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/04/2023] Open
Abstract
A major impediment to successful cancer treatment is the inability of clinically available drugs to kill drug-resistant cancer cells. We recently identified metabolically stable l-glucosamine-based glycosylated antitumor ether lipids (GAELs) that were cytotoxic to chemotherapy-resistant cancer cells. In the absence of commercially available l-glucosamine, many steps were needed to synthesize the compound and the overall yield was poor. To overcome this limitation, a facile synthetic procedure using commercially available l-sugars including l-rhamnose and l-glucose were developed and the l-GAELs tested for anticancer activity. The most potent analog synthesized, 3-amino-1-O-hexadecyloxy-2R-(O–α-l-rhamnopyranosyl)-sn- glycerol 3, demonstrated a potent antitumor effect against human cancer cell lines derived from breast, prostate, and pancreas. The activity observed was superior to that observed with clinical anticancer agents including cisplatin and chlorambucil. Moreover, like other GAELs, 3 induced cell death by a non-membranolytic caspase-independent pathway.
Collapse
Affiliation(s)
- Makanjuola Ogunsina
- Department of Chemistry and Biochemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.O.); (T.I.)
| | - Pranati Samadder
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W9, Canada; (P.S.); (M.N.)
| | - Temilolu Idowu
- Department of Chemistry and Biochemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.O.); (T.I.)
| | - Mark Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W9, Canada; (P.S.); (M.N.)
- Department of Obstetrics, Gynecology and Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W9, Canada
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Frank Schweizer
- Department of Chemistry and Biochemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.O.); (T.I.)
- Correspondence: (F.S.); (G.A.)
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W9, Canada; (P.S.); (M.N.)
- Correspondence: (F.S.); (G.A.)
| |
Collapse
|
104
|
Vitamin B 12b Enhances the Cytotoxicity of Diethyldithiocarbamate in a Synergistic Manner, Inducing the Paraptosis-Like Death of Human Larynx Carcinoma Cells. Biomolecules 2020; 10:biom10010069. [PMID: 31906414 PMCID: PMC7023477 DOI: 10.3390/biom10010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
We have shown that hydroxycobalamin (vitamin B12b) increases the toxicity of diethyldithiocarbamate (DDC) to tumor cells by catalyzing the formation of disulfiram (DSF) oxi-derivatives. The purpose of this study was to elucidate the mechanism of tumor cell death induced by the combination DDC + B12b. It was found that cell death induced by DDC + B12b differed from apoptosis, autophagy, and necrosis. During the initiation of cell death, numerous vacuoles formed from ER cisterns in the cytoplasm, and cell death was partially suppressed by the inhibitors of protein synthesis and folding, the IP3 receptor inhibitor as well as by thiols. At this time, a short-term rise in the expression of ER-stress markers BiP and PERK with a steady increase in the expression of CHOP were detected. After the vacuolization of the cytoplasm, functional disorders of mitochondria and an increase in the generation of superoxide anion in them occurred. Taken together, the results obtained indicate that DDC and B12b used in combination exert a synergistic toxic effect on tumor cells by causing severe ER stress, extensive ER vacuolization, and inhibition of apoptosis, which ultimately leads to the induction of paraptosis-like cell death.
Collapse
|
105
|
Affiliation(s)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
106
|
Labudda M, Różańska E, Prabucka B, Muszyńska E, Marecka D, Kozak M, Dababat AA, Sobczak M. Activity profiling of barley vacuolar processing enzymes provides new insights into the plant and cyst nematode interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:38-52. [PMID: 31605455 PMCID: PMC6913211 DOI: 10.1111/mpp.12878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vacuolar processing enzymes (VPEs) play an important role during regular growth and development and defence responses. Despite substantial attempts to understand the molecular basis of plant-cyst nematode interaction, the mechanism of VPEs functioning during this interaction remains unknown. The second-stage Heterodera filipjevi juvenile penetrates host roots and induces the formation of a permanent feeding site called a syncytium. To investigate whether infection with H. filipjevi alters plant host VPEs, the studies were performed in Hordeum vulgare roots and leaves on the day of inoculation and at 7, 14 and 21 days post-inoculation (dpi). Implementing molecular, biochemical and microscopic methods we identified reasons for modulation of barley VPE activity during interaction with H. filipjevi. Heterodera filipjevi parasitism caused a general decrease of VPE activity in infected roots, but live imaging of VPEs showed that their activity is up-regulated in syncytia at 7 and 14 dpi and down-regulated at 21 dpi. These findings were accompanied by tissue-specific VPE gene expression patterns. Expression of the barley cystatin HvCPI-4 gene was stimulated in leaves but diminished in roots upon infestation. External application of cyclotides that can be produced naturally by VPEs elicits in pre-parasitic juveniles vesiculation of their body, enhanced formation of granules, induction of exploratory behaviour (stylet thrusts and head movements), production of reactive oxygen species (ROS) and final death by methuosis. Taken together, down-regulation of VPE activity through nematode effectors promotes the nematode invasion rates and leads to avoidance of the induction of the plant proteolytic response and death of the invading juveniles.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Elżbieta Różańska
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Ewa Muszyńska
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Dorota Marecka
- Department of Biochemistry and Microbiology, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Marcin Kozak
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Center (CIMMYT)Soil Borne Pathogens ProgramP.K. 39 Emek06511AnkaraTurkey
| | - Mirosław Sobczak
- Department of Botany, Institute of BiologyWarsaw University of Life Sciences‐SGGWWarsawPoland
| |
Collapse
|
107
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|
108
|
Shisheva A, Sbrissa D, Hu B, Li J. Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J. Mol Neurobiol 2019; 56:8656-8667. [PMID: 31313076 PMCID: PMC11995980 DOI: 10.1007/s12035-019-01693-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients' gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
109
|
Nedungadi D, Binoy A, Vinod V, Vanuopadath M, Nair SS, Nair BG, Mishra N. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr Cancer 2019; 73:147-159. [PMID: 31690139 DOI: 10.1080/01635581.2019.1685113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
The rhizome of ginger (Zingiber officinale) a common culinary agent is also known for its medicinal activity. We have earlier reported that pure 6-shogaol, an important component of ginger induces paraptosis in triple negative breast cancer (MDA-MB-231) and non small cell lung (A549) cancer cells. However, the chemopreventive potential of the whole ginger extract in food remains to be elucidated. Here, we demonstrate for the first time that ginger extract (GE) triggers similar anticancer activity/paraptosis against the same cell lines but through different molecular mechanisms. Q-TOF LC-MS analysis of the extract showed the presence of several other metabolites along with 6-shogaol and 6-gingerol. GE induces cytoplasmic vacuolation through ER stress and dilation of the ER. Drastic decrease in the mitochondrial membrane potential and ATP production along with the excess generation of ROS contributed to mitochondrial dysfunction. Consequently, GE caused the translocation of apoptosis inducing factor to the nucleus leading to the fragmentation of DNA. Taken together, these show a novel mechanism for ginger extract induced cancer cell death that can be of potential interest for cancer preventive strategies.
Collapse
Affiliation(s)
- Divya Nedungadi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anupama Binoy
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Vivek Vinod
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
110
|
Leng C, Overeem AW, Cartón-Garcia F, Li Q, Klappe K, Kuipers J, Cui Y, Zuhorn IS, Arango D, van IJzendoorn SCD. Loss of MYO5B expression deregulates late endosome size which hinders mitotic spindle orientation. PLoS Biol 2019; 17:e3000531. [PMID: 31682603 PMCID: PMC6855566 DOI: 10.1371/journal.pbio.3000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022] Open
Abstract
Recycling endosomes regulate plasma membrane recycling. Recently, recycling endosome–associated proteins have been implicated in the positioning and orientation of the mitotic spindle and cytokinesis. Loss of MYO5B, encoding the recycling endosome–associated myosin Vb, is associated with tumor development and tissue architecture defects in the gastrointestinal tract. Whether loss of MYO5B expression affects mitosis is not known. Here, we demonstrate that loss of MYO5B expression delayed cytokinesis, perturbed mitotic spindle orientation, led to the misorientation of the plane of cell division during the course of mitosis, and resulted in the delamination of epithelial cells. Remarkably, the effects on spindle orientation, but not cytokinesis, were a direct consequence of physical hindrance by giant late endosomes, which were formed in a chloride channel–sensitive manner concomitant with a redistribution of chloride channels from the cell periphery to late endosomes upon loss of MYO5B. Rab7 availability was identified as a limiting factor for the development of giant late endosomes. In accordance, increasing rab7 availability corrected mitotic spindle misorientation and cell delamination in cells lacking MYO5B expression. In conclusion, we identified a novel role for MYO5B in the regulation of late endosome size control and identify the inability to control late endosome size as an unexpected novel mechanism underlying defects in cell division orientation and epithelial architecture. Loss of the recycling endosome-associated motor protein myosin Vb causes the formation of giant late endo-lysosomes; these in turn hinder the orientation of the mitotic spindle and chromosome segregation. Deregulated endosome size thus hampers faithful cell division.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W. Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Fernando Cartón-Garcia
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yingying Cui
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
111
|
Ikonomov OC, Sbrissa D, Shisheva A. Small molecule PIKfyve inhibitors as cancer therapeutics: Translational promises and limitations. Toxicol Appl Pharmacol 2019; 383:114771. [PMID: 31628917 DOI: 10.1016/j.taap.2019.114771] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 11/20/2022]
Abstract
Through synthesis of two rare phosphoinositides, PtdIns(3,5)P2 and PtdIns5P, the ubiquitously expressed phosphoinositide kinase PIKfyve is implicated in pleiotropic cellular functions. Small molecules specifically inhibiting PIKfyve activity cause cytoplasmic vacuolation in all dividing cells in culture yet trigger non-apoptotic death through excessive vacuolation only in cancer cells. Intriguingly, cancer cell toxicity appears to be inhibitor-specific suggesting that additional targets beyond PIKfyve are affected. One PIKfyve inhibitor - apilimod - is already in clinical trials for treatment of B-cell malignancies. However, apilimod is inactivated in cultured cells and exhibits unexpectedly low plasma levels in patients treated with maximum oral dosage. Thus, the potential widespread use of PIKfyve inhibitors as cancer therapeutics requires progress on multiple fronts: (i) advances in methods for isolating relevant cancer cells from individual patients; (ii) delineation of the molecular mechanisms potentiating the vacuolation induced by PIKfyve inhibitors in sensitive cancer cells; (iii) design of PIKfyve inhibitors with favorable pharmacokinetics; and (iv) development of effective drug combinations.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Diego Sbrissa
- Department of Urology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
112
|
Mardanshahi Z, Karimpour Malekshah A, Talebpour Amiri F, Valadan R. Effects of Benzo(a)pyrene on the endometrial receptivity and embryo implantation in mice: An experimental study. Int J Reprod Biomed 2019; 16. [PMID: 31417980 PMCID: PMC6600280 DOI: 10.18502/ijrm.v16i12.3680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022] Open
Abstract
Background Benzo(a)pyrene (BaP) as an environmental pollutant is ubiquitous in the environment and it has destructive effects on human health. So far, various studies have demonstrated that BaP can cause adverse effects on the female reproductive system, but the existing information is limited about the effects of BaP on the endometrial receptivity and embryo implantation. Objective The aim of this study was to investigate the effects of BaP on the endometrial receptivity and implantation in mice. Materials and Methods In this experimental study, 40 pregnant BALB/c mice were divided into 5 groups (n = 8/each) as follows: experimental groups received the doses of 100 µg/kg, 200 µg/kg, and 500 µg/kg BaP dissolved in corn oil, the control group received normal saline and sham group received corn oil. Pregnant mice administered these solutions from Day 1 to Day 5 of gestation by gavage. On Day 6, the mice were sacrificed. Then their embryos were counted and the hormonal, histomorphological and molecular analyses were performed on the mocusa of uterine tube. Results The data revealed that BaP reduces estrogen and progesterone levels, decreases the number of implantation site, endometrium thickness, uterine lumen diameter, stromal cells and endometrial glands, and blood vessels in the endometrium. However, the expression of Activin receptor-like kinase 5 and E-cadherin
genes was not changed by BaP with different doses. Conclusion The finding of this study showed that BaP can change estrogen and progesterone levels, and endometrial morphology leads to impairing the endometrial receptivity and decreasing the number of implantation site.
Collapse
Affiliation(s)
- Zeinab Mardanshahi
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
113
|
Zhang CY, Gao Y, Zhu RX, Qiao YN, Zhou JC, Zhang JZ, Li Y, Li SW, Fan SH, Lou HX. Prenylated Bibenzyls from the Chinese Liverwort Radula constricta and Their Mitochondria-Derived Paraptotic Cytotoxic Activities. JOURNAL OF NATURAL PRODUCTS 2019; 82:1741-1751. [PMID: 31268321 DOI: 10.1021/acs.jnatprod.8b00897] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine new prenylated bibenzyls, radstrictins A-I (1-9), and 11 known congeners were obtained from the Chinese liverwort Radula constricta. Their structures were identified by analysis of HRMS, NMR, and electronic circular dichroism data. Radstrictins A-F (1-6) were isolated as a racemate or scalemic mixtures. All the isolated compounds were subjected to cytotoxicity assessment. Methyl 2,4-dihydroxy-3-(3-methyl-2-butenyl)-6-phenethylbenzoate (10) exhibited significant activity against human lung cancer cell lines A549 and NCI-H1299 with IC50 values of 6.0 and 5.1 μM, respectively. Further research revealed that cell death triggered by 10 occurred via mitochondria-derived paraptosis.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Rong-Xiu Zhu
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250010 , People's Republic of China
| | - Ya-Nan Qiao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Jin-Chuan Zhou
- School of Pharmacy , Linyi University , Linyi 276000 , People's Republic of China
| | - Jiao-Zhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Yi Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Si-Wen Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Sheng-Hua Fan
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education , Shandong University , Jinan 250012 , People's Republic of China
| |
Collapse
|
114
|
Yang L, Song L, Zhao S, Ma C, Wu D, Wu YL. Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. Chem Biol Interact 2019; 304:131-138. [DOI: 10.1016/j.cbi.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
|
115
|
Polymers with distinctive anticancer mechanism that kills MDR cancer cells and inhibits tumor metastasis. Biomaterials 2019; 199:76-87. [DOI: 10.1016/j.biomaterials.2019.01.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
|
116
|
Colin M, Delporte C, Janky R, Lechon AS, Renard G, Van Antwerpen P, Maltese WA, Mathieu V. Dysregulation of Macropinocytosis Processes in Glioblastomas May Be Exploited to Increase Intracellular Anti-Cancer Drug Levels: The Example of Temozolomide. Cancers (Basel) 2019; 11:cancers11030411. [PMID: 30909495 PMCID: PMC6468498 DOI: 10.3390/cancers11030411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Macropinocytosis is a clathrin-independent endocytosis of extracellular fluid that may contribute to cancer aggressiveness through nutrient supply, recycling of plasma membrane and receptors, and exosome internalization. Macropinocytosis may be notably triggered by epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), two well-known markers for glioblastoma aggressiveness. Therefore, we studied whether the expression of key actors of macropinocytosis is modified in human glioma datasets. Strong deregulation has been evidenced at the mRNA level according to the grade of the tumor, and 38 macropinocytosis-related gene signatures allowed discrimination of the glioblastoma (GBM) samples. Honokiol-induced vacuolization was then compared to vacquinol-1 and MOMIPP, two known macropinocytosis inducers. Despite high phase-contrast morphological similarities, honokiol-induced vacuoles appeared to originate from both endocytosis and ER. Also, acridine orange staining suggested differences in the macropinosomes’ fate: their fusion with lysosomes appeared very limited in 3-(5-methoxy -2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP)-treated cells. Nevertheless, each of the compounds markedly increased temozolomide uptake by glioma cells, as evidenced by LC-MS. In conclusion, the observed deregulation of macropinocytosis in GBM makes them prone to respond to various compounds affecting their formation and/or intracellular fate. Considering that sustained macropinocytosis may also trigger cell death of both sensitive and resistant GBM cells, we propose to envisage macropinocytosis inducers in combination approaches to obtain dual benefits: increased drug uptake and additive/synergistic effects.
Collapse
Affiliation(s)
- Margaux Colin
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | | | - Anne-Sophie Lechon
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Gwendoline Renard
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium.
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Bruxelles, Belgium.
| |
Collapse
|
117
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
118
|
Tie D, Da X, Natsuga K, Yamada N, Yamamoto O, Morita E. Bullous Pemphigoid IgG Induces Cell Dysfunction and Enhances the Motility of Epidermal Keratinocytes via Rac1/Proteasome Activation. Front Immunol 2019; 10:200. [PMID: 30809225 PMCID: PMC6379344 DOI: 10.3389/fimmu.2019.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 02/03/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by the formation of blisters, in which autoantibodies mainly target type XVII collagen (ColXVII) expressed in basal keratinocytes. BP IgG is known to induce the internalization of ColXVII from the plasma membrane of keratinocytes through macropinocytosis. However, the cellular dynamics following ColXVII internalization have not been completely elucidated. BP IgG exerts a precise effect on cultured keratinocytes, and the morphological/functional changes in BP IgG-stimulated cells lead to the subepidermal blistering associated with BP pathogenesis. Based on the electron microscopy examination, BP IgG-stimulated cells exhibit alterations in the cell membrane structure and the accumulation of intracellular vesicles. These morphological changes in the BP IgG-stimulated cells are accompanied by dysfunctional mitochondria, increased production of reactive oxygen species, increased motility, and detachment. BP IgG triggers the cascade leading to metabolic impairments and stimulates cell migration in the treated keratinocytes. These cellular alterations are reversed by pharmacological inhibitors of Rac1 or the proteasome pathway, suggesting that Rac1 and proteasome activation are involved in the effects of BP IgG on cultured keratinocytes. Our study highlights the role of keratinocyte kinetics in the direct functions of IgG in patients with BP.
Collapse
Affiliation(s)
- Duerna Tie
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Xia Da
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nanako Yamada
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eishin Morita
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan,*Correspondence: Eishin Morita
| |
Collapse
|
119
|
CK2 inhibition with silmitasertib promotes methuosis-like cell death associated to catastrophic massive vacuolization of colorectal cancer cells. Cell Death Dis 2019; 10:73. [PMID: 30683840 PMCID: PMC6347595 DOI: 10.1038/s41419-019-1306-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Protein kinase CK2 is a highly conserved and constitutively active Ser/Thr-kinase that phosphorylates a large number of substrates, resulting in increased cell proliferation and survival. A known target of CK2 is Akt, a player in the PI3K/Akt/mTORC1 signaling pathway, which is aberrantly activated in 32% of colorectal cancer (CRC) patients. On the other hand, mTORC1 plays an important role in the regulation of protein synthesis, cell growth, and autophagy. Some studies suggest that CK2 regulates mTORC1 in several cancers. The most recently developed CK2 inhibitor, silmitasertib (formerly CX-4945), has been tested in phase I/II trials for cholangiocarcinoma and multiple myeloma. This drug has been shown to induce autophagy and enhance apoptosis in pancreatic cancer cells and to promote apoptosis in non-small cell lung cancer cells. Nevertheless, it has not been tested in studies for CRC patients. We show in this work that inhibition of CK2 with silmitasertib decreases in vitro tumorigenesis of CRC cells in response to G2/M arrest, which correlates with mTORC1 inhibition and formation of large cytoplasmic vacuoles. Notably, molecular markers indicate that these vacuoles derive from massive macropinocytosis. Altogether, these findings suggest that an aberrantly elevated expression/activity of CK2 may play a key role in CRC, promoting cell viability and proliferation in untreated cells, however, its inhibition with silmitasertib promotes methuosis-like cell death associated to massive catastrophic vacuolization, accounting for decreased tumorigenicity at later times. These characteristics of silmitasertib support a potential therapeutic use in CRC patients and probably other CK2-dependent cancers.
Collapse
|
120
|
Li Z, Mbah NE, Overmeyer JH, Sarver JG, George S, Trabbic CJ, Erhardt PW, Maltese WA. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer 2019; 19:77. [PMID: 30651087 PMCID: PMC6335761 DOI: 10.1186/s12885-019-5288-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background Synthetic indolyl- pyridinyl- propenones (IPPs) induce methuosis, a form of non-apoptotic cell death, in glioblastoma and other cancer cell lines. Methuosis is characterized by accumulation of cytoplasmic vacuoles derived from macropinosomes and late endosomes, followed by metabolic failure and rupture of the plasma membrane. However, not all IPPs that cause vacuolization are cytotoxic. The main goals of the present study were to identify key signaling pathways that contribute to methuosis induced by cytotoxic IPPs and to evaluate the anti-tumor potential of a prototype IPP in vivo. Methods We utilized metabolic flux analysis, glucose uptake, immunoblotting, and selective pharmacological inhibitors to compare the effects of closely related cytotoxic and non-cytotoxic IPPs in cultured glioblastoma cells. To determine whether the use of methuosis-inducing IPPs might be feasible in a therapeutic context, we quantified the distribution of our lead IPP compound, MOMIPP, in mouse plasma and brain, and tested its ability to inhibit tumor growth in an intracerebral glioblastoma xenograft model. Results The cytotoxic IPP compound, MOMIPP, causes early disruptions of glucose uptake and glycolytic metabolism. Coincident with these metabolic changes, MOMIPP selectively activates the JNK1/2 stress kinase pathway, resulting in phosphorylation of c-Jun, Bcl-2 and Bcl-xL. At the same concentration, the non-cytotoxic analog, MOPIPP, does not activate these pathways. Pharmacologic inhibition of JNK activity promotes survival, even when cells are extensively vacuolated, but suppression of c-Jun transcriptional activity offers no protection. MOMIPP readily penetrates the blood-brain barrier and is moderately effective in suppressing progression of intracerebral glioblastoma xenografts. Conclusions The results suggest that interference with glucose uptake and induction of JNK-mediated phosphorylation of pro-survival members of the Bcl-2 family represent key events in the methuosis death process. In addition to providing new insights into the underlying molecular mechanism of methuosis, the results indicate that compounds of the cytotoxic IPP class may have potential for further development as therapeutic agents for brain tumors. Electronic supplementary material The online version of this article (10.1186/s12885-019-5288-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zehui Li
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Nneka E Mbah
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Jean H Overmeyer
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Jeffrey G Sarver
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Sage George
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States
| | - Christopher J Trabbic
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43606, USA
| | - William A Maltese
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, 43614, United States.
| |
Collapse
|
121
|
Surface-enhanced Raman spectroscopy based 3D spheroid culture for drug discovery studies. Talanta 2019; 191:390-399. [DOI: 10.1016/j.talanta.2018.08.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
|
122
|
Szekacs I, Farkas E, Gemes BL, Takacs E, Szekacs A, Horvath R. Integrin targeting of glyphosate and its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells revealed by label-free optical biosensing. Sci Rep 2018; 8:17401. [PMID: 30479368 PMCID: PMC6258691 DOI: 10.1038/s41598-018-36081-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
This study is a discovery of interesting and far reaching properties of the world leading herbicide active ingredient glyphosate. Here we demonstrate the cell adhesion-modifying characteristics of glyphosate affecting cellular interactions via Arg-Gly-Asp (RGD)-dependent integrins. This conclusion was supported by the observations that a glyphosate surface coating induced integrin-specific cell adhesion, while glyphosate in solution inhibited cell adhesion on an RGD-displaying surface. A sensitive, real-time, label-free, whole cell approach was used to monitor the cell adhesion kinetic processes with excellent data quality. The half maximal inhibitory concentration (IC50) for glyphosate was determined to be 0.47 ± 0.07% (20.6 mM) in serum-free conditions. A three-dimensional dissociation constant of 0.352 mM was calculated for the binding between RGD-specific integrins in intact MC3T3-E1 cells and soluble glyphosate by measuring its competition for RGD-motifs binding, while the affinity of those RGD-specific integrins to the RGD-motifs was 5.97 µM. The integrin-targeted affinity of glyphosate was proven using competitive binding assays to recombinant receptor αvβ3. The present study shows not only ligand-binding properties of glyphosate, but also illustrates its remarkable biomimetic power in the case of cell adhesion.
Collapse
Affiliation(s)
- Inna Szekacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Eniko Farkas
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
- Subdoctoral School of Molecular and Nanotechnologies, Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200, Veszprém, Hungary
| | - Borbala Leticia Gemes
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Eszter Takacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andras Szekacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary.
| |
Collapse
|
123
|
Du S, Sarver JG, Trabbic CJ, Erhardt PW, Schroering A, Maltese WA. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother Pharmacol 2018; 83:237-254. [PMID: 30426158 DOI: 10.1007/s00280-018-3726-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE 3-(6-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (6-MOMIPP) is a novel indole-based chalcone that disrupts microtubules. The present study aims to define the mechanism through which 6-MOMIPP induces cell death and to evaluate the efficacy of the compound in penetrating the blood-brain barrier and inhibiting growth of glioblastoma xenografts. METHODS The effects of 6-MOMIPP were evaluated in cultured U251 glioblastoma cells, using viability, flow cytometry, and tubulin polymerization assays. Scintillation proximity and tubulin crosslinking methods were used to identify the binding site of 6-MOMIPP on tubulin, and western blots were performed to define the signaling pathways that contribute to cell death. LC/MS assays were used to study the pharmacokinetic behavior of 6-MOMIPP in mice. Subcutaneous and intracerebral xenograft models were utilized to assess the effects of 6-MOMIPP on growth of U251 glioblastoma in vivo. RESULTS The findings indicate that 6-MOMIPP targets the colchicine site on β-tubulin. At concentrations ≥ 250 nm, 6-MOMIPP induces mitotic arrest, caspase activation and loss of cell viability. Cells are protected by caspase inhibitors, pointing to an apoptotic mechanism of cell death. Loss of cell viability is preceded by activation of Cdk1(Cdc2) and phosphorylation of Bcl-2 and Bcl-xL. Inhibition of both events with a Cdk1 inhibitor prevents cell death. 6-MOMIPP has broad activity against the viability of multiple glioblastoma, melanoma and lung carcinoma cell lines. Viability of normal cells, including differentiated neurons, is not significantly affected at a drug concentration (1 µM) that reduces viability in most cancer lines. Pharmacokinetic studies in mice show that concentrations of 6-MOMIPP in the brain mirror those in the plasma, indicating that 6-MOMIPP readily penetrates the blood-brain barrier. Studies with mice bearing human U251 glioblastoma xenografts demonstrate that 6-MOMIPP is effective in suppressing growth of subcutaneous and intracerebral tumors without causing general toxicity. CONCLUSIONS The results indicate that 6-MOMIPP is a novel microtubule disruptor that targets the colchicine binding site on β-tubulin to induce mitotic arrest and cell death. The ability of 6-MOMIPP to penetrate the blood-brain barrier and inhibit growth of glioblastoma xenografts suggests that it warrants further preclinical evaluation as potential small-molecule therapeutic that may have advantages in treating primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Shengnan Du
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Christopher J Trabbic
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Allen Schroering
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
124
|
Zheng T, Gao Y, Deng X, Liu H, Liu J, Liu R, Shao J, Li Y, Jia L. Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32946-32954. [PMID: 30179007 DOI: 10.1021/acsami.8b06804] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphdiyne (GDY) and graphene are regarded as two promising two-dimensional carbon-based materials, which have unique planar structure and novel electronic properties. Differences between the two carbon allotropes in their physicochemistry biology and cytotoxicity have never been explored. Here, we chemically functionalized the surface of the two carbon allotropes using similar oxidation processes and compared their physicochemistry, biology, and mutagenesis. Graphene oxide (GO) and GDY oxide (GDYO) showed similarities in their size, morphology, and physical spectral characteristics, excepting the differences in sp- and sp2-hybridizations and Fourier transform infrared spectroscopy. GDYO was well soluble in various media. In contrast, GO was only soluble in H2O, but kinetically aggregated in 0.9% NaCl, phosphate buffered saline, and cell media within 24 h incubation when its concentrations increased. GO nanoparticles adhered and aggregated to the surface of a human hepatocyte membrane, resulting in cell membrane ruffle, methuosis, and apoptosis. Adhesion of GO to cells caused cell stress and induced reactive oxygen species. In contrast, GDYO did not adhere to the cell membrane to produce the related consequences. Both GDYO and GO showed in vivo mutagenesis potential but no erythrocyte-killing effect, and both were antioxidant and bioequivalent at binding to single-stranded DNA and doxorubicin, thus causing fluorescence quenching. The present study significantly enriches our existing knowledge of GO/alkene and GDYO/alkyne chemistry.
Collapse
Affiliation(s)
- Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Xiaoxiao Deng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Ran Liu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy , Fuzhou University , Fuzhou 350002 , China
| |
Collapse
|
125
|
Gong X, Sun R, Gao Z, Han W, Liu Y, Zhao L, Jing L, Yao X, Sun X. Tubeimoside 1 Acts as a Chemotherapeutic Synergist via Stimulating Macropinocytosis. Front Pharmacol 2018; 9:1044. [PMID: 30319403 PMCID: PMC6169148 DOI: 10.3389/fphar.2018.01044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/27/2018] [Indexed: 01/09/2023] Open
Abstract
Macropinocytosis is a highly conserved endocytic process which characterizes the engulfment of extracellular fluid and its contents into cells via large, heterogeneous vacuoles known as macropinosomes. Tubeimoside-1 (TBM1) is a low toxic triterpenoid saponin extracted from a traditional Chinese herb Bolbostemma paniculatum (Maxim.). TBM1 stimulates a quick accumulation of numerous phase-lucent cytoplasmic vacuoles in multiple colorectal cancer (CRC) cell lines. These vacuoles can be termed as macropinosomes that efficiently engulf lucifer yellow. These vesicles are not overlaps with endocytic organelle tracers, such as ERTracker, LysoTracker and mitoTracker. These vacuoles induced by TBM1 partially incorporate into lysosomes. Transmission electron microscope indicates membrane ruffling to form lamellipodia. Protrusions collapse onto and then fuse back with the plasma membrane to generate these large endocytic vacuoles. Notably, TBM1 efficiently trafficks dextrans into heterotopic xenografts in vivo, thus provide consolidated evidence that the vacuolization can be mainly defined as macropinocytosis. TBM1 downregulates cell viability and increases PI-positive, but not highlighted Hoechst 33342-positive cells. TBM1 induced cell death can be ascribed as methuosis by hyperstimulation of macropinocytosis which can be compromised by amiloride derivative 5-(Nethyl-N-isopropyl). Light chain 3 II is recruited to these vesicles to stimulate macropinocytosis. The cell death and vacuoles can be significantly neutralized by chloroquine, but can not be the inhibited by 3-methyladenine. TBM1 can coordinate with 5-FU to exert toxicity reducing and efficacy enhancing effects in vivo by increasing the uptake of the latter without hepatic injury. In conclusion, TBM1 effectively induces in vitro and in vivo macropinocytosis which can traffick small molecules into CRC cells. It is an attractive drug transporter and can be harnessed as a chemotherapeutic synergist with translational potential.
Collapse
Affiliation(s)
- Xianling Gong
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ruibo Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuowei Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Shunde Hospital, Southern Medical University, Foshan, China
| | - Weili Han
- School of Public Health, Guangzhou, China
| | - Yawei Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Jing
- Traditional Chinese Medicine Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Yao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
126
|
Sbrissa D, Naisan G, Ikonomov OC, Shisheva A. Apilimod, a candidate anticancer therapeutic, arrests not only PtdIns(3,5)P2 but also PtdIns5P synthesis by PIKfyve and induces bafilomycin A1-reversible aberrant endomembrane dilation. PLoS One 2018; 13:e0204532. [PMID: 30240452 PMCID: PMC6150535 DOI: 10.1371/journal.pone.0204532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
PIKfyve, an evolutionarily conserved kinase synthesizing PtdIns5P and PtdIns(3,5)P2, is crucial for mammalian cell proliferation and viability. Accordingly, PIKfyve inhibitors are now in clinical trials as anti-cancer drugs. Among those, apilimod is the most promising, yet its potency to inhibit PIKfyve and affect endomembrane homeostasis is only partially characterized. We demonstrate here for the first time that apilimod powerfully inhibited in vitro synthesis of PtdIns5P along with that of PtdIns(3,5)P2. HPLC-based resolution of intracellular phosphoinositides (PIs) revealed that apilimod triggered a marked reduction of both lipids in the context of intact cells. Notably, there was also a profound rise in PtdIns3P resulting from arrested PtdIns3P consumption for PtdIns(3,5)P2 synthesis. As typical for PIKfyve inhibition and the concomitant PtdIns(3,5)P2 reduction, apilimod induced the appearance of dilated endomembrane structures in the form of large translucent cytoplasmic vacuoles. Remarkably, bafilomycin A1 (BafA1) fully reversed the aberrant cell phenotype back to normal and completely precluded the appearance of cytoplasmic vacuoles when added prior to apilimod. Inspection of the PI profiles ruled out restoration of the reduced PtdIns(3,5)P2 pool as a molecular mechanism underlying BafA1 rescue. Rather, we found that BafA1 markedly attenuated the PtdIns3P elevation under PIKfyve inhibition. This was accompanied by profoundly decreased endosomal recruitment of fusogenic EEA1. Together, our data demonstrate that apilimod inhibits not only PtdIns(3,5)P2 but also PtdIns5P synthesis and that the cytoplasmic vacuolization triggered by the inhibitor is precluded or reversed by BafA1 through a mechanism associated, in part, with reduction in both PtdIns3P levels and EEA1 membrane recruitment.
Collapse
Affiliation(s)
- Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan Naisan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
127
|
Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, Afford S, Gaston K, Jayaraman PS, Satayavivad J. CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism. Cancers (Basel) 2018; 10:E283. [PMID: 30142881 PMCID: PMC6162756 DOI: 10.3390/cancers10090283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α' catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings.
Collapse
Affiliation(s)
- Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Philip Kitchen
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
128
|
Cho H, Geno E, Patoor M, Reid A, McDonald R, Hild M, Jenkins JL. Indolyl-Pyridinyl-Propenone-Induced Methuosis through the Inhibition of PIKFYVE. ACS OMEGA 2018; 3:6097-6103. [PMID: 30221232 PMCID: PMC6130785 DOI: 10.1021/acsomega.8b00202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Methuosis is a form of nonapoptotic cell death characterized by the accumulation of macropinosome-derived vacuoles. Herein, we identify PIKFYVE, a class III phosphoinositide (PI) kinase, as the protein target responsible for the methuosis-inducing activity of indolyl-pyridinyl-propenones (3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one). We further characterize the effects of chemical substitutions at the 2- and 5-indolyl positions on cytoplasmic vacuolization and PIKFYVE binding and inhibitory activity. Our study provides a better understanding of the mechanism of methuosis-inducing indolyl-pyridinyl-propenones.
Collapse
Affiliation(s)
- Hyelim Cho
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Erin Geno
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maude Patoor
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam Reid
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Rick McDonald
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Marc Hild
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremy L. Jenkins
- Chemical
Biology and Therapeutics, Novartis Institutes
for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
129
|
Huang W, Sun X, Li Y, He Z, Li L, Deng Z, Huang X, Han S, Zhang T, Zhong J, Wang Z, Xu Q, Zhang J, Deng X. Discovery and Identification of Small Molecules as Methuosis Inducers with in Vivo Antitumor Activities. J Med Chem 2018; 61:5424-5434. [PMID: 29878764 DOI: 10.1021/acs.jmedchem.8b00753] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methuosis is a novel nonapoptotic mode of cell death characterized by vacuole accumulation in the cytoplasm. In this article, we describe a series of azaindole-based compounds that cause vacuolization in MDA-MB-231 cells. The most potent vacuole inducer, compound 13 (compound 13), displayed differential cytotoxicities against a broad panel of cancer cell lines, such as MDA-MB-231, A375, HCT116, and MCF-7, but it did not inhibit the growth of the nontumorigenic epithelial cell line MCF-10A. A mechanism study confirmed that the cell death was caused by inducing methuosis. Furthermore, compound 13 exhibited substantial pharmacological efficacy in the suppression of tumor growth in a xenograft mouse model of MDA-MB-231 cells without apparent side effects, which makes this compound the first example of a methuosis inducer with potent in vivo efficacy. These results demonstrate that methuosis inducers might serve as novel therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xihuan Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhixiang He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhou Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Xiaoxing Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Shang Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jiaji Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China.,Medical College of Xiamen University , Xiamen , Fujian 361102 , China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts 02129 , United States
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences , Xiamen University , Xiamen , Fujian 361102 , China.,State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products , Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
130
|
Zhang C, Zhang A, Hou W, Li T, Wang K, Zhang Q, de la Fuente JM, Jin W, Cui D. Mimicking Pathogenic Invasion with the Complexes of Au 22(SG) 18-Engineered Assemblies and Folic Acid. ACS NANO 2018; 12:4408-4418. [PMID: 29723464 DOI: 10.1021/acsnano.8b00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological systems provide the richest spectrum of sophisticated design for materials engineering. We herein provide a paradigm of Au22(SG)18-engineered (SG, glutathione thiolate) and hydrogen bonds engaged assemblies for mimicking capsid protein self-assembly. The water-evaporation-induced self-assembly method allows discrete ultrasmall gold nanoclusters (GNCs) to be self-assembled into super-GNCs assemblies (SGNCs) ranging from nano-, meso- to microscale in water-dimethyl sulfoxide binary solvents in a template-free manner. After removing free and hydration layer water molecules, the formation of SGNCs is engaged by the collective cohesion of hydrogen bonds between glutathione ligands of gradually approaching GNCs. Then, a series of tightly orchestrated cellular events induced by the complexes of Au22(SG)18-engineered assemblies and folic acid are demonstrated to mimic the invasion of eukaryotic cells by pathogens. First, the activation of macropinocytosis mimics the macropinocytic entry used by the pathogens to invade host cells. Then the cytoplasmic vacuolization is a mimicry of vacuolating effects induced by the oligomeric vacuolating toxins secreted by some bacteria. Lastly, the escaping from macropinosomes into cytosol is in a vacuolating toxin's strategy. The findings demonstrate the capabilities of artificial pathogens to emulate the structures and functions of natural pathogens.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wenxiu Hou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Tianliang Li
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC) , Universidad de Zaragoza & CIBER-BBN , 50009 Zaragoza , Spain
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
131
|
Lloyd-Lewis B, Krueger CC, Sargeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem 2018; 293:4244-4261. [PMID: 29343516 PMCID: PMC5868265 DOI: 10.1074/jbc.ra118.001777] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 12/19/2022] Open
Abstract
Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both in vivo and in vitro, that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death. To further investigate the impact of Stat3 on lysosomal function, we conducted a proteomic screen of changes in lysosomal membrane protein components induced by Stat3 using an iron nanoparticle enrichment strategy. Our results show that Stat3 activation not only elevates the levels of known membrane proteins but results in the appearance of unexpected factors, including cell surface proteins such as annexins and flotillins. These data suggest that Stat3 may coordinately regulate endocytosis, intracellular trafficking, and lysosome biogenesis to drive lysosome-mediated cell death in mammary epithelial cells. The methodologies described in this study also provide significant improvements to current techniques used for the purification and analysis of the lysosomal proteome.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| | - Caroline C Krueger
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Timothy J Sargeant
- the Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia, and
| | - Michael E D'Angelo
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Michael J Deery
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Renata Feret
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Julie A Howard
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Kathryn S Lilley
- the Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | - Christine J Watson
- From the Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom,
| |
Collapse
|
132
|
Abstract
The cell surface molecule CD99 has gained interest because of its involvement in regulating cell differentiation and adhesion/migration of immune and tumor cells. However, the molecule plays an intriguing and dual role in different cell types. In particular, it acts as a requirement for cell malignancy or as an oncosuppressor in tumors. In addition, the gene encodes for two different isoforms, which also act in opposition inside the same cell. This review highlights key studies focusing on the dual role of CD99 and its isoforms and discusses major critical issues, challenges, and strategies for overcoming those challenges. The review specifically underscores the properties that make the molecule an attractive therapeutic target and identifies new relationships and areas of study that may be exploited. The elucidation of the spatial and temporal control of the expression of CD99 in normal and tumor cells is required to obtain a full appreciation of this molecule and its signaling.
Collapse
|
133
|
Sander P, Mostafa H, Soboh A, Schneider JM, Pala A, Baron AK, Moepps B, Wirtz CR, Georgieff M, Schneider M. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP. Oncotarget 2018; 8:35124-35137. [PMID: 28410232 PMCID: PMC5471040 DOI: 10.18632/oncotarget.16703] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022] Open
Abstract
Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-pulp stem cells (DPSCs) served as controls. A major finding was that an exogenous ATP concentration of as little as 1 μM counter regulated the Vac-induced cell death. Studies using carvacrol, an inhibitor of transient receptor potential cation channel, subfamily M, member 7 (TRPM7), demonstrated that the ATP-inducible inhibitory effect is likely to be via TRPM7. Exogenous ATP is of relevance in GBM with large necrotic areas. Our results support the use of GBM cultures with different grades of malignancy to address their sensitivity to methuosis. The video-microscopy approach presented here allows decoding of signaling pathways as well as mechanisms of chemotherapeutic resistance by long-term observation. Before implementing Vac as a novel therapeutic drug in GBM, cells from each individual patient need to be assessed for their ATP sensitivity. In summary, the current investigation supports the concept of methuosis, described as non-apoptotic cell death and a promising approach for GBM treatment. Tissue-resident ATP/necrosis may interfere with this cell-death pathway but can be overcome by a natural compound, carvacrol that even penetrates the blood-brain barrier.
Collapse
Affiliation(s)
- Philip Sander
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Haouraa Mostafa
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Ayman Soboh
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Julian M Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Andrej Pala
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, 89312 Guenzburg, Germany
| | - Ann-Kathrin Baron
- Department of Operative Dentistry and Periodontology, University Hospital Ulm, 89081 Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, University Hospital Ulm, 89081 Ulm, Germany
| | - C Rainer Wirtz
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, 89312 Guenzburg, Germany
| | - Michael Georgieff
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Marion Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
134
|
Manara MC, Terracciano M, Mancarella C, Sciandra M, Guerzoni C, Pasello M, Grilli A, Zini N, Picci P, Colombo MP, Morrione A, Scotlandi K. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget 2018; 7:79925-79942. [PMID: 27835596 PMCID: PMC5346761 DOI: 10.18632/oncotarget.13160] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
CD99 is a cell surface molecule that has emerged as a novel target for Ewing sarcoma (EWS), an aggressive pediatric bone cancer. This report provides the first evidence of methuosis in EWS, a non-apoptotic form of cell death induced by an antibody directed against the CD99 molecule. Upon mAb triggering, CD99 induces an IGF-1R/RAS/Rac1 complex, which is internalized into RAB5-positive endocytic vacuoles. This complex is then dissociated, with the IGF-1R recycling to the cell membrane while CD99 and RAS/Rac1 are sorted into immature LAMP-1-positive vacuoles, whose excessive accumulation provokes methuosis. This process, which is not detected in CD99-expressing normal mesenchymal cells, is inhibited by disruption of the IGF-1R signaling, whereas enhanced by IGF-1 stimulation. Induction of IGF-1R/RAS/Rac1 was also observed in the EWS xenografts that respond to anti-CD99 mAb, further supporting the role of the IGF/RAS/Rac1 axis in the hyperstimulation of macropinocytosis and selective death of EWS cells. Thus, we describe a vulnerability of EWS cells, including those resistant to standard chemotherapy, to a treatment with anti-CD99 mAb, which requires IGF-1R/RAS signaling but bypasses the need for their direct targeting. Overall, we propose CD99 targeting as new opportunity to treat EWS patients resistant to canonical apoptosis-inducing agents.
Collapse
Affiliation(s)
- Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Mario Terracciano
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Caterina Mancarella
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Marika Sciandra
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Clara Guerzoni
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Andrea Grilli
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Nicoletta Zini
- CNR, National Research Council of Italy, Institute of Molecular Genetics, Bologna 40136, Italy.,SC Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Piero Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori," Milan 20133, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| |
Collapse
|
135
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
136
|
Liu X, Yang W, Guan Z, Yu W, Fan B, Xu N, Liao DJ. There are only four basic modes of cell death, although there are many ad-hoc variants adapted to different situations. Cell Biosci 2018; 8:6. [PMID: 29435221 PMCID: PMC5796572 DOI: 10.1186/s13578-018-0206-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
There have been enough cell death modes delineated in the biomedical literature to befuddle all cell death researchers. Mulling over cell death from the viewpoints of the host tissue or organ and of the host animal, we construe that there should be only two physiological cell death modes, i.e. apoptosis and senescent death (SD), as well as two pathological modes, i.e. necrosis and stress-induced cell death (SICD). Other death modes described in the literature are ad-hoc variants or coalescences of some of these four basic ones in different physiological or pathological situations. SD, SICD and necrosis kill useful cells and will thus trigger regeneration, wound healing and probably also scar formation. SICD and necrosis will likely instigate inflammation as well. Apoptosis occurs as a mechanism to purge no-longer useful cells from a tissue via phagocytosis by cells with phagocytic ability that are collectively tagged by us as scavengers, including macrophages; therefore apoptosis is not followed by regeneration and inflammation. The answer for the question of “who dies” clearly differentiates apoptosis from SD, SICD and necrosis, despite other similarities and disparities among the four demise modes. Apoptosis cannot occur in cell lines in vitro, because cell lines are immortalized by reprogramming the death program of the parental cells, because in culture there lack scavengers and complex communications among different cell types, and because culture condition is a stress to the cells. Several issues of cell death that remain enigmatic to us are also described for peers to deliberate and debate.
Collapse
Affiliation(s)
- Xingde Liu
- 1Department of Cardiology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Wenxiu Yang
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Zhizhong Guan
- 3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China
| | - Wenfeng Yu
- 3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China
| | - Bin Fan
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China
| | - Ningzhi Xu
- 4Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - D Joshua Liao
- 2Department of Pathology, Guizhou Medical University Hospital, Guiyang, 550004 Guizhou People's Republic of China.,3Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004 People's Republic of China.,4Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
137
|
Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal 2018; 12:55-68. [PMID: 29305692 PMCID: PMC5842202 DOI: 10.1007/s12079-017-0445-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022] Open
Abstract
CD99 is a cell surface protein with unique features and only partly defined mechanisms of action. This molecule is involved in crucial biological processes, including cell adhesion, migration, death, differentiation and diapedesis, and it influences processes associated with inflammation, immune responses and cancer. CD99 is frequently overexpressed in many types of tumors, particularly pediatric tumors including Ewing sarcoma and specific subtypes of leukemia. Engagement of CD99 induces the death of malignant cells through non-conventional mechanisms. In Ewing sarcoma, triggering of CD99 by specific monoclonal antibodies activates hyperstimulation of micropinocytosis and leads to cancer cells killing through a caspase-independent, non-apoptotic pathway resembling methuosis. This process is characterized by extreme accumulation of vacuoles in the cytoplasmic space, which compromises cell viability, requires the activation of RAS-Rac1 downstream signaling and appears to be rather specific for tumor cells. In addition, anti-CD99 monoclonal antibodies exhibit antitumor activities in xenografts in the absence of immune effector cells or complement proteins. Overall, these data establish CD99 as a new opportunity to treat patients with high expression of CD99, particularly those that are resistant to canonical apoptosis-inducing agents.
Collapse
Affiliation(s)
- Michela Pasello
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Maria Cristina Manara
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Lab, CRS Development of Biomolecular Therapies, Orthopaedic Rizzoli Institute, via di Barbiano 1/10, 40136, Bologna, Italy.
| |
Collapse
|
138
|
Lin CH, Chan HS, Tsay HS, Funayama S, Kuo CL, Chung JG. Ethyl acetate fraction from methanol extraction of Vitis thunbergii var. taiwaniana induced G 0 /G 1 phase arrest via inhibition of cyclins D and E and induction of apoptosis through caspase-dependent and -independent pathways in human prostate carcinoma DU145 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:41-51. [PMID: 28941016 DOI: 10.1002/tox.22491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Vitis thunbergii var. taiwaniana (VTT) is a wild grape native to Taiwan, belonging to the Vitaceae family and Vitis genus, and widely used as folk herbal medicine. It is traditionally used for the treatment of diarrhea, hypertension, neuroprotection, jaundice, and arthritis. We used the wild-collected VTT and sterilized them to establish the plant tissue culture, and then took the leaves for DNA sequencing to determine its original base. We use methanol to extract VTT in four different solvents: 1-butanol, n-hexane, ethyl acetate, and water. These four preliminary extracts were used to treat human prostate cancer DU145 cells in vitro. We use the flow cytometry to check the cell survival situation. Finally, we found the ethyl acetate layer roughing product (referred VTEA) in human prostate cancer apoptotic effects of cell line DU-145. In the present studies, we use the crude extract of VTT to examine whether or not it can induce apoptosis of DU145 cells in vitro. Viability assays for extracts of VTT treatment showed that it had dose-dependent effect on human prostate cancer DU145 cells. We also found that the extract of VTT induces time-dependent mitochondrial and intrinsic-dependent apoptosis pathways. The in vitro cytotoxic effects were investigated by cell cycle analysis and the determination of apoptotic DNA fragmentation in DU145 cells. The cell cycle analysis showed that extracts of VTT induced a significant increase in the number of cells in G0 /G1 phase. The extract of VTT induced chromatin changes and apoptosis of DU145 cells also were confirmed by DAPI and PI staining that were measured by fluorescence microscopy and flow cytometry, respectively. Finally, the expression of relevant proteins was analyzed by Western blot analysis. These results promoted us to further evaluate apoptosis associated proteins and elucidate the possible signal pathway in DU-145 cells after treated with the extract of VTT.
Collapse
Affiliation(s)
- Chia-Hsin Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Hsiao-Sung Chan
- Department and Graduate Institute of Applied Chemistry, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Hsin-Sheng Tsay
- Department and Graduate Institute of Applied Chemistry, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Shinji Funayama
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
139
|
Chen CH, Changou CA, Hsieh TH, Lee YC, Chu CY, Hsu KC, Wang HC, Lin YC, Lo YN, Liu YR, Liou JP, Yen Y. Dual Inhibition of PIK3C3 and FGFR as a New Therapeutic Approach to Treat Bladder Cancer. Clin Cancer Res 2017; 24:1176-1189. [PMID: 29222162 DOI: 10.1158/1078-0432.ccr-17-2066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/05/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022]
Abstract
Purpose: MPT0L145 has been developed as a FGFR inhibitor exhibiting significant anti-bladder cancer activity in vitro and in vivo via promoting autophagy-dependent cell death. Here, we aim to elucidate the underlying mechanisms.Experimental Design: Autophagy flux, morphology, and intracellular organelles were evaluated by Western blotting, transmission electron microscope, and fluorescence microscope. Molecular docking and surface plasmon resonance assay were performed to identify drug-protein interaction. Lentiviral delivery of cDNA or shRNA and CRISPR/Cas9-mediated genome editing was used to modulate gene expression. Mitochondrial oxygen consumption rate was measured by a Seahorse XFe24 extracellular flux analyzer, and ROS level was measured by flow cytometry.Results: MPT0L145 persistently increased incomplete autophagy and phase-lucent vacuoles at the perinuclear region, which were identified as enlarged and alkalinized late-endosomes. Screening of a panel of lipid kinases revealed that MPT0L145 strongly inhibits PIK3C3 with a Kd value of 0.53 nmol/L. Ectopic expression of PIK3C3 reversed MPT0L145-increased cell death and incomplete autophagy. Four residues (Y670, F684, I760, D761) at the ATP-binding site of PIK3C3 are important for the binding of MPT0L145. In addition, MPT0L145 promotes mitochondrial dysfunction, ROS production, and DNA damage, which may in part, contribute to cell death. ATG5-knockout rescued MPT0L145-induced cell death, suggesting simultaneous induction of autophagy is crucial to its anticancer activity. Finally, our data demonstrated that MPT0L145 is able to overcome cisplatin resistance in bladder cancer cells.Conclusions: MPT0L145 is a first-in-class PIK3C3/FGFR inhibitor, providing an innovative strategy to design new compounds that increase autophagy, but simultaneously perturb its process to promote bladder cancer cell death. Clin Cancer Res; 24(5); 1176-89. ©2017 AACR.
Collapse
Affiliation(s)
- Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun A Changou
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Chu
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- Graduate Institute of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Ni Lo
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
140
|
Shah KN, Ditto AJ, Crowder DC, Overmeyer JH, Tavana H, Maltese WA, Yun YH. Receptor-Mediated Attachment and Uptake of Hyaluronan Conjugates by Breast Cancer Cells. Mol Pharm 2017; 14:3968-3977. [PMID: 28981299 DOI: 10.1021/acs.molpharmaceut.7b00636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemotherapy, a mainstay modality for cancer, is often hindered by systemic toxicity and side effects. With the emergence of nanomedicine, the development of drug therapy has shifted toward targeted therapy. Hyaluronan (HA) is an ideal molecule as a targeted delivery system because many carcinomas overexpress HA receptors. We have conjugated resveratrol, a natural polyphenol, and 3-(5-methoxy, 2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), a chalcone, to HA with the goal of enhancing drug bioavailability and targeting triple negative breast cancers. We demonstrate the ability of HA conjugates to accumulate in the tumor interstitium within 6 h after tail vein injections. In vitro, these conjugates interact with their target receptors, which are overexpressed by triple negative breast cancer cells under static and physiological flow. These interactions result in enhanced uptake and efficacy of the therapeutic, as demonstrated by a reduced IC50 over that of nonconjugated drugs. Thus, HA offers a platform to solubilize, target, and enhance the efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- Kush N Shah
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center , Bryan, Texas 77807, United States
| | - Andrew J Ditto
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio 43614, United States
| | - Douglas C Crowder
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44016, United States
| | - Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio 43614, United States
| | | | - William A Maltese
- Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo , Toledo, Ohio 43614, United States
| | | |
Collapse
|
141
|
Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, Wilson JJ. In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes. J Am Chem Soc 2017; 139:14302-14314. [PMID: 28948792 PMCID: PMC8091166 DOI: 10.1021/jacs.7b08640] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seven rhenium(I) complexes of the general formula fac-[Re(CO)3(NN)(OH2)]+ where NN = 2,2'-bipyridine (8), 4,4'-dimethyl-2,2'-bipyridine (9), 4,4'-dimethoxy-2,2'-bipyridine (10), dimethyl 2,2'-bipyridine-4,4'-dicarboxylate (11), 1,10-phenanthroline (12), 2,9-dimethyl-1,10-phenanthroline (13), or 4,7-diphenyl-1,10-phenanthroline (14), were synthesized and characterized by 1H NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography. With the exception of 11, all complexes exhibited 50% growth inhibitory concentration (IC50) values that were less than 20 μM in HeLa cells, indicating that these compounds represent a new potential class of anticancer agents. Complexes 9, 10, and 13 were as effective in cisplatin-resistant cells as wild-type cells, signifying that they circumvent cisplatin resistance. The mechanism of action of the most potent complex, 13, was explored further by leveraging its intrinsic luminescence properties to determine its intracellular localization. These studies indicated that 13 induces cytoplasmic vacuolization that is lysosomal in nature. Additional in vitro assays indicated that 13 induces cell death without causing an increase in intracellular reactive oxygen species or depolarization of the mitochondrial membrane potential. Further studies revealed that the mode of cell death does not fall into one of the canonical categories such as apoptosis, necrosis, paraptosis, and autophagy, suggesting that a novel mode of action may be operative for this class of rhenium compounds. The in vivo biodistribution and metabolism of complex 13 and its 99mTc analogue 13* were also evaluated in naı̈ve mice. Complexes 13 and 13* exhibited comparable biodistribution profiles with both hepatic and renal excretion. High-performance liquid chromatography inductively coupled plasma mass-spectrometry (HPLC-ICP-MS) analysis of mouse blood plasma and urine postadministration showed considerable metabolic stability of 13, rendering this potent complex suitable for in vivo applications. These studies have shown the biological properties of this class of compounds and demonstrated their potential as promising theranostic anticancer agents that can circumvent cisplatin resistance.
Collapse
Affiliation(s)
- Kevin M. Knopf
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brendan L. Murphy
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Martin P. Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James’s Hospital and Trinity College Dublin, Dublin, Ireland
| | - Eszter Boros
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Suite 2301, Charlestown, MA 02129, USA
| | - Justin J. Wilson
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
142
|
Iriyama N, Hino H, Moriya S, Hiramoto M, Hatta Y, Takei M, Miyazawa K. The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells. Leuk Lymphoma 2017; 59:1439-1450. [DOI: 10.1080/10428194.2017.1376741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Noriyoshi Iriyama
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Masami Takei
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
143
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 2017; 1401:19-27. [DOI: 10.1111/nyas.13387] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Renyikun Yuan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| |
Collapse
|
144
|
Shiau JY, Nakagawa-Goto K, Lee KH, Shyur LF. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget 2017; 8:56942-56958. [PMID: 28915644 PMCID: PMC5593615 DOI: 10.18632/oncotarget.18183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic cancer among the breast cancer subgroups. A thorny issue for clinical therapy of TNBC is lack of an efficient targeted therapeutic strategy. We previously created a novel sesquiterpene lactone analog (named DETD-35) derived from plant deoxyelephantopin (DET) which exhibits potent effects against human TNBC MDA-MB-231 tumor growth in a xenograft mouse model. Here we studied the mechanisms of both DET and DETD-35 against MDA-MB-231 cells. DETD-35 (3-fold decreased in IC50) exhibited better anti-TNBC cell activity than DET as observed through induction of reactive oxygen species production (within 2 h treatment) and damage to the ER structures, resulting in ER-derived cytoplasmic vacuolation and ubiquitinated protein accumulation in the treated cells. Intriguingly, the effects of both compounds were blockaded by pretreatment with ROS scavengers, N-acetylcysteine and reduced glutathione, and protein synthesis inhibitor, cycloheximide. Further, knockdown of MEK upstream regulator RAF1 and autophagosomal marker LC3, and co-treatment with JNK or ERK1/2 inhibitor resulted in the most significant attenuation of DETD-35-induced morphological and molecular or biochemical changes in cancer cells, while the inhibitory effect of DET was not influenced by MAPK inhibitor treatment. Therefore, DETD-35 exerted both ER stress-mediated paraptosis and apoptosis, which may explain its superior activity to DET against TNBC cells. Although the chemotherapeutic drug paclitaxel induced vacuole-like structures in MDA-MB-231 cells, no paraptotic cell death features were detected. This study provides a strategy for combating TNBC through sesquiterpene lactone analogs by induction of oxidative and ER stresses that cause paraptosis-like cell death.
Collapse
Affiliation(s)
- Jeng-Yuan Shiau
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kyoko Nakagawa-Goto
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lie-Fen Shyur
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
145
|
Sun L, Li B, Su X, Chen G, Li Y, Yu L, Li L, Wei W. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis. J Med Chem 2017; 60:6638-6648. [PMID: 28678485 DOI: 10.1021/acs.jmedchem.7b00592] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.
Collapse
Affiliation(s)
- Lin Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Bin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Xiaohui Su
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Ge Chen
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai, 201210, China
| | - Yaqin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Linqian Yu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wanguo Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University , 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
146
|
Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol Cell Biochem 2017; 439:1-9. [PMID: 28770472 DOI: 10.1007/s11010-017-3130-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are produced from mammalian cells when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles. In this study we assessed the effects of MOPIPP, a novel indole-based chalcone, and vacuolin-1, a distinct triazine-based compound, on exosome production in cultured glioblastoma and 293T cells. Both compounds promote vacuolization of late endosome compartments and interfere with trafficking of late endosomes to lysosomes, without significant cytotoxicity. The results show that vacuolated cells treated with these compounds release exosomes with morphologies similar to untreated controls. However, both compounds trigger multi-fold increases in release of exosome marker proteins (e.g., CD63, Alix) in exosome fractions collected from equivalent numbers of cells. Despite the marked increase in exosome production, the profiles of selected miRNA cargoes carried by the exosomes were generally similar in cells treated with the compounds. Insofar as MOPIPP and vacuolin-1 seem able to increase the overall yield of exosomes from cultured cells, they might be useful for efforts to develop exosome-based therapeutics.
Collapse
|
147
|
Komissarov A, Demidyuk I, Safina D, Roschina M, Shubin A, Lunina N, Karaseva M, Kostrov S. Cytotoxic effect of co-expression of human hepatitis A virus 3C protease and bifunctional suicide protein FCU1 genes in a bicistronic vector. Mol Biol Rep 2017; 44:323-332. [PMID: 28748410 DOI: 10.1007/s11033-017-4113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Recent reports on various cancer models demonstrate a great potential of cytosine deaminase/5-fluorocytosine suicide system in cancer therapy. However, this approach has limited success and its application to patients has not reached the desirable clinical significance. Accordingly, the improvement of this suicide system is an actively developing trend in gene therapy. The purpose of this study was to explore the cytotoxic effect observed after co-expression of hepatitis A virus 3C protease (3C) and yeast cytosine deaminase/uracil phosphoribosyltransferase fusion protein (FCU1) in a bicistronic vector. A set of mono- and bicistronic plasmid constructs was generated to provide individual or combined expression of 3C and FCU1. The constructs were introduced into HEK293 and HeLa cells, and target protein synthesis as well as the effect of 5-fluorocytosine on cell death and the time course of the cytotoxic effect was studied. The obtained vectors provide for the synthesis of target proteins in human cells. The expression of the genes in a bicistronic construct provide for the cytotoxic effect comparable to that observed after the expression of genes in monocistronic constructs. At the same time, co-expression of FCU1 and 3C recapitulated their cytotoxic effects. The combined effect of the killer and suicide genes was studied for the first time on human cells in vitro. The integration of different gene therapy systems inducing cell death (FCU1 and 3C genes) in a bicistronic construct allowed us to demonstrate that it does not interfere with the cytotoxic effect of each of them. A combination of cytotoxic genes in multicistronic vectors can be used to develop pluripotent gene therapy agents.
Collapse
Affiliation(s)
- Alexey Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Ilya Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182.
| | - Dina Safina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Marina Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Andrey Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Nataliya Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Maria Karaseva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Sergey Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| |
Collapse
|
148
|
Rajasekharan SK, Lee JH, Ravichandran V, Lee J. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus. Sci Rep 2017; 7:6803. [PMID: 28754990 PMCID: PMC5533787 DOI: 10.1038/s41598-017-07074-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/22/2017] [Indexed: 02/03/2023] Open
Abstract
Bursaphelenchus xylophilus is a quarantined migratory endoparasite known to cause severe economic losses in pine forest ecosystems. The study presents the nematicidal effects of halogenated indoles on B. xylophilus and their action mechanisms. 5-Iodoindole and abamectin (positive control) at low concentration (10 µg/mL) presented similar and high nematicidal activities against B. xylophilus. 5-Iodoindole diminished fecundity, reproductive activities, embryonic and juvenile lethality and locomotor behaviors. Molecular interactions of ligands with invertebrate-specific glutamate gated chloride channel receptor reinforced the notion that 5-iodoindole, like abamectin, rigidly binds to the active sites of the receptor. 5-Iodoindole also induced diverse phenotypic deformities in nematodes including abnormal organ disruption/shrinkage and increased vacuolization. These findings suggest the prospective role of vacuoles in nematode death by methuosis. Importantly, 5-iodoindole was nontoxic to two plants, Brassica oleracea and Raphanus raphanistrum. Henceforth, the study warrants the application of iodoindoles in ecological environments to control the devastating pine destruction by B. xylophilus.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Vinothkannan Ravichandran
- Shandong University-Helmholtz Institute of Biotechnology, School of Life Science, Shandong University, Jinan, P.R. China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
149
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
150
|
John S, Sivakumar KC, Mishra R. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis. Front Mol Neurosci 2017; 10:171. [PMID: 28663722 PMCID: PMC5471305 DOI: 10.3389/fnmol.2017.00171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.
Collapse
Affiliation(s)
- Sebastian John
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - K C Sivakumar
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| | - Rashmi Mishra
- Disease Biology Program, Department of Neurobiology and Genetics, Rajiv Gandhi Centre for BiotechnologyThiruvananthapuram, India
| |
Collapse
|