101
|
Callejón-Leblic B, Selma-Royo M, Collado MC, Abril N, García-Barrera T. Impact of Antibiotic-Induced Depletion of Gut Microbiota and Selenium Supplementation on Plasma Selenoproteome and Metal Homeostasis in a Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7652-7662. [PMID: 34171188 PMCID: PMC9161447 DOI: 10.1021/acs.jafc.1c02622] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Selenium (Se) is a micronutrient involved in important health functions and it has been suggested to shape gut microbiota. Limited information on Se assimilation by gut microbes and the possible link with selenoproteins are available. For this purpose, conventional and gut microbiota-depleted BALB/c mice were fed a Se-supplemented diet. The absolute quantification of mice plasma selenoproteins was performed for the first time using heteroatom-tagged proteomics. The gut microbiota profile was analyzed by 16S rRNA gene sequencing. Se-supplementation modulated the concentration of the antioxidant glutathione peroxidase and the Se-transporter selenoalbumin as well as the metal homeostasis, being influenced by microbiota disruption, which suggests an intertwined mechanism. Se also modulated microbiota diversity and richness and increased the relative abundance of some health-relevant taxa (e.g., families Christensenellaceae, Ruminococcaceae, and Lactobacillus genus). This study demonstrated the potential beneficial effects of Se on gut microbiota, especially after antibiotic-treatment and the first associations between specific bacteria and plasma selenoproteins.
Collapse
Affiliation(s)
- Belén Callejón-Leblic
- Research
Center of Natural Resources, Health and the Environment (RENSMA),
Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
| | - Marta Selma-Royo
- Department
of Biotechnology, Institute of Agrochemistry
and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, 46980 Valencia, Spain
| | - María Carmen Collado
- Department
of Biotechnology, Institute of Agrochemistry
and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, Paterna, 46980 Valencia, Spain
| | - Nieves Abril
- Department
of Biochemistry and Molecular Biology, University
of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Tamara García-Barrera
- Research
Center of Natural Resources, Health and the Environment (RENSMA),
Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Avenue, 21007 Huelva, Spain
- . Phone: +34 959219962
| |
Collapse
|
102
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
103
|
Abstract
Tremendous progress has been made in the field of ferroptosis since this regulated cell death process was first named in 2012. Ferroptosis is initiated upon redox imbalance and driven by excessive phospholipid peroxidation. Levels of multiple intracellular nutrients (iron, selenium, vitamin E and coenzyme Q10) are intimately related to the cellular antioxidant system and participate in the regulation of ferroptosis. Dietary intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) regulates ferroptosis by directly modifying the fatty acid composition in cell membranes. In addition, amino acids and glucose (energy stress) manipulate the ferroptosis pathway through the nutrient-sensitive kinases mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Understanding the molecular interaction between nutrient signals and ferroptosis sensors might help in the identification of the roles of ferroptosis in normal physiology and in the development of novel pharmacological targets for the treatment of ferroptosis-related diseases.
Collapse
|
104
|
Kiyohara ACP, Torres DJ, Hagiwara A, Pak J, Rueli RHLH, Shuttleworth CWR, Bellinger FP. Selenoprotein P Regulates Synaptic Zinc and Reduces Tau Phosphorylation. Front Nutr 2021; 8:683154. [PMID: 34277682 PMCID: PMC8280497 DOI: 10.3389/fnut.2021.683154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Selenoprotein P (SELENOP1) is a selenium-rich antioxidant protein involved in extracellular transport of selenium (Se). SELENOP1 also has metal binding properties. The trace element Zinc (Zn2+) is a neuromodulator that can be released from synaptic terminals in the brain, primarily from a subset of glutamatergic terminals. Both Zn2+ and Se are necessary for normal brain function. Although these ions can bind together with high affinity, the biological significance of an interaction of SELENOP1 with Zn2+ has not been investigated. We examined changes in brain Zn2+ in SELENOP1 knockout (KO) animals. Timm-Danscher and N-(6-methoxy-8-quinolyl)-p-toluenesulphonamide (TSQ) staining revealed increased levels of intracellular Zn2+ in the SELENOP1-/- hippocampus compared to wildtype (WT) mice. Mass spectrometry analysis of frozen whole brain samples demonstrated that total Zn2+ was not increased in the SELENOP1-/- mice, suggesting only local changes in Zn2+ distribution. Unexpectedly, live Zn2+ imaging of hippocampal slices with a selective extracellular fluorescent Zn2+ indicator (FluoZin-3) showed that SELENOP1-/- mice have impaired Zn2+ release in response to KCl-induced neuron depolarization. The zinc/metal storage protein metallothionein 3 (MT-3) was increased in SELENOP1-/- hippocampus relative to wildtype, possibly in response to an elevated Zn2+ content. We found that depriving cultured cells of selenium resulted in increased intracellular Zn2+, as did inhibition of selenoprotein GPX4 but not GPX1, suggesting the increased Zn2+ in SELENOP1-/- mice is due to a downregulation of antioxidant selenoproteins and subsequent release of Zn2+ from intracellular stores. Surprisingly, we found increased tau phosphorylation in the hippocampus of SELENOP1-/- mice, possibly resulting from intracellular zinc changes. Our findings reveal important roles for SELENOP1 in the maintenance of synaptic Zn2+ physiology and preventing tau hyperphosphorylation.
Collapse
Affiliation(s)
- Arlene C. P. Kiyohara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Daniel J. Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ayaka Hagiwara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jenna Pak
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rachel H. L. H. Rueli
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | | | - Frederick P. Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
105
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
106
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
107
|
Ekumah JN, Ma Y, Akpabli-Tsigbe NDK, Kwaw E, Ma S, Hu J. Global soil distribution, dietary access routes, bioconversion mechanisms and the human health significance of selenium: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
108
|
Hoová J, López IV, Soblechero EG, Arias-Borrego A, García-Barrera T. Digging deeper into the mother-offspring transfer of selenium through human breast milk. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
109
|
Saito Y. Selenium Transport Mechanism via Selenoprotein P-Its Physiological Role and Related Diseases. Front Nutr 2021; 8:685517. [PMID: 34124127 PMCID: PMC8193087 DOI: 10.3389/fnut.2021.685517] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SELENOP) is selenium (Se)-containing protein in plasma, which is primarily produced in the liver. The "P" in SELENOP originated from the presence in plasma. SELENOP contains selenocysteine, a cysteine analog containing Se instead of sulfur. SELENOP is a multi-functional protein to reduce phospholipid hydroperoxides and to deliver Se from the liver to other tissues, such as those of the brain and testis, playing a pivotal role in Se metabolism and antioxidative defense. Decrease in SELENOP causes various dysfunctions related to Se deficiency and oxidative stress, while excessive SELENOP causes insulin resistance. This review focuses on the Se transport system of SELENOP, particularly its molecular mechanism and physiological role in Se metabolism. Furthermore, the chemical form of Se and its biological meaning is discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
110
|
Kremer PM, Torres DJ, Hashimoto AC, Berry MJ. Sex-Specific Metabolic Impairments in a Mouse Model of Disrupted Selenium Utilization. Front Nutr 2021; 8:682700. [PMID: 34041261 PMCID: PMC8141863 DOI: 10.3389/fnut.2021.682700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The essential micronutrient selenium (Se) provides antioxidant defense and supports numerous biological functions. Obtained through dietary intake, Se is incorporated into selenoproteins via the amino acid, selenocysteine (Sec). Mice with genetic deletion of the Se carrier, selenoprotein P (SELENOP), and the Se recycling enzyme selenocysteine lyase (SCLY), suffer from sexually dimorphic neurological deficits and require Se supplementation for viability. These impairments are more pronounced in males and are exacerbated by dietary Se restriction. We report here that, by 10 weeks of age, female Selenop/Scly double knockout (DKO) mice supplemented with 1 mg/ml sodium selenite in drinking water develop signs of hyper-adiposity not seen in male DKO mice. Unexpectedly, this metabolic phenotype can be reversed by removing Se from the drinking water at post-natal day 22, just prior to puberty. Restricting access to Se at this age prevents excess body weight gain and restriction from either post-natal day 22 or 37 reduces gonadal fat deposits. These results provide new insight into the sex-dependent relationship between Se and metabolic homeostasis.
Collapse
Affiliation(s)
- Penny M Kremer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Daniel J Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, Honolulu, HI, United States
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, Honolulu, HI, United States
| |
Collapse
|
111
|
Kilonzo VW, Sasuclark AR, Torres DJ, Coyle C, Pilat JM, Williams CS, Pitts MW. Juvenile Selenium Deficiency Impairs Cognition, Sensorimotor Gating, and Energy Homeostasis in Mice. Front Nutr 2021; 8:667587. [PMID: 34026810 PMCID: PMC8138326 DOI: 10.3389/fnut.2021.667587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases. Environmental distribution of Se varies considerably worldwide, with concomitant effects on Se status in humans and animals. Dietary Se intake within a narrow range optimizes the activity of Se-dependent antioxidant enzymes, whereas both Se-deficiency and Se-excess can adversely impact health. Se-deficiency affects a significant proportion of the world's population, with hypothyroidism, cardiomyopathy, reduced immunity, and impaired cognition being common symptoms. Although relatively less prevalent, Se-excess can also have detrimental consequences and has been implicated in promoting both metabolic and neurodegenerative disease in humans. Herein, we sought to comprehensively assess the developmental effects of both Se-deficiency and Se-excess on a battery of neurobehavioral and metabolic tests in mice. Se-deficiency elicited deficits in cognition, altered sensorimotor gating, and increased adiposity, while Se-excess was surprisingly beneficial.
Collapse
Affiliation(s)
- Victor W. Kilonzo
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Alexandru R. Sasuclark
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Daniel J. Torres
- Pacific Biosciences Research Center, University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST), Honolulu, HI, United States
| | - Celine Coyle
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| | - Jennifer M. Pilat
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Christopher S. Williams
- Department of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
112
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|
113
|
Torres DJ, Alfulaij N, Berry MJ. Stress and the Brain: An Emerging Role for Selenium. Front Neurosci 2021; 15:666601. [PMID: 33935643 PMCID: PMC8081839 DOI: 10.3389/fnins.2021.666601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
The stress response is an important tool in an organism’s ability to properly respond to adverse environmental conditions in order to survive. Intense acute or chronic elevation of glucocorticoids, a class of stress hormone, can have deleterious neurological effects, however, including memory impairments and emotional disturbances. In recent years, the protective role of the antioxidant micronutrient selenium against the negative impact of externally applied stress has begun to come to light. In this review, we will discuss the effects of stress on the brain, with a focus on glucocorticoid action in the hippocampus and cerebral cortex, and emerging evidence of an ability of selenium to normalize neurological function in the context of various stress and glucocorticoid exposure paradigms in rodent models.
Collapse
Affiliation(s)
- Daniel J Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Naghum Alfulaij
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
114
|
Torres DJ, Yorgason JT, Mitchell CC, Hagiwara A, Andres MA, Kurokawa S, Steffensen SC, Bellinger FP. Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 2021; 15:631825. [PMID: 33927588 PMCID: PMC8076559 DOI: 10.3389/fnins.2021.631825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine (DA) transmission plays a critical role in processing rewarding and pleasurable stimuli. Increased synaptic DA release in the nucleus accumbens (NAc) is a central component of the physiological effects of drugs of abuse. The essential trace element selenium mitigates methamphetamine-induced neurotoxicity. Selenium can also alter DA production and turnover. However, studies have not directly addressed the role of selenium in DA neurotransmission. Selenoprotein P (SELENOP1) requires selenium for synthesis and transports selenium to the brain, in addition to performing other functions. We investigated whether SELENOP1 directly impacts (1) DA signaling and (2) the dopaminergic response to methamphetamine. We used fast-scan cyclic voltammetry to investigate DA transmission and the response to methamphetamine in NAc slices from C57/BL6J SELENOP1 KO mice. Recordings from SELENOP1 KO mouse slices revealed reduced levels of evoked DA release and slower DA uptake rates. Methamphetamine caused a dramatic increase in vesicular DA release in SELENOP1 KO mice not observed in wild-type controls. This elevated response was attenuated by SELENOP1 application through a selenium-independent mechanism involving SELENOP1-apolipoprotein E receptor 2 (ApoER2) interaction to promote dopamine D2 receptor (D2R) function. In wild-type mice, increased vesicular DA release in response to methamphetamine was revealed by blocking D2R activation, indicating that the receptor suppresses the methamphetamine-induced vesicular increase. Our data provide evidence of a direct physiological role for SELENOP1 in the dopaminergic response to methamphetamine and suggest a signaling role for the protein in DA transmission.
Collapse
Affiliation(s)
- Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States.,Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Jordan T Yorgason
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Catherine C Mitchell
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Ayaka Hagiwara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Marilou A Andres
- Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | | | - Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
115
|
Short SP, Pilat JM, Barrett CW, Reddy VK, Haberman Y, Hendren JR, Marsh BJ, Keating CE, Motley AK, Hill KE, Zemper AE, Washington MK, Shi C, Chen X, Wilson KT, Hyams JS, Denson LA, Burk RF, Rosen MJ, Williams CS. Colonic Epithelial-Derived Selenoprotein P Is the Source for Antioxidant-Mediated Protection in Colitis-Associated Cancer. Gastroenterology 2021; 160:1694-1708.e3. [PMID: 33388316 PMCID: PMC8035252 DOI: 10.1053/j.gastro.2020.12.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer M Pilat
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Caitlyn W Barrett
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Vishruth K Reddy
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee; Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yael Haberman
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Sheba Medical Center, Tel Hashomer, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Jared R Hendren
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; School of Medicine, Southern Illinois University, Springfield, Illinois
| | - Benjamin J Marsh
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cody E Keating
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy K Motley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristina E Hill
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anne E Zemper
- Department of Biology, University of Oregon, Eugene, Oregon; Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Jeffrey S Hyams
- Connecticut Children's Medical Center, Hartford, Connecticut
| | - Lee A Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Raymond F Burk
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Nashville, Tennessee.
| |
Collapse
|
116
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
117
|
Kuropatkina TA, Medvedeva NA, Medvedev OS. [The role of selenium in cardiology]. ACTA ACUST UNITED AC 2021; 61:96-104. [PMID: 33849425 DOI: 10.18087/cardio.2021.3.n1186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 11/18/2022]
Abstract
Selenium is an important micronutrient that is essential for the functioning of the human body. Being a component of the active center of several antioxidant enzymes selenium prevents cell injury by free radicals. Decline in selenium-containing enzymes results in progression of oxidative stress and chronic inflammation, which are considered as possible causes for the development of many cardiovascular diseases. This review focuses on mechanisms for prevention of myocardial and vascular injury through the adequate selenium supply to the body. The importance of monitoring and correction of the selenium status in appropriate patients is underlined.
Collapse
Affiliation(s)
- T A Kuropatkina
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - N A Medvedeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - O S Medvedev
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia National medical research Center of cardiology of the Ministry of healthcare, Moscow, Russia
| |
Collapse
|
118
|
Isobe Y, Asakura H, Tsujiguchi H, Kannon T, Takayama H, Takeshita Y, Ishii KA, Kanamori T, Hara A, Yamashita T, Tajima A, Kaneko S, Nakamura H, Takamura T. Alcohol Intake Is Associated With Elevated Serum Levels of Selenium and Selenoprotein P in Humans. Front Nutr 2021; 8:633703. [PMID: 33693023 PMCID: PMC7937717 DOI: 10.3389/fnut.2021.633703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 01/21/2023] Open
Abstract
Selenoprotein P is a hepatokine with antioxidative properties that eliminate a physiologic burst of reactive oxygen species required for intracellular signal transduction. Serum levels of selenoprotein P are elevated during aging and in people with type 2 diabetes, non-alcoholic fatty liver disease, and hepatitis C. However, how serum levels of full-length selenoprotein P are regulated largely remains unknown, especially in the general population. To understand the significance of serum selenoprotein P levels in the general population, we evaluated intrinsic and environmental factors associated with serum levels of full-length selenoprotein P in 1,183 subjects participating in the Shika-health checkup cohort. Serum levels of selenium were positively correlated with liver enzymes and alcohol intake and negatively correlated with body mass index. Serum levels of selenoprotein P were positively correlated with age, liver enzymes, and alcohol intake. In multiple regression analyses, alcohol intake was positively correlated with serum levels of both selenium and selenoprotein P independently of age, gender, liver enzymes, and fatty liver on ultrasonography. In conclusion, alcohol intake is associated with elevated serum levels of selenium and selenoprotein P independently of liver enzyme levels and liver fat in the general population. Moderate alcohol intake may exert beneficial or harmful effects on health, at least partly by upregulating selenoprotein P. These findings increase our understanding of alcohol-mediated redox regulation and form the basis for the adoption of appropriate drinking guidelines.
Collapse
Affiliation(s)
- Yuki Isobe
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroki Asakura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takehiro Kanamori
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
119
|
Donadio JLS, Duarte GBS, Borel P, Cozzolino SMF, Rogero MM. The influence of nutrigenetics on biomarkers of selenium nutritional status. Nutr Rev 2021; 79:1259-1273. [PMID: 33570152 DOI: 10.1093/nutrit/nuaa136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential micronutrient for human biology that executes its functions as the amino acid selenocysteine via selenoproteins, which have important functions in, for example, antioxidation, immunomodulation, thyroid metabolism, and human fertility. Se nutritional status is assessed using the quantification of blood Se biomarkers, which are influenced by several factors, including diet, age, gender, smoking status, alcohol consumption, health condition, and the genetic characteristics of individuals. Nutrigenetic studies have identified single nucleotide polymorphisms in selenoproteins that might clarify the high variability in values reported for biomarkers of Se nutritional status in different populations, and the response of these biomarkers to Se supplementation with either organic or inorganic forms of Se. This review aims to (1) define the basic aspects of Se biology, (2) describe the current most commonly used biomarkers of Se nutritional status, and (3) provide a summary of associations between functional single nucleotide polymorphisms in selenoproteins and biomarkers of Se status in healthy populations.
Collapse
Affiliation(s)
- Janaina L S Donadio
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Graziela B S Duarte
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Patrick Borel
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Silvia M F Cozzolino
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo M Rogero
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
120
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
121
|
Cui Y, Qu Y, Yin K, Zhang X, Lin H. Selenomethionine ameliorates LPS-induced intestinal immune dysfunction in chicken jejunum. Metallomics 2021; 13:6127319. [PMID: 33693770 DOI: 10.1093/mtomcs/mfab003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/14/2022]
Abstract
Selenomethionine (SeMet) is a widely used food supplement. However, the research on the effect of SeMet on intestinal immune function is not enough. Therefore, in this experiment, SeMet was added to the diet of chickens, and lipopolysaccharide (LPS) was used as harmful stimulation to study the effect of SeMet on intestinal immune function in chickens. We chose chicken jejunum as the research object. The results showed that LPS treatment decreased the expressions of selenoproteins and induced inflammatory reaction, cytokine disorder, decreases of immunoglobulin levels, heat shock protein expression disorder, and decreases of defensin expression levels in jejunum. However, dietary SeMet can effectively alleviate the above injury caused by LPS. Our results showed that SeMet could improve the intestinal immunity in chickens, and feeding SeMet could alleviate the intestinal immune dysfunction caused by LPS. The application range of SeMet in feed can be roughly given through our experiment; i.e. 0.35-0.5 mg/kg SeMet was effective. We speculated that dietary SeMet could effectively alleviate the intestinal immune dysfunction caused by harmful stimulation and help to resist the further damage caused by harmful stimulation.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yingying Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
122
|
Rathore SS, Murthy HS, Girisha SK, Nithin MS, Nasren S, Mamun MAA, Puneeth TG, Rakesh K, Kumar BTN, Pai M. Supplementation of nano-selenium in fish diet: Impact on selenium assimilation and immune-regulated selenoproteome expression in monosex Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108907. [PMID: 33027705 DOI: 10.1016/j.cbpc.2020.108907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/26/2022]
Abstract
Selenium (Se), a fundamental element of nutrigenomic science in fish nutrition, was used to investigate its impact on selenoproteome expression and Se regulation in tilapia. Different concentrations (T1 - 0, T2 - 0.5, T3 - 1.0 and T4 - 2.0 mg/kg of feed) of dietary nano-Se were incorporated in the diets of monosex Nile tilapia. A total of 180 tilapia fingerlings with initial weight (15.73 ± 0.05 g) were stocked in 150 L capacity FRP tanks categorized into four diet groups with triplicate each for a feeding trial of 90 days. At the end of first, second and third months of the feeding trial, gill, liver, kidney and muscle tissues were harvested to evaluate the effect on the kinetics of Se bioaccumulation and assimilation as well as immune-regulated selenoprotein transcripts (GPx2, SelJ, SelL, SelK, SelS, SelW and Sepp1a) and their synthesis factors (SPS1 and Scly). The findings depicted that significantly (p < 0.05) higher weight gain was found in the diet supplemented with 1.0 mg/kg of nano-Se. The theory of second-order polynomial regression supported the same. The liver showed significantly (p < 0.05) higher Se accumulation and concentration factor among the harvested tissues in a different timeline. All the selected immune-regulated selenoproteins and synthesis factors in different fish tissues showed significantly (p < 0.05) up-regulation in the diet supplemented with 1.0 mg/kg of nano-Se for the second month. Therefore, the present findings suggested that the supplementation of nano-Se could be more effective for improved growth, better selenium regulation and expression of immune-regulated selenoproteins in the fish model.
Collapse
Affiliation(s)
- S S Rathore
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India.
| | - H S Murthy
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - S K Girisha
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - M S Nithin
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - S Nasren
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - M A A Mamun
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - T G Puneeth
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - K Rakesh
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| | - B T N Kumar
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - M Pai
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore 575002, Karnataka, India
| |
Collapse
|
123
|
Abstract
BACKGROUND Reperfusion strategies in acute myocardial infarction (AMI) may result in ischemia reperfusion injury characterized by increased oxidative stress, inflammation, and ultimately death of myocardial tissue which may be of particular importance in infarct-related cardiogenic shock (CS). Many anti-oxidative and immune regulatory processes depend on selenium which in large proportions is bound to circulating selenoprotein P (SelP). Individual SelP patterns may therefore be associated with inflammatory response and possibly mortality in patients with CS post AMI. METHODS In the randomized Intra-Aortic Balloon Pump in cardiogenic Shock II (IABP-SHOCK II)-trial, 600 patients with CS complicating AMI were assigned to therapy with or without IABP. In a predefined biomarker substudy of 147 patients, we analyzed SelP levels 1 and 3 days following randomization. Samples were compared with healthy controls and associations with the unspecific inflammatory marker C-reactive protein (CRP) were analyzed. RESULTS Compared with controls SelP levels in patients with infarct-related CS were markedly higher (2.7-fold at day 1 and 5.7-fold at day 3 following AMI, all P < 0.001). Thirty-day mortality was significantly higher in patients with SelP levels above the 75th percentile at day 3 following AMI (26% vs. 46%, P = 0.045). SelP was significantly proportionally correlated with CRP 1 (R = 0.762, P < 0.0001) and 3 days (R = 0.777 P < 0.0001) following AMI. CONCLUSION SelP levels are significantly increased post AMI with CS. Higher SelP levels are associated with increased CRP levels indicative for inflammatory processes. Future studies should focus on the characterization of SelP profiles following AMI and the identification of pathomechanisms affected by SelP.
Collapse
|
124
|
Wandt VK, Winkelbeiner N, Bornhorst J, Witt B, Raschke S, Simon L, Ebert F, Kipp AP, Schwerdtle T. A matter of concern - Trace element dyshomeostasis and genomic stability in neurons. Redox Biol 2021; 41:101877. [PMID: 33607499 PMCID: PMC7902532 DOI: 10.1016/j.redox.2021.101877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/09/2023] Open
Abstract
Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability. Post-mitotic neurons show an increased vulnerability to oxidative stress. Trace element dyshomeostasis impairs neuronal genome maintenance, affecting DNA damage response as well as DNA repair. The review summarises the effects of excessive and deficient trace element levels neuronal genome stability maintenance.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Barbara Witt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Stefanie Raschke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
125
|
Bezerra HVA, Buarque VLM, Silva LSB, Leme PRP, Vidal AMC, Vaz ACN, Gallo SB, Silva SL, Leme PR. Effect of Castor and Cashew Nut Shell Oils, Selenium and Vitamin E as Antioxidants on the Health and Meat Stability of Lambs Fed a High-Concentrate Diet. Antioxidants (Basel) 2020; 9:E1298. [PMID: 33353112 PMCID: PMC7766434 DOI: 10.3390/antiox9121298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Functional oils are known for their compounds with antioxidant, antimicrobial and anti-inflammatory properties, and are used in ruminant nutrition as alternatives to chemicals in order to improve performance. This study aimed to compare the influence of castor and cashew nut shell oils with pure organic selenium (hydroxy-selenomethionine) plus vitamin E, which are known and well-stablished antioxidants, on the performance traits, shelf life and microbial quality of the meat, physiological functions and oxidative stress control of lambs. Thirty-two Dorper x Santa Ines lambs (initial bodyweight of 22.42 ± 3.9 kg and 60 days of age) were submitted to a diet consisting of Cynodon dactylon hay (6%) and concentrate (94%). The animals were divided into four treatments: control, without additives; functional oils (FO), 0.50 g/kg DM of castor and cashew nut shell oils; hydroxy-selenomethionine and vitamin E (SeE), 0.50 mg/kg of organic selenium and 100 IU/kg DM of vitamin E; FO plus SeE, at the same doses as the other groups. Blood samples were collected after 1, 30 and 53 days on feed. After 54 days, the lambs were slaughtered and rumen health, carcass and meat traits, shelf life, and microbiological quality were evaluated. There were no differences in performance or carcass traits. A higher muscle and serum Se concentration (p < 0.0001), lower lipid peroxidation in meat during display (p < 0.0001), and a lower count of psychrotrophic microorganisms on day 5 were observed in the SeE and FO plus SeE groups. The treatments reduced the counts of Enterobacteriaceae, and Staphylococcus spp. FO animals showed higher GSH-Px activity on day 30, while the peroxidase activity was higher in FO plus SeE animals (p = 0.035). SeE and FO plus SeE animals had lower serum ALT and AST levels. Functional oils improved the microbiological quality of meat. Hydroxy-selenomethionine and vitamin E prevented oxidative stress, lipid peroxidation, and microbial spoilage.
Collapse
Affiliation(s)
- Helena Viel Alves Bezerra
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Vicente Luiz Macedo Buarque
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Lucas Santos Bermudes Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Paulo Roberto Pedroso Leme
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (A.M.C.V.); (A.C.N.V.)
| | - Andréia Cristina Nakashima Vaz
- Department of Veterinary Medicine, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (A.M.C.V.); (A.C.N.V.)
| | - Sarita Bonagurio Gallo
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Saulo Luz Silva
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| | - Paulo Roberto Leme
- Department of Animal Science, University of São Paulo, Duque de Caxias Norte av., Pirassununga CEP 13635-900, Brazil; (V.L.M.B.); (L.S.B.S.); (P.R.P.L.); (S.B.G.); (S.L.S.)
| |
Collapse
|
126
|
Belhadj M, Kazi Tani LS, Dennouni Medjati N, Harek Y, Dali Sahi M, Sun Q, Heller R, Behar A, Charlet L, Schomburg L. Se Status Prediction by Food Intake as Compared to Circulating Biomarkers in a West Algerian Population. Nutrients 2020; 12:nu12123599. [PMID: 33255224 PMCID: PMC7760749 DOI: 10.3390/nu12123599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Algeria is the largest country in Africa, located close to the Mediterranean coastal area, where nutrients consumption varies widely. Local data on selenium composition of foods are not available. We postulated a close correlation between selenium status predictions from food consumption analysis with a quantitative analysis of circulating biomarkers of selenium status. Population characteristics were recorded from 158 participants and dietary selenium intake was calculated by 24-h recall. The average total plasma selenium was 92.4 ± 18.5 µg/L and the mean of selenium intake was 62.7 µg/day. The selenoprotein P concentration was 5.5 ± 2.0 mg/L and glutathione peroxidase 3 activity was 247.3 ± 41.5 U/L. A direct comparison of the dietary-derived selenium status to the circulating selenium biomarkers showed no significant interrelation. Based on absolute intakes of meat, potato and eggs, a model was deduced that outperforms the intake composition-based prediction from all food components significantly (DeLong’s test, p = 0.029), yielding an area under the curve of 82%. Selenium status prediction from food intake remains a challenge. Imprecision of survey method or information on nutrient composition makes extrapolating selenium intake from food data providing incorrect insights into the nutritional status of a given population, and laboratory analyses are needed for reliable information.
Collapse
Affiliation(s)
- Moussa Belhadj
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
- Correspondence: (M.B.); (L.S.); Tel.: +21-367-539-7772 (M.B.); +49-30-450-524-289 (L.S.); Fax: +49-30-450-922 (L.S.)
| | - Latifa Sarra Kazi Tani
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
- Institute of Earth Science, University of Grenoble-Alpes and CNRS, BP 53, CEDEX 9, 38041 Grenoble, France;
| | - Nouria Dennouni Medjati
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
| | - Yahia Harek
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
| | - Majda Dali Sahi
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (Q.S.); (R.H.)
| | - Raban Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (Q.S.); (R.H.)
| | - Ammaria Behar
- Analytical Chemistry and Electrochemistry Laboratory, Abou Bekr Belkaid University of Tlemcen, BP 119, 13000 Tlemcen, Algeria; (L.S.K.T.); (N.D.M.); (Y.H.); (M.D.S.); (A.B.)
| | - Laurent Charlet
- Institute of Earth Science, University of Grenoble-Alpes and CNRS, BP 53, CEDEX 9, 38041 Grenoble, France;
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, CVK, D-13353 Berlin, Germany; (Q.S.); (R.H.)
- Correspondence: (M.B.); (L.S.); Tel.: +21-367-539-7772 (M.B.); +49-30-450-524-289 (L.S.); Fax: +49-30-450-922 (L.S.)
| |
Collapse
|
127
|
Caviglia GP, Rosso C, Armandi A, Gaggini M, Carli F, Abate ML, Olivero A, Ribaldone DG, Saracco GM, Gastaldelli A, Bugianesi E. Interplay between Oxidative Stress and Metabolic Derangements in Non-Alcoholic Fatty Liver Disease: The Role of Selenoprotein P. Int J Mol Sci 2020; 21:8838. [PMID: 33266488 PMCID: PMC7700603 DOI: 10.3390/ijms21228838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Pathogenetic mechanisms involved in the progression of non-alcoholic fatty liver disease (NAFLD) are complex and multifactorial. We investigated oxidative stress through the measurement of selenoprotein P (SeP) in serum and we explored its relation to metabolic derangements and liver damage in a group of non-diabetic NAFLD subjects. Methods: 57 NAFLD patients underwent a double-tracer oral glucose tolerance test (OGTT). Insulin resistance (IR) components were calculated at baseline as follows: hepatic-IR = (endogenous glucose production*insulin); peripheral-IR = (glucose rate of disappearance(Rd)); adipose-tissue(AT)-IR as Lipo-IR = (glycerol rate of appearance (Ra)*insulin) or AT-IR = (free fatty acids (FFAs)*insulin). The lipid and amino acid (AA) profiles were assessed by gas chromatography-mass spectrometry. SeP levels were measured by enzyme immunosorbent assay. Results: Circulating SeP correlated with insulin (rS = 0.28), FFAs (rS = 0.42), glucose Rd (rS = -0.33) and glycerol Ra (rS = -0.34); consistently, SeP levels correlated with Lipo-IR and AT-IR (rS > 0.4). Among the AA and lipid profiles, SeP inversely correlated with serine (rS = -0.31), glycine (rS = -0.44) and branched chain AA (rS = -0.32), and directly correlated with saturated (rS = 0.41) and monounsaturated FFAs (rS = 0.40). Hepatic steatosis and fibrosis increased in subjects with higher levels of SeP. In multivariable regression analysis, SeP was associated with the degree of hepatic fibrosis (t = 2.4, p = 0.022). Conclusions: SeP levels were associated with an altered metabolic profile and to the degree of hepatic fibrosis, suggesting a role in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Gian Paolo Caviglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Maria Lorena Abate
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Antonella Olivero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| | - Giorgio Maria Saracco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, 56121 Pisa, Italy; (M.G.); (F.C.); (A.G.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.P.C.); (A.A.); (M.L.A.); (A.O.); (D.G.R.); (G.M.S.); (E.B.)
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10100 Turin, Italy
| |
Collapse
|
128
|
Dragun Z, Krasnići N, Ivanković D, Filipović Marijić V, Mijošek T, Redžović Z, Erk M. Comparison of intracellular trace element distributions in the liver and gills of the invasive freshwater fish species, Prussian carp (Carassius gibelio Bloch, 1782). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138923. [PMID: 32388370 DOI: 10.1016/j.scitotenv.2020.138923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Prussian carp (Carassius gibelio) is an invasive freshwater fish known for its high tolerance to aquatic pollution. Our aim was to try to clarify its tolerance to increased exposure to metals/nonmetals, by determining their cytosolic distributions among peptides/proteins of different molecular masses (MM), which form a part of the fish protective mechanisms. The applied approach consisted of fractionation of gill and hepatic cytosols of Prussian carp from the Croatian river Ilova by size-exclusion high performance liquid chromatography, whereas Cd, Cu, Zn, Fe, Mo, and Se analyses were done by high resolution inductively coupled plasma mass spectrometry. The results indicated high detoxification of Cd by its binding to metallothioneins (MTs) in both fish organs. In addition, binding to MTs was observed for Cu in both organs and for Zn in the liver, whereas clear Zn binding to MTs in the gills was not recorded. Zinc in the gills was predominantly bound to proteins of higher MM (50-250 kDa) and to biomolecules of MM below 2 kDa. Predominant Fe binding to proteins of MM of ~400 kDa (presumably storage protein ferritin) was observed in the liver, whereas in the gills Fe was mainly associated to proteins of MM of ~15-65 kDa (presumably hemoglobin oligomers). Maximum Mo and Se elutions in the liver were noted at 235 kDa and 141 kDa, respectively, and in the gills below 10 kDa. The striking difference was observed between two organs of Prussian carp, with predominant metal/nonmetal binding to high MM proteins (e.g., enzymes, storage proteins) in the liver, and to very low MM biomolecules (<10 kDa) in the gills (e.g., antioxidants, metallochaperones, nonprotein cofactors). Such metal/nonmetal distributions within the gills, as the first site of defense, as well as association of several metals to MTs, indicated highly developed defense mechanisms in some organs of Prussian carp.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Zuzana Redžović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10002 Zagreb, Croatia
| |
Collapse
|
129
|
Abstract
Selenium (Se) is an essential micronutrient present in human diet, entering in the composition of selenoproteins as selenocysteine (Se-Cys) amino acid. At the thyroid level, these proteins play an important role as antioxidant and in hormone metabolism. Selenoproteins are essential for the balance of redox homeostasis and antioxidant defense of mammalian organisms, while the corresponding imbalance is now recognized as the cause of many diseases including cancer. The food chain is the main source of Se in human body. Dietary intake is strongly correlated with Se content in soil and varies according to several factors such as geology and atmospheric input. Both Se deficiency and toxicity have been associated with adverse health effects. This review synthesizes recent data on the transfer of Se from soil to humans, Se U-shaped deficiency and toxicity uptake effects and particularly the impact of Se deficiency on thyroid cancer.
Collapse
|
130
|
Higher Serum Selenoprotein P Level as a Novel Inductor of Metabolic Complications in Psoriasis. Int J Mol Sci 2020; 21:ijms21134594. [PMID: 32605214 PMCID: PMC7370132 DOI: 10.3390/ijms21134594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Selenoprotein P (SeP), a member of hepatokines, is involved in the development of various metabolic diseases closely related to psoriasis, but it has not been explored in that dermatosis so far. The study aimed to evaluate the clinical value of serum SeP concentrations in patients with psoriasis and its interplay between disease activity, metabolic or inflammatory parameters and systemic therapy. The study included thirty-three patients with flared plaque-type psoriasis and fifteen healthy volunteers. Blood samples were collected before and after three months of treatment with methotrexate or acitretin. Serum SeP levels were evaluated using the immune–enzymatic method. SeP concentration was significantly higher in patients with psoriasis than in the controls (p < 0.05). Further, in patients with severe psoriasis, SeP was significantly increased, compared with the healthy volunteers before treatment, and significantly decreased after (p < 0.05, p = 0.041, respectively). SeP positively correlated with C-reactive protein and platelets and negatively with red blood counts (p = 0.008, p = 0.013, p = 0.022, respectively). Therapy resulted in a significant decrease in SeP level. Selenoprotein P may be a novel indicator of inflammation and the metabolic complications development in psoriatics, especially with severe form or with concomitant obesity. Classic systemic therapy has a beneficial effect on reducing the risk of comorbidities by inhibiting SeP.
Collapse
|
131
|
Jin Y, Chung YW, Jung MK, Lee JH, Ko KY, Jang JK, Ham M, Kang H, Pack CG, Mihara H, Kim IY. Apolipoprotein E-mediated regulation of selenoprotein P transportation via exosomes. Cell Mol Life Sci 2020; 77:2367-2386. [PMID: 31471680 PMCID: PMC11104972 DOI: 10.1007/s00018-019-03287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Selenoprotein P (SELENOP), secreted from the liver, functions as a selenium (Se) supplier to other tissues. In the brain, Se homeostasis is critical for physiological function. Previous studies have reported that SELENOP co-localizes with the apolipoprotein E receptor 2 (ApoER2) along the blood-brain barrier (BBB). However, the mechanism underlying SELENOP transportation from hepatocytes to neuronal cells remains unclear. Here, we found that SELENOP was secreted from hepatocytes as an exosomal component protected from plasma kallikrein-mediated cleavage. SELENOP was interacted with apolipoprotein E (ApoE) through heparin-binding sites of SELENOP, and the interaction regulated the secretion of exosomal SELENOP. Using in vitro BBB model of transwell cell culture, exosomal SELENOP was found to supply Se to brain endothelial cells and neuronal cells, which synthesized selenoproteins by a process regulated by ApoE and ApoER2. The regulatory role of ApoE in SELENOP transport was also observed in vivo using ApoE-/- mice. Exosomal SELENOP transport protected neuronal cells from amyloid β (Aβ)-induced cell death. Taken together, our results suggest a new delivery mechanism for Se to neuronal cells by exosomal SELENOP.
Collapse
Affiliation(s)
- Yunjung Jin
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Kyo Jung
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, 41068, South Korea
| | - Jea Hwang Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
| | - Kwan Young Ko
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Ki Jang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minju Ham
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunwoo Kang
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center & Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Ick Young Kim
- Laboratory of Cellular and Molecular Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
132
|
Dolgova NV, Nehzati S, MacDonald TC, Summers KL, Crawford AM, Krone PH, George GN, Pickering IJ. Disruption of selenium transport and function is a major contributor to mercury toxicity in zebrafish larvae. Metallomics 2020; 11:621-631. [PMID: 30688331 DOI: 10.1039/c8mt00315g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mercury is one of the most toxic elements threatening the biosphere, with levels steadily rising due to both natural and human activities. Selenium is an essential micronutrient, required for normal development and functioning of many organisms. While selenium is known to counteract mercury's toxicity under some conditions, to date information about the mercury-selenium relationship is fragmented and often controversial. As part of a systematic study of mercury and selenium interactions, zebrafish (Danio rerio) larvae (a model verterbrate) were exposed to methylmercury chloride or mercuric chloride. The influence of pre- and post-treatment of selenomethionine on the level and distribution of mercury and selenium in the brain and eye sections, as well as on toxicity, were examined. Selenomethionine treatment decreased the amount of maternally transfered mercury in the larval brain. Selenomethionine treatment prior to exposure to mercuric chloride increased both mercury and selenium levels in the brain but decreased their toxic effects. Conversely, methylmercury levels were not changed as a result of selenium pre-treatment, while toxicity was increased. Strikingly, both forms of mercury severely disrupted selenium metabolism, not only by depleting selenium levels due to formation of Hg-Se complexes, but also by blocking selenium transport into and out of tissues, suggesting that restoring normal selenium levels by treating the organism with selenium after mercury exposure may not be possible. Disruption of selenium metabolism by mercury may lead to disruption in function of selenoproteins. Indeed, the production of thyroid hormones by selenoprotein deiodinases was found to be severely impaired as a result of mercury exposure, with selenomethionine not always being a suitable source of selenium to restore thyroid hormone levels.
Collapse
Affiliation(s)
- Natalia V Dolgova
- Molecular and Environment Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
134
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
135
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
136
|
Conrad M, Proneth B. Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chem Biol 2020; 27:409-419. [DOI: 10.1016/j.chembiol.2020.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
|
137
|
Hofstee P, Cuffe JS, Perkins AV. Analysis of Selenoprotein Expression in Response to Dietary Selenium Deficiency During Pregnancy Indicates Tissue Specific Differential Expression in Mothers and Sex Specific Changes in the Fetus and Offspring. Int J Mol Sci 2020; 21:ijms21062210. [PMID: 32210049 PMCID: PMC7139809 DOI: 10.3390/ijms21062210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The human selenoproteome is comprised of ~25 genes, which incorporate selenium, in the form of selenocysteine, into their structure. Since it is well known that selenium is important to maternal health and foetal development during pregnancy, this study aimed at defining the impact of selenium deficiency on maternal, placental, foetal and offspring selenoprotein gene expression. Female C57BL/6 mice were randomly allocated to control (>190 μg/kg) or low selenium (<50 μg/kg) diets four weeks prior to mating and throughout gestation. At embryonic day (E)18.5, pregnant mice were sacrificed followed by collection of maternal and foetal tissues. A subset of mice littered down, and offspring were monitored from postnatal day (PN) 8, weaned at PN24 and sacrificed at PN180, followed by tissue collection. Following RNA extraction, the expression of 14 selenoproteins was assessed with qPCR in liver, kidneys, muscle and placenta. Selenium deficiency downregulated expression (Ptrt < 0.05) of many selenoproteins in maternal tissues and the placenta. However, foetal selenoprotein expression was upregulated (Ptrt < 0.05) in all tissues, especially the kidneys. This was not reflected at PN180; however, a sexually dimorphic relationship in selenoprotein expression was observed in offspring. This study demonstrates the selenoproteome is sensitive to dietary selenium levels, which may be exacerbated by pregnancy. We concluded that transcriptional regulation of selenoproteins is complex and multifaceted, with expression exhibiting tissue-, age- and sex-specificities.
Collapse
Affiliation(s)
- Pierre Hofstee
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold, Coast Campus, Southport, QLD 4215, Australia;
| | - James S.M. Cuffe
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (J.S.M.C.); (A.V.P.); Tel.: +61-755529774 (A.V.P.)
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold, Coast Campus, Southport, QLD 4215, Australia;
- Correspondence: (J.S.M.C.); (A.V.P.); Tel.: +61-755529774 (A.V.P.)
| |
Collapse
|
138
|
Addinsall AB, Wright CR, Kotsiakos TL, Smith ZM, Cook TR, Andrikopoulos S, van der Poel C, Stupka N. Impaired exercise performance is independent of inflammation and cellular stress following genetic reduction or deletion of selenoprotein S. Am J Physiol Regul Integr Comp Physiol 2020; 318:R981-R996. [PMID: 32186893 DOI: 10.1152/ajpregu.00321.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenoprotein S (Seps1) can be protective against oxidative, endoplasmic reticulum (ER), and inflammatory stress. Seps1 global knockout mice are less active, possess compromised fast muscle ex vivo strength, and, depending on context, heightened inflammation. Oxidative, ER, and inflammatory stress modulates contractile function; hence, our aim was to investigate the effects of Seps1 gene dose on exercise performance. Seps1-/- knockout, Seps1-/+ heterozygous, and wild-type mice were randomized to 3 days of incremental, high-intensity treadmill running or a sedentary control group. On day 4, the in situ contractile function of fast tibialis anterior (TA) muscles was determined. Seps1 reduction or deletion compromised exercise capacity, decreasing distance run. TA strength was also reduced. In sedentary Seps1-/- knockout mice, TA fatigability was greater than wild-type mice, and this was ameliorated with exercise. Whereas, in Seps1+/- heterozygous mice, exercise compromised TA endurance. These impairments in exercise capacity and TA contractile function were not associated with increased inflammation or a dysregulated redox state. Seps1 is highly expressed in muscle fibers and blood vessels. Interestingly, Nos1 and Vegfa mRNA transcripts were decreased in TA muscles from Seps1-/- knockout and Seps1-/+ heterozygous mice. Impaired exercise performance with Seps1 reduction or deletion cannot be attributed to heightened cellular stress, but it may potentially be mediated, in part, by the effects of Seps1 on the microvasculature.
Collapse
Affiliation(s)
- Alex Bernard Addinsall
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Craig Robert Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Taryan L Kotsiakos
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Zoe M Smith
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Taylah R Cook
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Chris van der Poel
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Nicole Stupka
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.,Department of Medicine-Western Health, The University of Melbourne, St. Albans, Victoria, Australia.,Australian Institute for Musculoskeletal Science, St. Albans, Victoria, Australia
| |
Collapse
|
139
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
140
|
Alhasan R, Kharma A, Leroy P, Jacob C, Gaucher C. Selenium Donors at the Junction of Inflammatory Diseases. Curr Pharm Des 2020; 25:1707-1716. [PMID: 31267853 DOI: 10.2174/1381612825666190701153903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Selenium is an essential non-metal trace element, and the imbalance in the bioavailability of selenium is associated with many diseases ranking from acute respiratory distress syndrome, myocardial infarction and renal failure (Se overloading) to diseases associated with chronic inflammation like inflammatory bowel diseases, rheumatoid arthritis, and atherosclerosis (Se unload). The only source of selenium is the diet (animal and cereal sources) and its intestinal absorption is limiting for selenocysteine and selenomethionine synthesis and incorporation in selenoproteins. In this review, after establishing the link between selenium and inflammatory diseases, we envisaged the potential of selenium nanoparticles and organic selenocompounds to compensate the deficit of selenium intake from the diet. With high selenium loading, nanoparticles offer a low dosage to restore selenium bioavailability whereas organic selenocompounds can play a role in the modulation of their antioxidant or antiinflammatory activities.
Collapse
Affiliation(s)
- Rama Alhasan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | - Pierre Leroy
- Universite de Lorraine, CITHEFOR, F-54000 Nancy, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrucken, Germany
| | | |
Collapse
|
141
|
Müller SM, Dawczynski C, Wiest J, Lorkowski S, Kipp AP, Schwerdtle T. Functional Biomarkers for the Selenium Status in a Human Nutritional Intervention Study. Nutrients 2020; 12:nu12030676. [PMID: 32131476 PMCID: PMC7146433 DOI: 10.3390/nu12030676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Soils in Germany are commonly low in selenium; consequently, a sufficient dietary supply is not always ensured. The extent of such provision adequacy is estimated by the optimal effect range of biomarkers, which often reflects the physiological requirement. Preceding epidemiological studies indicate that low selenium serum concentrations could be related to cardiovascular diseases. Inter alia, risk factors for cardiovascular diseases are physical inactivity, overweight, as well as disadvantageous eating habits. In order to assess whether these risk factors can be modulated, a cardio-protective diet comprising fixed menu plans combined with physical exercise was applied in the German MoKaRi (modulation of cardiovascular risk factors) intervention study. We analyzed serum samples of the MoKaRi cohort (51 participants) for total selenium, GPx activity, and selenoprotein P at different timepoints of the study (0, 10, 20, 40 weeks) to explore the suitability of these selenium-associated markers as indicators of selenium status. Overall, the time-dependent fluctuations in serum selenium concentration suggest a successful change in nutritional and lifestyle behavior. Compared to baseline, a pronounced increase in GPx activity and selenoprotein P was observed, while serum selenium decreased in participants with initially adequate serum selenium content. SELENOP concentration showed a moderate positive monotonic correlation (r = 0.467, p < 0.0001) to total Se concentration, while only a weak linear relationship was observed for GPx activity versus total Se concentration (r = 0.186, p = 0.021). Evidently, other factors apart from the available Se pool must have an impact on the GPx activity, leading to the conclusion that, without having identified these factors, GPx activity should not be used as a status marker for Se.
Collapse
Affiliation(s)
- Sandra M. Müller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany;
- NutriAct-Competence Cluster Nutrition Research, 14467 Berlin-Potsdam, Germany
| | - Christine Dawczynski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (C.D.); (J.W.); (S.L.); (A.P.K.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), 07743 Halle-Jena-Leipzig, Germany
| | - Johanna Wiest
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (C.D.); (J.W.); (S.L.); (A.P.K.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), 07743 Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (C.D.); (J.W.); (S.L.); (A.P.K.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), 07743 Halle-Jena-Leipzig, Germany
| | - Anna P. Kipp
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (C.D.); (J.W.); (S.L.); (A.P.K.)
- TraceAge – DFG research unit 2558, 07743 Potsdam-Berlin-Jena, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany;
- NutriAct-Competence Cluster Nutrition Research, 14467 Berlin-Potsdam, Germany
- TraceAge – DFG research unit 2558, 07743 Potsdam-Berlin-Jena, Germany
- Correspondence:
| |
Collapse
|
142
|
Solovyev N. Selenoprotein P and its potential role in Alzheimer's disease. Hormones (Athens) 2020; 19:73-79. [PMID: 31250406 DOI: 10.1007/s42000-019-00112-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with cognitive decline, loss of memory, and progressive cerebral atrophy. The trace element selenium (Se) is known to be involved in brain pathology. Selenoprotein P (SELENOP), as the main Se transport protein, is, to a great extent, responsible for maintaining Se homeostasis and the hierarchy of selenoprotein expression in the body. Adequate Se supply through SELENOP is vital for proper brain development and function. Additionally, SELENOP may be implicated in pathological processes in the central nervous system, including those in AD. The current review summarizes recent findings on the possible role of SELENOP in AD, with a focus on probable mechanisms: Se delivery to neurons, antioxidant activity, cytoskeleton assembly, interaction with redox-active metals (e.g., copper and iron), and misfolded proteins (amyloid beta and tau protein). The use of SELENOP as a biomarker of Se status is also briefly discussed. Epidemiological studies on Se supplementation are beyond the scope of the current review.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russian Federation, 199034.
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Campus Sterre, Krijgslaan, 281-S12, 9000, Ghent, Belgium.
| |
Collapse
|
143
|
Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E, Mancini A. The Role of Selenium in Oxidative Stress and in Nonthyroidal Illness Syndrome (NTIS): An Overview. Curr Med Chem 2020; 27:423-449. [PMID: 29421998 DOI: 10.2174/0929867325666180201111159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/28/2022]
Abstract
Selenium is a trace element, nutritionally classified as an essential micronutrient, involved in maintaining the correct function of several enzymes incorporating the selenocysteine residue, namely the selenoproteins. The human selenoproteome including 25 proteins is extensively described here. The most relevant selenoproteins, including glutathione peroxidases, thioredoxin reductases and iodothyronine deiodinases are required for the proper cellular redox homeostasis as well as for the correct thyroid function, thus preventing oxidative stress and related diseases. This review summarizes the main advances on oxidative stress with a focus on selenium metabolism and transport. Moreover, thyroid-related disorders are discussed, considering that the thyroid gland contains the highest selenium amount per gram of tissue, also for future possible therapeutic implication.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Giuseppe Martino
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, Largo F. Vito 1, Rome 00168, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, School of Medicine, Catholic University, Largo A. Gemelli 1, Rome, 00168, Italy
| |
Collapse
|
144
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
145
|
Collino F, Lopes JA, Tapparo M, Tortelote GG, Kasai-Brunswick TH, Lopes GM, Almeida DB, Skovronova R, Wendt CHC, de Miranda KR, Bussolati B, Vieyra A, Lindoso RS. Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model. Cells 2020; 9:cells9020453. [PMID: 32079274 PMCID: PMC7072760 DOI: 10.3390/cells9020453] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSC) have been the focus of several studies due to their wide range of application, including in cellular therapy. The use of iPSC in regenerative medicine is limited by their tumorigenic potential. Extracellular vesicles (EV) derived from stem cells have been shown to support renal recovery after injury. However, no investigation has explored the potential of iPSC-EV in the treatment of kidney diseases. To evaluate this potential, we submitted renal tubule cells to hypoxia-reoxygenation injury, and we analyzed cell death rate and changes in functional mitochondria mass. An in vivo model of ischemia-reperfusion injury was used to evaluate morphological and functional alterations. Gene array profile was applied to investigate the mechanism involved in iPSC-EV effects. In addition, EV derived from adipose mesenchymal cells (ASC-EV) were also used to compare the potential of iPSC-EV in support of tissue recovery. The results showed that iPSC-EV were capable of reducing cell death and inflammatory response with similar efficacy than ASC-EV. Moreover, iPSC-EV protected functional mitochondria and regulated several genes associated with oxidative stress. Taken together, these results show that iPSC can be an alternative source of EV in the treatment of different aspects of kidney disease.
Collapse
Affiliation(s)
- Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Jarlene A. Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Giovane G. Tortelote
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- Department of Pediatrics’ Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Taís H. Kasai-Brunswick
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Gustavo M.C. Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Douglas B. Almeida
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy (B.B.)
| | - Camila H. C. Wendt
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
| | - Kildare R. de Miranda
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology of Structural Biology and Bioimaging-INBEB, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy (B.B.)
| | - Adalberto Vieyra
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Graduate Program of Translational Biomedicine/BIOTRANS, Grande Rio University, 25071-202 Duque de Caxias, Brazil
- Correspondence: (A.V.); (R.S.L.); Tel.: +55-21-3938-6521 (A.V.); +55-21-3938-6520 (R.S.L.)
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; (F.C.); (J.A.L.); (G.G.T.); (T.H.K.-B.); (G.M.C.L.); (D.B.A.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Correspondence: (A.V.); (R.S.L.); Tel.: +55-21-3938-6521 (A.V.); +55-21-3938-6520 (R.S.L.)
| |
Collapse
|
146
|
Saito Y. Selenoprotein P as a significant regulator of pancreatic β cell function. J Biochem 2020; 167:119-124. [PMID: 31373634 DOI: 10.1093/jb/mvz061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a 'hepatokine' that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells' function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, C301, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
147
|
Behzadfar L, Hassani S, Feizpour H, Abbasian N, Salek Maghsoudi A, Taghizadeh G, Pourahmad J, Sharifzadeh M. Effects of mercuric chloride on spatial memory deficit-induced by beta-amyloid and evaluation of mitochondrial function markers in the hippocampus of rats. Metallomics 2020; 12:144-153. [PMID: 31793599 DOI: 10.1039/c9mt00161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury is a highly poisonous heavy metal abundantly found in the environment in its inorganic form. Although evidence have been provided about the possible role of inorganic mercury in the pathology of Alzheimer's disease (AD), its effect on cognitive and mitochondrial functions have not yet been completely understood. Thus, the purpose of the present study was to examine the effects of the chronic exposure to mercuric chloride (0.4, 0.8 and 1.6 mg kg-1 per day for 3 weeks) through drinking water (by gavage) on spatial learning and memory and hippocampal mitochondrial function in beta-amyloid treated rats (1 μg per μL per side, intrahippocampally). The acquisition and retention of spatial memory were evaluated by the Morris water maze (MWM) test. Several parameters of hippocampal mitochondrial function were also measured. The results indicated that mercury impaired spatial learning and memory as well as aggravated Aβ-induced memory impairments in a concentration-dependent manner. Furthermore, mercury exposure resulted in a significant increase in ROS generation, MMP collapse, mitochondrial swelling, glutathione oxidation, lipid peroxidation, and outer membrane damage. In addition, a reduced cytochrome c oxidase (complex IV) activity and elevated ADP/ATP ratio in the rats' hippocampus was also observed. The findings of the current study revealed that chronic mercury exposure led to mitochondrial dysfunction, which resulted in spatial memory impairments. The results also showed that mercury can exacerbate the toxic effects of Aβ on spatial memory and hippocampal mitochondrial function.
Collapse
Affiliation(s)
- Ladan Behzadfar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
149
|
Phiri FP, Ander EL, Lark RM, Bailey EH, Chilima B, Gondwe J, Joy EJM, Kalimbira AA, Phuka JC, Suchdev PS, Middleton DRS, Hamilton EM, Watts MJ, Young SD, Broadley MR. Urine selenium concentration is a useful biomarker for assessing population level selenium status. ENVIRONMENT INTERNATIONAL 2020; 134:105218. [PMID: 31715489 DOI: 10.1016/j.envint.2019.105218] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 05/21/2023]
Abstract
Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys.
Collapse
Affiliation(s)
- Felix P Phiri
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Nutrition, HIV and AIDS, Ministry of Health, Lilongwe, Malawi.
| | - E Louise Ander
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, NG12 5GG, UK.
| | - R Murray Lark
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | - Elizabeth H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | - Benson Chilima
- Community Health Sciences Unit, Ministry of Health, Private Bag 65, Lilongwe, Malawi
| | - Jellita Gondwe
- Community Health Sciences Unit, Ministry of Health, Private Bag 65, Lilongwe, Malawi
| | - Edward J M Joy
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Alexander A Kalimbira
- Department of Human Nutrition and Health, Faculty of Food and Human Sciences, Bunda Campus, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi.
| | - John C Phuka
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Parminder S Suchdev
- Department of Pediatrics and Hubert Department of Global Health, Emory University, Atlanta, GA 30322, USA.
| | - Daniel R S Middleton
- Section of Environment and Radiation, International Agency for Research on Cancer, World Health Organization, Lyon, France.
| | - Elliott M Hamilton
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, NG12 5GG, UK.
| | - Michael J Watts
- Inorganic Geochemistry, Centre for Environmental Geochemistry, British Geological Survey, NG12 5GG, UK.
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| |
Collapse
|
150
|
Abstract
Selenoprotein P (SeP) is one of the 25 human selenocysteine (Sec)-containing proteins, and is generally thought to function as a plasma carrier of the trace element selenium in the body. Recent studies, however, indicate unsuspected pivotal roles of SeP in human diseases, particularly in type 2 diabetes mellitus (T2DM) and pulmonary arterial hypertension (PAH). In this review, we will summarize the characteristics of SeP and recent advances in the field, especially focusing on the emerging roles of SeP in pathophysiological conditions. We will also discuss potential medical/pharmaceutical applications targeting SeP.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiro Saito
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|