101
|
Abstract
Ependymal cells are part of the neurogenic niche in the adult subventricular zone of the lateral ventricles, where they regulate neurogenesis and neuroblast migration. Ependymal cells are generated from radial glia cells during embryonic brain development and acquire their final characteristics postnatally. The homeobox gene Six3 is expressed in ependymal cells during the formation of the lateral wall of the lateral ventricles in the brain. Here, we show that Six3 is necessary for ependymal cell maturation during postnatal stages of brain development. In its absence, ependymal cells fail to suppress radial glia characteristics, resulting in a defective lateral wall, abnormal neuroblast migration and differentiation, and hydrocephaly.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
102
|
Mercier S, Dubourg C, Garcelon N, Campillo-Gimenez B, Gicquel I, Belleguic M, Ratié L, Pasquier L, Loget P, Bendavid C, Jaillard S, Rochard L, Quélin C, Dupé V, David V, Odent S. New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases. J Med Genet 2011; 48:752-60. [PMID: 21940735 PMCID: PMC3386902 DOI: 10.1136/jmedgenet-2011-100339] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon. METHODS A large European series of 645 HPE probands (and 699 relatives), consisting of 51% fetuses and 49% liveborn children, is reported. RESULTS Mutations in the four main genes involved in HPE (SHH, ZIC2, SIX3, TGIF) were identified in 25% of cases. The SHH, SIX3, and TGIF mutations were inherited in more than 70% of these cases, whereas 70% of the mutations in ZIC2 occurred de novo. Moreover, rearrangements were detected in 22% of the 260 patients screened by array comparative genomic hybridisation. 15 probands had two mutations providing additional support for the 'multiple-hit process' in HPE. There was a positive correlation between the severity of the brain malformation and facial features for SHH, SIX3, and TGIF, but no such correlation was found for ZIC2 mutations. The most severe HPE types were associated with SIX3 and ZIC2 mutations, whereas microforms were associated with SHH mutations. The study focused on the associated brain malformations, including neuronal migration defects, which predominated in individuals with ZIC2 mutations, and neural tube defects, which were frequently associated with ZIC2 (rachischisis) and TGIF mutations. Extracraniofacial features were observed in 27% of the individuals in this series (up to 40% of those with ZIC2 mutations) and a significant correlation was found between renal/urinary defects and mutations of SHH and ZIC2. CONCLUSIONS An algorithm is proposed based on these new phenotype-genotype correlations, to facilitate molecular analysis and genetic counselling for HPE.
Collapse
Affiliation(s)
- Sandra Mercier
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
- Service de génétique médicale
CHU RennesUniversité de Rennes 116 bd de Bulgarie BP 90437, 35203 Rennes Cedex 2,FR
| | - Christèle Dubourg
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Nicolas Garcelon
- LIM, Laboratoire d'Informatique Médicale
Université de Rennes 1Laboratoire d'Informatique Médicale CHU - Pontchaillou 2, rue Henri Le Guilloux 35033 RENNES,FR
| | - Boris Campillo-Gimenez
- LIM, Laboratoire d'Informatique Médicale
Université de Rennes 1Laboratoire d'Informatique Médicale CHU - Pontchaillou 2, rue Henri Le Guilloux 35033 RENNES,FR
| | - Isabelle Gicquel
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Marion Belleguic
- Service de génétique médicale
CHU RennesUniversité de Rennes 116 bd de Bulgarie BP 90437, 35203 Rennes Cedex 2,FR
| | - Leslie Ratié
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Laurent Pasquier
- Service de génétique médicale
CHU RennesUniversité de Rennes 116 bd de Bulgarie BP 90437, 35203 Rennes Cedex 2,FR
| | - Philippe Loget
- Service d'anatomie et cytologie pathologiques
Hôpital PontchaillouUniversité de Rennes 1CHU Rennes2, rue Henri-le-Guilloux, 35000 Rennes,FR
| | - Claude Bendavid
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Sylvie Jaillard
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Lucie Rochard
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Chloé Quélin
- Service de génétique médicale
CHU RennesUniversité de Rennes 116 bd de Bulgarie BP 90437, 35203 Rennes Cedex 2,FR
| | - Valérie Dupé
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Véronique David
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
| | - Sylvie Odent
- IGDR, Institut de Génétique et Développement de Rennes
CNRS : UMR6061Université de Rennes 1IFR140Faculté de Médecine - CS 34317 2 Av du Professeur Léon Bernard 35043 RENNES CEDEX,FR
- Service de génétique médicale
CHU RennesUniversité de Rennes 116 bd de Bulgarie BP 90437, 35203 Rennes Cedex 2,FR
| |
Collapse
|
103
|
Gongal PA, March LD, Holly VL, Pillay LM, Berry-Wynne KM, Kagechika H, Waskiewicz AJ. Hmx4 regulates Sonic hedgehog signaling through control of retinoic acid synthesis during forebrain patterning. Dev Biol 2011; 355:55-64. [DOI: 10.1016/j.ydbio.2011.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/01/2023]
|
104
|
Flandin P, Zhao Y, Vogt D, Jeong J, Long J, Potter G, Westphal H, Rubenstein JL. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 2011; 70:939-50. [PMID: 21658586 PMCID: PMC3153409 DOI: 10.1016/j.neuron.2011.04.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2011] [Indexed: 01/24/2023]
Abstract
Lhx6 and Lhx8 transcription factor coexpression in early-born MGE neurons is required to induce neuronal Shh expression. We provide evidence that these transcription factors regulate expression of a Shh enhancer in MGE neurons. Lhx6 and Lhx8 are also required to prevent Nkx2-1 expression in a subset of pallial interneurons. Shh function in early-born MGE neurons was determined by genetically eliminating Shh expression in the MGE mantle zone (MZ). This mutant had reduced SHH signaling in the overlying progenitor zone, which led to reduced Lhx6, Lhx8, and Nkx2-1 expression in the rostrodorsal MGE and a preferential reduction of late-born somatostatin(+) and parvalbumin(+) cortical interneurons. Thus, Lhx6 and Lhx8 regulate MGE development through autonomous and nonautonomous mechanisms, the latter by promoting Shh expression in MGE neurons, which in turn feeds forward to promote the developmental program of the rostrodorsal MGE.
Collapse
Affiliation(s)
- Pierre Flandin
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Yangu Zhao
- Laboratory of Mammalian Genes and Development, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel Vogt
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Juhee Jeong
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Jason Long
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Gregory Potter
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John L.R. Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| |
Collapse
|
105
|
D'Amours G, Kibar Z, Mathonnet G, Fetni R, Tihy F, Désilets V, Nizard S, Michaud JL, Lemyre E. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet 2011; 81:128-41. [PMID: 21496010 DOI: 10.1111/j.1399-0004.2011.01687.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite a wide range of clinical tools, the etiology of mental retardation and multiple congenital malformations remains unknown for many patients. Array-based comparative genomic hybridization (aCGH) has proven to be a valuable tool in these cases, as its pangenomic coverage allows the identification of chromosomal aberrations that are undetectable by other genetic methods targeting specific genomic regions. Therefore, aCGH is increasingly used in clinical genetics, both in the postnatal and the prenatal settings. While the diagnostic yield in the postnatal population has been established at 10-12%, studies investigating fetuses have reported variable results. We used whole-genome aCGH to investigate fetuses presenting at least one major malformation detected on ultrasound, but for whom standard genetic analyses (including karyotype) failed to provide a diagnosis. We identified a clinically significant chromosomal aberration in 8.2% of tested fetuses (4/49), and a result of unclear clinical significance in 12.2% of tested fetuses (6/49). Our results document the value of whole-genome aCGH as a prenatal diagnostic tool and highlight the interpretation difficulties associated with copy number variations of unclear significance.
Collapse
Affiliation(s)
- G D'Amours
- Service de Génétique Médicale, CHU Sainte-Justine, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis 2011; 49:177-89. [PMID: 21381182 PMCID: PMC3086711 DOI: 10.1002/dvg.20710] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this work, we describe factors that are active between the development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time.
Collapse
Affiliation(s)
- Ralph S Marcucio
- University of California, San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF, San Francisco General Hospital, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
107
|
Morales-Delgado N, Merchan P, Bardet SM, Ferrán JL, Puelles L, Díaz C. Topography of Somatostatin Gene Expression Relative to Molecular Progenitor Domains during Ontogeny of the Mouse Hypothalamus. Front Neuroanat 2011; 5:10. [PMID: 21441981 PMCID: PMC3057523 DOI: 10.3389/fnana.2011.00010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/16/2011] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus comprises alar, basal, and floor plate developmental compartments. Recent molecular data support a rostrocaudal subdivision into rostral (terminal) and caudal (peduncular) halves. In this context, the distribution of neuronal populations expressing somatostatin (Sst) mRNA was analyzed in the developing mouse hypothalamus, comparing with the expression pattern of the genes Orthopedia (Otp), Distal-less 5 (Dlx5), Sonic Hedgehog (Shh), and Nk2 homeobox 1 (Nkx2.1). At embryonic day 10.5 (E10.5), Sst mRNA was first detectable in the anterobasal nucleus, a Nkx2.1-, Shh-, and Otp-positive basal domain. By E13.5, nascent Sst expression was also related to two additional Otp-positive domains within the alar plate and one in the basal plate. In the alar plate, Sst-positive cells were observed in rostral and caudal ventral subdomains of the Otp-positive paraventricular complex. An additional basal Sst-expressing cell group was found within a longitudinal Otp-positive periretromamillary band that separates the retromamillary area from tuberal areas. Apart of subsequent growth of these initial populations, at E13.5 and E15.5 some Sst-positive derivatives migrate tangentially into neighboring regions. A subset of cells produced at the anterobasal nucleus disperses ventralward into the shell of the ventromedial hypothalamic nucleus and the arcuate nucleus. Cells from the rostroventral paraventricular subdomain reach the suboptic nucleus, whereas a caudal contingent migrates radially into lateral paraventricular, perifornical, and entopeduncular nuclei. Our data provide a topologic map of molecularly defined progenitor areas originating a specific neuron type during early hypothalamic development. Identification of four main separate sources helps to understand causally its complex adult organization.
Collapse
Affiliation(s)
- Nicanor Morales-Delgado
- Department of Medical Sciences, School of Medicine, Regional Centre for Biomedical Research and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha Albacete, Spain
| | | | | | | | | | | |
Collapse
|
108
|
Leung AWL, Wong SYY, Chan D, Tam PPL, Cheah KSE. Loss of procollagen IIA from the anterior mesendoderm disrupts the development of mouse embryonic forebrain. Dev Dyn 2011; 239:2319-29. [PMID: 20730911 DOI: 10.1002/dvdy.22366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Morphogenesis of the mammalian forebrain is influenced by the patterning activity of signals emanating from the anterior mesendoderm. In this study, we show that procollagen IIA (IIA), an isoform of the cartilage extracellular matrix protein encoded by an alternatively spliced transcript of Col2a1, is expressed in the prechordal plate and the anterior definitive endoderm. In the absence of IIA activity, the null mutants displayed a partially penetrant phenotype of loss of head tissues, holoprosencephaly, and loss of mid-facial structures, which is associated with reduced sonic hedgehog (Shh) expression in the prechordal mesoderm. Genetic interaction studies reveal that IIA function in forebrain and face development does not involve bone morphogenetic protein receptor 1A (BMPR1A)- or NODAL-mediated signaling activity.
Collapse
Affiliation(s)
- Alan W L Leung
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
109
|
Zhang W, Hong M, Bae GU, Kang JS, Krauss RS. Boc modifies the holoprosencephaly spectrum of Cdo mutant mice. Dis Model Mech 2010; 4:368-80. [PMID: 21183473 PMCID: PMC3097458 DOI: 10.1242/dmm.005744] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Holoprosencephaly (HPE) is caused by a failure to form the midline of the forebrain and/or midface. It is one of the most common human birth defects, but clinical expression is extremely variable. HPE is associated with mutations in the sonic hedgehog (SHH) pathway. Mice lacking the Shh pathway regulator Cdo (also called Cdon) display HPE with strain-dependent penetrance and expressivity, implicating silent modifier genes as one cause of the variability. However, the identities of potential HPE modifiers of this type are unknown. We report here that whereas mice lacking the Cdo paralog Boc do not have HPE, Cdo;Boc double mutants on a largely Cdo-resistant genetic background have lobar HPE with strong craniofacial anomalies and defects in Shh target gene expression in the developing forebrain. Boc is therefore a silent HPE modifier gene in mice. Furthermore, Cdo and Boc have specific, selective roles in Shh signaling in mammals, because Cdo;Boc double-mutant mice do not display the most severe HPE phenotype seen in Shh-null mice, nor do they have major defects in digit patterning or development of vertebrae, which are also Shh-dependent processes. This is in contrast to reported observations in Drosophila, where genetic removal of the Cdo and Boc orthologs Ihog and Boi results in a complete loss of response to the hedgehog ligand. Therefore, there is evolutionary divergence between mammals and insects in the requirement of the hedgehog pathway for Cdo/Ihog family members, with mammalian development involving additional factors and/or distinct mechanisms at this level of pathway regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
110
|
Abstract
In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
111
|
Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta Mol Basis Dis 2010; 1812:390-401. [PMID: 20850526 DOI: 10.1016/j.bbadis.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 09/08/2010] [Indexed: 01/10/2023]
Abstract
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
112
|
Moldrich RX, Gobius I, Pollak T, Zhang J, Ren T, Brown L, Mori S, de Juan C, Britanova O, Tarabykin V, Richards LJ. Molecular regulation of the developing commissural plate. J Comp Neurol 2010; 518:3645-61. [PMID: 20653027 PMCID: PMC2910370 DOI: 10.1002/cne.22445] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Coordinated transfer of information between the brain hemispheres is essential for function and occurs via three axonal commissures in the telencephalon: the corpus callosum (CC), hippocampal commissure (HC), and anterior commissure (AC). Commissural malformations occur in over 50 human congenital syndromes causing mild to severe cognitive impairment. Disruption of multiple commissures in some syndromes suggests that common mechanisms may underpin their development. Diffusion tensor magnetic resonance imaging revealed that forebrain commissures crossed the midline in a highly specific manner within an oblique plane of tissue, referred to as the commissural plate. This specific anatomical positioning suggests that correct patterning of the commissural plate may influence forebrain commissure formation. No analysis of the molecular specification of the commissural plate has been performed in any species; therefore, we utilized specific transcription factor markers to delineate the commissural plate and identify its various subdomains. We found that the mouse commissural plate consists of four domains and tested the hypothesis that disruption of these domains might affect commissure formation. Disruption of the dorsal domains occurred in strains with commissural defects such as Emx2 and Nfia knockout mice but commissural plate patterning was normal in other acallosal strains such as Satb2(-/-). Finally, we demonstrate an essential role for the morphogen Fgf8 in establishing the commissural plate at later developmental stages. The results demonstrate that correct patterning of the commissural plate is an important mechanism in forebrain commissure formation.
Collapse
Affiliation(s)
- Randal X. Moldrich
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Ilan Gobius
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Thomas Pollak
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Jiangyang Zhang
- Division of NMR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tianbo Ren
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Lucia Brown
- Department of Obstetrics, University of Vermont, Gynecology and Reproductive Sciences, Burlington, Vermont 05401, USA
| | - Susumu Mori
- Division of NMR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- F.M. Kirby Functional Imaging Center, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| | - Camino de Juan
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Olga Britanova
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Victor Tarabykin
- Max-Planck-Institute for Experimental Medicine, 37075 and the Research Center for the Molecular Physiology of the Brain (CMPB), 37073 Gottingen, Germany
| | - Linda J. Richards
- The University of Queensland, The Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, The School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| |
Collapse
|
113
|
Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2010; 107:15479-84. [PMID: 20713707 DOI: 10.1073/pnas.1010023107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The decision of a cell to undergo programmed cell death is tightly regulated during animal development and tissue homeostasis. Here, we show that the Caenorhabditis elegans Six family homeodomain protein C. elegans homeobox (CEH-34) and the Eyes absent ortholog EYA-1 promote the programmed cell death of a specific pharyngeal neuron, the sister of the M4 motor neuron. Loss of either ceh-34 or eya-1 function causes survival of the M4 sister cell, which normally undergoes programmed cell death. CEH-34 physically interacts with the conserved EYA domain of EYA-1 in vitro. We identify an egl-1 5' cis-regulatory element that controls the programmed cell death of the M4 sister cell and show that CEH-34 binds directly to this site. Expression of the proapoptotic gene egl-1 in the M4 sister cell requires ceh-34 and eya-1 function. We conclude that an evolutionarily conserved complex that includes CEH-34 and EYA-1 directly activates egl-1 expression through a 5' cis-regulatory element to promote the programmed cell death of the M4 sister cell. We suggest that the regulation of apoptosis by Six and Eya family members is conserved in mammals and involved in human diseases caused by mutations in Six and Eya.
Collapse
|
114
|
Bardet SM, Ferran JLE, Sanchez-Arrones L, Puelles L. Ontogenetic expression of sonic hedgehog in the chicken subpallium. Front Neuroanat 2010; 4. [PMID: 20700498 PMCID: PMC2917215 DOI: 10.3389/fnana.2010.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/09/2010] [Indexed: 01/11/2023] Open
Abstract
Sonic hedgehog (SHH) is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS), somites, and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord) and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatiotemporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1, and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh-positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum.
Collapse
Affiliation(s)
- Sylvia M Bardet
- Unité de Génétique Moléculaire Animale-INRA UMR 1061, University of Limoges Limoges, France
| | | | | | | |
Collapse
|
115
|
Rosenfeld JA, Ballif BC, Martin DM, Aylsworth AS, Bejjani BA, Torchia BS, Shaffer LG. Clinical characterization of individuals with deletions of genes in holoprosencephaly pathways by aCGH refines the phenotypic spectrum of HPE. Hum Genet 2010; 127:421-40. [PMID: 20066439 DOI: 10.1007/s00439-009-0778-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/14/2009] [Indexed: 12/31/2022]
Abstract
Holoprosencephaly (HPE) is the most common developmental forebrain anomaly in humans. Both environmental and genetic factors have been identified to play a role in the HPE phenotype. Previous studies of the genetic bases of HPE have taken a phenotype-first approach by examining groups of patients with HPE for specific mutations or deletions in known or candidate HPE genes. In this study, we characterized the presence or absence of HPE or a microform in 136 individuals in which microarray-based comparative genomic hybridization (aCGH) identified a deletion of one of 35 HPE loci. Frank holoprosencephaly was present in 11 individuals with deletions of one of the common HPE genes SHH, ZIC2, SIX3, and TGIF1, in one individual with a deletion of the HPE8 locus at 14q13, and in one individual with a deletion of FGF8, whereas deletions of other HPE loci and candidate genes (FOXA2 and LRP2) expressed microforms of HPE. Although individuals with deletions of other HPE candidates (DISP1, LSS, HHIP, SMO, BMP4, CDON, CDC42, ACVR2A, OTX2, and WIF1) had clinically significant features, none had frank HPE or a microform. A search for significant aCGH findings in individuals referred for testing for HPE revealed a novel association of a duplication involving GSK3B at 3q13.33 with HPE or a microform, seen in two unrelated individuals.
Collapse
|
116
|
Srinivasan RS, Geng X, Yang Y, Wang Y, Mukatira S, Studer M, Porto MP, Lagutin O, Oliver G. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 2010; 24:696-707. [PMID: 20360386 PMCID: PMC2849126 DOI: 10.1101/gad.1859310] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/18/2010] [Indexed: 01/02/2023]
Abstract
The homeobox gene Prox1 is crucial for mammalian lymphatic vascular development. In the absence of Prox1, lymphatic endothelial cells (LECs) are not specified. The maintenance of LEC identity also requires the constant expression of Prox1. However, the mechanisms controlling the expression of this gene in LECs remain poorly understood. The SRY-related gene Sox18 is required to induce Prox1 expression in venous LEC progenitors. Although Sox18 is also expressed in embryonic arteries, these vessels do not express Prox1, nor do they give rise to LECs. This finding suggests that some venous endothelial cell-specific factor is required for the activation of Prox1. Here we demonstrate that the nuclear hormone receptor Coup-TFII is necessary for the activation of Prox1 in embryonic veins by directly binding a conserved DNA domain in the regulatory region of Prox1. In addition, we show that the direct interaction between nuclear hormone receptors and Prox1 is also necessary for the maintenance of Prox1 expression during early stages of LEC specification and differentiation.
Collapse
Affiliation(s)
- R. Sathish Srinivasan
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Ying Yang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yingdi Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Suraj Mukatira
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michèle Studer
- Developmental Disorders Program, Telethon Institute of Genetics and Medicine, 80131 Napoli, Italy
| | - Marianna P.R. Porto
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Oleg Lagutin
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Guillermo Oliver
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
117
|
Lipinski RJ, Godin EA, O'leary-Moore SK, Parnell SE, Sulik KK. Genesis of teratogen-induced holoprosencephaly in mice. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:29-42. [PMID: 20104601 DOI: 10.1002/ajmg.c.30239] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Evidence from mechanical, teratological, and genetic experimentation demonstrates that holoprosencephaly (HPE) typically results from insult prior to the time that neural tube closure is completed and occurs as a consequence of direct or indirect insult to the rostral prechordal cells that induce the forebrain or insult to the median forebrain tissue, itself. Here, we provide an overview of normal embryonic morphogenesis during the critical window for HPE induction, focusing on the morphology and positional relationship of the developing brain and subjacent prechordal plate and prechordal mesoderm cell populations. Subsequent morphogenesis of the HPE spectrum is then examined in selected teratogenesis mouse models. The temporal profile of Sonic Hedgehog expression in rostral embryonic cell populations and evidence for direct or indirect perturbation of the Hedgehog pathway by teratogenic agents in the genesis of HPE is highlighted. Emerging opportunities based on recent insights and new techniques to further characterize the mechanisms and pathogenesis of HPE are discussed.
Collapse
|
118
|
Roessler E, Muenke M. The molecular genetics of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:52-61. [PMID: 20104595 DOI: 10.1002/ajmg.c.30236] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | | |
Collapse
|
119
|
Hehr U, Pineda-Alvarez DE, Uyanik G, Hu P, Zhou N, Hehr A, Schell-Apacik C, Altus C, Daumer-Haas C, Meiner A, Steuernagel P, Roessler E, Winkler J, Muenke M. Heterozygous mutations in SIX3 and SHH are associated with schizencephaly and further expand the clinical spectrum of holoprosencephaly. Hum Genet 2010; 127:555-61. [PMID: 20157829 PMCID: PMC4101187 DOI: 10.1007/s00439-010-0797-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/28/2010] [Indexed: 11/28/2022]
Abstract
Schizencephaly (SCH) is a clinically and etiologically heterogeneous cerebral malformation presenting as unilateral or bilateral hemispheric cleft with direct connection between the inner and outer liquor spaces. The SCH cleft is usually lined by gray matter, which appears polymicrogyric implying an associated impairment of neuronal migration. The majority of SCH patients are sporadic, but familial SCH has been described. An initial report of heterozygous mutations in the homeobox gene EMX2 could not be confirmed in 52 patients investigated in this study in agreement with two independent SCH patient cohorts published previously. SCH frequently occurs with additional cerebral malformations like hypoplasia or aplasia of the septum pellucidum or optic nerve, suggesting the involvement of genes important for the establishment of midline forebrain structures. We therefore considered holoprosencephaly (HPE)-associated genes as potential SCH candidates and report for the first time heterozygous mutations in SIX3 and SHH in a total of three unrelated patients and one fetus with SCH; one of them without obvious associated malformations of midline forebrain structures. Three of these mutations have previously been reported in independent patients with HPE. SIX3 acts directly upstream of SHH, and the SHH pathway is a key regulator of ventral forebrain patterning. Our data indicate that in a subset of patients SCH may develop as one aspect of a more complex malformation of the ventral forebrain, directly result from mutations in the SHH pathway and hence be considered as yet another feature of the broad phenotypic spectrum of holoprosencephaly.
Collapse
Affiliation(s)
- Ute Hehr
- Center for Human Genetics, Franz-Josef-Strauss-Allee 11, Universitätsklinikum D3, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The vertebrate eye comprises tissues from different embryonic origins: the lens and the cornea are derived from the surface ectoderm, but the retina and the epithelial layers of the iris and ciliary body are from the anterior neural plate. The timely action of transcription factors and inductive signals ensure the correct development of the different eye components. Establishing the genetic basis of eye defects in zebrafishes, mouse, and human has been an important tool for the detailed analysis of this complex process. A single eye field forms centrally within the anterior neural plate during gastrulation; it is characterized on the molecular level by the expression of "eye-field transcription factors." The single eye field is separated into two, forming the optic vesicle and later (under influence of the lens placode) the optic cup. The lens develops from the lens placode (surface ectoderm) under influence of the underlying optic vesicle. Pax6 acts in this phase as master control gene, and genes encoding cytoskeletal proteins, structural proteins, or membrane proteins become activated. The cornea forms from the surface ectoderm, and cells from the periocular mesenchyme migrate into the cornea giving rise for the future cornea stroma. Similarly, the iris and ciliary body form from the optic cup. The outer layer of the optic cup becomes the retinal pigmented epithelium, and the main part of the inner layer of the optic cup forms later the neural retina with six different types of cells including the photoreceptors. The retinal ganglion cells grow toward the optic stalk forming the optic nerve. This review describes the major molecular players and cellular processes during eye development as they are known from frogs, zebrafish, chick, and mice-showing also differences among species and missing links for future research. The relevance to human disorders is one of the major aspects covered throughout the review.
Collapse
Affiliation(s)
- Jochen Graw
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| |
Collapse
|
121
|
Sanek NA, Taylor AA, Nyholm MK, Grinblat Y. Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development 2009; 136:3791-800. [PMID: 19855021 PMCID: PMC2766342 DOI: 10.1242/dev.037820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2009] [Indexed: 11/20/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.
Collapse
Affiliation(s)
- Nicholas A Sanek
- Department of Zoology and Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
122
|
Roessler E, El-Jaick KB, Dubourg C, Vélez JI, Solomon BD, Pineda-Álvarez DE, Lacbawan F, Zhou N, Ouspenskaia M, Paulussen A, Smeets HJ, Hehr U, Bendavid C, Bale S, Odent S, David V, Muenke M. The mutational spectrum of holoprosencephaly-associated changes within the SHH gene in humans predicts loss-of-function through either key structural alterations of the ligand or its altered synthesis. Hum Mutat 2009; 30:E921-35. [PMID: 19603532 PMCID: PMC2772877 DOI: 10.1002/humu.21090] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations within either the SHH gene or its related pathway components are the most common, and best understood, pathogenetic changes observed in holoprosencephaly patients; this fact is consistent with the essential functions of this gene during forebrain development and patterning. Here we summarize the nature and types of deleterious sequence alterations among over one hundred distinct mutations in the SHH gene (64 novel mutations) and compare these to over a dozen mutations in disease-related Hedgehog family members IHH and DHH. This combined structural analysis suggests that dysfunction of Hedgehog signaling in human forebrain development can occur through truncations or major structural changes to the signaling domain, SHH-N, as well as due to defects in the processing of the mature ligand from its pre-pro-precursor or defective post-translation bi-lipid modifications with palmitate and cholesterol.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenia B. El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | - Jorge I. Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E. Pineda-Álvarez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Felicitas Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhou
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maia Ouspenskaia
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aimée Paulussen
- Academic Hospital and Department of Clinical Genetics, University of Maastricht, the Netherlands
| | - Hubert J. Smeets
- Academic Hospital and Department of Clinical Genetics, University of Maastricht, the Netherlands
| | - Ute Hehr
- Center for Human Genetics and Department of Human Genetics, University of Regensburg, Germany
| | - Claude Bendavid
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | | | - Sylvie Odent
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
- Service de génétique clinique,CHU Hôpital Sud, Rennes, France
| | - Véronique David
- Laboratoire de Génétique Moléculaire, CHU Pontchaillou, Rennes Cedex, France
- CNRS UMR6061 Génétique et Développement, Université de Rennes 1, IFR140, France
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
123
|
Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 2009; 16:127-42. [PMID: 19778710 DOI: 10.1016/j.spen.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cerebral cortex is the area of the brain where higher-order cognitive processing occurs. The 2 hemispheres of the cerebral cortex communicate through one of the largest fiber tracts in the brain, the corpus callosum. Malformation of the corpus callosum in human beings occurs in 1 in 4000 live births, and those afflicted experience an extensive range of neurologic disorders, from relatively mild to severe cognitive deficits. Understanding the molecular and cellular processes involved in these disorders would therefore assist in the development of prognostic tools and therapies. During the past 3 decades, mouse models have been used extensively to determine which molecules play a role in the complex regulation of corpus callosum development. This review provides an update on these studies, as well as highlights the value of using mouse models with the goal of developing therapies for human acallosal syndromes.
Collapse
|
124
|
Andreazzoli M. Molecular regulation of vertebrate retina cell fate. ACTA ACUST UNITED AC 2009; 87:284-95. [DOI: 10.1002/bdrc.20161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
Feijóo CG, Sarrazin AF, Allende ML, Glavic A. Cystein-serine-rich nuclear protein 1, Axud1/Csrnp1, is essential for cephalic neural progenitor proliferation and survival in zebrafish. Dev Dyn 2009; 238:2034-43. [PMID: 19544579 DOI: 10.1002/dvdy.22006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CSRNP (cystein-serine-rich nuclear protein) family has been conserved from Drosophila to human. Although knockout mice for each of the mammalian proteins have been generated, their function during vertebrate development has remained elusive. As an alternative to obtain insights on CSRNP's role in development, we have analysed the expression pattern and function of one member of this family, axud1, during zebrafish development. Our expression analysis indicates that axud1 is expressed from cleavage to larval stages in a dynamic pattern, becoming restricted after gastrulation to anterior regions of the developing neuraxis and later on concentrated predominantly in proliferating domains of the brain. Knockdown analysis using antisense morpholinos shows that reducing Axud1 levels impairs neural progenitor cell proliferation and survival, revealing an essential function of this gene for the growth of cephalic derivatives. The brain growth phenotypes elicited by decreasing Axud1 expression are specific and independent of anterior-posterior patterning events, initial establishment of neural progenitors, or neural differentiation occurring in this tissue. However, Axud1 is necessary for six3.1 expression and is positively regulated by sonic hedgehog. Phylogenetic examination shows that axud1 is likely to be the ortholog of the only member of this family present in Drosophila, as well as to the previously described mouse CSRNP1 and to human AXUD1 (Axin upregulated-1). Thus, we provide evidence as to the role of axud1 in brain growth in vertebrates.
Collapse
Affiliation(s)
- Carmen G Feijóo
- Center for Genomics of the Cell, Facultad de Ciencias, Universidad Chile, Santiago, Chile
| | | | | | | |
Collapse
|
126
|
Epstein DJ. Cis-regulatory mutations in human disease. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:310-6. [PMID: 19641089 DOI: 10.1093/bfgp/elp021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cis-acting regulatory sequences are required for the proper temporal and spatial control of gene expression. Variation in gene expression is highly heritable and a significant determinant of human disease susceptibility. The diversity of human genetic diseases attributed, in whole or in part, to mutations in non-coding regulatory sequences is on the rise. Improvements in genome-wide methods of associating genetic variation with human disease and predicting DNA with cis-regulatory potential are two of the major reasons for these recent advances. This review will highlight select examples from the literature that have successfully integrated genetic and genomic approaches to uncover the molecular basis by which cis-regulatory mutations alter gene expression and contribute to human disease. The fine mapping of disease-causing variants has led to the discovery of novel cis-acting regulatory elements that, in some instances, are located as far away as 1.5 Mb from the target gene. In other cases, the prior knowledge of the regulatory landscape surrounding the gene of interest aided in the selection of enhancers for mutation screening. The success of these studies should provide a framework for following up on the large number of genome-wide association studies that have identified common variants in non-coding regions of the genome that associate with increased risk of human diseases including, diabetes, autism, Crohn's, colorectal cancer, and asthma, to name a few.
Collapse
Affiliation(s)
- Douglas J Epstein
- Department of Genetics, University of Pennsylvania School of Medicine, Clinical Research Bldg, Room 470, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
127
|
Boklage CE. Traces of embryogenesis are the same in monozygotic and dizygotic twins: not compatible with double ovulation. Hum Reprod 2009; 24:1255-66. [PMID: 19252194 PMCID: PMC2683734 DOI: 10.1093/humrep/dep030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 11/14/2022] Open
Abstract
Common knowledge of over a century has it that monozygotic and dizygotic twinning events occur by unrelated mechanisms: monozygotic twinning 'splits' embryos, producing anomalously re-arranged embryogenic asymmetries; dizygotic twinning begins with independent ovulations yielding undisturbed parallel embryogeneses with no expectation of departures from singleton outcomes. The anomalies statistically associated with twin births are due to the re-arranged embryos of the monozygotics. Common knowledge further requires that dizygotic pairs are dichorionic; monochorionicity is exclusive to monozygotic pairs. These are fundamental certainties in the literature of twin biology. Multiple observations contradict those common knowledge understandings. The double ovulation hypothesis of dizygotic twinning is untenable. Girl-boy twins differ subtly from all other humans of either sex, absolutely not representative of all dizygotics. Embryogenesis of dizygotic twins differs from singleton development at least as much as monozygotic embryogenesis does, and in the same ways, and the differences between singletons and twins of both zygosities represent a coherent system of re-arranged embryogenic asymmetries. Dizygotic twinning and monozygotic twinning have the same list of consequences of anomalous embryogenesis. Those include an unignorable fraction of dizygotic pairs that are in fact monochorionic, plus many more sharing co-twins' cells in tissues other than a common chorion. The idea that monozygotic and dizygotic twinning events arise from the same embryogenic mechanism is the only plausible hypothesis that might explain all of the observations.
Collapse
Affiliation(s)
- Charles E Boklage
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
128
|
Lacbawan F, Solomon BD, Roessler E, El-Jaick K, Domené S, Vélez JI, Zhou N, Hadley D, Balog JZ, Long R, Fryer A, Smith W, Omar S, McLean SD, Clarkson K, Lichty A, Clegg NJ, Delgado MR, Levey E, Stashinko E, Potocki L, Vanallen MI, Clayton-Smith J, Donnai D, Bianchi DW, Juliusson PB, Njølstad PR, Brunner HG, Carey JC, Hehr U, Müsebeck J, Wieacker PF, Postra A, Hennekam RCM, van den Boogaard MJH, van Haeringen A, Paulussen A, Herbergs J, Schrander-Stumpel CTRM, Janecke AR, Chitayat D, Hahn J, McDonald-McGinn DM, Zackai EH, Dobyns WB, Muenke M. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function. J Med Genet 2009; 46:389-98. [PMID: 19346217 PMCID: PMC3510661 DOI: 10.1136/jmg.2008.063818] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS Patients with HPE and their family members were tested for mutations in HPE-associated genes and the genetic and clinical findings, including those for additional cases found in the literature, were analysed. The results were correlated with a mutation-specific functional assay in zebrafish. RESULTS In a cohort of patients (n = 800) with HPE, SIX3 mutations were found in 4.7% of probands and additional cases were found through testing of relatives. In total, 138 cases of HPE were identified, 59 of whom had not previously been clinically presented. Mutations in SIX3 result in more severe HPE than in other cases of non-chromosomal, non-syndromic HPE. An over-representation of severe HPE was found in patients whose mutations confer greater loss of function, as measured by the functional zebrafish assay. The gender ratio in this combined set of patients was 1.5:1 (F:M) and maternal inheritance was almost twice as common as paternal. About 14% of SIX3 mutations in probands occur de novo. There is a wide intrafamilial clinical range of features and classical penetrance is estimated to be at least 62%. CONCLUSIONS Our data suggest that SIX3 mutations result in relatively severe HPE and that there is a genotype-phenotype correlation, as shown by functional studies using animal models.
Collapse
Affiliation(s)
- F Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B-203, Bethesda, MD 20892-3717, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Hoch RV, Rubenstein JL, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 2009; 20:378-86. [DOI: 10.1016/j.semcdb.2009.02.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
|
130
|
Abstract
Holoprosencephaly (HPE), the most common human forebrain malformation, occurs in 1 in 250 fetuses and 1 in 16,000 live births. HPE is etiologically heterogeneous, and its pathology is variable. Several mouse models of HPE have been generated, and some of the molecular causes of different forms of HPE and the mechanisms underlying its variable pathology have been revealed by these models. Herein, we summarize the current knowledge on the genetic alterations that cause HPE and discuss some important questions about this disease that remain to be answered.
Collapse
Affiliation(s)
- Xin Geng
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
131
|
Solomon BD, Lacbawan F, Jain M, Domené S, Roessler E, Moore C, Dobyns WB, Muenke M. A novel SIX3 mutation segregates with holoprosencephaly in a large family. Am J Med Genet A 2009; 149A:919-25. [PMID: 19353631 PMCID: PMC2737713 DOI: 10.1002/ajmg.a.32813] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Holoprosencephaly is the most common structural malformation of the forebrain in humans and has a complex etiology including chromosomal aberrations, single gene mutations and environmental components. Here we present the pertinent clinical findings among members of an unusually large kindred ascertained over 15 years ago following the evaluation and subsequent genetic work-up of a female infant with congenital anomalies. A genome-wide scan and linkage analysis showed only suggestive evidence of linkage to markers on chromosome 2 among the most likely of several pedigree interpretations. We now report that a novel missense mutation in the SIX3 holoprosencephaly gene is the likely cause in this family. Molecular genetic analysis and/or clinical characterization now show that at least 15 members of this family are presumed SIX3 mutation gene carriers, with clinical manifestations ranging from phenotypically normal adults (non-penetrance) to alobar holoprosencephaly incompatible with postnatal life. This particular family represents a seminal example of the variable manifestations of gene mutations in holoprosencephaly and difficulties encountered in their elucidation.
Collapse
Affiliation(s)
- Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Felicitas Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Department of Pathology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Mahim Jain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sabina Domené
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Cynthia Moore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William B. Dobyns
- Departments of Human Genetics, Neurology, and Pediatrics, The University of Chicago, Chicago, Illinois
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
132
|
Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 2009; 12:125-31. [PMID: 19122665 DOI: 10.1038/nn.2243] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/20/2008] [Indexed: 01/07/2023]
Abstract
The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons. Distinct spatiotemporal Shh and Wnt expression may distinguish the neurogenetic potential of these structures. We discovered an inhibitory role for Shh: removal of Shh resulted in neurogenesis from the hindbrain midline and, conversely, high doses of Shh inhibited proliferation and DA neuron production in midbrain cultures. We found that Wnt/beta-catenin signaling is necessary and sufficient for antagonizing Shh, DA progenitor marker induction and promotion of dopaminergic neurogenesis. These findings demonstrate how the dynamic interplay of canonical Wnt/beta-catenin signaling and Shh may orchestrate floor plate neurogenesis or a lack thereof.
Collapse
|
133
|
Domené S, Roessler E, El-Jaick KB, Snir M, Brown JL, Vélez JI, Bale S, Lacbawan F, Muenke M, Feldman B. Mutations in the human SIX3 gene in holoprosencephaly are loss of function. Hum Mol Genet 2008; 17:3919-28. [PMID: 18791198 PMCID: PMC2733808 DOI: 10.1093/hmg/ddn294] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/09/2008] [Indexed: 01/12/2023] Open
Abstract
Holoprosencephaly (HPE) is the most common developmental anomaly of the human forebrain; however, the genetics of this heterogeneous and etiologically complex malformation is incompletely understood. Heterozygous mutations in SIX3, a transcription factor gene expressed in the anterior forebrain and eyes during early vertebrate development, have been frequently detected in human HPE cases. However, only a few mutations have been investigated with limited functional studies that would confirm a role in HPE pathogenesis. Here, we report the development of a set of robust and sensitive assays of human SIX3 function in zebrafish and apply these to the analysis of a total of 46 distinct mutations (19 previously published and 27 novel) located throughout the entire SIX3 gene. We can now confirm that 89% of these putative deleterious mutations are significant loss-of-function alleles. Since disease-associated single point mutations in the Groucho-binding eh1-like motif decreases the function in all assays, we can also confirm that this interaction is essential for human SIX3 co-repressor activity; we infer, in turn, that this function is important in HPE causation. We also unexpectedly detected truncated versions with partial function, yet missing a SIX3-encoded homeodomain. Our data indicate that SIX3 is a frequent target in the pathogenesis of HPE and demonstrate how this can inform the genetic counseling of families.
Collapse
Affiliation(s)
- Sabina Domené
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kenia B. El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Mirit Snir
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Jamie L. Brown
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Jorge I. Vélez
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | - Felicitas Lacbawan
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
134
|
Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 2008; 327:106-20. [PMID: 19103193 DOI: 10.1016/j.ydbio.2008.11.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 11/01/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022]
Abstract
In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh(-/-) embryos. Using Shh(-/-) and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.
Collapse
|
135
|
Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M, Yocum A, Dubourg C, Li X, Geng X, Oliver G, Epstein DJ. Regulation of a remote Shh forebrain enhancer by the Six3 homeoprotein. Nat Genet 2008; 40:1348-53. [PMID: 18836447 PMCID: PMC2648611 DOI: 10.1038/ng.230] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
Abstract
In humans, SHH haploinsufficiency results in holoprosencephaly (HPE), a defect in anterior midline formation. Despite the importance of maintaining SHH transcript levels above a critical threshold, we know little about the upstream regulators of SHH expression in the forebrain. Here we describe a rare nucleotide variant located 460 kb upstream of SHH in an individual with HPE that resulted in the loss of Shh brain enhancer-2 (SBE2) activity in the hypothalamus of transgenic mouse embryos. Using a DNA affinity-capture assay, we screened the SBE2 sequence for DNA-binding proteins and identified members of the Six3 and Six6 homeodomain family as candidate regulators of Shh transcription. Six3 showed reduced binding affinity for the mutant compared to the wild-type SBE2 sequence. Moreover, Six3 with HPE-causing alterations failed to bind and activate SBE2. These data suggest a direct link between Six3 and Shh regulation during normal forebrain development and in the pathogenesis of HPE.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Federico Coluccio Leskow
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Kenia El-Jaick
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3717, USA
| | - Anastasia Yocum
- Department of Pharmacology, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| | - Christele Dubourg
- Groupe Génétique Humaine, IFR140 GFAS, CNRS UMR 6061, Université de Rennes1, 2 avenue du PrLéon Bernard, CS 34317, 35043_Rennes Cedex, France
| | - Xue Li
- Department of Surgery/Urology, Children’s Hospital of Boston, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115
| | - Xin Geng
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-2794
| | - Douglas J. Epstein
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104
| |
Collapse
|
136
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
137
|
Abstract
Holoprosencephaly (HPE), the most common developmental defect of the forebrain and midface, is caused by a failure to delineate the midline in these structures. Both genetic and environmental etiologies exist for HPE, and clinical presentation is highly variable. HPE occurs in sporadic and inherited forms, and even HPE in pedigrees is characterized by incomplete penetrance and variable expressivity. Heterozygous mutations in eight different genes have been identified in human HPE, and disruption of Sonic hedgehog expression and/or signaling in the rostroventral region of the embryo is a major common effect of these mutations. An understanding of the mechanisms whereby genetic defects and teratogenic exposures become manifest as developmental anomalies of varying severity requires experimental models that accurately reproduce the spectrum of defects seen in human HPE. The mouse has emerged as such a model, because of its ease of genetic manipulation and similarity to humans in development of the forebrain and face. HPE is generally observed in mice homozygous for mutations in orthologs of human HPE genes though, unlike humans, rarely in mice with heterozygous mutations. Moreover, reverse genetics in the mouse has provided a wealth of new candidate human HPE genes. Construction of hypomorphic alleles, interbreeding to produce double mutants, and analysis of these mutations on different genetic backgrounds has generated multiple models of HPE and begun to provide insight into the conundrum of the HPE spectrum. Here, we review forebrain development with an emphasis on the pathways known to be defective in HPE and describe the strengths and weaknesses of various murine models of HPE.
Collapse
Affiliation(s)
- Karen A Schachter
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|