101
|
Coers J. Sweet host revenge: Galectins and GBPs join forces at broken membranes. Cell Microbiol 2017; 19:10.1111/cmi.12793. [PMID: 28973783 PMCID: PMC5680119 DOI: 10.1111/cmi.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co-opt the host's membrane trafficking systems and thereby establish specialised pathogen-containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell-intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore-forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole-dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar-binding galectins as well as dynamin-like guanylate-binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell-autonomous immunity.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
102
|
Nozawa T, Aikawa C, Minowa-Nozawa A, Nakagawa I. The intracellular microbial sensor NLRP4 directs Rho-actin signaling to facilitate Group A Streptococcus-containing autophagosome-like vacuole formation. Autophagy 2017; 13:1841-1854. [PMID: 29099277 PMCID: PMC5788493 DOI: 10.1080/15548627.2017.1358343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
Xenophagy, also known as antibacterial autophagy, functions as a crucial defense system that can utilize intracellular pattern recognition sensors, such as NLRP4, to recognize and selectively eliminate bacterial pathogens. However, little is known about how NLRP4 regulates xenophagy. Here, we report that NLRP4 binds ARHGDIA (Rho GDP dissociation inhibitor α) to regulate Rho GTPase signaling and facilitate actin-mediated xenophagy. Specifically, NLRP4 is recruited to Group A Streptococcus (GAS) and colocalizes with GAS-containing autophagosome-like vacuoles (GcAVs), where it regulates ARHGDIA-Rho GTPase recruitment to promote autophagosome formation. The interaction between NLRP4, ARHGDIA, and Rho GTPases is regulated by ARHGDIA Tyr156 phosphorylation, which acts as a gate to induce Rho-mediated xenophagy. Moreover, ARHGDIA and Rho GTPase are involved in actin-mediated ATG9A recruitment to phagophores, facilitating elongation to form autophagosomes. Collectively, these findings demonstrate that NLRP4 functions as a Rho receptor complex to direct actin dynamics regulating xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
103
|
LRRC25 Functions as an Inhibitor of NF-κB Signaling Pathway by Promoting p65/RelA for Autophagic Degradation. Sci Rep 2017; 7:13448. [PMID: 29044191 PMCID: PMC5647368 DOI: 10.1038/s41598-017-12573-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/17/2017] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor κB (NF-κB) is a family of critical transcription factors that play a critical role in innate immune responses and inflammation, yet the molecular mechanisms responsible for its tight regulation is not fully understood. In this study, we identified LRRC25, a member of leucine-rich repeat (LRR)-containing protein family, as a negative regulator in the NF-κB signaling pathway. Ectopic expression of LRRC25 impaired NF-κB activation, whereas knockout of LRRC25 potentiated NF-κB activation and enhanced the production of inflammatory cytokines. Further study demonstrated that the LRR domain of LRRC25 interacted with the Rel Homology domain (RHD) of p65/RelA and promotes the degradation of p65/RelA. Furthermore, LRRC25 enhanced the interaction between p65/RelA and cargo receptor p62, thus facilitating the degradation of p65/RelA through autophagy pathway. Our study has not only identified LRRC25 as a novel inhibitor of NF-κB signaling pathway, but also uncovers a new mechanism of crosstalk between NF-κB signaling and autophagy pathways.
Collapse
|
104
|
From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J Bioenerg Biomembr 2017; 49:413-422. [DOI: 10.1007/s10863-017-9727-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
|
105
|
Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol Ther 2017; 178:157-174. [DOI: 10.1016/j.pharmthera.2017.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
106
|
Yang Q, Liu TT, Lin H, Zhang M, Wei J, Luo WW, Hu YH, Zhong B, Hu MM, Shu HB. TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog 2017; 13:e1006600. [PMID: 28898289 PMCID: PMC5595311 DOI: 10.1371/journal.ppat.1006600] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor (TLR)-mediated signaling are critical for host defense against pathogen invasion. However, excessive responses would cause harmful damages to the host. Here we show that deficiency of the E3 ubiquitin ligase TRIM32 increases poly(I:C)- and LPS-induced transcription of downstream genes such as type I interferons (IFNs) and proinflammatory cytokines in both primary mouse immune cells and in mice. Trim32-/- mice produced higher levels of serum inflammatory cytokines and were more sensitive to loss of body weight and inflammatory death upon Salmonella typhimurium infection. TRIM32 interacts with and mediates the degradation of TRIF, a critical adaptor protein for TLR3/4, in an E3 activity-independent manner. TRIM32-mediated as well as poly(I:C)- and LPS-induced degradation of TRIF is inhibited by deficiency of TAX1BP1, a receptor for selective autophagy. Furthermore, TRIM32 links TRIF and TAX1BP1 through distinct domains. These findings suggest that TRIM32 negatively regulates TLR3/4-mediated immune responses by targeting TRIF to TAX1BP1-mediated selective autophagic degradation. TLR3/4-mediated signaling needs to be effectively terminated to avoid excessive immune responses and harmful damages to the host. In this study, we provide genetic evidence to show that the E3 ubiquitin ligase TRIM32 negatively regulates TLR3/4-mediated innate immune and inflammatory responses. Trim32-/- mice are more sensitive to the inflammatory death upon Salmonella typhimurium infection. We found that TRIM32-TAX1BP1-dependent selective autophagic degradation of the adaptor protein TRIF effectively turned off TLR3/4-mediated innate immune and inflammatory responses. Our findings reveal a novel mechanism for terminating innate immune and inflammatory responses mediated by TLR3/4.
Collapse
Affiliation(s)
- Qing Yang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tian-Tian Liu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Heng Lin
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Zhang
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Wei
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wei-Wei Luo
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Hong Hu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Zhong
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ming-Ming Hu
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (MMH); (HBS)
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Department of Cell Biology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (MMH); (HBS)
| |
Collapse
|
107
|
Abstract
Autophagy is an essential metabolic program that is also used for clearing intracellular pathogens. This mechanism, also termed selective autophagy, is well characterized for invasive bacteria but remains poorly documented for viral infections. Here we highlight our recent work showing that endosomolytic adenoviruses trigger autophagy when entering cells. Our study revealed how adenoviruses exploit a capsid-associated small PPxY peptide motif to manipulate the autophagic machinery to prevent autophagic degradation and to promote endosomal escape and nuclear trafficking.
Collapse
|
108
|
Jacomin AC, Samavedam S, Charles H, Nezis IP. iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Autophagy 2017; 13:1782-1789. [PMID: 28806134 PMCID: PMC5640201 DOI: 10.1080/15548627.2017.1356978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Hannah Charles
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Ioannis P Nezis
- a School of Life Sciences , University of Warwick , Coventry , UK
| |
Collapse
|
109
|
Stewart SE, Menzies SA, Popa SJ, Savinykh N, Petrunkina Harrison A, Lehner PJ, Moreau K. A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface. J Cell Sci 2017; 130:3234-3247. [PMID: 28775154 DOI: 10.1242/jcs.206425] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Galectins are a family of lectin binding proteins expressed both intracellularly and extracellularly. Galectin-3 (Gal-3, also known as LGALS3) is expressed at the cell surface; however, Gal-3 lacks a signal sequence, and the mechanism of Gal-3 transport to the cell surface remains poorly understood. Here, using a genome-wide CRISPR/Cas9 forward genetic screen for regulators of Gal-3 cell surface localization, we identified genes encoding glycoproteins, enzymes involved in N-linked glycosylation, regulators of ER-Golgi trafficking and proteins involved in immunity. The results of this screening approach led us to address the controversial role of N-linked glycosylation in the transport of Gal-3 to the cell surface. We find that N-linked glycoprotein maturation is not required for Gal-3 transport from the cytosol to the extracellular space, but is important for cell surface binding. Additionally, secreted Gal-3 is predominantly free and not packaged into extracellular vesicles. These data support a secretion pathway independent of N-linked glycoproteins and extracellular vesicles.
Collapse
Affiliation(s)
- Sarah E Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sam A Menzies
- Department of Medicine, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Stephanie J Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Petrunkina Harrison
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
110
|
TFEB-mediated activation of the lysosome-autophagy system affects the transduction efficiency of adeno-associated virus 2. Virology 2017; 510:1-8. [PMID: 28688268 DOI: 10.1016/j.virol.2017.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV)-mediated gene transfer is an appealing therapeutic option due to AAV's safety profile. Effective delivery of AAV's genetic cargo to the nucleus, however, requires evasion of host cell barriers, including cellular clearance mechanisms mediated by the lysosome-autophagy system. We used AAV serotype 2 to monitor the autophagic response to cellular internalization of AAV and to characterize the effect of AAV-induced activation of autophagy on transgene expression. We found AAV2 internalization to induce activation of transcription factor EB, a master regulator of autophagy and lysosomal biogenesis, and upregulation of the lysosome-autophagy system. We showed that AAV2-induced activation of autophagy parallels a reduction in transgene expression, but also an increase in autophagic clearance of protein aggregates. These results can inform the design of AAV vectors with autophagy-modulating properties for applications ranging from the design of efficient gene delivery vectors to the treatment of diseases characterized by accumulation of autophagic cargo.
Collapse
|
111
|
Pucciarelli MG, García-Del Portillo F. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0009-2016. [PMID: 28730976 PMCID: PMC11687531 DOI: 10.1128/microbiolspec.mtbp-0009-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella-containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
112
|
Leymarie O, Meyer L, Tafforeau L, Lotteau V, Costa BD, Delmas B, Chevalier C, Le Goffic R. Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. J Gen Virol 2017; 98:1196-1208. [PMID: 28613140 DOI: 10.1099/jgv.0.000782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors. This allowed us to identify calcium-binding and coiled-coil domain 2 (CALCOCO2, also known as NDP52) as a binding partner of PB1-F2. Binding of PB1-F2 to CALCOCO2 was confirmed by pull-down. Surface plasmon resonance binding experiments enabled us to estimate the dissociation constant (Kd) of the two partners to be around 20 nM. Using bioinformatics tools, we designed a CALCOCO2 interaction map based on previous knowledge and showed a strong connection between this protein and the type I interferon production pathways and the I-κB kinase/NF-κB signalling pathway. NF-κB reporter assays in which CALCOCO2, MAVS and PB1-F2 were co-expressed showed a cooperation of these three proteins to increase the inflammatory response. By contrast, PB1-F2 inhibits the TBK1-dependent activation of an ISRE reporter plasmid. We also demonstrated that the signal transducer TRAF6 is implicated in the enhancement of NF-κB activity mediated by PB1-F2/CALCOCO2 binding. Altogether, this report provides evidence of an interaction link between PB1-F2 and human proteins, and allows a better understanding of the involvement of PB1-F2 in the pathologic process mediated by IAV.
Collapse
Affiliation(s)
- Olivier Leymarie
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Léa Meyer
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lionel Tafforeau
- IMAP Team, Inserm Unit 851, 21, Av. T. Garnier, 69007 Lyon, France.,Present address: Laboratory of Cellular Biology, Research Institute for Biosciences, University of Mons-UMONS, Belgium
| | - Vincent Lotteau
- INSERM U1111, Lyon, France.,CIRI, Centre de Recherche en Infectiologie, Lyon, France.,Université de Lyon, France
| | - Bruno Da Costa
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernard Delmas
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
113
|
Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Nat Commun 2017; 8:15676. [PMID: 28607490 PMCID: PMC5474743 DOI: 10.1038/ncomms15676] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
In response to virus infection, RIG-I-like receptors (RLRs) sense virus RNA and induce MAVS to form prion-like aggregates to further propagate antiviral signalling. Although monomeric MAVS recombinant protein can assemble into prion-like filaments spontaneously in vitro, endogenous MAVS in cells is prevented from aggregation until viral infection. The mechanism preventing cellular MAVS from spontaneous aggregation is unclear. Here we show that multiple N-terminal truncated isoforms of MAVS are essential in preventing full-length MAVS from spontaneous aggregation through transmembrane domain-mediated homotypic interaction. Without these shorter isoforms, full-length MAVS is prone to spontaneous aggregation and Nix-mediated mitophagic degradation. In the absence of N-terminally truncated forms, blocking Nix-mediated mitophagy stabilizes full-length MAVS, which aggregates spontaneously and induces the subsequent expression of type I interferon and other proinflammatory cytokines. Our data thus uncover an important mechanism preventing spontaneous aggregation of endogenous MAVS to avoid accidental activation of antiviral innate immune signalling.
Collapse
|
114
|
Rocchi A, He C. Regulation of Exercise-Induced Autophagy in Skeletal Muscle. CURRENT PATHOBIOLOGY REPORTS 2017; 5:177-186. [PMID: 29057166 PMCID: PMC5646231 DOI: 10.1007/s40139-017-0135-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
PURPOSE OF REVIEW Physical exercise is a highly effective method to prevent several pathogenic conditions, such as obesity, type 2 diabetes and cardiovascular diseases, largely due to metabolic adaptations induced by exercise in skeletal muscle. Yet how exercise induces the beneficial effects in muscle remains to be fully elucidated. Autophagy is a lysosomal degradation pathway that regulates nutrient recycling, energy production and organelle quality control. The autophagy pathway is upregulated in response to stress during exercise and muscle contraction, and may be an important mechanism mediating exercise-induced health benefits. RECENT FINDINGS A number of studies have indicated that physical exercise induces non-selective autophagy and selective mitophagy in skeletal muscle in animal models and humans. The AMPK-ULK1 and the FoxO3 signaling pathways play an essential role in the activation of the upstream autophagy machinery in skeletal muscle during exercise. The autophagy activity is required for health benefits of exercise, as in different autophagy-deficient mouse lines exercise-induced effects are abolished. SUMMARY This review aims to summarize and highlight the most recent findings on the role of autophagy in muscle maintenance, the molecular pathways that upregulate autophagy during exercise, and the potential functions of exercise-induced autophagy and mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Altea Rocchi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
115
|
LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol 2017; 2:17063. [PMID: 28481331 DOI: 10.1038/nmicrobiol.2017.63] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
Cell-autonomous immunity relies on the ubiquitin coat surrounding cytosol-invading bacteria functioning as an 'eat-me' signal for xenophagy. The origin, composition and precise mode of action of the ubiquitin coat remain incompletely understood. Here, by studying Salmonella Typhimurium, we show that the E3 ligase LUBAC generates linear (M1-linked) polyubiquitin patches in the ubiquitin coat, which serve as antibacterial and pro-inflammatory signalling platforms. LUBAC is recruited via its subunit HOIP to bacterial surfaces that are no longer shielded by host membranes and are already displaying ubiquitin, suggesting that LUBAC amplifies and refashions the ubiquitin coat. LUBAC-synthesized polyubiquitin recruits Optineurin and Nemo for xenophagy and local activation of NF-κB, respectively, which independently restrict bacterial proliferation. In contrast, the professional cytosol-dwelling Shigella flexneri escapes from LUBAC-mediated restriction through the antagonizing effects of the effector E3 ligase IpaH1.4 on deposition of M1-linked polyubiquitin and subsequent recruitment of Nemo and Optineurin. We conclude that LUBAC-synthesized M1-linked ubiquitin transforms bacterial surfaces into signalling platforms for antibacterial immunity reminiscent of antiviral assemblies on mitochondria.
Collapse
|
116
|
Markovinovic A, Cimbro R, Ljutic T, Kriz J, Rogelj B, Munitic I. Optineurin in amyotrophic lateral sclerosis: Multifunctional adaptor protein at the crossroads of different neuroprotective mechanisms. Prog Neurobiol 2017; 154:1-20. [PMID: 28456633 DOI: 10.1016/j.pneurobio.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/09/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
When optineurin mutations showed up on the amyotrophic lateral sclerosis (ALS) landscape in 2010, they differed from most other ALS-causing genes. They seemed to act by loss- rather than gain-of-function, and it was unclear how a polyubiquitin-binding adaptor protein, which was proposed to regulate a variety of cellular functions including cell signaling and vesicle trafficking, could mediate neuroprotection. This review discusses the considerable progress that has been made since then. A large number of mutations in optineurin and optineurin-interacting proteins TANK-binding kinase (TBK1) and p62/SQSTM-1 have been found in the ALS patients, suggesting a common neuroprotective pathway. Moreover, functional studies of the ALS-causing optineurin mutations and the recently established optineurin ubiquitin-binding deficient and knockout mouse models helped identify three major mechanisms likely to mediate neuroprotection: regulation of autophagy, mitigation of (chronic) inflammatory signaling, and blockade of necroptosis. These three processes crosstalk, and require multiple levels of control, many of which can be mediated by optineurin. Based on the role of optineurin in multiple processes and the unexpected finding that targeted optineurin deletion in microglia and oligodendrocytes ultimately leads to the same phenotype of axonal degeneration despite different initial defects, we propose that the failure of the weakest link in the optineurin neuroprotective network is sufficient to disturb homeostasis and set-off the domino effect that could ultimately lead to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Raffaello Cimbro
- Division of Rheumatology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Tereza Ljutic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Research Centre of the Mental Health Institute of Quebec, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Biomedical Research Institute BRIS, SI-1000 Ljubljana, Slovenia
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
117
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
118
|
Wu Y, Liu Q, Zhou J, Xie W, Chen C, Wang Z, Yang H, Cui J. Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discov 2017; 3:17006. [PMID: 28373913 PMCID: PMC5359216 DOI: 10.1038/celldisc.2017.6] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Type I interferon (IFN) serves as the first line of defense against invading pathogens. Inhibition of IFN-triggered signaling cascade by Zika virus (ZIKV) plays a critical role for ZIKV to evade antiviral responses from host cells. Here we demonstrate that ZIKV nonstructural proteins NS1, NS4B and NS2B3 inhibit the induction of IFN and downstream IFN-stimulated genes through diverse strategies. NS1 and NS4B of ZIKV inhibit IFNβ signaling at TANK-binding kinase 1 level, whereas NS2B-NS3 of ZIKV impairs JAK–STAT signaling pathway by degrading Jak1 and reduces virus-induced apoptotic cell death. Furthermore, co-operation of NS1, NS4B and NS2B3 further enhances viral infection by blocking IFN-induced autophagic degradation of NS2B3. Hence, our study reveals a novel antagonistic system employing multiple ZIKV nonstructural proteins in restricting the innate antiviral responses.
Collapse
Affiliation(s)
- Yaoxing Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences , Guangzhou, China
| | - Qingxiang Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences , Guangzhou, China
| | - Jie Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences , Guangzhou, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences , Guangzhou, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University , Tianjin, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University , Tianjin, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Guangzhou, China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
119
|
Kellner R, De la Concepcion JC, Maqbool A, Kamoun S, Dagdas YF. ATG8 Expansion: A Driver of Selective Autophagy Diversification? TRENDS IN PLANT SCIENCE 2017; 22:204-214. [PMID: 28038982 DOI: 10.1016/j.tplants.2016.11.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Selective autophagy is a conserved homeostatic pathway that involves engulfment of specific cargo molecules into specialized organelles called autophagosomes. The ubiquitin-like protein ATG8 is a central player of the autophagy network that decorates autophagosomes and binds to numerous cargo receptors. Although highly conserved across eukaryotes, ATG8 diversified from a single protein in algae to multiple isoforms in higher plants. We present a phylogenetic overview of 376 ATG8 proteins across the green plant lineage that revealed family-specific ATG8 clades. Because these clades differ in fixed amino acid polymorphisms, they provide a mechanistic framework to test whether distinct ATG8 clades are functionally specialized. We propose that ATG8 expansion may have contributed to the diversification of selective autophagy pathways in plants.
Collapse
Affiliation(s)
- Ronny Kellner
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Juan Carlos De la Concepcion
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK
| | - Abbas Maqbool
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yasin F Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; The Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
120
|
Sakurai S, Tomita T, Shimizu T, Ohto U. The crystal structure of mouse LC3B in complex with the FYCO1 LIR reveals the importance of the flanking region of the LIR motif. Acta Crystallogr F Struct Biol Commun 2017; 73:130-137. [PMID: 28291748 PMCID: PMC5349306 DOI: 10.1107/s2053230x17001911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/06/2017] [Indexed: 01/07/2023] Open
Abstract
FYVE and coiled-coil domain-containing protein 1 (FYCO1), a multidomain autophagy adaptor protein, mediates microtubule plus-end-directed autophagosome transport by interacting with kinesin motor proteins and with the autophagosomal membrane components microtubule-associated protein 1 light chain 3 (LC3), Rab7 and phosphatidylinositol 3-phosphate (PI3P). To establish the structural basis for the recognition of FYCO1 by LC3, the crystal structure of mouse LC3B in complex with the FYCO1 LC3-interacting region (LIR) motif peptide was determined. Structural analysis showed that the flanking sequences N-terminal and C-terminal to the LIR core sequence of FYCO1, as well as the tetrapeptide core sequence, were specifically recognized by LC3B and contributed to the binding. Moreover, comparisons of related structures revealed a conserved mechanism of FYCO1 recognition by different LC3 isoforms among different species.
Collapse
Affiliation(s)
- Shunya Sakurai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
121
|
Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, Qian L, Liu N, Wang Y, Han S, Cheng J, Qi Y, Hong Y, Liu Y. Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 2017; 6:e23897. [PMID: 28244873 PMCID: PMC5362266 DOI: 10.7554/elife.23897] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/26/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that recycles damaged or unwanted cellular components, and has been linked to plant immunity. However, how autophagy contributes to plant immunity is unknown. Here we reported that the plant autophagic machinery targets the virulence factor βC1 of Cotton leaf curl Multan virus (CLCuMuV) for degradation through its interaction with the key autophagy protein ATG8. A V32A mutation in βC1 abolished its interaction with NbATG8f, and virus carrying βC1V32A showed increased symptoms and viral DNA accumulation in plants. Furthermore, silencing of autophagy-related genes ATG5 and ATG7 reduced plant resistance to the DNA viruses CLCuMuV, Tomato yellow leaf curl virus, and Tomato yellow leaf curl China virus, whereas activating autophagy by silencing GAPC genes enhanced plant resistance to viral infection. Thus, autophagy represents a novel anti-pathogenic mechanism that plays an important role in antiviral immunity in plants.
Collapse
Affiliation(s)
- Yakupjan Haxim
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Asigul Ismayil
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qi Jia
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Wang
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiyin Zheng
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianyuan Chen
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lichao Qian
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Na Liu
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yunjing Wang
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaojie Han
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaxuan Cheng
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yule Liu
- Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
122
|
Montespan C, Marvin SA, Austin S, Burrage AM, Roger B, Rayne F, Faure M, Campell EM, Schneider C, Reimer R, Grünewald K, Wiethoff CM, Wodrich H. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog 2017; 13:e1006217. [PMID: 28192531 PMCID: PMC5325606 DOI: 10.1371/journal.ppat.1006217] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/24/2017] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
Cells employ active measures to restrict infection by pathogens, even prior to responses from the innate and humoral immune defenses. In this context selective autophagy is activated upon pathogen induced membrane rupture to sequester and deliver membrane fragments and their pathogen contents for lysosomal degradation. Adenoviruses, which breach the endosome upon entry, escape this fate by penetrating into the cytosol prior to autophagosome sequestration of the ruptured endosome. We show that virus induced membrane damage is recognized through Galectin-8 and sequesters the autophagy receptors NDP52 and p62. We further show that a conserved PPxY motif in the viral membrane lytic protein VI is critical for efficient viral evasion of autophagic sequestration after endosomal lysis. Comparing the wildtype with a PPxY-mutant virus we show that depletion of Galectin-8 or suppression of autophagy in ATG5-/- MEFs rescues infectivity of the PPxY-mutant virus while depletion of the autophagy receptors NDP52, p62 has only minor effects. Furthermore we show that wildtype viruses exploit the autophagic machinery for efficient nuclear genome delivery and control autophagosome formation via the cellular ubiquitin ligase Nedd4.2 resulting in reduced antigenic presentation. Our data thus demonstrate that a short PPxY-peptide motif in the adenoviral capsid permits multi-layered viral control of autophagic processes during entry.
Collapse
Affiliation(s)
- Charlotte Montespan
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
| | - Shauna A. Marvin
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Sisley Austin
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
| | - Andrew M. Burrage
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Benoit Roger
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
| | - Fabienne Rayne
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
| | - Muriel Faure
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
| | - Edward M. Campell
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Carola Schneider
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Kay Grünewald
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Christopher M. Wiethoff
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Harald Wodrich
- MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
123
|
Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 2017; 114:E1698-E1706. [PMID: 28193861 DOI: 10.1073/pnas.1615771114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.
Collapse
|
124
|
Kim MJ, Yoon JH, Ryu JH. Mitophagy: a balance regulator of NLRP3 inflammasome activation. BMB Rep 2017; 49:529-535. [PMID: 27439607 PMCID: PMC5227293 DOI: 10.5483/bmbrep.2016.49.10.115] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The NLRP3 inflammasome is activated by a variety of external or host-derived stimuli and its activation initiates an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1β maturation and secretion. The NLRP3 inflammasome activation is a kind of innate immune response, most likely mediated by myeloid cells acting as a host defense mechanism. However, if this activation is not properly regulated, excessive inflammation induced by overactivated NLRP3 inflammasome can be detrimental to the host, causing tissue damage and organ dysfunction, eventually causing several diseases. Previous studies have suggested that mitochondrial damage may be a cause of NLRP3 inflammasome activation and autophagy, which is a conserved self-degradation process that negatively regulates NLRP3 inflammasome activation. Recently, mitochondria-selective autophagy, termed mitophagy, has emerged as a central player for maintaining mitochondrial homeostasis through the elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 inflammasome activation. In this review, we will first focus on the molecular mechanisms of NLRP3 inflammasome activation and NLRP3 inflammasome-related diseases. We will then discuss autophagy, especially mitophagy, as a negative regulator of NLPP3 inflammasome activation by examining recent advances in research. [BMB Reports 2016; 49(10): 529-535]
Collapse
Affiliation(s)
- Min-Ji Kim
- Research Center for Natural Human Defense System, Brain Korea 21 PLUS Project for Medical Science, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo-Heon Yoon
- Research Center for Natural Human Defense System, Brain Korea 21 PLUS Project for Medical Science, Department of Otorhinolaryngology, and The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Hwan Ryu
- Brain Korea 21 PLUS Project for Medical Science and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
125
|
Haldar AK, Piro AS, Finethy R, Espenschied ST, Brown HE, Giebel AM, Frickel EM, Nelson DE, Coers J. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells. mBio 2016; 7:e01417-16. [PMID: 27965446 PMCID: PMC5156299 DOI: 10.1128/mbio.01417-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/10/2016] [Indexed: 12/02/2022] Open
Abstract
The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. IMPORTANCE Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia host resistance pathway active in human epithelial cells. This defense program promotes the deposition of the small antimicrobial protein ubiquitin on vacuoles containing Chlamydia We show that this ubiquitin-based resistance pathway of human cells is highly effective against a Chlamydia species adapted to rodents but ineffective against human-adapted C. trachomatis This observation indicates that C. trachomatis evolved strategies to avoid entrapment within ubiquitin-labeled vacuoles as part of its adaptation to the human innate immune system.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott T Espenschied
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hannah E Brown
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Amanda M Giebel
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eva-Maria Frickel
- The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, London, United Kingdom
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
126
|
Abshire CF, Dragoi AM, Roy CR, Ivanov SS. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog 2016; 12:e1006088. [PMID: 27942021 PMCID: PMC5179073 DOI: 10.1371/journal.ppat.1006088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/22/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L. pneumophila has evolved to manipulate MTOR-dependent lipogenesis for optimal intracellular replication.
Collapse
Affiliation(s)
- Camille F. Abshire
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
127
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
128
|
Kwon DH, Kim S, Jung YO, Roh KH, Kim L, Kim BW, Hong SB, Lee IY, Song JH, Lee WC, Choi EJ, Hwang KY, Song HK. The 1:2 complex between RavZ and LC3 reveals a mechanism for deconjugation of LC3 on the phagophore membrane. Autophagy 2016; 13:70-81. [PMID: 27791457 DOI: 10.1080/15548627.2016.1243199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hosts utilize macroautophagy/autophagy to clear invading bacteria; however, bacteria have also developed a specific mechanism to survive by manipulating the host cell autophagy mechanism. One pathogen, Legionella pneumophila, can hinder host cell autophagy by using the specific effector protein RavZ that cleaves phosphatidylethanolamine-conjugated LC3 on the phagophore membrane. However, the detailed molecular mechanisms associated with the function of RavZ have hitherto remained unclear. Here, we report on the biochemical characteristics of the RavZ-LC3 interaction, the solution structure of the 1:2 complex between RavZ and LC3, and crystal structures of RavZ showing different conformations of the active site loop without LC3. Based on our biochemical, structural, and cell-based analyses of RavZ and LC3, both distant flexible N- and C-terminal regions containing LC3-interacting region (LIR) motifs are important for substrate recognition. These results suggest a novel mechanism of RavZ action on the phagophore membrane and lay the groundwork for understanding how bacterial pathogens can survive autophagy.
Collapse
Affiliation(s)
- Do Hoon Kwon
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Sulhee Kim
- b Division of Biotechnology, Korea University , Seongbuk-gu, Seoul , Korea
| | - Yang Ouk Jung
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Kyung-Hye Roh
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Leehyeon Kim
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Byeong-Won Kim
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Seung Beom Hong
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - In Young Lee
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Ju Han Song
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Woo Cheol Lee
- b Division of Biotechnology, Korea University , Seongbuk-gu, Seoul , Korea
| | - Eui-Ju Choi
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| | - Kwang Yeon Hwang
- b Division of Biotechnology, Korea University , Seongbuk-gu, Seoul , Korea
| | - Hyun Kyu Song
- a Department of Life Sciences , Korea University , Seongbuk-gu, Seoul , Korea
| |
Collapse
|
129
|
Chen M, Meng Q, Qin Y, Liang P, Tan P, He L, Zhou Y, Chen Y, Huang J, Wang RF, Cui J. TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Mol Cell 2016; 64:105-119. [PMID: 27666593 DOI: 10.1016/j.molcel.2016.08.025] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/08/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is an essential DNA virus sensor that triggers type I interferon (IFN) signaling by producing cGAMP to initiate antiviral immunity. However, post-translational regulation of cGAS remains largely unknown. We report that K48-linked ubiquitination of cGAS is a recognition signal for p62-depdendent selective autophagic degradation. The induction of TRIM14 by type I IFN accelerates cGAS stabilization by recruiting USP14 to cleave the ubiquitin chains of cGAS at lysine (K) 414. Knockout of TRIM14 impairs herpes simplex virus type 1 (HSV-1)-triggered antiviral responses in a cGAS-dependent manner. Due to impaired type I IFN production, Trim14-/- mice are highly susceptible to lethal HSV-1 infection. Taken together, our findings reveal a positive feedback loop of cGAS signaling generated by TRIM14-USP14 and provide insights into the crosstalk between autophagy and type I IFN signaling in innate immunity.
Collapse
Affiliation(s)
- Meixin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC
| | - Qingcai Meng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC
| | - Yunfei Qin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PRC
| | - Puping Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC
| | - Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA
| | - Lian He
- Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA
| | - Yongjun Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, PRC.
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Institute of Biosciences and Technology, Texas A&M University, Health Science Center, Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PRC; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou 510275, PRC.
| |
Collapse
|
130
|
Kilchrist KV, Evans BC, Brophy CM, Duvall CL. Mechanism of Enhanced Cellular Uptake and Cytosolic Retention of MK2 Inhibitory Peptide Nano-polyplexes. Cell Mol Bioeng 2016; 9:368-381. [PMID: 27818713 PMCID: PMC5089375 DOI: 10.1007/s12195-016-0446-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022] Open
Abstract
Electrostatic complexation of a cationic MAPKAP kinase 2 inhibitory (MK2i) peptide with the anionic, pH-responsive polymer poly(propylacrylic acid) (PPAA) yields MK2i nano-polyplexes (MK2i-NPs) that significantly increase peptide uptake and intracellular retention. This study focused on elucidating the mechanism of MK2i-NP cellular uptake and intracellular trafficking in vascular smooth muscle cells. Small molecule inhibition of various endocytic pathways showed that MK2i-NP cellular uptake involves both macropinocytosis and clathrin mediated endocytosis, whereas the free peptide exclusively utilizes clathrin mediated endocytosis for cell entry. Scanning electron microscopy studies revealed that MK2i-NPs, but not free MK2i peptide, induce cellular membrane ruffling consistent with macropinocytosis. TEM confirmed that MK2i-NPs induce macropinosome formation and achieve MK2i endo-lysosomal escape and cytosolic delivery. Finally, a novel technique based on recruitment of Galectin-8-YFP was utilized to demonstrate that MK2i-NPs cause endosomal disruption within 30 minutes of uptake. These new insights on the relationship between NP physicochemical properties and cellular uptake and trafficking can potentially be applied to further optimize the MK2i-NP system and more broadly toward the rational engineering of nano-scale constructs for the intracellular delivery of biologic drugs.
Collapse
Affiliation(s)
- Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Brian C Evans
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Brophy
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Medical Center, VA Tennessee Valley Healthcare System, Nashville TN 37212, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
131
|
Jacomin AC, Samavedam S, Promponas V, Nezis IP. iLIR database: A web resource for LIR motif-containing proteins in eukaryotes. Autophagy 2016; 12:1945-1953. [PMID: 27484196 PMCID: PMC5079668 DOI: 10.1080/15548627.2016.1207016] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior to, the fusion between autophagosomes with lysosomes. In addition to their implication in autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only receptors but also components of the core autophagic machinery, proteins associated with vesicles and their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the identification of LIRCPs in various organisms, we developed the iLIR database ( https://ilir.warwick.ac.uk ) as a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Additionally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mammals that have not previously been associated with autophagy.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences, University of Warwick , Coventry , UK
| | - Vasilis Promponas
- b Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus , Nicosia , Cyprus
| | - Ioannis P Nezis
- a School of Life Sciences, University of Warwick , Coventry , UK
| |
Collapse
|
132
|
Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 2016; 35:1779-92. [PMID: 27370208 PMCID: PMC5010046 DOI: 10.15252/embj.201694491] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.
Collapse
Affiliation(s)
- Teresa Lm Thurston
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Keith B Boyle
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Allen
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Ravenhill
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Maryia Karpiyevich
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stuart Bloor
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Annie Kaul
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jessica Noad
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Agnes Foeglein
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie A Matthews
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Bycroft
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
133
|
Abstract
Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
134
|
Mitchell G, Chen C, Portnoy DA. Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0012-2015. [PMID: 27337444 PMCID: PMC4922531 DOI: 10.1128/microbiolspec.mchd-0012-2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria are often clinically relevant pathogens that infect virtually every cell type found in host organisms. However, myeloid cells, especially macrophages, constitute the primary cells targeted by most species of intracellular bacteria. Paradoxically, macrophages possess an extensive antimicrobial arsenal and are efficient at killing microbes. In addition to their ability to detect and signal the presence of pathogens, macrophages sequester and digest microorganisms using the phagolysosomal and autophagy pathways or, ultimately, eliminate themselves through the induction of programmed cell death. Consequently, intracellular bacteria influence numerous host processes and deploy sophisticated strategies to replicate within these host cells. Although most intracellular bacteria have a unique intracellular life cycle, these pathogens are broadly categorized into intravacuolar and cytosolic bacteria. Following phagocytosis, intravacuolar bacteria reside in the host endomembrane system and, to some extent, are protected from the host cytosolic innate immune defenses. However, the intravacuolar lifestyle requires the generation and maintenance of unique specialized bacteria-containing vacuoles and involves a complex network of host-pathogen interactions. Conversely, cytosolic bacteria escape the phagolysosomal pathway and thrive in the nutrient-rich cytosol despite the presence of host cell-autonomous defenses. The understanding of host-pathogen interactions involved in the pathogenesis of intracellular bacteria will continue to provide mechanistic insights into basic cellular processes and may lead to the discovery of novel therapeutics targeting infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
135
|
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 2016; 113:E3349-58. [PMID: 27247382 DOI: 10.1073/pnas.1523810113] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria play an essential role in maintaining cellular homeostasis. The removal of damaged or depolarized mitochondria occurs via mitophagy, in which damaged mitochondria are targeted for degradation via ubiquitination induced by PTEN-induced putative kinase 1 (PINK1) and Parkin. Mitophagy receptors, including optineurin (OPTN), nuclear dot 52 kDa protein (NDP52), and Tax1-binding protein 1 (TAX1BP1), are recruited to mitochondria via ubiquitin binding and mediate autophagic engulfment through their association with microtubule-associated protein light chain 3 (LC3). Here, we use live-cell imaging to demonstrate that OPTN, NDP52, and TAX1BP1 are recruited to mitochondria with similar kinetics following either mitochondrial depolarization or localized generation of reactive oxygen species, leading to sequestration by the autophagosome within ∼45 min after insult. Despite this corecruitment, we find that depletion of OPTN, but not NDP52, significantly slows the efficiency of sequestration. OPTN is phosphorylated by the kinase TANK-binding kinase 1 (TBK1) at serine 177; we find that TBK1 is corecruited with OPTN to depolarized mitochondria. Inhibition or depletion of TBK1, or expression of amyotrophic lateral sclerosis (ALS)-associated OPTN or TBK1 mutant blocks efficient autophagosome formation. Together, these results indicate that although there is some functional redundancy among mitophagy receptors, efficient sequestration of damaged mitochondria in response to mitochondrial stress requires both TBK1 and OPTN. Notably, ALS-linked mutations in OPTN and TBK1 can interfere with mitophagy, suggesting that inefficient turnover of damaged mitochondria may represent a key pathophysiological mechanism contributing to neurodegenerative disease.
Collapse
|
136
|
Thiemann S, Baum LG. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu Rev Immunol 2016; 34:243-64. [DOI: 10.1146/annurev-immunol-041015-055402] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Thiemann
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| |
Collapse
|
137
|
LAP-like process as an immune mechanism downstream of IFN-γ in control of the human malaria Plasmodium vivax liver stage. Proc Natl Acad Sci U S A 2016; 113:E3519-28. [PMID: 27185909 DOI: 10.1073/pnas.1525606113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IFN-γ is a major regulator of immune functions and has been shown to induce liver-stage Plasmodium elimination both in vitro and in vivo. The molecular mechanism responsible for the restriction of liver-stage Plasmodium downstream of IFN-γ remains uncertain, however. Autophagy, a newly described immune defense mechanism, was recently identified as a downstream pathway activated in response to IFN-γ in the control of intracellular infections. We thus hypothesized that the killing of liver-stage malarial parasites by IFN-γ involves autophagy induction. Our results show that whereas IFN-γ treatment of human hepatocytes activates autophagy, the IFN-γ-mediated restriction of liver-stage Plasmodium vivax depends only on the downstream autophagy-related proteins Beclin 1, PI3K, and ATG5, but not on the upstream autophagy-initiating protein ULK1. In addition, IFN-γ enhanced the recruitment of LC3 onto the parasitophorous vacuole membrane (PVM) and increased the colocalization of lysosomal vesicles with P. vivax compartments. Taken together, these data indicate that IFN-γ mediates the control of liver-stage P. vivax by inducing a noncanonical autophagy pathway resembling that of LC3-associated phagocytosis, in which direct decoration of the PVM with LC3 promotes the fusion of P. vivax compartments with lysosomes and subsequent killing of the pathogen. Understanding the hepatocyte response to IFN-γ during Plasmodium infection and the roles of autophagy-related proteins may provide an urgently needed alternative strategy for the elimination of this human malaria.
Collapse
|
138
|
Montagna C, Rizza S, Maiani E, Piredda L, Filomeni G, Cecconi F. To eat, or NOt to eat: S-nitrosylation signaling in autophagy. FEBS J 2016; 283:3857-3869. [PMID: 27083138 DOI: 10.1111/febs.13736] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Autophagy is the main catabolic cellular process through which cells adapt their needs (e.g., growth and proliferation) to environmental availability of nutrients (e.g., amino acid and glucose) and growth factors. The rapid activation of the autophagy response essentially depends on protein post-translational modifications (PTMs), which act as molecular switches triggering signaling cascades. Deregulation of autophagy contributes to pathological conditions, such as cancer and neurodegeneration. Therefore, understanding how PTMs affect the occurrence of autophagy is of the highest importance for clinical applications. Besides phosphorylation and ubiquitylation, which represent the best known examples of PTMs, redox-based modifications are also emerging as contributing to the regulation of intracellular signaling. Of note, S-nitrosylation of cysteine residues is a redox PTM and is the principal mechanism of nitric oxide-based signaling. Results emerging in recent years suggest that NO has a role in modulating autophagy. However, the function of S-nitrosylation in autophagy regulation remains still unveiled. By this review, we describe the upstream events regulating autophagy activation focusing on recently published evidence implying a S-nitrosylation-dependent regulation.
Collapse
Affiliation(s)
| | | | | | - Lucia Piredda
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giuseppe Filomeni
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Italy
| | - Francesco Cecconi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
139
|
Krokowski S, Mostowy S. Interactions between Shigella flexneri and the Autophagy Machinery. Front Cell Infect Microbiol 2016; 6:17. [PMID: 26904515 PMCID: PMC4748040 DOI: 10.3389/fcimb.2016.00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
Autophagy, an intracellular degradation process, is increasingly recognized as having important roles in host defense. Interactions between Shigella flexneri and the autophagy machinery were first discovered in 2005. Since then, work has shown that multiple autophagy pathways are triggered by S. flexneri, and autophagic responses can have different roles during Shigella infection. Here, we review the interactions between S. flexneri and the autophagy machinery, highlighting that studies using Shigella can reveal the breadth of autophagic responses available to the host.
Collapse
Affiliation(s)
- Sina Krokowski
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Serge Mostowy
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| |
Collapse
|
140
|
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J, Win J, Menke F, Findlay K, Banfield MJ, Kamoun S, Bozkurt TO. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 2016; 5. [PMID: 26765567 PMCID: PMC4775223 DOI: 10.7554/elife.10856] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI:http://dx.doi.org/10.7554/eLife.10856.001 Plants and other living organisms can survive stress and starvation by digesting and recycling parts of their own cells. This process is known as autophagy and it involves engulfing cellular material inside spherical structures called autophagosomes, before delivering it to sites in the cell where digestive enzymes can break the material down. A form of autophagy, known as selective autophagy, can specifically degrade toxic substances such as disease-causing microbes. Selective autophagy works through proteins called autophagy cargo receptors that define which molecules are targeted for degradation. However, it was not clear whether autophagy protects plants from infections, or how much disease-causing microbes interfere with this process for their own benefit. The microbe that causes late blight of potatoes (called Phytophthora infestans) is infamous for triggering widespread famines in Ireland in the 19th century. This disease-causing microbe continues to pose a serious threat to food security today, and parasitizes plant tissues by releasing proteins called effectors that enter the plant’s cells to subvert the plant’s physiology and counteract its defenses. Dagdas, Belhaj et al. now report that an effector from P. infestans, called PexRD54, can bind to autophagy-related protein from potato, called ATG8CL, and stimulate the formation of autophagosomes. Further experiments revealed that the PexRD54 effector could outcompete a plant autophagy cargo receptor that would otherwise bind to ATG8CL. This plant cargo receptor contributes to the plant’s defences, and by preventing it from interacting with ATG8CL, PexRD54 makes the plant more susceptible to infection by P. infestans. These findings show that the PexRD54 effector has evolved to interact with an autophagy-related protein to counteract the plant’s defences. Dagdas, Belhaj et al. suggest that PexRD54 might do this by activating autophagy to selectively eliminate some of the molecules that the plant use to defend itself. Furthermore, P. infestans might also benefit from the nutrients that are released when cellular material is broken down via autophagy. Future work could test these two hypotheses and explore whether other effectors from disease-causing microbes work in a similar way. DOI:http://dx.doi.org/10.7554/eLife.10856.002
Collapse
Affiliation(s)
| | | | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Nadra Tabassum
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Frank Menke
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Tolga O Bozkurt
- The Sainsbury Laboratory, Norwich, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
141
|
Abstract
Autophagosomes are double-membrane sequestering vesicles that are the hallmark of the intracellular catabolic process called macroautophagy. They are formed by the orchestrated interplay of the AuTophaGy-related (ATG) proteins. The cargo molecules targeted by autophagosomes ranges from long-lived proteins and superfluous or excess organelles to invading pathogens. Autophagosomes finally fuse with lysosomes delivering the sequestered material in the interior of these organelles where it is degraded by resident hydrolases. Autophagy represents a key survival mechanism because it clears the cytoplasm from unwanted and potentially toxic structures, and the autophagosomes are the central stage of it.
Collapse
|
142
|
Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. J Virol 2015; 89:8026-41. [PMID: 26018155 DOI: 10.1128/jvi.00787-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or them TOR inhibitor Torin1.We found that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Early after infection, basal and activated autophagic flux was enhanced. However, during established replication, basal and Torin1-activated autophagic flux was blocked, while autophagic flux activated by nutrient deprivation was reduced, indicating a block to AV formation and reduced AV degradation capacity. During late infection AV levels increased as a result of inefficient fusion of autophagosomes with lysosomes. In addition, endolysosomal trafficking was suppressed, while lysosomal activities were increased.We further determined that DENV infection progressively reduced levels of the autophagy receptor SQSTM1/p62 via proteasomal degradation. Importantly, stable overexpression of p62 significantly suppressed DENV replication, suggesting a novel role for p62 as a viral restriction factor. Overall, our findings indicate that in the course of DENV infection, autophagy shifts from a supporting to an antiviral role, which is countered by DENV. IMPORTANCE Autophagic flux is a dynamic process starting with the formation of autophagosomes and ending with their degradation after fusion with lysosomes. Autophagy impacts the replication cycle of many viruses. However, thus far the dynamics of autophagy in case of Dengue virus (DENV) infections has not been systematically quantified. Therefore, we used high-content, imaging-based flow cytometry to quantify autophagic flux and endolysosomal trafficking in response to DENV infection. We report that DENV induced an initial activation of autophagic flux, followed by inhibition of general and specific autophagy. Further, lysosomal activity was increased, but endolysosomal trafficking was suppressed confirming the block of autophagic flux. Importantly, we provide evidence that p62, an autophagy receptor, restrict DENV replication and was specifically depleted in DENV-infected cells via increased proteasomal degradation. These results suggest that during DENV infection autophagy shifts from a proviral to an antiviral cellular process, which is counteracted by the virus.
Collapse
|
143
|
Popp L, Segatori L. Differential autophagic responses to nano-sized materials. Curr Opin Biotechnol 2015; 36:129-36. [DOI: 10.1016/j.copbio.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
|
144
|
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 2015; 112:E5628-37. [PMID: 26417105 PMCID: PMC4611635 DOI: 10.1073/pnas.1515966112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.
Collapse
Affiliation(s)
- Arun K Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Clémence Foltz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Ryan Finethy
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Anthony S Piro
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eric M Feeley
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Danielle M Pilla-Moffett
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Masaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, Niigata-shi, 951-8510, Japan
| | - Eva-Maria Frickel
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
145
|
Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 2015; 26:6-16. [PMID: 26437584 DOI: 10.1016/j.tcb.2015.08.010] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
Selective autophagy regulates the abundance of specific cellular components via a specialized arsenal of factors, termed autophagy receptors, that target protein complexes, aggregates, and whole organelles into lysosomes. Autophagy receptors bind to LC3/GABARAP proteins on phagophore and autophagosome membranes, and recognize signals on cargoes to deliver them to autophagy. Ubiquitin (Ub), a well-known signal for the degradation of polypeptides in the proteasome, also plays an important role in the recognition of cargoes destined for selective autophagy. In addition, a variety of cargoes are committed to selective autophagy pathways by Ub-independent mechanisms employing protein-protein interaction motifs, Ub-like modifiers, and sugar- or lipid-based signals. In this article we summarize Ub-dependent and independent selective autophagy pathways, and discuss regulatory mechanisms and challenges for future studies.
Collapse
Affiliation(s)
- Aliaksandr Khaminets
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
146
|
Interactions between Autophagy and Bacterial Toxins: Targets for Therapy? Toxins (Basel) 2015; 7:2918-58. [PMID: 26248079 PMCID: PMC4549733 DOI: 10.3390/toxins7082918] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a physiological process involved in defense mechanisms for clearing intracellular bacteria. The autophagic pathway is finely regulated and bacterial toxins interact with this process in a complex manner. Bacterial toxins also interact significantly with many biochemical processes. Evaluations of the effects of bacterial toxins, such as endotoxins, pore-forming toxins and adenylate cyclases, on autophagy could support the development of new strategies for counteracting bacterial pathogenicity. Treatment strategies could focus on drugs that enhance autophagic processes to improve the clearance of intracellular bacteria. However, further in vivo studies are required to decipher the upregulation of autophagy and potential side effects limiting such approaches. The capacity of autophagy activation strategies to improve the outcome of antibiotic treatment should be investigated in the future.
Collapse
|
147
|
Frank B, Marcu A, de Oliveira Almeida Petersen AL, Weber H, Stigloher C, Mottram JC, Scholz CJ, Schurigt U. Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210. Parasit Vectors 2015; 8:404. [PMID: 26226952 PMCID: PMC4521392 DOI: 10.1186/s13071-015-0974-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. METHODS BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. RESULTS The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. CONCLUSIONS Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients.
Collapse
Affiliation(s)
- Benjamin Frank
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| | - Ana Marcu
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| | - Antonio Luis de Oliveira Almeida Petersen
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
- Laboratório de Patologia e Biointervenção, Fundação Oswaldo Cruz-BA, Salvador, Bahia, Brazil.
| | - Heike Weber
- Interdisciplinary Center for Clinical Research (IZKF), University of Wuerzburg, Wuerzburg, Germany.
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter of the University of Wuerzburg, Wuerzburg, Germany.
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Claus Juergen Scholz
- Interdisciplinary Center for Clinical Research (IZKF), University of Wuerzburg, Wuerzburg, Germany.
| | - Uta Schurigt
- Institute for Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080, Wuerzburg, Germany.
| |
Collapse
|
148
|
Haque MF, Boonhok R, Prammananan T, Chaiprasert A, Utaisincharoen P, Sattabongkot J, Palittapongarnpim P, Ponpuak M. Resistance to cellular autophagy by Mycobacterium tuberculosis Beijing strains. Innate Immun 2015; 21:746-58. [PMID: 26160686 DOI: 10.1177/1753425915594245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/10/2015] [Indexed: 01/06/2023] Open
Abstract
Autophagy represents a key pathway in innate immune defense to restrict Mycobacterium tuberculosis growth inside host macrophages. Induction of autophagy has been shown to promote mycobacterial phagosome acidification and acquisition of lysosomal hydrolases, resulting in the elimination of intracellular M. tuberculosis reference strains such as H37Rv. The notorious Beijing genotype has been previously shown to be hyper-virulent and associated with increased survival in host cells and a high mortality rate in animal models, but the underlying mechanism that renders this family to have such advantages remains unclear. We hypothesize that autophagic control against M. tuberculosis Beijing strains may be altered. Here, we discovered that the Beijing strains can resist autophagic killing by host cells compared with that of the reference strain H37Rv and a strain belonging to the East African Indian genotype. Moreover, we have determined a possible underlying mechanism and found that the greater ability to evade autophagic elimination possessed by the Beijing strains stems from their higher capacity to inhibit autophagolysosome biogenesis upon autophagy induction. In summary, a previously unrecognized ability of the M. tuberculosis Beijing strains to evade host autophagy was identified, which may have important implications for tuberculosis treatment, especially in regions prevalent by the Beijing genotype.
Collapse
Affiliation(s)
- Md Fazlul Haque
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand Department of Zoology, Faculty of Life and Earth Science, Rajshahi University, Rajshahi, Bangladesh
| | - Rachasak Boonhok
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Therdsak Prammananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
149
|
Abstract
The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.
Collapse
Affiliation(s)
- Altea Rocchi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
150
|
Wiethoff CM, Nemerow GR. Adenovirus membrane penetration: Tickling the tail of a sleeping dragon. Virology 2015; 479-480:591-9. [PMID: 25798531 DOI: 10.1016/j.virol.2015.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/18/2015] [Accepted: 03/03/2015] [Indexed: 11/19/2022]
Abstract
As is the case for nearly every viral pathogen, non-enveloped viruses (NEV) must maintain their integrity under potentially harsh environmental conditions while retaining the ability to undergo rapid disassembly at the right time and right place inside host cells. NEVs generally exist in this metastable state until they encounter key cellular stimuli such as membrane receptors, decreased intracellular pH, digestion by cellular proteases, or a combination of these factors. These stimuli trigger conformational changes in the viral capsid that exposes a sequestered membrane-perturbing protein. This protein subsequently modifies the cell membrane in such a way as to allow passage of the virion and accompanying nucleic acid payload into the cell cytoplasm. Different NEVs employ variations of this general pathway for cell entry (Moyer and Nemerow, 2011, Curr. Opin. Virol., 1, 44-49), however this review will focus on significant new knowledge obtained on cell entry by human adenovirus (HAdV).
Collapse
Affiliation(s)
| | - Glen R Nemerow
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|