101
|
Hormaechea-Agulla D, Kim Y, Song MS, Song SJ. New Insights into the Role of E2s in the Pathogenesis of Diseases: Lessons Learned from UBE2O. Mol Cells 2018; 41:168-178. [PMID: 29562734 PMCID: PMC5881090 DOI: 10.14348/molcells.2018.0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
Intracellular communication via ubiquitin (Ub) signaling impacts all aspects of cell biology and regulates pathways critical to human development and viability; therefore aberrations or defects in Ub signaling can contribute to the pathogenesis of human diseases. Ubiquitination consists of the addition of Ub to a substrate protein via coordinated action of E1-activating, E2-conjugating and E3-ligating enzymes. Approximately 40 E2s have been identified in humans, and most are thought to be involved in Ub transfer; although little information is available regarding the majority of them, emerging evidence has highlighted their importance to human health and disease. In this review, we focus on recent insights into the pathogenetic roles of E2s (particularly the ubiquitin-conjugating enzyme E2O [UBE2O]) in debilitating diseases and cancer, and discuss the tantalizing prospect that E2s may someday serve as potential therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Youngjo Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151,
Korea
| |
Collapse
|
102
|
Wang L, Xu M, Li Z, Shi M, Zhou X, Jiang X, Bryant J, Balk S, Ma J, Isaacs W, Xu X. Calcium and CaSR/IP3R in prostate cancer development. Cell Biosci 2018. [DOI: 10.1186/s13578-018-0217-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
103
|
Wang Z, Wang XY, Li J, Zhu WW. Prognostic and Clinicopathological Significance of BAP1 Protein Expression in Different Types of Cancer—A Meta-Analysis. Genet Test Mol Biomarkers 2018; 22:115-126. [PMID: 29266978 DOI: 10.1089/gtmb.2017.0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zheng Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Cancer Metastasis, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Cancer Metastasis, Fudan University, Shanghai, China
| | - Juan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Cancer Metastasis, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Cancer Metastasis, Fudan University, Shanghai, China
| |
Collapse
|
104
|
Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma. Oncotarget 2018; 7:59314-59321. [PMID: 27447750 PMCID: PMC5312314 DOI: 10.18632/oncotarget.10653] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022] Open
Abstract
The differential diagnosis between pleural malignant mesothelioma (MM) and lung cancer is often challenging. Immunohistochemical (IHC) stains used to distinguish these malignancies include markers that are most often positive in MM and less frequently positive in carcinomas, and vice versa. However, in about 10-20% of the cases, the IHC results can be confusing and inconclusive, and novel markers are sought to increase the diagnostic accuracy.We stained 45 non-small cell lung cancer samples (32 adenocarcinomas and 13 squamous cell carcinomas) with a monoclonal antibody for BRCA1-associated protein 1 (BAP1) and also with an IHC panel we routinely use to help differentiate MM from carcinomas, which include, calretinin, Wilms Tumor 1, cytokeratin 5, podoplanin D2-40, pankeratin CAM5.2, thyroid transcription factor 1, Napsin-A, and p63. Nuclear BAP1 expression was also analyzed in 35 MM biopsies. All 45 non-small cell lung cancer biopsies stained positive for nuclear BAP1, whereas 22/35 (63%) MM biopsies lacked nuclear BAP1 staining, consistent with previous data. Lack of BAP1 nuclear staining was associated with MM (two-tailed Fisher's Exact Test, P = 5.4 x 10-11). Focal BAP1 staining was observed in a subset of samples, suggesting polyclonality. Diagnostic accuracy of other classical IHC markers was in agreement with previous studies. Our study indicated that absence of nuclear BAP1 stain helps differentiate MM from lung carcinomas. We suggest that BAP1 staining should be added to the IHC panel that is currently used to distinguish these malignancies.
Collapse
|
105
|
Yanagitani K, Juszkiewicz S, Hegde RS. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 2018; 357:472-475. [PMID: 28774922 DOI: 10.1126/science.aan0178] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023]
Abstract
Many nascent proteins are assembled into multiprotein complexes of defined stoichiometry. Imbalances in the synthesis of individual subunits result in orphans. How orphans are selectively eliminated to maintain protein homeostasis is poorly understood. Here, we found that the conserved ubiquitin-conjugating enzyme UBE2O directly recognized juxtaposed basic and hydrophobic patches on unassembled proteins to mediate ubiquitination without a separate ubiquitin ligase. In reticulocytes, where UBE2O is highly up-regulated, unassembled α-globin molecules that failed to assemble with β-globin were selectively ubiquitinated by UBE2O. In nonreticulocytes, ribosomal proteins that did not engage nuclear import factors were targets for UBE2O. Thus, UBE2O is a self-contained quality control factor that comprises substrate recognition and ubiquitin transfer activities within a single protein to efficiently target orphans of multiprotein complexes for degradation.
Collapse
Affiliation(s)
- Kota Yanagitani
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Szymon Juszkiewicz
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
106
|
Farquhar N, Thornton S, Coupland SE, Coulson JM, Sacco JJ, Krishna Y, Heimann H, Taktak A, Cebulla CM, Abdel-Rahman MH, Kalirai H. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2017; 4:26-38. [PMID: 29416875 PMCID: PMC5783957 DOI: 10.1002/cjp2.86] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022]
Abstract
Uveal melanoma (UM) is a rare aggressive intraocular tumour with a propensity for liver metastases, occurring in ∼50% of patients. The tumour suppressor BAP1 is considered to be key in UM progression. Herein, we present the largest study to date investigating cellular expression patterns of BAP1 protein in 165 UMs, correlating these patterns to prognosis. Full clinical, histological, genetic, and follow‐up data were available for all patients. BAP1 gene sequencing was performed on a subset of 26 cases. An independent cohort of 14 UMs was examined for comparison. Loss of nuclear BAP1 (nBAP1) protein expression was observed in 54% (88/165) UMs. nBAP1 expression proved to be a significant independent prognostic parameter: it identified two subgroups within monosomy 3 (M3) UM, which are known to have a high risk of metastasis. Strikingly, nBAP1‐positiveM3 UMs were associated with prolonged survival compared to nBAP1‐negative M3 UMs (Log rank, p = 0.014). nBAP1 protein loss did not correlate with a BAP1 mutation in 23% (6/26) of the UMs analysed. Cytoplasmic BAP1 protein (cBAP1) expression was also observed in UM: although appearing ‘predominantly diffuse’ in most nBAP1‐negative UM, a distinct ‘focal perinuclear’ expression pattern – localized immediately adjacent to the cis Golgi – was seen in 31% (18/59). These tumours tended to carry loss‐of‐function BAP1 mutations. Our study demonstrates loss of nBAP1 expression to be the strongest prognostic marker in UM, confirming its importance in UM progression. Our data suggest that non‐genetic mechanisms account for nBAP1 loss in a small number of UMs. In addition, we describe a subset of nBAP1‐negative UM, in which BAP1 is sequestered in perinuclear bodies, most likely within Golgi, warranting further mechanistic investigation.
Collapse
Affiliation(s)
- Neil Farquhar
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Sophie Thornton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Cellular PathologyRoyal Liverpool University HospitalLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Medical OncologyClatterbridge Cancer CentreClatterbridgeUK
| | - Yamini Krishna
- Department of Cellular PathologyRoyal Liverpool University HospitalLiverpoolUK
| | - Heinrich Heimann
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Liverpool Ocular Oncology CentreRoyal Liverpool University HospitalLiverpoolUK
| | - Azzam Taktak
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK.,Department of Medical Physics & Clinical EngineeringRoyal Liverpool University HospitalLiverpoolUK
| | - Colleen M Cebulla
- Department of Ophthalmology and Visual ScienceHavener Eye Institute, The Ohio State UniversityColumbusOHUSA
| | - Mohamed H Abdel-Rahman
- Department of Ophthalmology and Visual ScienceHavener Eye Institute, The Ohio State UniversityColumbusOHUSA.,Division of Human Genetics, Department of Internal MedicineThe Ohio State UniversityColumbusOHUSA
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| |
Collapse
|
107
|
Carbone M, Kanodia S, Chao A, Miller A, Wali A, Weissman D, Adjei A, Baumann F, Boffetta P, Buck B, de Perrot M, Dogan AU, Gavett S, Gualtieri A, Hassan R, Hesdorffer M, Hirsch FR, Larson D, Mao W, Masten S, Pass HI, Peto J, Pira E, Steele I, Tsao A, Woodard GA, Yang H, Malik S. Consensus Report of the 2015 Weinman International Conference on Mesothelioma. J Thorac Oncol 2017; 11:1246-1262. [PMID: 27453164 PMCID: PMC5551435 DOI: 10.1016/j.jtho.2016.04.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 01/31/2023]
Abstract
On November 9 and 10, 2015, the International Conference on Mesothelioma in Populations Exposed to Naturally Occurring Asbestiform Fibers was held at the University of Hawaii Cancer Center in Honolulu, Hawaii. The meeting was cosponsored by the International Association for the Study of Lung Cancer, and the agenda was designed with significant input from staff at the U.S. National Cancer Institute and National Institute of Environmental Health Sciences. A multidisciplinary group of participants presented updates reflecting a range of disciplinary perspectives, including mineralogy, geology, epidemiology, toxicology, biochemistry, molecular biology, genetics, public health, and clinical oncology. The group identified knowledge gaps that are barriers to preventing and treating malignant mesothelioma (MM) and the required next steps to address barriers. This manuscript reports the group’s efforts and focus on strategies to limit risk to the population and reduce the incidence of MM. Four main topics were explored: genetic risk, environmental exposure, biomarkers, and clinical interventions. Genetics plays a critical role in MM when the disease occurs in carriers of germline BRCA1 associated protein 1 mutations. Moreover, it appears likely that, in addition to BRCA1 associated protein 1, other yet unknown genetic variants may also influence the individual risk for development of MM, especially after exposure to asbestos and related mineral fibers. MM is an almost entirely preventable malignancy as it is most often caused by exposure to commercial asbestos or mineral fibers with asbestos-like health effects, such as erionite. In the past in North America and in Europe, the most prominent source of exposure was related to occupation. Present regulations have reduced occupational exposure in these countries; however, some people continue to be exposed to previously installed asbestos in older construction and other settings. Moreover, an increasing number of people are being exposed in rural areas that contain noncommercial asbestos, erionite, and other mineral fibers in soil or rock (termed naturally occurring asbestos [NOA]) and are being developed. Public health authorities, scientists, residents, and other affected groups must work together in the areas where exposure to asbestos, including NOA, has been documented in the environment to mitigate or reduce this exposure. Although a blood biomarker validated to be effective for use in screening and identifying MM at an early stage in asbestos/ NOA-exposed populations is not currently available, novel biomarkers presented at the meeting, such as high mobility group box 1 and fibulin-3, are promising. There was general agreement that current treatment for MM, which is based on surgery and standard chemotherapy, has a modest effect on the overall survival (OS), which remains dismal. Additionally, although much needed novel therapeutic approaches for MM are being developed and explored in clinical trials, there is a critical need to invest in prevention research, in which there is a great opportunity to reduce the incidence and mortality from MM.
Collapse
Affiliation(s)
- Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii.
| | - Shreya Kanodia
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii; Samuel Oschin Comprehensive Cancer Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ann Chao
- Center for Global Health, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aubrey Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Anil Wali
- Center to Reduce Cancer Health Disparities, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Weissman
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brenda Buck
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada
| | - Marc de Perrot
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - A Umran Dogan
- Chemical and Biochemical Engineering Department and Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa
| | - Steve Gavett
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Raffit Hassan
- Thoracic Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Mary Hesdorffer
- Mesothelioma Applied Research Foundation, Alexandria, Virginia
| | - Fred R Hirsch
- University of Colorado Cancer Center, Denver, Colorado
| | - David Larson
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Weimin Mao
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang, Hangzhou, People's Republic of China
| | - Scott Masten
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Harvey I Pass
- Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York
| | - Julian Peto
- Cancer Research UK, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Enrico Pira
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Ian Steele
- Notre Dame Integrated Imaging Facility, Notre Dame University, Notre Dame, Indiana
| | - Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Gavitt Alida Woodard
- Thoracic Surgery, University of California at San Francisco, San Francisco, California
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Shakun Malik
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
108
|
Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT, Min M, Campagna DR, Tian G, Shi Y, Dederer V, Kawan M, Kuehnle N, Paulo JA, Yao Y, Weiss MJ, Justice MJ, Gygi SP, Fleming MD, Finley D. UBE2O remodels the proteome during terminal erythroid differentiation. Science 2017; 357:eaan0218. [PMID: 28774900 PMCID: PMC5812729 DOI: 10.1126/science.aan0218] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
During terminal differentiation, the global protein complement is remodeled, as epitomized by erythrocytes, whose cytosol is ~98% globin. The erythroid proteome undergoes a rapid transition at the reticulocyte stage; however, the mechanisms driving programmed elimination of preexisting cytosolic proteins are unclear. We found that a mutation in the murine Ube2o gene, which encodes a ubiquitin-conjugating enzyme induced during erythropoiesis, results in anemia. Proteomic analysis suggested that UBE2O is a broad-spectrum ubiquitinating enzyme that remodels the erythroid proteome. In particular, ribosome elimination, a hallmark of reticulocyte differentiation, was defective in Ube2o-/- mutants. UBE2O recognized ribosomal proteins and other substrates directly, targeting them to proteasomes for degradation. Thus, in reticulocytes, the induction of ubiquitinating factors may drive the transition from a complex to a simple proteome.
Collapse
Affiliation(s)
- Anthony T Nguyen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Mingwei Min
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Shi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Verena Dederer
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mona Kawan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Kuehnle
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Monica J Justice
- Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario M5G 0A4, Canada
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
109
|
Parrotta R, Okonska A, Ronner M, Weder W, Stahel R, Penengo L, Felley-Bosco E. A Novel BRCA1-Associated Protein-1 Isoform Affects Response of Mesothelioma Cells to Drugs Impairing BRCA1-Mediated DNA Repair. J Thorac Oncol 2017; 12:1309-1319. [DOI: 10.1016/j.jtho.2017.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
|
110
|
Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 2017; 45:193-205. [PMID: 28202673 PMCID: PMC5310723 DOI: 10.1042/bst20160173] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin.
Collapse
|
111
|
Wang XY, Wang Z, Huang JB, Ren XD, Ye D, Zhu WW, Qin LX. Tissue-specific significance of BAP1 gene mutation in prognostic prediction and molecular taxonomy among different types of cancer. Tumour Biol 2017; 39:1010428317699111. [PMID: 28618948 DOI: 10.1177/1010428317699111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BAP1 is an emerging tumor suppressor whose inactivating mutations have been found to play critical roles in tumor development. This study was conducted to elucidate the potential value of BAP1 mutation in guiding prognostic prediction and clinical stratification. We conducted a comprehensive analysis of relevant studies from multiple databases, to determine the impact of BAP1 mutation on the overall survival and disease-free survival of patients in various cancers. A total of 2457 patients from 21 studies were included in the final analysis. Although the pooled results demonstrated that BAP1 mutation was a negative indicator of overall survival (hazard ratio = 1.73; 95% confidence interval = 1.23-2.42) and disease-free survival (hazard ratio = 2.25; 95% confidence interval = 1.47-3.45), this prognostic value was only applicable to uveal melanoma and clear cell renal cell carcinoma, but not to malignant pleural mesothelioma or cholangiocarcinoma. Consistently, BAP1 mutation was correlated with critical clinicopathological features only in uveal melanoma and clear cell renal cell carcinoma. In uveal melanoma, BAP1 mutation and SF3B1/EIF1AX mutations were negatively correlated, and BAP1-mutant tumors indicated significant worse prognosis than SF3B1/EIF1AX-mutant tumors ( p = 0.028). While in clear cell renal cell carcinoma, BAP1 mutation was mutually exclusive with PBRM1 mutations, and BAP1-mutant clear cell renal cell carcinomas also showed significantly worse prognosis than PBRM1-mutant clear cell renal cell carcinomas ( p = 0.001). Our study revealed a unique tissue-specific significance of BAP1 mutation in prognostic prediction among different types of cancer. Clinically, combining detection of BAP1 mutation and other driver mutations may further allow for a more precise molecular taxonomy to stratify patients into distinct subgroups in uveal melanoma and clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Bo Huang
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu-Dong Ren
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- 1 Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
112
|
Xu Y, Zhang Z, Li J, Tong J, Cao B, Taylor P, Tang X, Wu D, Moran MF, Zeng Y, Mao X. The ubiquitin-conjugating enzyme UBE2O modulates c-Maf stability and induces myeloma cell apoptosis. J Hematol Oncol 2017; 10:132. [PMID: 28673317 PMCID: PMC5496436 DOI: 10.1186/s13045-017-0499-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/16/2017] [Indexed: 12/31/2022] Open
Abstract
Background UBE2O is proposed as a ubiquitin-conjugating enzyme, but its function was largely unknown. Methods Mass spectrometry was applied to identify c-Maf ubiquitination-associated proteins. Immunoprecipitation was applied for c-Maf and UBE2O interaction. Immunoblotting was used for Maf protein stability. Luciferase assay was used for c-Maf transcriptional activity. Lentiviral infections were applied for UBE2O function in multiple myeloma (MM) cells. Flow cytometry and nude mice xenografts were applied for MM cell apoptosis and tumor growth assay, respectively. Results UBE2O was found to interact with c-Maf, a critical transcription factor in MM, by the affinity purification/tandem mass spectrometry assay and co-immunoprecipitation assays. Subsequent studies showed that UBE2O mediated c-Maf polyubiquitination and degradation. Moreover, UBE2O downregulated the transcriptional activity of c-Maf and the expression of cyclin D2, a typical gene modulated by c-Maf. DNA microarray revealed that UBE2O was expressed in normal bone marrow cells but downregulated in MGUS, smoldering MM and MM cells, which was confirmed by RT-PCR in primary MM cells, suggesting its potential role in myeloma pathophysiology. When UBE2O was restored, c-Maf protein in MM cells was significantly decreased and MM cells underwent apoptosis. Furthermore, the human MM xenograft in nude mice showed that re-expression of UBE2O delayed the growth of myeloma xenografts in nude mice in association with c-Maf downregulation and activation of the apoptotic pathway. Conclusions UBE2O mediates c-Maf polyubiquitination and degradation, induces MM cell apoptosis, and suppresses myeloma tumor growth, which provides a novel insight in understanding myelomagenesis and UBE2O biology.
Collapse
Affiliation(s)
- Yujia Xu
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jie Li
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jiefei Tong
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Biyin Cao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Paul Taylor
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Michael F Moran
- Program in Molecular Structure and Function, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, M5G 0A4, Canada
| | - Yuanying Zeng
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Department of Oncology, Suzhou Municipal Hospital East Campus, Suzhou, 215100, People's Republic of China.
| | - Xinliang Mao
- Jiangsu Key Laboratory for Translational Research and Therapeutics of Neuro-Psycho- Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
113
|
Affiliation(s)
- Tycho E.T. Mevissen
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
114
|
BAP1 regulates IP3R3-mediated Ca 2+ flux to mitochondria suppressing cell transformation. Nature 2017; 546:549-553. [PMID: 28614305 PMCID: PMC5581194 DOI: 10.1038/nature22798] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/28/2017] [Indexed: 12/18/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a potent tumor suppressor gene that modulates environmental carcinogenesis1-3. All carriers of inherited heterozygous germline BAP1 inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime4, mostly malignant mesothelioma (MM), uveal melanoma (UVM)2,5, etc6-10. Moreover, BAP1 acquired biallelic mutations are frequent in human cancers8,11-14. BAP1 tumor suppressor activity has been attributed to its nuclear localization where BAP1 helps maintaining genome integrity15-17. The possible activity of BAP1 in the cytoplasm was unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination18, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. We discovered that BAP1 localizes at the endoplasmic reticulum (ER). Here BAP1 binds, deubiquitylates and stabilizes type-3 inositol-1,4,5-trisphosphate-receptor (IP3R3), modulating calcium (Ca2+) release from the ER into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers caused reduction of both IP3R3 levels and Ca2+ flux, preventing BAP1+/- cells that had accumulated DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survived genotoxic stress resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic BAP1 activities. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction.
Collapse
|
115
|
Abstract
Deubiquitylating enzymes (DUBs) reverse the ubiquitylation of target proteins, thereby regulating diverse cellular functions. In contrast to the plethora of research being conducted on the ability of DUBs to counter the degradation of cellular proteins or auto-ubiquitylated E3 ligases, very little is known about the mechanisms of DUB regulation. In this review paper, we summarize a novel possible mechanism of DUB deubiquitylation by other DUBs. The available data suggest the need for further experiments to validate and characterize this notion of 'Dubbing DUBs'. The current studies indicate that the idea of deubiquitylation of DUBs by other DUBs is still in its infancy. Nevertheless, future research holds the promise of validation of this concept.
Collapse
Affiliation(s)
- Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
116
|
Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130:1997-2006. [PMID: 28476940 DOI: 10.1242/jcs.201855] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner (J. Cell Sci.130, 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Pawel Leznicki
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
117
|
PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Sci Rep 2017; 7:45394. [PMID: 28345603 PMCID: PMC5366948 DOI: 10.1038/srep45394] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/22/2017] [Indexed: 12/23/2022] Open
Abstract
Transcription complexes that assemble at the HIV-1 promoter efficiently initiate transcription but generate paused RNA polymerase II downstream from the start site. The virally encoded Tat protein hijacks positive transcription elongation factor b (P-TEFb) to phosphorylate and activate this paused polymerase. In addition, Tat undergoes a series of reversible post-translational modifications that regulate distinct steps of the transcription cycle. To identify additional functionally important Tat cofactors, we performed RNAi knockdowns of sixteen previously identified Tat interactors and found that a novel E3 ligase, PJA2, ubiquitinates Tat in a non-degradative manner and specifically regulates the step of HIV transcription elongation. Interestingly, several different lysine residues in Tat can function as ubiquitin acceptor sites, and variable combinations of these lysines support both full transcriptional activity and viral replication. Further, the polyubiquitin chain conjugated to Tat by PJA2 can itself be assembled through variable ubiquitin lysine linkages. Importantly, proper ubiquitin chain assembly by PJA2 requires that Tat first binds its P-TEFb cofactor. These results highlight that both the Tat substrate and ubiquitin modification have plastic site usage, and this plasticity is likely another way in which the virus exploits the host molecular machinery to expand its limited genetic repertoire.
Collapse
|
118
|
Vila IK, Song SJ, Song MS. A new duet in cancer biology: AMPK the typical and UBE2O the atypical. Mol Cell Oncol 2017; 4:e1304846. [PMID: 28616582 DOI: 10.1080/23723556.2017.1304846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is upregulated in human cancers. We have demonstrated that genetic deletion or pharmacological blockade of UBE2O reduces tumorigenesis through inhibiting the mammalian target of rapamycin complex 1-hypoxia-inducible factor 1-α pathway. Critically, UBE2O targets adenosine monophosphate (AMP)-activated protein kinase-α 2 (AMPKα2) for ubiquitination and degradation. We thus suggest the UBE2O-AMPKα2 axis as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
119
|
Vila IK, Yao Y, Kim G, Xia W, Kim H, Kim SJ, Park MK, Hwang JP, González-Billalabeitia E, Hung MC, Song SJ, Song MS. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 2017; 31:208-224. [PMID: 28162974 PMCID: PMC5463996 DOI: 10.1016/j.ccell.2017.01.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
Abstract
UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Isabelle K Vila
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yixin Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyejin Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sun-Joong Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mi-Kyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P Hwang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
| | - Su Jung Song
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Republic of Korea.
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
120
|
Liang K, Volk AG, Haug JS, Marshall SA, Woodfin AR, Bartom ET, Gilmore JM, Florens L, Washburn MP, Sullivan KD, Espinosa JM, Cannova J, Zhang J, Smith ER, Crispino JD, Shilatifard A. Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell 2017; 168:59-72.e13. [PMID: 28065413 DOI: 10.1016/j.cell.2016.12.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Andrew G Volk
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Joshua M Gilmore
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66150, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome & Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome & Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph Cannova
- Oncology Institute, Loyola University Chicago, Maywood, IL 60153, USA; Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Loyola University Chicago, Maywood, IL 60153, USA; Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, Il 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, Il 60611, USA.
| |
Collapse
|
121
|
Wang A, Papneja A, Hyrcza M, Al-Habeeb A, Ghazarian D. Gene of the month: BAP1. J Clin Pathol 2016; 69:750-3. [PMID: 27235536 DOI: 10.1136/jclinpath-2016-203866] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/27/2023]
Abstract
The BAP1 gene (BRCA1-associated protein 1) is a tumour suppressor gene that encodes a deubiquitinating enzyme (DUB), regulating key cellular pathways, including cell cycle, cellular differentiation, transcription and DNA damage response. Germline BAP1 mutations cause a novel cancer syndrome characterised by early onset of multiple atypical Spitz tumours and increased risk of uveal and cutaneous melanoma, mesothelioma, renal cell carcinoma and various other malignancies. Recognising the clinicopathological features of specific BAP1-deficient tumours is crucial for early screening/tumour detection, with significant impact on patient outcome.
Collapse
Affiliation(s)
- Ami Wang
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anjali Papneja
- Department of Dermatology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Martin Hyrcza
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ayman Al-Habeeb
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
122
|
Ascoli V, Cozzi I, Vatrano S, Izzo S, Giorcelli J, Romeo E, Carnovale-Scalzo C, Grillo LR, Facciolo F, Visca P, Papotti M, Righi L. Mesothelioma families without inheritance of a BAP1 predisposing mutation. Cancer Genet 2016; 209:381-387. [DOI: 10.1016/j.cancergen.2016.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/23/2022]
|
123
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
124
|
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590:2494-511. [PMID: 27350027 DOI: 10.1002/1873-3468.12272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 06/20/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.
Collapse
Affiliation(s)
- Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
125
|
Sacco JJ, Kenyani J, Butt Z, Carter R, Chew HY, Cheeseman LP, Darling S, Denny M, Urbé S, Clague MJ, Coulson JM. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors. Oncotarget 2016; 6:13757-71. [PMID: 25970771 PMCID: PMC4537048 DOI: 10.18632/oncotarget.3765] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors.
Collapse
Affiliation(s)
- Joseph J Sacco
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jenna Kenyani
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Zohra Butt
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachel Carter
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hui Yi Chew
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Current address: Cancer Stem Cell Biology, Agency for Science Technology and Research, Genome Institute of Singapore, Singapore
| | - Liam P Cheeseman
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Current address: MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sarah Darling
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael Denny
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael J Clague
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Judy M Coulson
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
126
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|
127
|
Togo Y, Yoshikawa Y, Suzuki T, Nakano Y, Kanematsu A, Zozumi M, Nojima M, Hirota S, Yamamoto S, Hashimoto-Tamaoki T. Genomic profiling of the genes on chromosome 3p in sporadic clear cell renal cell carcinoma. Int J Oncol 2016; 48:1571-80. [PMID: 26891804 DOI: 10.3892/ijo.2016.3395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 11/05/2022] Open
Abstract
Somatic mutations of the BRCA1 associated protein-1 (BAP1) gene, which maps to 3p21, have been found in several tumors including malignant mesothelioma, uveal melanoma, and renal cell carcinoma (RCC). The role of BAP1 inactivation in tumor development remains unclear. It has been reported that Vhl knock-out mice did not develop RCC, but Vhl knock-out mice with single allele loss of Bap1 in nephron progenitor cells developed RCC, indicating that Bap1 inactivation may be essential in murine renal tumorigenesis. To clarify the role of BAP1 in human RCC development, we performed mutation analyses, including copy number detection of BAP1 and assessment of allelic imbalance using microsatellite polymorphisms on 3p, in 45 RCC samples derived from 45 patients without VHL or BAP1 germline mutation. Additionally, we analyzed the sequences of the VHL, PBRM1, and SETD2 genes, and examined promoter methylation of VHL. Using immunostaining, we also checked for expression of BAP1 protein, which is normally located in the nuclei. None of the RCCs had biallelic deletion of BAP1, but five (11.1%) showed a biallelic mutation (four with a sequence-level mutation with monoallelic loss and one with a biallelic sequence-level mutation); these cells were negative for nuclear BAP1 staining. These patients had worse recurrence-free survival than the patients without a biallelic mutation (p=0.046). However, there were no significant differences in worse outcome by multivariate analysis combined with age, T stage, histological subtype, infiltration and vascular invasion. In 35 RCCs (77.8%), monoallelic loss of BAP1 was accompanied by VHL biallelic mutation or VHL promoter hypermethylation. In five RCCs (11.1%), we detected 3p loss-of-heterozygosity, but the copy number of BAP1 was normal. Surprisingly, nuclear staining of BAP1 was negative in 10 out of 31 tumors (32.3%) with hemizygous normal BAP1, suggesting that haploinsufficiency may relate to RCC development.
Collapse
Affiliation(s)
- Yoshikazu Togo
- Department of Urology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Yoshie Yoshikawa
- Department of Genetics, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Toru Suzuki
- Department of Urology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Yoshiro Nakano
- Department of Genetics, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Akihiro Kanematsu
- Department of Urology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Masataka Zozumi
- Division of Surgical Pathology, Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Michio Nojima
- Department of Urology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Seiichi Hirota
- Division of Surgical Pathology, Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Shingo Yamamoto
- Department of Urology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | | |
Collapse
|
128
|
Abstract
A majority of proteins in the cell can be modified by ubiquitination, thereby altering their function or stability. This ubiquitination is controlled by both ubiquitinating and deubiquitinating enzymes (DUBs). The number of ubiquitin ligases exceeds that of DUBs by about eightfold, indicating that DUBs may have much broader substrate specificity. Despite this, DUBs have been shown to have quite specific physiological functions. This functional specificity is likely due to very precise regulation of activity arising from the sophisticated use of all mechanisms of enzyme regulation. In this commentary, we briefly review key features of DUBs with more emphasis on regulation. In particular, we focus on localization of the enzymes as a critical regulatory mechanism which when integrated with control of expression, substrate activation, allosteric regulation, and post-translational modifications results in precise spatial and temporal deubiquitination of proteins and therefore specific physiological functions. Identification of compounds that target the structural elements in DUBs that dictate localization may be a more promising approach to development of drugs with specificity of action than targeting the enzymatic activity, which for most DUBs is dependent on a thiol group that can react non-specifically with many compounds in large-scale screening.
Collapse
Affiliation(s)
- Erin S Coyne
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Simon S Wing
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
129
|
Han KJ, Foster D, Harhaj EW, Dzieciatkowska M, Hansen K, Liu CW. Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25:1392-405. [PMID: 26908624 DOI: 10.1093/hmg/ddw021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons. Mechanisms that control SMN sorting in the cell remain largely unknown. Here, we report that the ubiquitin (Ub) ligase Itch directly interacts with and monoubiquitinates SMN. Monoubiquitination of SMN has a mild effect on promoting proteasomal degradation of SMN. We generated two SMN mutants, SMN(K0), in which all lysines are mutated to arginines and thereby abolishing SMN ubiquitination, and Ub-SMN(K0), in which a single Ub moiety is fused at the N-terminus of SMN(K0) and thereby mimicking SMN monoubiquitination. Immunostaining assays showed that SMN(K0) mainly localizes in the nucleus, whereas Ub-SMN(K0) localizes in both the cytoplasm and the nucleolus in neuronal SH-SY5Y cells. Interestingly, canonical CB foci and coilin/small nuclear ribonucleoprotein (snRNP) co-localization are significantly impaired in SH-SY5Y cells stably expressing SMN(K0) or Ub-SMN(K0). Thus, our studies discover that Itch monoubiquitinates SMN and monoubiquitination of SMN plays an important role in regulating its cellular localization. Moreover, mislocalization of SMN disrupts CB integrity and likely impairs snRNP maturation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Daniel Foster
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Edward W Harhaj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| |
Collapse
|
130
|
Abstract
Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Collapse
|
131
|
BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat Commun 2016; 7:10292. [PMID: 26739236 PMCID: PMC4729829 DOI: 10.1038/ncomms10292] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/26/2015] [Indexed: 12/22/2022] Open
Abstract
The deubiquitinating enzyme BAP1 is an important tumor suppressor that has drawn attention in the clinic since its loss leads to a variety of cancers. BAP1 is activated by ASXL1 to deubiquitinate mono-ubiquitinated H2A at K119 in Polycomb gene repression, but the mechanism of this reaction remains poorly defined. Here we show that the BAP1 C-terminal extension is important for H2A deubiquitination by auto-recruiting BAP1 to nucleosomes in a process that does not require the nucleosome acidic patch. This initial encounter-like complex is unproductive and needs to be activated by the DEUBAD domains of ASXL1, ASXL2 or ASXL3 to increase BAP1's affinity for ubiquitin on H2A, to drive the deubiquitination reaction. The reaction is specific for Polycomb modifications of H2A as the complex cannot deubiquitinate the DNA damage-dependent ubiquitination at H2A K13/15. Our results contribute to the molecular understanding of this important tumor suppressor.
Collapse
|
132
|
Bhattacharya S, Hanpude P, Maiti TK. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: A new insight in enzymatic inactivation. Sci Rep 2015; 5:18462. [PMID: 26680512 PMCID: PMC4683529 DOI: 10.1038/srep18462] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022] Open
Abstract
BRCA1 associated protein 1 (BAP1) is a nuclear deubiquitinase that regulates tumor suppressor activity and widely involves many cellular processes ranging from cell cycle regulation to gluconeogenesis. Impairment of enzymatic activity and nuclear localization induce abnormal cell proliferation. It is considered to be an important driver gene, which undergoes frequent mutations in several cancers. However the role of mutation and oncogenic gain of function of BAP1 are poorly understood. Here, we investigated cellular localization, enzymatic activity and structural changes for four missense mutants of the catalytic domain of BAP1, which are prevalent in different types of cancer. These mutations triggered cytoplasmic/perinuclear accumulation in BAP1 deficient cells, which has been observed in proteins that undergo aggregation in cellular condition. Amyloidogenic activity of mutant BAP1 was revealed from its reactivity towards anti oligomeric antibody in HEK293T cells. We have also noted structural destabilization in the catalytic domain mutants, which eventually produced beta amyloid structure as indicated in atomic force microscopy study. The cancer associated mutants up-regulate heat shock response and activates transcription of genes normally co-repressed by BAP1. Overall, our results unambiguously demonstrate that structural destabilization and subsequent aggregation abrogate its cellular mechanism leading to adverse outcome.
Collapse
Affiliation(s)
- Sushmita Bhattacharya
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA
| | - Pranita Hanpude
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA.,Department of Biotechnology, Manipal University, Karnataka, 576104, INDIA
| | - Tushar Kanti Maiti
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, INDIA
| |
Collapse
|
133
|
Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, Liu R, Chen C. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 2015; 6:8471. [PMID: 26419610 PMCID: PMC4598844 DOI: 10.1038/ncomms9471] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor KLF5 is highly expressed in basal-like breast cancer and promotes breast cancer cell proliferation, survival, migration and tumour growth. Here we show that, in breast cancer cells, KLF5 is stabilized by the deubiquitinase (DUB) BAP1. With a genome-wide siRNA library screen of DUBs, we identify BAP1 as a bona fide KLF5 DUB. BAP1 interacts directly with KLF5 and stabilizes KLF5 via deubiquitination. KLF5 is in the BAP1/HCF-1 complex, and this newly identified complex promotes cell cycle progression partially by inhibiting p27 gene expression. Furthermore, BAP1 knockdown inhibits tumorigenicity and lung metastasis, which can be rescued partially by ectopic expression of KLF5. Collectively, our findings not only identify BAP1 as the DUB for KLF5, but also reveal a critical mechanism that regulates KLF5 expression in breast cancer. Our findings indicate that BAP1 could be a potential therapeutic target for breast and other cancers. The zinc finger-containing transcription factor KLF5 drives cell proliferation and migration. Here, the authors show that the debuquitinase BAP1 directly stabilizes KLF5, thus promoting basal-like breast cancer cell-cycle progression and metastasis.
Collapse
Affiliation(s)
- Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Wenlin Chen
- Department of Breast Surgery, Breast Cancer Clinical Research Center, Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Chunyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.,Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Guangzhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dingyun You
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Zhixiang Fan
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| |
Collapse
|
134
|
Daou S, Hammond-Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono NVG, Nkwe NS, Motorina A, Pak H, Yu H, Wurtele H, Milot E, Mallette FA, Carbone M, Affar EB. The BAP1/ASXL2 Histone H2A Deubiquitinase Complex Regulates Cell Proliferation and Is Disrupted in Cancer. J Biol Chem 2015; 290:28643-63. [PMID: 26416890 DOI: 10.1074/jbc.m115.661553] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 01/03/2023] Open
Abstract
The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development.
Collapse
Affiliation(s)
- Salima Daou
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Ian Hammond-Martel
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nazar Mashtalir
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Haithem Barbour
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Jessica Gagnon
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nicholas V G Iannantuono
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Nadine Sen Nkwe
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Alena Motorina
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Helen Pak
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Helen Yu
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Hugo Wurtele
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Eric Milot
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Frédérick A Mallette
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Michele Carbone
- the Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813
| | - El Bachir Affar
- From the Maisonneuve-Rosemont Hospital Research Center and Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada and
| |
Collapse
|
135
|
Mori T, Sumii M, Fujishima F, Ueno K, Emi M, Nagasaki M, Ishioka C, Chiba N. Somatic alteration and depleted nuclear expression of BAP1 in human esophageal squamous cell carcinoma. Cancer Sci 2015; 106:1118-29. [PMID: 26081045 PMCID: PMC4582980 DOI: 10.1111/cas.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/27/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023] Open
Abstract
BRCA1-associated protein 1 (BAP1) is a deubiquitinating enzyme that is involved in the regulation of cell growth. Recently, many somatic and germline mutations of BAP1 have been reported in a broad spectrum of tumors. In this study, we identified a novel somatic non-synonymous BAP1 mutation, a phenylalanine-to-isoleucine substitution at codon 170 (F170I), in 1 of 49 patients with esophageal squamous cell carcinoma (ESCC). Multiplex ligation-dependent probe amplification (MLPA) of BAP1 gene in this ESCC tumor disclosed monoallelic deletion (LOH), suggesting BAP1 alterations on both alleles in this tumor. The deubiquitinase activity and the auto-deubiquitinase activity of F170I-mutant BAP1 were markedly suppressed compared with wild-type BAP1. In addition, wild-type BAP1 mostly localizes to the nucleus, whereas the F170I mutant preferentially localized in the cytoplasm. Microarray analysis revealed that expression of the F170I mutant drastically altered gene expression profiles compared with expressed wild-type BAP1. Gene-ontology analyses indicated that the F170I mutation altered the expression of genes involved in oncogenic pathways. We found that one candidate, TCEAL7, previously reported as a putative tumor suppressor gene, was significantly induced by wild-type BAP1 as compared to F170I mutant BAP1. Furthermore, we found that the level of BAP1 expression in the nucleus was reduced in 44% of ESCC examined by immunohistochemistry (IHC). Because the nuclear localization of BAP1 is important for its tumor suppressor function, BAP1 may be functionally inactivated in a substantial portion of ESCC. Taken together, BAP1 is likely to function as a tumor suppressor in at least a part of ESCC.
Collapse
Affiliation(s)
- Takahiro Mori
- Tohoku Community Cancer Services Program, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makiko Sumii
- Tohoku Community Cancer Services Program, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Kazuko Ueno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mitsuru Emi
- Thoracic Oncology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
136
|
|
137
|
Hanpude P, Bhattacharya S, Dey AK, Maiti TK. Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life 2015; 67:544-55. [PMID: 26178252 DOI: 10.1002/iub.1402] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
Abstract
Protein post-translational modification by ubiquitin represents a complex signaling system that regulates many cellular events including proteostasis to intercellular communications. Deubiquitinating enzymes (DUBs) that specifically disassemble Ub-chains or regulate ubiquitin homeostasis reside as a central component in ubiquitin signaling. Human genome encodes almost 100 DUBs and majority of them are not well characterized. Considerable progress has been made in the understanding of enzymatic mechanism; however, their cellular substrate specificity and regulation are largely unknown. Involvement of DUBs in disease regulation has been depicted since its discovery and several attempts have been made for evaluating DUBs as a drug target. In this review, we have updated briefly a new insight of DUBs activity, their cellular role, disease regulation, and therapeutic potential.
Collapse
Affiliation(s)
- Pranita Hanpude
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Sushmita Bhattacharya
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Amit Kumar Dey
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| |
Collapse
|
138
|
Klebe S, Driml J, Nasu M, Pastorino S, Zangiabadi A, Henderson D, Carbone M. BAP1 hereditary cancer predisposition syndrome: a case report and review of literature. Biomark Res 2015; 3:14. [PMID: 26140217 PMCID: PMC4488956 DOI: 10.1186/s40364-015-0040-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
A 72-year-old woman was diagnosed with uveal melanoma, peritoneal mesothelioma and a primary biliary tract adenocarcinoma. She had a strong family history of mesothelioma as well as other malignancies including renal cell carcinoma. The recently described BAP1 hereditary cancer predisposition syndrome was suspected, but immunohistochemical labeling was not conclusive. Genetic testing confirmed a novel and unusual germline mutation in the ubiquitin hydrolase domain of the BAP1 gene (p.Tyr173Cys) and the patient was diagnosed with the BAP1 hereditary cancer predisposition syndrome. This case demonstrates the importance of clinically recognizing this rare syndrome and its manifestations, some which are still being characterized. It also highlights the importance of genetic testing in cases where there is a high clinical suspicion, even when screening tests, such as immunohistochemistry, in this case, are inconclusive. The diagnosis of a germline BAP1 mutation may have important implications for both the patient and their families with regards to further genetic testing and active surveillance programs. Further research is needed to fully understand the extent and clinical implications of this rare cancer syndrome.
Collapse
Affiliation(s)
- Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre and Flinders University, Bedford Park, SA 5042 UK
| | - Jack Driml
- Department of Anatomical Pathology, Flinders Medical Centre and Flinders University, Bedford Park, SA 5042 UK
| | - Masaki Nasu
- University of Hawaii Cancer Center, 701 Ilalo Street, Bldg A-4R, Rm 450, Honolulu, HI 96813 USA
| | - Sandra Pastorino
- University of Hawaii Cancer Center, 701 Ilalo Street, Bldg A-4R, Rm 450, Honolulu, HI 96813 USA
| | - Amirmasoud Zangiabadi
- Department of Respiratory and Sleep Medicine, Flinders Medical Centre, Bedford Park, SA 5042 UK
| | - Douglas Henderson
- Department of Anatomical Pathology, Flinders Medical Centre and Flinders University, Bedford Park, SA 5042 UK
| | - Michele Carbone
- University of Hawaii Cancer Center, 701 Ilalo Street, Bldg A-4R, Rm 450, Honolulu, HI 96813 USA
| |
Collapse
|
139
|
Hakiri S, Osada H, Ishiguro F, Murakami H, Murakami-Tonami Y, Yokoi K, Sekido Y. Functional differences between wild-type and mutant-type BRCA1-associated protein 1 tumor suppressor against malignant mesothelioma cells. Cancer Sci 2015; 106:990-9. [PMID: 26011428 PMCID: PMC4556387 DOI: 10.1111/cas.12698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) shows inactivation of the BRCA1-associated protein 1 (BAP1) gene. In this study, we found BAP1 mutations in 5 (26%) of the 19 cell lines that we established from Japanese MM patients, and examined functional differences between the WT and mutant BAP1. First, we studied the subcellular localization of BAP1, demonstrating that the WT primarily resides in the nucleus and that the mutant BAP1 is found in the cytoplasm of the cells. Transduction of the WT BAP1 vector into MM cells with homozygous deletion at the BAP1 3′ side resulted in both inhibition of cell proliferation and anchorage-independent cell growth, whereas BAP1 mutants of a missense or C-terminal truncated form showed impaired growth inhibitory effects. Next, we studied how BAP1 is involved in MM cell survival after irradiation (IR), which causes DNA damage. After IR, we found that both WT and mutant BAP1 were similarly phosphorylated and phospho-BAP1 localized mainly in the nucleus. Interestingly, BRCA1 proteins were decreased in the MM cells with BAP1 deletion, and transduction of the mutants as well as WT BAP1 increased BRCA1 proteins, suggesting that BAP1 may promote DNA repair partly through stabilizing BRCA1. Furthermore, using the MM cells with BAP1 deletion, we found that WT BAP1, and even a missense mutant, conferred a higher survival rate after IR compared to the control vector. Our results suggested that, whereas WT BAP1 suppresses MM cell proliferation and restores cell survival after IR damage, some mutant BAP1 may also moderately retain these functions.
Collapse
Affiliation(s)
- Shuhei Hakiri
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Genetics, Program in Function Construction Medicine, Nagoya, Japan
| | - Futoshi Ishiguro
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Murakami
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Pathology, Aichi Medical University, Nagakute, Japan
| | - Yuko Murakami-Tonami
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Genetics, Program in Function Construction Medicine, Nagoya, Japan
| |
Collapse
|
140
|
Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci 2015; 40:456-67. [PMID: 26073511 DOI: 10.1016/j.tibs.2015.05.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
Proteolytic enzymes, such as (iso-)peptidases, are potentially hazardous for cells. To neutralize their potential danger, tight control of their activities has evolved. Deubiquitylating enzymes (DUBs) are isopeptidases involved in eukaryotic ubiquitylation. They reverse ubiquitin signals by hydrolyzing ubiquitin adducts, giving them control over all aspects of ubiquitin biology. The importance of DUB function is underscored by their frequent deregulation in human disease, making these enzymes potential drug targets. Here, we review the different layers of DUB enzyme regulation. We discuss how post-translational modification (PTM), regulatory domains within DUBs, and incorporation of DUBs into macromolecular complexes contribute to their activity. We conclude that most DUBs are likely to use a combination of these basic regulatory mechanisms.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
141
|
Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, Baumann F, Zhang YA, Gazdar A, Kanodia S, Tiirikainen M, Flores E, Gaudino G, Becich MJ, Pass HI, Yang H, Carbone M. High Incidence of Somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol 2015; 10:565-76. [PMID: 25658628 PMCID: PMC4408084 DOI: 10.1097/jto.0000000000000471] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Breast cancer 1-associated protein 1 (BAP1) is a nuclear deubiquitinase that regulates gene expression, transcription, DNA repair, and more. Several findings underscore the apparent driver role of BAP1 in malignant mesothelioma (MM). However, the reported frequency of somatic BAP1 mutations in MM varies considerably, a discrepancy that appeared related to either methodological or ethnical differences across various studies. METHODS To address this discrepancy, we carried out comprehensive genomic and immunohistochemical (IHC) analyses to detect somatic BAP1 gene alterations in 22 frozen MM biopsies from U.S. MM patients. RESULTS By combining Sanger sequencing, multiplex ligation-dependent probe amplification, copy number analysis, and cDNA sequencing, we found alteration of BAP1 in 14 of 22 biopsies (63.6%). No changes in methylation were observed. IHC revealed normal nuclear BAP1 staining in the eight MM containing wild-type BAP1, whereas no nuclear staining was detected in the 14 MM biopsies containing tumor cells with mutated BAP1. Thus, IHC results were in agreement with those obtained by genomic analyses. We then extended IHC analysis to an independent cohort of 70 MM biopsies, of which there was insufficient material to perform molecular studies. IHC revealed loss of BAP1 nuclear staining in 47 of these 70 MM biopsies (67.1%). CONCLUSIONS Our findings conclusively establish BAP1 as the most commonly mutated gene in MM, regardless of ethnic background or other clinical characteristics. Our data point to IHC as the most accessible and reliable technique to detect BAP1 status in MM biopsies.
Collapse
Affiliation(s)
- Masaki Nasu
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Mitsuru Emi
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Sandra Pastorino
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Mika Tanji
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Amy Powers
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | | | - Francine Baumann
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Yu-an Zhang
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, UT Southwestern Medical Center, Dallas, TX
| | - Adi Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, UT Southwestern Medical Center, Dallas, TX
| | - Shreya Kanodia
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
- Department of Biomedical Sciences and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Maarit Tiirikainen
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Erin Flores
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Giovanni Gaudino
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Michael J. Becich
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY 10016, USA
| | - Haining Yang
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| | - Michele Carbone
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, HI, 96813, USA
| |
Collapse
|
142
|
Pentecost M, Vashisht AA, Lester T, Voros T, Beaty SM, Park A, Wang YE, Yun TE, Freiberg AN, Wohlschlegel JA, Lee B. Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. PLoS Pathog 2015; 11:e1004739. [PMID: 25782006 PMCID: PMC4363627 DOI: 10.1371/journal.ppat.1004739] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/10/2015] [Indexed: 11/24/2022] Open
Abstract
The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear-cytoplasmic trafficking of cognate paramyxovirus M proteins that show a consistent nuclear trafficking phenotype. Elucidating virus-cell interactions is fundamental to understanding viral replication and identifying targets for therapeutic control of viral infection. Paramyxoviruses include human and animal pathogens of medical and agricultural significance. Their matrix (M) structural protein organizes virion assembly at the plasma membrane and mediates viral budding. While nuclear localization of M proteins has been described for some paramyxoviruses, the underlying mechanisms of nuclear trafficking and the biological relevance of this observation have remained largely unexamined. Through comparative analyses of M proteins across five Paramyxovirinae genera, we identify M proteins from at least three genera that exhibit similar nuclear trafficking phenotypes regulated by an NLSbp as well as an NES sequence within M that may mediate the interaction of M with host nuclear transport receptors. Additionally, a conserved lysine within the NLSbp of some M proteins is required for nuclear export by regulating M ubiquitination. Sendai virus engineered to express a ubiquitination-defective M does not produce infectious virus but instead displays extensive cell-cell fusion while M is retained in the nucleolus. Thus, some Paramyxovirinae M proteins undergo regulated and active nuclear and subnuclear transport, a prerequisite for viral morphogenesis, which also suggests yet to be discovered roles for M in the nucleus.
Collapse
Affiliation(s)
- Mickey Pentecost
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Talia Lester
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tim Voros
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shannon M. Beaty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arnold Park
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yao E. Wang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tatyana E Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
143
|
Lee HS, Lee SA, Hur SK, Seo JW, Kwon J. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 2014; 5:5128. [PMID: 25283999 DOI: 10.1038/ncomms6128] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023] Open
Abstract
The INO80 chromatin-remodelling complex has been implicated in DNA replication during stress in yeast. However, its role in normal DNA replication and its underlying mechanisms remain unclear. Here, we show that INO80 binds to replication forks and promotes fork progression in human cells under unperturbed, normal conditions. We find that Ino80, which encodes the catalytic ATPase of INO80, is essential for mouse embryonic DNA replication and development. Ino80 is recruited to replication forks through interaction with ubiquitinated H2A--aided by BRCA1-associated protein-1 (BAP1), a tumour suppressor and nuclear de-ubiquitinating enzyme that also functions to stabilize Ino80. Importantly, Ino80 is downregulated in BAP1-defective cancer cells due to the lack of an Ino80 stabilization mechanism via BAP1. Our results establish a role for INO80 in normal DNA replication and uncover a mechanism by which this remodeler is targeted to replication forks, suggesting a molecular basis for the tumour-suppressing function of BAP1.
Collapse
Affiliation(s)
- Han-Sae Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Shin-Kyoung Hur
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Jeong-Wook Seo
- Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|