101
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
102
|
Ziffra RS, Kim CN, Ross JM, Wilfert A, Turner TN, Haeussler M, Casella AM, Przytycki PF, Keough KC, Shin D, Bogdanoff D, Kreimer A, Pollard KS, Ament SA, Eichler EE, Ahituv N, Nowakowski TJ. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 2021; 598:205-213. [PMID: 34616060 PMCID: PMC8494642 DOI: 10.1038/s41586-021-03209-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.
Collapse
Affiliation(s)
- Ryan S Ziffra
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jayden M Ross
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wilfert
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Alex M Casella
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Kathleen C Keough
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Derek Bogdanoff
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Anat Kreimer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
103
|
Libé-Philippot B, Vanderhaeghen P. Cellular and Molecular Mechanisms Linking Human Cortical Development and Evolution. Annu Rev Genet 2021; 55:555-581. [PMID: 34535062 DOI: 10.1146/annurev-genet-071719-020705] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cerebral cortex is at the core of brain functions that are thought to be particularly developed in the human species. Human cortex specificities stem from divergent features of corticogenesis, leading to increased cortical size and complexity. Underlying cellular mechanisms include prolonged patterns of neuronal generation and maturation, as well as the amplification of specific types of stem/progenitor cells. While the gene regulatory networks of corticogenesis appear to be largely conserved among all mammals including humans, they have evolved in primates, particularly in the human species, through the emergence of rapidly divergent transcriptional regulatory elements, as well as recently duplicated novel genes. These human-specific molecular features together control key cellular milestones of human corticogenesis and are often affected in neurodevelopmental disorders, thus linking human neural development, evolution, and diseases. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium; .,Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
104
|
Han S, Okawa S, Wilkinson GA, Ghazale H, Adnani L, Dixit R, Tavares L, Faisal I, Brooks MJ, Cortay V, Zinyk D, Sivitilli A, Li S, Malik F, Ilnytskyy Y, Angarica VE, Gao J, Chinchalongporn V, Oproescu AM, Vasan L, Touahri Y, David LA, Raharjo E, Kim JW, Wu W, Rahmani W, Chan JAW, Kovalchuk I, Attisano L, Kurrasch D, Dehay C, Swaroop A, Castro DS, Biernaskie J, Del Sol A, Schuurmans C. Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron 2021; 109:2847-2863.e11. [PMID: 34407390 PMCID: PMC12080610 DOI: 10.1016/j.neuron.2021.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Asymmetric neuronal expansion is thought to drive evolutionary transitions between lissencephalic and gyrencephalic cerebral cortices. We report that Neurog2 and Ascl1 proneural genes together sustain neurogenic continuity and lissencephaly in rodent cortices. Using transgenic reporter mice and human cerebral organoids, we found that Neurog2 and Ascl1 expression defines a continuum of four lineage-biased neural progenitor cell (NPC) pools. Double+ NPCs, at the hierarchical apex, are least lineage restricted due to Neurog2-Ascl1 cross-repression and display unique features of multipotency (more open chromatin, complex gene regulatory network, G2 pausing). Strikingly, selectively eliminating double+ NPCs by crossing Neurog2-Ascl1 split-Cre mice with diphtheria toxin-dependent "deleter" strains locally disrupts Notch signaling, perturbs neurogenic symmetry, and triggers cortical folding. In support of our discovery that double+ NPCs are Notch-ligand-expressing "niche" cells that control neurogenic periodicity and cortical folding, NEUROG2, ASCL1, and HES1 transcript distribution is modular (adjacent high/low zones) in gyrencephalic macaque cortices, prefiguring future folds.
Collapse
Affiliation(s)
- Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Integrated BioBank of Luxembourg, 3555, 3531 Dudelange, Luxembourg
| | - Grey Atteridge Wilkinson
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hussein Ghazale
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lata Adnani
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ligia Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Imrul Faisal
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Veronique Cortay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Dawn Zinyk
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Adam Sivitilli
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saiqun Li
- Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Faizan Malik
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Vladimir Espinosa Angarica
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jinghua Gao
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana-Maria Oproescu
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lakshmy Vasan
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Wei Wu
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jennifer Ai-Wen Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, HBI, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1204, USA
| | - Diogo S Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, HBI, ACHRI, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, ACHRI, HBI, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
105
|
Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021; 148:272121. [PMID: 34499710 PMCID: PMC8451944 DOI: 10.1242/dev.199417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex. Summary: We suggest that the inheritance and flexibility of cell polarity are implicated in the evolutionary expansion of the developing neocortex by promoting the amplification of neural progenitors and tangential migration of neurons.
Collapse
Affiliation(s)
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
106
|
Trevino AE, Müller F, Andersen J, Sundaram L, Kathiria A, Shcherbina A, Farh K, Chang HY, Pașca AM, Kundaje A, Pașca SP, Greenleaf WJ. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 2021; 184:5053-5069.e23. [PMID: 34390642 DOI: 10.1016/j.cell.2021.07.039] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.
Collapse
Affiliation(s)
| | - Fabian Müller
- Department of Genetics, Stanford University, Stanford, CA, USA; Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis Program, Wu Tsai Neuroscience Institute Stanford University, Stanford, CA, USA
| | | | - Arwa Kathiria
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Biomedical Data Science Program, Stanford University, Stanford CA, USA
| | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University, Stanford, CA, USA; Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Anca M Pașca
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis Program, Wu Tsai Neuroscience Institute Stanford University, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
107
|
Yang L, Li Z, Liu G, Li X, Yang Z. Developmental Origins of Human Cortical Oligodendrocytes and Astrocytes. Neurosci Bull 2021; 38:47-68. [PMID: 34374948 PMCID: PMC8783027 DOI: 10.1007/s12264-021-00759-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
108
|
Agboola OS, Hu X, Shan Z, Wu Y, Lei L. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro. Stem Cell Res Ther 2021; 12:430. [PMID: 34332630 PMCID: PMC8325286 DOI: 10.1186/s13287-021-02369-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract The study of human brain physiology, including cellular interactions in normal and disease conditions, has been a challenge due to its complexity and unavailability. Induced pluripotent stem cell (iPSC) study is indispensable in the study of the pathophysiology of neurological disorders. Nevertheless, monolayer systems lack the cytoarchitecture necessary for cellular interactions and neurological disease modeling. Brain organoids generated from human pluripotent stem cells supply an ideal environment to model both cellular interactions and pathophysiology of the human brain. This review article discusses the composition and interactions among neural lineage and non-central nervous system cell types in brain organoids, current studies, and future perspectives in brain organoid research. Ultimately, the promise of brain organoids is to unveil previously inaccessible features of neurobiology that emerge from complex cellular interactions and to improve our mechanistic understanding of neural development and diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02369-8.
Collapse
Affiliation(s)
- Oluwafemi Solomon Agboola
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Zhiyan Shan
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China.
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Heilongjiang Province, Harbin, 150081, People's Republic of China. .,Key Laboratory of Preservative of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
109
|
Cebrian Silla A, Nascimento MA, Redmond SA, Mansky B, Wu D, Obernier K, Romero Rodriguez R, Gonzalez Granero S, García-Verdugo JM, Lim D, Álvarez-Buylla A. Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal & ventral adult neurogenesis. eLife 2021; 10:67436. [PMID: 34259628 PMCID: PMC8443251 DOI: 10.7554/elife.67436] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis. Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate ‘progenitor cells’ called C cells. These, in turn, divide to generate large numbers of young ‘A cells’ neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top (‘dorsal’ position) or to the bottom of the brain (‘ventral’ position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct ‘gene expression’. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.
Collapse
Affiliation(s)
- Arantxa Cebrian Silla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Marcos Assis Nascimento
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Stephanie A Redmond
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Benjamin Mansky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Ricardo Romero Rodriguez
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Susana Gonzalez Granero
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Jose Manuel García-Verdugo
- Instituto Cavanilles, Universidad de Valencia, y Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, CIBERNED, Valencia, Spain
| | - Daniel Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Arturo Álvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
110
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
111
|
Abstract
Studies of the spatiotemporal, transcriptomic, and morphological diversity of radial glia (RG) have spurred our current models of human corticogenesis. In the developing cortex, neural intermediate progenitor cells (nIPCs) are a neuron-producing transit-amplifying cell type born in the germinal zones of the cortex from RG. The potential diversity of the nIPC population, that produces a significant portion of excitatory cortical neurons, is understudied, particularly in the developing human brain. Here we explore the spatiotemporal, transcriptomic, and morphological variation that exists within the human nIPC population and provide a resource for future studies. We observe that the spatial distribution of nIPCs in the cortex changes abruptly around gestational week (GW) 19/20, marking a distinct shift in cellular distribution and organization during late neurogenesis. We also identify five transcriptomic subtypes, one of which appears at this spatiotemporal transition. Finally, we observe a diversity of nIPC morphologies that do not correlate with specific transcriptomic subtypes. These results provide an analysis of the spatiotemporal, transcriptional, and morphological diversity of nIPCs in developing brain tissue and provide an atlas of nIPC subtypes in the developing human cortex that can benchmark in vitro models of human development such as cerebral organoids and help inform future studies of how nIPCs contribute to cortical neurogenesis.
Collapse
|
112
|
Bauer R, Clowry GJ, Kaiser M. Creative Destruction: A Basic Computational Model of Cortical Layer Formation. Cereb Cortex 2021; 31:3237-3253. [PMID: 33625496 PMCID: PMC8196252 DOI: 10.1093/cercor/bhab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most characteristic properties of many vertebrate neural systems is the layered organization of different cell types. This cytoarchitecture exists in the cortex, the retina, the hippocampus, and many other parts of the central nervous system. The developmental mechanisms of neural layer formation have been subject to substantial experimental efforts. Here, we provide a general computational model for cortical layer formation in 3D physical space. We show that this multiscale, agent-based model, comprising two distinct stages of apoptosis, can account for the wide range of neuronal numbers encountered in different cortical areas and species. Our results demonstrate the phenotypic richness of a basic state diagram structure. Importantly, apoptosis allows for changing the thickness of one layer without automatically affecting other layers. Therefore, apoptosis increases the flexibility for evolutionary change in layer architecture. Notably, slightly changed gene regulatory dynamics recapitulate the characteristic properties observed in neurodevelopmental diseases. Overall, we propose a novel computational model using gene-type rules, exhibiting many characteristics of normal and pathological cortical development.
Collapse
Affiliation(s)
- Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, GU2 7XH, UK
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marcus Kaiser
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
113
|
Micali N, Kim SK, Diaz-Bustamante M, Stein-O'Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Rep 2021; 31:107599. [PMID: 32375049 PMCID: PMC7357345 DOI: 10.1016/j.celrep.2020.107599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/22/2019] [Accepted: 04/10/2020] [Indexed: 11/06/2022] Open
Abstract
Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon. Micali et al. report that human telencephalic NSCs in vitro transition through the organizer states that pattern the neocortex. Human pluripotent lines vary in organizer formation, generating divergent neuronal differentiation trajectories biased toward dorsal or ventral telencephalic fates and opening further analysis of the earliest cortical specification events.
Collapse
Affiliation(s)
- Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Genevieve Stein-O'Brien
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Brian G Rash
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Nicolas A Olivares
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Roland W Bürli
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Astellas Research Institute of America, 3565 General Atomics Ct., Ste. 200, San Diego, CA 92121, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
114
|
Pinson A, Huttner WB. Neocortex expansion in development and evolution-from genes to progenitor cell biology. Curr Opin Cell Biol 2021; 73:9-18. [PMID: 34098196 DOI: 10.1016/j.ceb.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The evolutionary expansion of the neocortex, the seat of higher cognitive functions in humans, is primarily due to an increased and prolonged proliferation of neural progenitor cells during development. Basal progenitors, and in particular basal radial glial cells, are thought to have a key role in the increased generation of neurons that constitutes a foundation of neocortex expansion. Recent studies have identified primate-specific and human-specific genes and changes in gene expression that promote increased proliferative capacity of cortical progenitors. In many cases, the cell biological basis underlying this increase has been uncovered. Model systems such as mouse, ferret, nonhuman primates, and cerebral organoids have been used to establish the relevance of these genes for neocortex expansion.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
115
|
Hou S, Ho WL, Wang L, Kuo B, Park JY, Han YG. Biphasic Roles of Hedgehog Signaling in the Production and Self-Renewal of Outer Radial Glia in the Ferret Cerebral Cortex. Cereb Cortex 2021; 31:4730-4741. [PMID: 34002221 DOI: 10.1093/cercor/bhab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neocortex, the center for higher brain function, emerged in mammals and expanded in the course of evolution. The expansion of outer radial glia (oRGs) and intermediate progenitor cells (IPCs) plays key roles in the expansion and consequential folding of the neocortex. Therefore, understanding the mechanisms of oRG and IPC expansion is important for understanding neocortical development and evolution. By using mice and human cerebral organoids, we previously revealed that hedgehog (HH) signaling expands oRGs and IPCs. Nevertheless, it remained to be determined whether HH signaling expanded oRGs and IPCs in vivo in gyrencephalic species, in which oRGs and IPCs are naturally expanded. Here, we show that HH signaling is necessary and sufficient to expand oRGs and IPCs in ferrets, a gyrencephalic species, through conserved cellular mechanisms. HH signaling increases oRG-producing division modes of ventricular radial glia (vRGs), oRG self-renewal, and IPC proliferation. Notably, HH signaling affects vRG division modes only in an early restricted phase before superficial-layer neuron production peaks. Beyond this restricted phase, HH signaling promotes oRG self-renewal. Thus, HH signaling expands oRGs and IPCs in two distinct but continuous phases during cortical development.
Collapse
Affiliation(s)
- Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wan-Ling Ho
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lei Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bryan Kuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Young Park
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
116
|
Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:676911. [PMID: 34055808 PMCID: PMC8155536 DOI: 10.3389/fcell.2021.676911] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex, a six-layer neuronal brain structure that arose during the evolution of, and is unique to, mammals, is the seat of higher order brain functions responsible for human cognitive abilities. Despite its recent evolutionary origin, it shows a striking variability in size and folding complexity even among closely related mammalian species. In most mammals, cortical neurogenesis occurs prenatally, and its length correlates with the length of gestation. The evolutionary expansion of the neocortex, notably in human, is associated with an increase in the number of neurons, particularly within its upper layers. Various mechanisms have been proposed and investigated to explain the evolutionary enlargement of the human neocortex, focussing in particular on changes pertaining to neural progenitor types and their division modes, driven in part by the emergence of human-specific genes with novel functions. These led to an amplification of the progenitor pool size, which affects the rate and timing of neuron production. In addition, in early theoretical studies, another mechanism of neocortex expansion was proposed—the lengthening of the neurogenic period. A critical role of neurogenic period length in determining neocortical neuron number was subsequently supported by mathematical modeling studies. Recently, we have provided experimental evidence in rodents directly supporting the mechanism of extending neurogenesis to specifically increase the number of upper-layer cortical neurons. Moreover, our study examined the relationship between cortical neurogenesis and gestation, linking the extension of the neurogenic period to the maternal environment. As the exact nature of factors promoting neurogenic period prolongation, as well as the generalization of this mechanism for evolutionary distinct lineages, remain elusive, the directions for future studies are outlined and discussed.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany.,Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| |
Collapse
|
117
|
Implications of Extended Inhibitory Neuron Development. Int J Mol Sci 2021; 22:ijms22105113. [PMID: 34066025 PMCID: PMC8150951 DOI: 10.3390/ijms22105113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.
Collapse
|
118
|
Johnson MH, Charman T, Pickles A, Jones EJH. Annual Research Review: Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND)-a systems neuroscience approach to common developmental disorders. J Child Psychol Psychiatry 2021; 62:610-630. [PMID: 33432656 PMCID: PMC8609429 DOI: 10.1111/jcpp.13372] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
We present the Anterior Modifiers in the Emergence of Neurodevelopmental Disorders (AMEND) framework, designed to reframe the field of prospective studies of neurodevelopmental disorders. In AMEND we propose conceptual, statistical and methodological approaches to separating markers of early-stage perturbations from later developmental modifiers. We describe the evidence for, and features of, these interacting components before outlining analytical approaches to studying how different profiles of early perturbations and later modifiers interact to produce phenotypic outcomes. We suggest this approach could both advance our theoretical understanding and clinical approach to the emergence of developmental psychopathology in early childhood.
Collapse
Affiliation(s)
- Mark H. Johnson
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Tony Charman
- Department of PsychologyInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Andrew Pickles
- Department of Biostatistics and Health InformaticsInstitute of Psychiatry, Psychology and NeuroscienceKing’s College LondonLondonUK
| | - Emily J. H. Jones
- Centre for Brain and Cognitive DevelopmentDepartment of Psychological SciencesBirkbeck, University of LondonLondonUK
| |
Collapse
|
119
|
Kostović I, Radoš M, Kostović-Srzentić M, Krsnik Ž. Fundamentals of the Development of Connectivity in the Human Fetal Brain in Late Gestation: From 24 Weeks Gestational Age to Term. J Neuropathol Exp Neurol 2021; 80:393-414. [PMID: 33823016 PMCID: PMC8054138 DOI: 10.1093/jnen/nlab024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the second half of gestation, the human cerebrum undergoes pivotal histogenetic events that underlie functional connectivity. These include the growth, guidance, selection of axonal pathways, and their first engagement in neuronal networks. Here, we characterize the spatiotemporal patterns of cerebral connectivity in extremely preterm (EPT), very preterm (VPT), preterm and term babies, focusing on magnetic resonance imaging (MRI) and histological data. In the EPT and VPT babies, thalamocortical axons enter into the cortical plate creating the electrical synapses. Additionally, the subplate zone gradually resolves in the preterm and term brain in conjunction with the growth of associative pathways leading to the activation of large-scale neural networks. We demonstrate that specific classes of axonal pathways within cerebral compartments are selectively vulnerable to temporally nested pathogenic factors. In particular, the radial distribution of axonal lesions, that is, radial vulnerability, is a robust predictor of clinical outcome. Furthermore, the subplate tangential nexus that we can visualize using MRI could be an additional marker as pivotal in the development of cortical connectivity. We suggest to direct future research toward the identification of sensitive markers of earlier lesions, the elucidation of genetic mechanisms underlying pathogenesis, and better long-term follow-up using structural and functional MRI.
Collapse
Affiliation(s)
- Ivica Kostović
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Milan Radoš
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Polyclinic "Neuron", Zagreb, Croatia
| | - Mirna Kostović-Srzentić
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Health Psychology, University of Applied Health Sciences, Zagreb, Croatia.,Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
120
|
Li Y, Zhang LN, Chong L, Liu Y, Xi FY, Zhang H, Duan XL. Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 2021; 23:274. [PMID: 33576465 PMCID: PMC7893684 DOI: 10.3892/mmr.2021.11913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
During embryonic cortical development, radial glial cells (RGCs) are the major source of neurons, and these also serve as a supportive scaffold to guide neuronal migration. Similar to Vimentin, glial fibrillary acidic protein (GFAP) is one of the major intermediate filament proteins present in glial cells. Previous studies confirmed that prenatal ethanol exposure (PEE) significantly affected the levels of GFAP and increased the disassembly of radial glial fibers. GFAPδ is a variant of GFAP that is specifically expressed in RGCs; however, to the best of our knowledge, there are no reports regarding how PEE influences its expression during cortical development. In the present study, the effects of PEE on the expression and distribution of GFAPδ during early cortical development were assessed. It was found that PEE significantly decreased the expression levels of GFAP and GFAPδ. Using double immunostaining, GFAPδ was identified to be specifically expressed in apical and basal RGCs, and was co‑localized with other intermediate filament proteins, such as GFAP, Nestin and Vimentin. Additionally, PEE significantly affected the morphology of radial glial fibers and altered the behavior of RGCs. The loss of GFAPδ accelerated the transformation of RGCs into astrocytes. Using co‑immunostaining with Ki67 or phospho‑histone H3, GFAPδ+ cells were observed to be proliferative or mitotic cells, and ethanol treatment significantly decreased the proliferative or mitotic activities of GFAPδ+ RGCs. Taken together, the results suggested that PEE altered the expression patterns of GFAPδ and impaired the development of radial glial fibers and RGC behavior. The results of the present study provided evidence that GFAPδ may be a promising target to rescue the damage induced by PEE.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li-Na Zhang
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Yue Liu
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiang-Long Duan
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
121
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
122
|
Pearson CA, Moore DM, Tucker HO, Dekker JD, Hu H, Miquelajáuregui A, Novitch BG. Foxp1 Regulates Neural Stem Cell Self-Renewal and Bias Toward Deep Layer Cortical Fates. Cell Rep 2021; 30:1964-1981.e3. [PMID: 32049024 DOI: 10.1016/j.celrep.2020.01.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
The laminar architecture of the mammalian neocortex depends on the orderly generation of distinct neuronal subtypes by apical radial glia (aRG) during embryogenesis. Here, we identify critical roles for the autism risk gene Foxp1 in maintaining aRG identity and gating the temporal competency for deep-layer neurogenesis. Early in development, aRG express high levels of Foxp1 mRNA and protein, which promote self-renewing cell divisions and deep-layer neuron production. Foxp1 levels subsequently decline during the transition to superficial-layer neurogenesis. Sustained Foxp1 expression impedes this transition, preserving a population of cells with aRG identity throughout development and extending the early neurogenic period into postnatal life. FOXP1 expression is further associated with the initial formation and expansion of basal RG (bRG) during human corticogenesis and can promote the formation of cells exhibiting characteristics of bRG when misexpressed in the mouse cortex. Together, these findings reveal broad functions for Foxp1 in cortical neurogenesis.
Collapse
Affiliation(s)
- Caroline Alayne Pearson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Destaye M Moore
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Haley O Tucker
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph D Dekker
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hui Hu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Amaya Miquelajáuregui
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00911, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
123
|
Foglio B, Rossini L, Garbelli R, Regondi MC, Mercurio S, Bertacchi M, Avagliano L, Bulfamante G, Coras R, Maiorana A, Nicolis S, Studer M, Frassoni C. Dynamic expression of NR2F1 and SOX2 in developing and adult human cortex: comparison with cortical malformations. Brain Struct Funct 2021; 226:1303-1322. [PMID: 33661352 DOI: 10.1007/s00429-021-02242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The neocortex, the most recently evolved brain region in mammals, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the presence of graded expression of transcription factors and molecular determinants defining neuronal identity. However, little is known about the expression of key master genes orchestrating human cortical development. In this study, we explored the expression dynamics of NR2F1 and SOX2, key cortical genes whose mutations in human patients cause severe neurodevelopmental syndromes. We focused on physiological conditions, spanning from mid-late gestational ages to adulthood in unaffected specimens, but also investigated gene expression in a pathological context, a developmental cortical malformation termed focal cortical dysplasia (FCD). We found that NR2F1 follows an antero-dorsallow to postero-ventralhigh gradient as in the murine cortex, suggesting high evolutionary conservation. While SOX2 is mainly expressed in neural progenitors next to the ventricular surface, NR2F1 is found in both mitotic progenitors and post-mitotic neurons at GW18. Interestingly, both proteins are highly co-expressed in basal radial glia progenitors of the outer sub-ventricular zone (OSVZ), a proliferative region known to contribute to cortical expansion and complexity in humans. Later on, SOX2 becomes largely restricted to astrocytes and oligodendrocytes although it is also detected in scattered mature interneurons. Differently, NR2F1 maintains its distinct neuronal expression during the whole process of cortical development. Notably, we report here high levels of NR2F1 in dysmorphic neurons and NR2F1 and SOX2 in balloon cells of surgical samples from patients with FCD, suggesting their potential use in the histopathological characterization of this dysplasia.
Collapse
Affiliation(s)
- Benedetta Foglio
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Rossini
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Rita Garbelli
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Maria Cristina Regondi
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Sara Mercurio
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Michele Bertacchi
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Laura Avagliano
- Departement of Health Sciences, San Paolo Hospital Medical School University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Departement of Health Sciences, San Paolo Hospital Medical School University of Milan, Milan, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Antonino Maiorana
- Department of Medical and Surgical Sciences, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Nicolis
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | | | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
124
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
125
|
Mack AF, DeOliveira-Mello L, Mattheus U, Neckel PH. Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni. J Comp Neurol 2021; 529:2813-2823. [PMID: 33580516 DOI: 10.1002/cne.25126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10-12 cm in this fish species, corresponding to a more than 100-fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue-cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Laura DeOliveira-Mello
- Department of Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León, University of Salamanca, Spain
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
126
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
127
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
128
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
129
|
PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology 2021; 46:70-85. [PMID: 32659782 PMCID: PMC7689467 DOI: 10.1038/s41386-020-0763-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Crucial decisions involving cell fate and connectivity that shape the distinctive development of the human brain occur in the embryonic and fetal stages-stages that are difficult to access and investigate in humans. The last decade has seen an impressive increase in resources-from atlases and databases to biological models-that is progressively lifting the curtain on this critical period. In this review, we describe the current state of genomic, transcriptomic, and epigenomic datasets charting the development of normal human brain with a particular focus on recent single-cell technologies. We discuss the emergence of brain organoids generated from pluripotent stem cells as a model to compensate for the limited availability of fetal tissue. Indeed, comparisons of neural lineages, transcriptional dynamics, and noncoding element activity between fetal brain and organoids have helped identify gene regulatory networks functioning at early stages of brain development. Altogether, we argue that large multi-omics investigations have pushed brain development into the "big data" era, and that current and future transversal approaches needed to leverage both fetal brain and organoid resources promise to answer major questions of brain biology and psychiatry.
Collapse
|
130
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
131
|
Ross JM, Kim C, Allen D, Crouch EE, Narsinh K, Cooke DL, Abla AA, Nowakowski TJ, Winkler EA. The Expanding Cell Diversity of the Brain Vasculature. Front Physiol 2020; 11:600767. [PMID: 33343397 PMCID: PMC7744630 DOI: 10.3389/fphys.2020.600767] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebrovasculature is essential to brain health and is tasked with ensuring adequate delivery of oxygen and metabolic precursors to ensure normal neurologic function. This is coordinated through a dynamic, multi-directional cellular interplay between vascular, neuronal, and glial cells. Molecular exchanges across the blood-brain barrier or the close matching of regional blood flow with brain activation are not uniformly assigned to arteries, capillaries, and veins. Evidence has supported functional segmentation of the brain vasculature. This is achieved in part through morphologic or transcriptional heterogeneity of brain vascular cells-including endothelium, pericytes, and vascular smooth muscle. Advances with single cell genomic technologies have shown increasing cell complexity of the brain vasculature identifying previously unknown cell types and further subclassifying transcriptional diversity in cardinal vascular cell types. Cell-type specific molecular transitions or zonations have been identified. In this review, we summarize emerging evidence for the expanding vascular cell diversity in the brain and how this may provide a cellular basis for functional segmentation along the arterial-venous axis.
Collapse
Affiliation(s)
- Jayden M. Ross
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Chang Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Denise Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Elizabeth E. Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kazim Narsinh
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel L. Cooke
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Adib A. Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
132
|
Farooq M, Lindbæk L, Krogh N, Doganli C, Keller C, Mönnich M, Gonçalves AB, Sakthivel S, Mang Y, Fatima A, Andersen VS, Hussain MS, Eiberg H, Hansen L, Kjaer KW, Gopalakrishnan J, Pedersen LB, Møllgård K, Nielsen H, Baig SM, Tommerup N, Christensen ST, Larsen LA. RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. Nat Commun 2020; 11:5816. [PMID: 33199730 PMCID: PMC7670429 DOI: 10.1038/s41467-020-19658-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.W155C) in Ribosomal RNA Processing 7 Homolog A, RRP7A, segregating with MCPH in a consanguineous family with 10 affected individuals. RRP7A is highly expressed in neural stem cells in developing human forebrain, and targeted mutation of Rrp7a leads to defects in neurogenesis and proliferation in a mouse stem cell model. RRP7A localizes to centrosomes, cilia and nucleoli, and patient-derived fibroblasts display defects in ribosomal RNA processing, primary cilia resorption, and cell cycle progression. Analysis of zebrafish embryos supported that the patient mutation in RRP7A causes reduced brain size, impaired neurogenesis and cell proliferation, and defective ribosomal RNA processing. These findings provide novel insight into human brain development and MCPH. The RRP7A a gene is involved in ribosome biogenesis. Here the authors report a homozygous missense mutation segregating with primary microcephaly, and show that this occurs via functional defects in both nucleoli and primary cilia disrupting cell proliferation and neurogenesis.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.,Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Baghdad ul Jadeed Campus, 63100, Bahawalpur, Punjab, Pakistan
| | - Louise Lindbæk
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Canan Doganli
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Cecilie Keller
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Maren Mönnich
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - André Brás Gonçalves
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Srinivasan Sakthivel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Yuan Mang
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory; Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering PIEAS, Jhang Road, 38000, Faisalabad, Punjab, Pakistan
| | - Vivi Søgaard Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Muhammad S Hussain
- Institute of Biochemistry I, University of Cologne, Joseph-Stelzmann-Strasse 52, D50931, Cologne, Germany.,Cologne Center for Genomics and Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, D50931, Cologne, Germany
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Lars Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Klaus Wilbrandt Kjaer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsstrasse 1, Heinrich-Heine-University, D-40225, Düsseldorf, Germany
| | - Lotte Bang Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Shahid M Baig
- Human Molecular Genetics Laboratory; Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering PIEAS, Jhang Road, 38000, Faisalabad, Punjab, Pakistan
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| | - Lars Allan Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
133
|
Xing L, Kalebic N, Namba T, Vaid S, Wimberger P, Huttner WB. Serotonin Receptor 2A Activation Promotes Evolutionarily Relevant Basal Progenitor Proliferation in the Developing Neocortex. Neuron 2020; 108:1113-1129.e6. [PMID: 33080227 DOI: 10.1016/j.neuron.2020.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary expansion of the mammalian neocortex (Ncx) has been linked to increased abundance and proliferative capacity of basal progenitors (BPs) in the subventricular zone during development. BP proliferation is governed by both intrinsic and extrinsic signals, several of which have been identified. However, a role of neurotransmitters, a canonical class of extrinsic signaling molecules, in BP proliferation remains to be established. Here, we show that serotonin (5-HT), via its receptor HTR2A, promotes BP proliferation in an evolutionarily relevant manner. HTR2A is not expressed in embryonic mouse Ncx; accordingly, 5-HT does not increase mouse BP proliferation. However, ectopic HTR2A expression can increase mouse BP proliferation. Conversely, CRISPR/Cas9-mediated knockout of endogenous HTR2A in embryonic ferret Ncx reduces BP proliferation. Pharmacological activation of endogenous HTR2A in fetal human Ncx ex vivo increases BP proliferation via HER2/ERK signaling. Hence, 5-HT emerges as an important extrinsic pro-proliferative signal for BPs, which may have contributed to evolutionary Ncx expansion.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Human Technopole, Via Cristina Belgioioso 171, Milan, Italy
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
134
|
Cortay V, Delaunay D, Patti D, Gautier E, Doerflinger N, Giroud P, Knoblauch K, Huissoud C, Kennedy H, Dehay C. Radial Migration Dynamics Is Modulated in a Laminar and Area-Specific Manner During Primate Corticogenesis. Front Cell Dev Biol 2020; 8:588814. [PMID: 33178700 PMCID: PMC7596244 DOI: 10.3389/fcell.2020.588814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
The orderly radial migration of cortical neurons from their birthplace in the germinal zones to their final destination in the cortical plate is a prerequisite for the functional assembly of microcircuits in the neocortex. Rodent and primate corticogenesis differ both quantitatively and qualitatively, particularly with respect to the generation of neurons of the supragranular layers. Marked area differences in the outer subventricular zone progenitor cell density impact the radial glia scaffold compactness which is likely to induce area differences in radial migration strategy. Here, we describe specific features of radial migration in the non-human primate, including the absence of the premigratory multipolar stage found in rodents. Ex vivo approaches in the embryonic macaque monkey visual cortex, show that migrating neurons destined for supragranular and infragranular layers exhibit significant differences in morphology and velocity. Migrating neurons destined for the supragranular layers show a more complex bipolar morphology and higher motility rates than do infragranular neurons. There are area differences in the gross morphology and membrane growth behavior of the tip of the leading process. In the subplate compartment migrating neurons destined for the supragranular layers of presumptive area 17 exhibit radial constrained trajectories and leading processes with filopodia, which contrast with the meandering trajectories and leading processes capped by lamellipodia observed in the migrating neurons destined for presumptive area 18. Together these results present evidence that migrating neurons may exhibit autonomy and in addition show marked area-specific differences. We hypothesize that the low motility and high radial trajectory of area 17 migrating neurons contribute to the unique structural features of this area.
Collapse
Affiliation(s)
- Veronique Cortay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Delphine Delaunay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Dorothée Patti
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Elodie Gautier
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nathalie Doerflinger
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Pascale Giroud
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Kenneth Knoblauch
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Cyril Huissoud
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Service de Gynécologie-Obstétrique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Henry Kennedy
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
135
|
Fair SR, Julian D, Hartlaub AM, Pusuluri ST, Malik G, Summerfied TL, Zhao G, Hester AB, Ackerman WE, Hollingsworth EW, Ali M, McElroy CA, Buhimschi IA, Imitola J, Maitre NL, Bedrosian TA, Hester ME. Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem Cell Reports 2020; 15:855-868. [PMID: 32976764 PMCID: PMC7562943 DOI: 10.1016/j.stemcr.2020.08.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Cerebral organoids (COs) are rapidly accelerating the rate of translational neuroscience based on their potential to model complex features of the developing human brain. Several studies have examined the electrophysiological and neural network features of COs; however, no study has comprehensively investigated the developmental trajectory of electrophysiological properties in whole-brain COs and correlated these properties with developmentally linked morphological and cellular features. Here, we profiled the neuroelectrical activities of COs over the span of 5 months with a multi-electrode array platform and observed the emergence and maturation of several electrophysiologic properties, including rapid firing rates and network bursting events. To complement these analyses, we characterized the complex molecular and cellular development that gives rise to these mature neuroelectrical properties with immunohistochemical and single-cell transcriptomic analyses. This integrated approach highlights the value of COs as an emerging model system of human brain development and neurological disease. CO electrophysiology can be quantified with a multi-electrode array method CO electrophysiological trajectories correlate with molecular and cellular development The neurotrophin/TRK signaling pathway is active in COs by 5 months in culture
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Dominic Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Annalisa M Hartlaub
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Sai Teja Pusuluri
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Girik Malik
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Taryn L Summerfied
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Guomao Zhao
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Arelis B Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Ethan W Hollingsworth
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Mehboob Ali
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Jaime Imitola
- Department of Neurology, Laboratory for Neural Stem Cells and Functional Neurogenetics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nathalie L Maitre
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43205-2716, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
136
|
Kubo KI, Deguchi K. Human neocortical development as a basis to understand mechanisms underlying neurodevelopmental disabilities in extremely preterm infants. J Obstet Gynaecol Res 2020; 46:2242-2250. [PMID: 32924239 DOI: 10.1111/jog.14468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023]
Abstract
AIM Recent advances in perinatal and neonatal medicine have resulted in marked improvements in the survival rates of extremely preterm infants (born before 28 gestational weeks) around the world, and Japan is among the countries with the highest reported survival rates of extremely preterm infants. However, it remains a major concern that many survivors develop neurodevelopmental disabilities, including cognitive dysfunctions and neurodevelopmental disorders later in life. In order to understand the pathophysiological mechanisms underlying the neurodevelopmental disabilities observed in the survivors of extremely preterm births, we reviewed recently reported findings about the development of the human neocortex. METHODS First, we have summarized the current knowledge about the development of the neocortex, including recently reported human- and/or primate-specific developmental events. Next, we discussed the possible causal mechanisms underlying the development of neurodevelopmental disabilities in extremely preterm infants. RESULTS Around the birth of extremely preterm infants, neurogenesis and succeeding neuronal migrations are ongoing in the neocortex of human brain. Expansion and maturation of the subplate, which is thought to reflect the axonal wiring in the neocortex, is also prominent at this time. CONCLUSION Brain injuries that occur around the birth of extremely preterm infants are presumed to affect the dynamic developmental events in the neocortex, such as neurogenesis, neuronal migrations and maturation of the subplate, which could underlie the neurodevelopmental disabilities that often develop subsequently in extremely preterm infants. These possibilities should be borne in mind while considering maternal and neonatal care to further improve the long-term outcomes of extremely preterm infants.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiko Deguchi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Deguchi Pediatric Clinic, Omura, Japan
| |
Collapse
|
137
|
Andrews MG, Subramanian L, Kriegstein AR. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 2020; 9:58737. [PMID: 32876565 PMCID: PMC7467727 DOI: 10.7554/elife.58737] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Outer radial glial (oRG) cells are a population of neural stem cells prevalent in the developing human cortex that contribute to its cellular diversity and evolutionary expansion. The mammalian Target of Rapamycin (mTOR) signaling pathway is active in human oRG cells. Mutations in mTOR pathway genes are linked to a variety of neurodevelopmental disorders and malformations of cortical development. We find that dysregulation of mTOR signaling specifically affects oRG cells, but not other progenitor types, by changing the actin cytoskeleton through the activity of the Rho-GTPase, CDC42. These effects change oRG cellular morphology, migration, and mitotic behavior, but do not affect proliferation or cell fate. Thus, mTOR signaling can regulate the architecture of the developing human cortex by maintaining the cytoskeletal organization of oRG cells and the radial glia scaffold. Our study provides insight into how mTOR dysregulation may contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, United States.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, United States
| |
Collapse
|
138
|
Baburamani AA, Vontell RT, Uus A, Pietsch M, Patkee PA, Wyatt-Ashmead J, Chin-Smith EC, Supramaniam VG, Donald Tournier J, Deprez M, Rutherford MA. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol Commun 2020; 8:141. [PMID: 32819430 PMCID: PMC7441567 DOI: 10.1186/s40478-020-01015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS) occurs with triplication of human chromosome 21 and is associated with deviations in cortical development evidenced by simplified gyral appearance and reduced cortical surface area. Radial glia are neuronal and glial progenitors that also create a scaffolding structure essential for migrating neurons to reach cortical targets and therefore play a critical role in cortical development. The aim of this study was to characterise radial glial expression pattern and morphology in the frontal lobe of the developing human fetal brain with DS and age-matched controls. Secondly, we investigated whether microstructural information from in vivo magnetic resonance imaging (MRI) could reflect histological findings from human brain tissue samples. Immunohistochemistry was performed on paraffin-embedded human post-mortem brain tissue from nine fetuses and neonates with DS (15-39 gestational weeks (GW)) and nine euploid age-matched brains (18-39 GW). Radial glia markers CRYAB, HOPX, SOX2, GFAP and Vimentin were assessed in the Ventricular Zone, Subventricular Zone and Intermediate Zone. In vivo diffusion MRI was used to assess microstructure in these regions in one DS (21 GW) and one control (22 GW) fetal brain. We found a significant reduction in radial glial progenitor SOX2 and subtle deviations in radial glia expression (GFAP and Vimentin) prior to 24 GW in DS. In vivo, fetal MRI demonstrates underlying radial projections consistent with immunohistopathology. Radial glial alterations may contribute to the subsequent simplified gyral patterns and decreased cortical volumes observed in the DS brain. Recent advances in fetal MRI acquisition and analysis could provide non-invasive imaging-based biomarkers of early developmental deviations.
Collapse
Affiliation(s)
- Ana A. Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Regina T. Vontell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- University of Miami Brain Endowment Bank, Miami, FL 33136 USA
| | - Alena Uus
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Prachi A. Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Jo Wyatt-Ashmead
- Neuropathology and Pediatric-Perinatal Pathology Service [NaPPPS], Holly Springs, MS 38635 USA
| | - Evonne C. Chin-Smith
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Veena G. Supramaniam
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - J. Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| |
Collapse
|
139
|
Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020; 43:843-853. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
The evolutionary expansion of the mammalian neocortex is widely considered to be a basis of increased cognitive abilities. This expansion is a consequence of the enhanced production of neurons during the fetal/embryonic development of the neocortex, which in turn reflects an increased proliferative capacity of neural progenitor cells; in particular basal progenitors (BPs). The remarkable heterogeneity of BP subtypes across mammals, notably their various morphotypes and molecular fingerprints, which has recently been revealed, corroborates the importance of BPs for neocortical expansion. Here, we argue that the morphology of BPs is a key cell biological basis for maintaining their high proliferative capacity and therefore plays crucial roles in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Human Technopole, Milan, Italy.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
140
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
141
|
Markenscoff-Papadimitriou E, Whalen S, Przytycki P, Thomas R, Binyameen F, Nowakowski TJ, Kriegstein AR, Sanders SJ, State MW, Pollard KS, Rubenstein JL. A Chromatin Accessibility Atlas of the Developing Human Telencephalon. Cell 2020; 182:754-769.e18. [PMID: 32610082 PMCID: PMC7415678 DOI: 10.1016/j.cell.2020.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.
Collapse
Affiliation(s)
- Eirene Markenscoff-Papadimitriou
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - John L Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
142
|
Ramos SI, Makeyev EV, Salierno M, Kodama T, Kawakami Y, Sahara S. Tuba8 Drives Differentiation of Cortical Radial Glia into Apical Intermediate Progenitors by Tuning Modifications of Tubulin C Termini. Dev Cell 2020; 52:477-491.e8. [PMID: 32097653 DOI: 10.1016/j.devcel.2020.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/11/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Most adult neurons and glia originate from radial glial progenitors (RGs), a type of stem cell typically extending from the apical to the basal side of the developing cortex. Precise regulation of the choice between RG self-renewal and differentiation is critical for normal development, but the mechanisms underlying this transition remain elusive. We show that the non-canonical tubulin Tuba8, transiently expressed in cortical progenitors, drives differentiation of RGs into apical intermediate progenitors, a more restricted progenitor type lacking attachment to the basal lamina. This effect depends on the unique C-terminal sequence of Tuba8 that antagonizes tubulin tyrosination and Δ2 cleavage, two post-translational modifications (PTMs) essential for RG fiber maintenance and the switch between direct and indirect neurogenesis and ultimately distinct neuronal lineage outcomes. Our work uncovers an instructive role of a developmentally regulated tubulin isotype in progenitor differentiation and provides new insights into biological functions of the cellular tubulin PTM "code."
Collapse
Affiliation(s)
- Susana I Ramos
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Marcelo Salierno
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Takashi Kodama
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, Stem Cell Institute, Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
143
|
Dohare P, Kidwai A, Kaur J, Singla P, Krishna S, Klebe D, Zhang X, Hevner R, Ballabh P. GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cereb Cortex 2020; 29:3482-3495. [PMID: 30192926 DOI: 10.1093/cercor/bhy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Indexed: 01/25/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3β, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3β. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3β inhibitors may enhance neurodevelopment in premature infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience
| | | | | | | | | | | | | | - Robert Hevner
- Department of Pathology, 9500 Gilman Dr, UCSD, La Jolla, CA, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience.,Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
144
|
Li Z, Tyler WA, Haydar TF. Lessons from single cell sequencing in CNS cell specification and function. Curr Opin Genet Dev 2020; 65:138-143. [PMID: 32679535 DOI: 10.1016/j.gde.2020.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Modern RNA sequencing methods have greatly increased our understanding of the molecular fingerprint of neurons, astrocytes and oligodendrocytes throughout the central nervous system (CNS). Technical approaches with greater sensitivity and throughput have uncovered new connections between gene expression, cell biology, and ultimately CNS function. In recent years, single cell RNA-sequencing (scRNA-seq) has made a large impact on the neurosciences by enhancing the resolution of types of cells that make up the CNS and shedding light on their developmental trajectories and how their diversity is modified across species. Here we will review the advantages, innovations, and challenges of the single cell genomics era and highlight how it has impacted our understanding of neurodevelopment and neurological function.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - William A Tyler
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
145
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
146
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
147
|
Pang K, Wang L, Wang W, Zhou J, Cheng C, Han K, Zoghbi HY, Liu Z. Coexpression enrichment analysis at the single-cell level reveals convergent defects in neural progenitor cells and their cell-type transitions in neurodevelopmental disorders. Genome Res 2020; 30:835-848. [PMID: 32554779 PMCID: PMC7370880 DOI: 10.1101/gr.254987.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
A large number of genes have been implicated in neurodevelopmental disorders (NDDs), but their contributions to NDD pathology are difficult to decipher without understanding their diverse roles in different brain cell types. Here, we integrated NDD genetics with single-cell RNA sequencing data to assess coexpression enrichment patterns of various NDD gene sets. We identified midfetal cortical neural progenitor cell development—more specifically, the ventricular radial glia-to-intermediate progenitor cell transition at gestational week 10—as a key point of convergence in autism spectrum disorder (ASD) and epilepsy. Integrated Gene Ontology–based analysis further revealed that ASD genes activate neural differentiation and inhibit cell cycle during the transition, whereas epilepsy genes function as downstream effectors in the same processes, offering one possible explanation for the high comorbidity rate of the two disorders. This approach provides a framework for investigating the cell-type-specific pathophysiology of NDDs.
Collapse
Affiliation(s)
- Kaifang Pang
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Li Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California 94143, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
| | - Wei Wang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jian Zhou
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul 02841, South Korea
| | - Huda Y Zoghbi
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
148
|
Joppé SE, Cochard LM, Levros LC, Hamilton LK, Ameslon P, Aumont A, Barnabé-Heider F, Fernandes KJ. Genetic targeting of neurogenic precursors in the adult forebrain ventricular epithelium. Life Sci Alliance 2020; 3:3/7/e202000743. [PMID: 32482782 PMCID: PMC7266992 DOI: 10.26508/lsa.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023] Open
Abstract
In vivo evidence for precursors that produce neurons independent of neurosphere-forming neural stem cells suggests the adult forebrain, like the developing brain, has two distinct neurogenic pathways. The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC–mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.
Collapse
Affiliation(s)
- Sandra E Joppé
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Loïc M Cochard
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Louis-Charles Levros
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Laura K Hamilton
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Pierre Ameslon
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Anne Aumont
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Fanie Barnabé-Heider
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada
| | - Karl Jl Fernandes
- Research Center of the University of Montreal Hospital (CRCHUM), Montreal, Canada .,Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
149
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
150
|
Jha SC, Xia K, Ahn M, Girault JB, Li G, Wang L, Shen D, Zou F, Zhu H, Styner M, Gilmore JH, Knickmeyer RC. Environmental Influences on Infant Cortical Thickness and Surface Area. Cereb Cortex 2020; 29:1139-1149. [PMID: 29420697 DOI: 10.1093/cercor/bhy020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Cortical thickness (CT) and surface area (SA) vary widely between individuals and are associated with intellectual ability and risk for various psychiatric and neurodevelopmental conditions. Factors influencing this variability remain poorly understood, but the radial unit hypothesis, as well as the more recent supragranular cortex expansion hypothesis, suggests that prenatal and perinatal influences may be particularly important. In this report, we examine the impact of 17 major demographic and obstetric history variables on interindividual variation in CT and SA in a unique sample of 805 neonates who received MRI scans of the brain around 2 weeks of age. Birth weight, postnatal age at MRI, gestational age at birth, and sex emerged as important predictors of SA. Postnatal age at MRI, paternal education, and maternal ethnicity emerged as important predictors of CT. These findings suggest that individual variation in infant CT and SA is explained by different sets of environmental factors with neonatal SA more strongly influenced by sex and obstetric history and CT more strongly influenced by socioeconomic and ethnic disparities. Findings raise the possibility that interventions aimed at reducing disparities and improving obstetric outcomes may alter prenatal/perinatal cortical development.
Collapse
Affiliation(s)
- Shaili C Jha
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Kai Xia
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA
| | - Jessica B Girault
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Gang Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dinggang Shen
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Fei Zou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of Texas, MD Andersen Cancer Center, Houston, TX, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|