101
|
Schneider B, Baudry A, Pietri M, Alleaume-Butaux A, Bizingre C, Nioche P, Kellermann O, Launay JM. The Cellular Prion Protein-ROCK Connection: Contribution to Neuronal Homeostasis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:660683. [PMID: 33912016 PMCID: PMC8072021 DOI: 10.3389/fncel.2021.660683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023] Open
Abstract
Amyloid-based neurodegenerative diseases such as prion, Alzheimer's, and Parkinson's diseases have distinct etiologies and clinical manifestations, but they share common pathological events. These diseases are caused by abnormally folded proteins (pathogenic prions PrPSc in prion diseases, β-amyloids/Aβ and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease) that display β-sheet-enriched structures, propagate and accumulate in the nervous central system, and trigger neuronal death. In prion diseases, PrPSc-induced corruption of the physiological functions exerted by normal cellular prion proteins (PrPC) present at the cell surface of neurons is at the root of neuronal death. For a decade, PrPC emerges as a common cell surface receptor for other amyloids such as Aβ and α-synuclein, which relays, at least in part, their toxicity. In lipid-rafts of the plasma membrane, PrPC exerts a signaling function and controls a set of effectors involved in neuronal homeostasis, among which are the RhoA-associated coiled-coil containing kinases (ROCKs). Here we review (i) how PrPC controls ROCKs, (ii) how PrPC-ROCK coupling contributes to neuronal homeostasis, and (iii) how the deregulation of the PrPC-ROCK connection in amyloid-based neurodegenerative diseases triggers a loss of neuronal polarity, affects neurotransmitter-associated functions, contributes to the endoplasmic reticulum stress cascade, renders diseased neurons highly sensitive to neuroinflammation, and amplifies the production of neurotoxic amyloids.
Collapse
Affiliation(s)
- Benoit Schneider
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Anne Baudry
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Mathéa Pietri
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Aurélie Alleaume-Butaux
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Chloé Bizingre
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Pierre Nioche
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France.,Université de Paris - BioMedTech Facilities- INSERM US36
- CNRS UMS2009 - Structural and Molecular Analysis Platform, Paris, France
| | - Odile Kellermann
- Inserm UMR-S1124, Paris, France.,Université de Paris, Faculté des Sciences, Paris, France
| | - Jean-Marie Launay
- Inserm UMR 942, Hôpital Lariboisière, Paris, France.,Pharma Research Department, Hoffmann-La-Roche Ltd., Basel, Switzerland
| |
Collapse
|
102
|
Oligophrenin-1 moderates behavioral responses to stress by regulating parvalbumin interneuron activity in the medial prefrontal cortex. Neuron 2021; 109:1636-1656.e8. [PMID: 33831348 DOI: 10.1016/j.neuron.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Ample evidence indicates that individuals with intellectual disability (ID) are at increased risk of developing stress-related behavioral problems and mood disorders, yet a mechanistic explanation for such a link remains largely elusive. Here, we focused on characterizing the syndromic ID gene oligophrenin-1 (OPHN1). We find that Ophn1 deficiency in mice markedly enhances helpless/depressive-like behavior in the face of repeated/uncontrollable stress. Strikingly, Ophn1 deletion exclusively in parvalbumin (PV) interneurons in the prelimbic medial prefrontal cortex (PL-mPFC) is sufficient to induce helplessness. This behavioral phenotype is mediated by a diminished excitatory drive onto Ophn1-deficient PL-mPFC PV interneurons, leading to hyperactivity in this region. Importantly, suppressing neuronal activity or RhoA/Rho-kinase signaling in the PL-mPFC reverses helpless behavior. Our results identify OPHN1 as a critical regulator of adaptive behavioral responses to stress and shed light onto the mechanistic links among OPHN1 genetic deficits, mPFC circuit dysfunction, and abnormalities in stress-related behaviors.
Collapse
|
103
|
Ribas VT, Vahsen BF, Tatenhorst L, Estrada V, Dambeck V, Almeida RA, Bähr M, Michel U, Koch JC, Müller HW, Lingor P. AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo. Cell Death Dis 2021; 12:213. [PMID: 33637688 PMCID: PMC7910615 DOI: 10.1038/s41419-021-03503-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Axonal damage is an early step in traumatic and neurodegenerative disorders of the central nervous system (CNS). Damaged axons are not able to regenerate sufficiently in the adult mammalian CNS, leading to permanent neurological deficits. Recently, we showed that inhibition of the autophagic protein ULK1 promotes neuroprotection in different models of neurodegeneration. Moreover, we demonstrated previously that axonal protection improves regeneration of lesioned axons. However, whether axonal protection mediated by ULK1 inhibition could also improve axonal regeneration is unknown. Here, we used an adeno-associated viral (AAV) vector to express a dominant-negative form of ULK1 (AAV.ULK1.DN) and investigated its effects on axonal regeneration in the CNS. We show that AAV.ULK1.DN fosters axonal regeneration and enhances neurite outgrowth in vitro. In addition, AAV.ULK1.DN increases neuronal survival and enhances axonal regeneration after optic nerve lesion, and promotes long-term axonal protection after spinal cord injury (SCI) in vivo. Interestingly, AAV.ULK1.DN also increases serotonergic and dopaminergic axon sprouting after SCI. Mechanistically, AAV.ULK1.DN leads to increased ERK1 activation and reduced expression of RhoA and ROCK2. Our findings outline ULK1 as a key regulator of axonal degeneration and regeneration, and define ULK1 as a promising target to promote neuroprotection and regeneration in the CNS.
Collapse
Affiliation(s)
- Vinicius Toledo Ribas
- Department of Morphology, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Björn Friedhelm Vahsen
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Raquel Alves Almeida
- Department of Morphology, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany
- DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
104
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
105
|
Park JC, Jang SY, Lee D, Lee J, Kang U, Chang H, Kim HJ, Han SH, Seo J, Choi M, Lee DY, Byun MS, Yi D, Cho KH, Mook-Jung I. A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nat Commun 2021; 12:280. [PMID: 33436582 PMCID: PMC7804132 DOI: 10.1038/s41467-020-20440-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Developing effective drugs for Alzheimer's disease (AD), the most common cause of dementia, has been difficult because of complicated pathogenesis. Here, we report an efficient, network-based drug-screening platform developed by integrating mathematical modeling and the pathological features of AD with human iPSC-derived cerebral organoids (iCOs), including CRISPR-Cas9-edited isogenic lines. We use 1300 organoids from 11 participants to build a high-content screening (HCS) system and test blood-brain barrier-permeable FDA-approved drugs. Our study provides a strategy for precision medicine through the convergence of mathematical modeling and a miniature pathological brain model using iCOs.
Collapse
Affiliation(s)
- Jong-Chan Park
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG United Kingdom
| | - So-Yeong Jang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Dongjoon Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jeongha Lee
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Uiryong Kang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Hongjun Chang
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Haeng Jun Kim
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Sun-Ho Han
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jinsoo Seo
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Sciences and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Murim Choi
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dong Young Lee
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Psychiatry, College of medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Min Soo Byun
- grid.412480.b0000 0004 0647 3378Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Dahyun Yi
- grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Kwang-Hyun Cho
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Inhee Mook-Jung
- grid.31501.360000 0004 0470 5905Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
106
|
ROCK inhibition reduces morphological and functional damage to rod synapses after retinal injury. Sci Rep 2021; 11:692. [PMID: 33436892 PMCID: PMC7804129 DOI: 10.1038/s41598-020-80267-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Retinal detachment (RD) causes damage, including disjunction, of the rod photoreceptor-bipolar synapse, which disrupts vision and may contribute to the poor visual recovery observed after retinal reattachment surgery. We created a model of iatrogenic RD in adult female pigs to study damage to the rod-bipolar synapse after injury and the ability of a highly specific Rho-kinase (ROCK) inhibitor to preserve synaptic structure and function. This model mimics procedures used in humans when viral vectors or cells are injected subretinally for treatment of retinal disease. Synaptic disjunction by retraction of rod spherules, quantified by image analysis of confocal sections, was present 2 h after detachment and remained 2 days later even though the retina had spontaneously reattached by then. Moreover, spherule retraction occurred in attached retina 1-2 cms from detached retina. Synaptic damage was significantly reduced by ROCK inhibition in detached retina whether injected subretinally or intravitreally. Dark-adapted full-field electroretinograms were recorded in reattached retinas to assess rod-specific function. Reduction in synaptic injury correlated with increases in rod-driven responses in drug-treated eyes. Thus, ROCK inhibition helps prevent synaptic damage and improves functional outcomes after retinal injury and may be a useful adjunctive treatment in iatrogenic RD and other retinal degenerative diseases.
Collapse
|
107
|
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P. Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics. J Neurochem 2021; 157:1052-1068. [PMID: 33341946 DOI: 10.1111/jnc.15274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
The Rho kinase (ROCK) signaling pathway is an attractive therapeutic target in neurodegeneration since it has been linked to the prevention of neuronal death and neurite regeneration. The isoquinoline derivative fasudil is a potent ROCK inhibitor, which is already approved for chronic clinical treatment in humans. However, the effects of chronic fasudil treatments on neuronal function are still unknown. We analyzed here chronic fasudil treatment in primary rat hippocampal cultures. Neurons were stimulated with 20 Hz field stimulation and we investigated pre-synaptic mechanisms and parameters regulating synaptic transmission after fasudil treatment by super resolution stimulated emission depletion (STED) microscopy, live-cell fluorescence imaging, and western blotting. Fasudil did not affect basic synaptic function or the amount of several synaptic proteins, but it altered the chronic dynamics of the synaptic vesicles. Fasudil reduced the proportion of the actively recycling vesicles, and shortened the vesicle lifetime, resulting overall in a reduction of the synaptic response upon stimulation. We conclude that fasudil does not alter synaptic structure, accelerates vesicle turnover, and decreases the number of released vesicles. This broadens the known spectrum of effects of this drug, and suggests new potential clinical uses.
Collapse
Affiliation(s)
- Kim Ann Saal
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Carmina Warth Pérez Arias
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany.,Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Munich, Germany
| |
Collapse
|
108
|
Erb C, Konieczka K. [Rho kinase inhibitors as new local therapy option in primary open angle glaucoma]. Ophthalmologe 2021; 118:449-460. [PMID: 33403458 DOI: 10.1007/s00347-020-01303-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In 2014 in Japan and 2017 in the USA, the Rho-kinase inhibitors were approved as a new antiglaucomatous substance group and will now be launched in Europe. OBJECTIVE On this occasion the current state of knowledge on Rho-kinase inhibitors is presented. METHODS In intensive search in PubMed the relevant experimental and clinical literature on the Rho-kinase inhibitors ripasudil and netarsudil and the combination of netarsudil and latanoprost were selected and compiled for this review. RESULTS The intraocular pressure lowering efficacy of ripasudil and netarsudil is in the range of the beta blocker timolol and the prostaglandin analogue latanoprost. In the fixed combination netarsudil/latanoprost the intraocular pressure reduction is greater than that of the single components and reaches a target pressure of below 15 mm Hg in 32%. Conjunctival hyperemia with 53-65% is the most common local side effect. Systemic side effects are very rare and so far there are no contraindications. CONCLUSION The Rho-kinase inhibitors are an interesting new introduction for glaucoma therapy, as each new pressure-lowering therapy represents an additional chance to reach the individually defined target pressure level in a glaucoma patient with local therapy; however, many of the pleiotropic effects associated with Rho-kinase inhibitors have so far only been found experimentally and will require clinical confirmation in the future.
Collapse
Affiliation(s)
- C Erb
- Augenklinik am Wittenbergplatz, Kleiststr. 23-26, 10787, Berlin, Deutschland.
| | - K Konieczka
- Augenklinik, Universitätsspital, Mittlere Straße 91, 4056, Basel, Schweiz
| |
Collapse
|
109
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
110
|
Ligand-induced conformational rearrangements regulate the switch between membrane-proximal and distal functions of Rho kinase 2. Commun Biol 2020; 3:721. [PMID: 33247217 PMCID: PMC7699638 DOI: 10.1038/s42003-020-01450-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Rho-associated protein kinase 2 (ROCK2) is a membrane-anchored, long, flexible, multidomain, multifunctional protein. Its functions can be divided into two categories: membrane-proximal and membrane-distal. A recent study concluded that membrane-distal functions require the fully extended conformation, and this conclusion was supported by electron microscopy. The present solution small-angle X-ray scattering (SAXS) study revealed that ROCK2 population is a dynamic mixture of folded and partially extended conformers. Binding of RhoA to the coiled-coil domain shifts the equilibrium towards the partially extended state. Enzyme activity measurements suggest that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains, but smaller substrate analogues do not. The present study reveals the dynamic behaviour of this long, dimeric molecule in solution, and our structural model provides a mechanistic explanation for a set of membrane-proximal functions while allowing for the existence of an extended conformation in the case of membrane-distal functions. Using small-angle X-ray scattering, Hajdú et al. show that Rho-associated protein kinase 2 population is a mixture of folded and partially extended conformers. They find that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains. This study identifies a dynamic behavior of this long, dimeric molecule in solution.
Collapse
|
111
|
Pandey S, Dvorakova MC. Future Perspective of Diabetic Animal Models. Endocr Metab Immune Disord Drug Targets 2020; 20:25-38. [PMID: 31241444 PMCID: PMC7360914 DOI: 10.2174/1871530319666190626143832] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
Objective The need of today’s research is to develop successful and reliable diabetic animal models for understanding the disease susceptibility and pathogenesis. Enormous success of animal models had already been acclaimed for identifying key genetic and environmental factors like Idd loci and effects of microorganisms including the gut microbiota. Furthermore, animal models had also helped in identifying many therapeutic targets and strategies for immune-intervention. In spite of a quite success, we have acknowledged that many of the discovered immunotherapies are working on animals and did not have a significant impact on human. Number of animal models were developed in the past to accelerate drug discovery pipeline. However, due to poor initial screening and assessment on inequivalent animal models, the percentage of drug candidates who succeeded during clinical trials was very low. Therefore, it is essential to bridge this gap between pre-clinical research and clinical trial by validating the existing animal models for consistency. Results and Conclusion In this review, we have discussed and evaluated the significance of animal models on behalf of published data on PUBMED. Amongst the most popular diabetic animal models, we have selected six animal models (e.g. BioBreeding rat, “LEW IDDM rat”, “Nonobese Diabetic (NOD) mouse”, “STZ RAT”, “LEPR Mouse” and “Zucker Diabetic Fatty (ZDF) rat” and ranked them as per their published literature on PUBMED. Moreover, the vision and brief imagination for developing an advanced and robust diabetic model of 21st century was discussed with the theme of one mice-one human concept including organs-on-chips.
Collapse
Affiliation(s)
- Shashank Pandey
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Magdalena C Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
112
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
113
|
Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL, Muñoz A. Rho kinase inhibitor fasudil reduces l-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Br J Pharmacol 2020; 177:5622-5641. [PMID: 32986850 DOI: 10.1111/bph.15275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Rho kinase (ROCK) activation is involved in neuroinflammatory processes leading to progression of neurodegenerative diseases such as Parkinson's disease. Furthermore, ROCK plays a major role in angiogenesis. Neuroinflammation and angiogenesis are mechanisms involved in developing l-DOPA-induced dyskinesias (LID). However, it is not known whether ROCK plays a role in LID and whether ROCK inhibitors may be useful against LID. EXPERIMENTAL APPROACH In rats, we performed short- and long-term dopaminergic lesions using 6-hydroxydopamine and developed a LID model. Effects of dopaminergic lesions and LID on the RhoA/ROCK levels were studied by western blot, real-time PCR analyses and ROCK activity assays in the substantia nigra and striatum. The effects of the ROCK inhibitor fasudil on LID were particularly investigated. KEY RESULTS Short-term 6-hydroxydopamine lesions increased nigrostriatal RhoA/ROCK expression, apparently related to the active neuroinflammatory process. However, long-term dopaminergic denervation (completed and stabilized lesions) led to a decrease in RhoA/ROCK levels. Rats with LID showed a significant increase of RhoA and ROCK expression. The development of LID was reduced by the ROCK inhibitor fasudil (10 and 40 mg·kg-1 ), without interfering with the therapeutic effect of l-DOPA. Interestingly, treatment of 40 mg·kg-1 of fasudil also induced a significant reduction of dyskinesia in rats with previously established LID. CONCLUSION AND IMPLICATIONS The present results suggest that ROCK is involved in the pathophysiology of LID and that ROCK inhibitors such as fasudil may be a novel target for preventing or treating LID. Furthermore, previous studies have revealed neuroprotective effects of ROCK inhibitors.
Collapse
Affiliation(s)
- Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
114
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
115
|
Jadhav VS, Lin PBC, Pennington T, Di Prisco GV, Jannu AJ, Xu G, Moutinho M, Zhang J, Atwood BK, Puntambekar SS, Bissel SJ, Oblak AL, Landreth GE, Lamb BT. Trem2 Y38C mutation and loss of Trem2 impairs neuronal synapses in adult mice. Mol Neurodegener 2020; 15:62. [PMID: 33115519 PMCID: PMC7594478 DOI: 10.1186/s13024-020-00409-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed in the brain exclusively on microglia and genetic variants are linked to neurodegenerative diseases including Alzheimer's disease (AD), frontotemporal dementia (FTD) and Nasu Hakola Disease (NHD). The Trem2 variant R47H, confers substantially elevated risk of developing late onset Alzheimer's disease, while NHD-linked Trem2 variants like Y38C, are associated with development of early onset dementia with white matter pathology. However, it is not known how these Trem2 species, predisposes individuals to presenile dementia. METHODS To investigate if Trem2 Y38C or loss of Trem2 alters neuronal function we generated a novel mouse model to introduce the NHD Trem2 Y38C variant in murine Trem2 using CRISPR/Cas9 technology. Trem2Y38C/Y38C and Trem2-/- mice were assessed for Trem2 expression, differentially expressed genes, synaptic protein levels and synaptic plasticity using biochemical, electrophysiological and transcriptomic approaches. RESULTS While mice harboring the Trem2 Y38C exhibited normal expression levels of TREM2, the pathological outcomes phenocopied Trem2-/- mice at 6 months. Transcriptomic analysis revealed altered expression of neuronal and oligodendrocytes/myelin genes. We observed regional decreases in synaptic protein levels, with the most affected synapses in the hippocampus. These alterations were associated with reduced synaptic plasticity. CONCLUSION Our findings provide in vivo evidence that Trem2 Y38C disrupts normal TREM2 functions. Trem2Y38C/Y38C and Trem2-/- mice demonstrated altered gene expression, changes in microglia morphology, loss of synaptic proteins and reduced hippocampal synaptic plasticity at 6 months in absence of any pathological triggers like amyloid. This suggests TREM2 impacts neuronal functions providing molecular insights on the predisposition of individuals with TREM2 variants resulting in presenile dementia.
Collapse
Affiliation(s)
- Vaishnavi S Jadhav
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter B C Lin
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Taylor Pennington
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Gonzalo Viana Di Prisco
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Asha Jacob Jannu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 462020, USA
| | - Guixiang Xu
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Miguel Moutinho
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Shweta S Puntambekar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephanie J Bissel
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Adrian L Oblak
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gary E Landreth
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Bruce T Lamb
- Paul and Carole Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
116
|
Zhao Y, Ge X, Yu H, Kuil LE, Alves MM, Tian D, Huang Q, Chen X, Hofstra RMW, Gao Y. Inhibition of ROCK signaling pathway accelerates enteric neural crest cell-based therapy after transplantation in a rat hypoganglionic model. Neurogastroenterol Motil 2020; 32:e13895. [PMID: 32515097 DOI: 10.1111/nmo.13895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital gastrointestinal disorder, characterized by enteric ganglia absence in part or entire of the colon, due to abnormal colonization and migration of enteric neural crest cells (ENCCs) during development. Currently, besides surgery which is the main therapy for HSCR, the potential of stem cell-based transplantation was investigated as an alternative option. Although promising, it has limitations, including poor survival, differentiation, and migration of the grafted cells. We hypothesized that modulation of extracellular factors during transplantation could promote ENCCs proliferation and migration, leading to increased transplantation efficiency. Considering that the RhoA/ROCK pathway is highly involved in cytoskeletal dynamics and neurite growth, our study explored the effect of inhibition of this pathway to improve the success of ENCCs transplantation. METHODS Enteric neural crest cells were isolated from rat embryos and labeled with a GFP-tag. Cell viability, apoptosis, differentiation, and migration assays were performed with and without RhoA/ROCK inhibition. Labeled ENCCs were transplanted into the muscle layer of an induced hypoganglionic rat model followed by intraperitoneal injections of ROCK inhibitor. The transplanted segments were collected 3 weeks after for histological analysis. KEY RESULTS Our results showed that inhibition of ROCK increased viable cell number, differentiation, and migration of ENCCs in vitro. Moreover, transplantation of labeled ENCCs into the hypoganglionic model showed enhanced distribution of grafted ENCCs, upon treatment with ROCK inhibitor. CONCLUSIONS AND INFERENCES ROCK inhibitors influence ENCCs growth and migration in vitro and in vivo, and should be considered to improve the efficiency of ENCCs transplantation.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Xin Ge
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiang Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
117
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
118
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
119
|
Kim J, Joshi HP, Kim KT, Kim YY, Yeo K, Choi H, Kim YW, Choi UY, Kumar H, Sohn S, Shin DA, Han IB. Combined Treatment with Fasudil and Menthol Improves Functional Recovery in Rat Spinal Cord Injury Model. Biomedicines 2020; 8:E258. [PMID: 32751905 PMCID: PMC7460054 DOI: 10.3390/biomedicines8080258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroprotective measures by preventing secondary spinal cord injury (SCI) are one of the main strategies for repairing an injured spinal cord. Fasudil and menthol may be potent neuroprotective agents, which act by inhibiting a rho-associated protein kinase (ROCK) and suppressing the inflammatory response, respectively. We hypothesized that combined treatment of fasudil and menthol could improve functional recovery by decreasing inflammation, apoptosis, and glial scar formation. We tested our hypothesis by administering fasudil and menthol intraperitoneally (i.p.) to female Sprague Dawley rats after moderate static compression (35 g of impounder for 5 min) of T10 spinal cord. The rats were randomly divided into five experimental groups: (i) sham animals received laminectomy alone, (ii) injured (SCI) and untreated (saline 0.2 mL/day, i.p.) rats, (iii) injured (SCI) rats treated with fasudil (10 mg/kg/day, i.p.) for two weeks, (iv) injured (SCI) rats treated with menthol (10 mg/kg/day, i.p.) for twoweeks, (v) injured (SCI) rats treated with fasudil (5 mg/kg/day, i.p.) and menthol (10 mg/kg/day, i.p.) for two weeks. Compared to single treatment groups, combined treatment of fasudil and menthol demonstrated significant functional recovery and pain amelioration, which, thereby, significantly reduced inflammation, apoptosis, and glial/fibrotic scar formation. Therefore, combined treatment of fasudil and menthol may provide effective amelioration of spinal cord dysfunction by a synergistic effect of fasudil and menthol.
Collapse
Affiliation(s)
- JeongHoon Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Yi Young Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Keundong Yeo
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Ye Won Kim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Un-Yong Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Seil Sohn
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Korea
| |
Collapse
|
120
|
Protective Effects of Intravitreal Injection of the Rho-Kinase Inhibitor Y-27632 in a Rodent Model of Nonarteritic Anterior Ischemic Optic Neuropathy (rAION). J Ophthalmol 2020; 2020:1485425. [PMID: 32724667 PMCID: PMC7366220 DOI: 10.1155/2020/1485425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose We sought to explore the effects of intravitreal injection of the Rho-kinase inhibitor Y-27632 in a rodent model of nonarteritic anterior ischemic optic neuropathy (rAION). Methods The rAION model was established by using laser-induced photoactivation of intravenously administered Rose Bengal in rats. The rats received intravitreal injections of Y-27632 or PBS 1, 3, and 6 days after rAION induction. Optical coherence tomography (OCT) was performed at 2 days and 4 weeks after induction. Visual evoked potential (VEP) was used to evaluate the visual function at 4 weeks. Brn3a immunofluorescence staining of surviving RGCs and apoptosis assays of RGCs were performed at 4 weeks. Results Optic nerve head (ONH) width was significantly reduced in the Y-27632 group compared with that in the PBS group at 2 days after induction (p < 0.05). At 4 weeks, the P1 amplitude of flash-VEP (FVEP) in the Y-27632 group was significantly higher than that of the PBS group (p < 0.05). The RGC densities in the central and midperipheral retinas in the Y-27632 group were significantly higher than those in the PBS group (p < 0.05). Furthermore, there was a significant decrease in apoptotic RGCs in the Y-27632 group than in the PBS group (p < 0.05). Conclusions Intravitreal injection of Y-27632 had neuroprotective effects on ONH edema, RGC survival, and visual function preservation in rAION.
Collapse
|
121
|
Abbhi V, Piplani P. Rho-kinase (ROCK) Inhibitors - A Neuroprotective Therapeutic Paradigm with a Focus on Ocular Utility. Curr Med Chem 2020; 27:2222-2256. [PMID: 30378487 DOI: 10.2174/0929867325666181031102829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glaucoma is a progressive optic neuropathy causing visual impairment and Retinal Ganglionic Cells (RGCs) death gradually posing a need for neuroprotective strategies to minimize the loss of RGCs and visual field. It is recognized as a multifactorial disease, Intraocular Pressure (IOP) being the foremost risk factor. ROCK inhibitors have been probed for various possible indications, such as myocardial ischemia, hypertension, kidney diseases. Their role in neuroprotection and neuronal regeneration has been suggested to be of value in the treatment of neurological diseases, like spinal-cord injury, Alzheimer's disease and multiple sclerosis but recently Rho-associated Kinase inhibitors have been recognized as potential antiglaucoma agents. EVIDENCE SYNTHESIS Rho-Kinase is a serine/threonine kinase with a kinase domain which is constitutively active and is involved in the regulation of smooth muscle contraction and stress fibre formation. Two isoforms of Rho-Kinase, ROCK-I (ROCK β) and ROCK-II (ROCK α) have been identified. ROCK II plays a pathophysiological role in glaucoma and hence the inhibitors of ROCK may be beneficial to ameliorate the vision loss. These inhibitors decrease the intraocular pressure in the glaucomatous eye by increasing the aqueous humour outflow through the trabecular meshwork pathway. They also act as anti-scarring agents and hence prevent post-operative scarring after the glaucoma filtration surgery. Their major role involves axon regeneration by increasing the optic nerve blood flow which may be useful in treating the damaged optic neurons. These drugs act directly on the neurons in the central visual pathway, interrupting the RGC apoptosis and therefore serve as a novel pharmacological approach for glaucoma neuroprotection. CONCLUSION Based on the results of high-throughput screening, several Rho kinase inhibitors have been designed and developed comprising of diverse scaffolds exhibiting Rho kinase inhibitory activity from micromolar to subnanomolar ranges. This diversity in the scaffolds with inhibitory potential against the kinase and their SAR development will be intricated in the present review. Ripasudil is the only Rho kinase inhibitor marketed to date for the treatment of glaucoma. Another ROCK inhibitor AR-13324 has recently passed the clinical trials whereas AMA0076, K115, PG324, Y39983 and RKI-983 are still under trials. In view of this, a detailed and updated account of ROCK II inhibitors as the next generation therapeutic agents for glaucoma will be discussed in this review.
Collapse
Affiliation(s)
- Vasudha Abbhi
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| | - Poonam Piplani
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study (UGCCAS), Panjab University, Chandigarh 160014, India
| |
Collapse
|
122
|
Martínez-Chacón G, Vela FJ, Campos JL, Abellán E, Yakhine-Diop SMS, Ballestín A. Autophagy modulation in animal models of corneal diseases: a systematic review. Mol Cell Biochem 2020; 474:41-55. [PMID: 32710189 DOI: 10.1007/s11010-020-03832-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is an intracellular catabolic process implicated in the recycling and degradation of intracellular components. Few studies have defined its role in corneal pathologies. Animal models are essential for understanding autophagy regulation and identifying new treatments to modulate its effects. A systematic review (SR) was conducted of studies employing animal models for investigations of autophagy in corneal diseases. Studies were identified using a structured search strategy (TS = autophagy AND cornea*) in Web of Science, Scopus, and PubMed from inception to September 2019. In this study, 230 articles were collected, of which 28 were analyzed. Mouse models were used in 82% of the studies, while rat, rabbit, and newt models were used in the other 18%. The most studied corneal layer was the epithelium, followed by the endothelium and stroma. In 13 articles, genetically modified animal models were used to study Fuch endothelial corneal dystrophy (FECD), granular corneal dystrophy type 2 (GCD2), dry eye disease (DED), and corneal infection. In other 13 articles, animal models were experimentally induced to mimic DED, keratitis, inflammation, and surgical scenarios. Furthermore, in 50% of studies, modulators that activated or inhibited autophagy were also investigated. Protective effects of autophagy activators were demonstrated, including rapamycin for DED and keratitis, lithium for FECD, LYN-1604 for DED, cysteamine and miR-34c antagomir for damaged corneal epithelium. Three autophagy suppressors were also found to have therapeutic effects, such as aminoimidazole-4-carboxamide-riboside (AICAR) for corneal allogeneic transplantation, celecoxib and chloroquine for DED.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain. .,Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain. .,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain.
| | - Francisco Javier Vela
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - José Luis Campos
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Elena Abellán
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Sokhna M S Yakhine-Diop
- Department of Biochemistry and Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Avda de La Universidad S/N, 10003, Cáceres, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28049, Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003, Cáceres, Spain
| | - Alberto Ballestín
- Department of Microsurgery, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| |
Collapse
|
123
|
Guo MF, Zhang HY, Li YH, Gu QF, Wei WY, Wang YY, Zhang XJ, Liu XQ, Song LJ, Chai Z, Yu JZ, Ma CG. Fasudil inhibits the activation of microglia and astrocytes of transgenic Alzheimer's disease mice via the downregulation of TLR4/Myd88/NF-κB pathway. J Neuroimmunol 2020; 346:577284. [PMID: 32652366 DOI: 10.1016/j.jneuroim.2020.577284] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests an association of Alzheimer's Disease (AD) with microglial and astrocytic dysregulation. Recent studies have proposed that activated microglia can transform astrocytes to a neurotoxic A1 phenotype, which has been shown to be involved in the promotion of neuronal damage in several neurodegenerative diseases, including AD. In the present study, we observed an obvious microglial activation and A1-specific astrocyte response in the brain tissue of APP/PS1 Tg mice. Fasudil treatment improved the cognitive deficits of APP/PS1 Tg mice, inhibited microglial activation and promoted their transformation to an anti-inflammatory phenotype, and further shifted astrocytes from an A1 to an A2 phenotype. Our experiments suggest Fasudil exerted these functions by inhibing the expression of TLR4, MyD88, and NF-κB, which are key mediators of inflammation. Using in vitro experiments, we further validated in vivo findings. Our cell experiments indicated that Fasudil induces a shift of inflammatory microglia towards an anti-inflammatory phenotype. LPS-induced microglia-conditioned medium promotes A1 astrocytic polarization, but Fasudil treatment resulted in a direct transformation of A1 astrocytes to A2. To summarize, our results show that Fasudil inhibits the neurotoxic activation of microglia and shifts astrocytes towards a neuroprotective A2 phenotype, representing a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Min-Fang Guo
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Hui-Yu Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Yan-Hua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Qing-Fang Gu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Wen-Yue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Yin Wang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Xiao-Juan Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Qin Liu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China
| | - Li-Juan Song
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Zhi Chai
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China; Dept. of Neurology, Datong Fifth People's Hospital, Datong 037009, China.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong 037009, China; Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
124
|
Román-Albasini L, Díaz-Véliz G, Olave FA, Aguayo FI, García-Rojo G, Corrales WA, Silva JP, Ávalos AM, Rojas PS, Aliaga E, Fiedler JL. Antidepressant-relevant behavioral and synaptic molecular effects of long-term fasudil treatment in chronically stressed male rats. Neurobiol Stress 2020; 13:100234. [PMID: 33344690 PMCID: PMC7739043 DOI: 10.1016/j.ynstr.2020.100234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Several lines of evidence suggest that antidepressant drugs may act by modulating neuroplasticity pathways in key brain areas like the hippocampus. We have reported that chronic treatment with fasudil, a Rho-associated protein kinase inhibitor, prevents both chronic stress-induced depressive-like behavior and morphological changes in CA1 area. Here, we examined the ability of fasudil to (i) prevent stress-altered behaviors, (ii) influence the levels/phosphorylation of glutamatergic receptors and (iii) modulate signaling pathways relevant to antidepressant actions. 89 adult male Sprague-Dawley rats received intraperitoneal fasudil injections (10 mg/kg/day) or saline vehicle for 18 days. Some of these animals were daily restraint-stressed from day 5–18 (2.5 h/day). 24 hr after treatments, rats were either evaluated for behavioral tests (active avoidance, anxiety-like behavior and object location) or euthanized for western blot analyses of hippocampal whole extract and synaptoneurosome-enriched fractions. We report that fasudil prevents stress-induced impairments in active avoidance, anxiety-like behavior and novel location preference, with no effect in unstressed rats. Chronic stress reduced phosphorylations of ERK-2 and CREB, and decreased levels of GluA1 and GluN2A in whole hippocampus, without any effect of fasudil. However, fasudil decreased synaptic GluA1 Ser831 phosphorylation in stressed animals. Additionally, fasudil prevented stress-decreased phosphorylation of GSK-3β at Ser9, in parallel with an activation of the mTORC1/4E-BP1 axis, both in hippocampal synaptoneurosomes, suggesting the activation of the AKT pathway. Our study provides evidence that chronic fasudil treatment prevents chronic stress-altered behaviors, which correlated with molecular modifications of antidepressant-relevant signaling pathways in hippocampal synaptoneurosomes.
Collapse
Affiliation(s)
- Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriela Díaz-Véliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Antonio Olave
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Ignacio Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.,Carrera de Odontología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Wladimir Antonio Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ana María Ávalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Paulina S Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny Lucy Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
125
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
126
|
Muñoz A, Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL. Interactions Between the Serotonergic and Other Neurotransmitter Systems in the Basal Ganglia: Role in Parkinson's Disease and Adverse Effects of L-DOPA. Front Neuroanat 2020; 14:26. [PMID: 32581728 PMCID: PMC7289026 DOI: 10.3389/fnana.2020.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
127
|
Barp A, Gerardi F, Lizio A, Sansone VA, Lunetta C. Emerging Drugs for the Treatment of Amyotrophic Lateral Sclerosis: A Focus on Recent Phase 2 Trials. Expert Opin Emerg Drugs 2020; 25:145-164. [PMID: 32456491 DOI: 10.1080/14728214.2020.1769067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease involving both upper and lower motor neurons and resulting in increasing disability and death 3-5 years after onset of symptoms. Over 40 large clinical trials for ALS have been negative, except for Riluzole that offers a modest survival benefit, and Edaravone that modestly reduces disease progression in patients with specific characteristics. Thus, the discovery of efficient disease modifying therapy is an urgent need. AREAS COVERED Although the cause of ALS remains unclear, many studies have demonstrated that neuroinflammation, proteinopathies, glutamate-induced excitotoxicity, microglial activation, oxidative stress, and mitochondrial dysfunction may play a key role in the pathogenesis. This review highlights recent discoveries relating to these diverse mechanisms and their implications for the development of therapy. Ongoing phase 2 clinical trials aimed to interfere with these pathophysiological mechanisms are discussed. EXPERT OPINION This review describes the challenges that the discovery of an efficient drug therapy faces and how these issues may be addressed. With the continuous advances coming from basic research, we provided possible suggestions that may be considered to improve performance of clinical trials and turn ALS research into a 'fertile ground' for drug development for this devastating disease.
Collapse
Affiliation(s)
- Andrea Barp
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus , Milan, Italy.,Dept. Biomedical Sciences of Health, University of Milan , Milan, Italy
| | | |
Collapse
|
128
|
Ostendorf F, Metzdorf J, Gold R, Haghikia A, Tönges L. Propionic Acid and Fasudil as Treatment Against Rotenone Toxicity in an In Vitro Model of Parkinson's Disease. Molecules 2020; 25:molecules25112502. [PMID: 32481507 PMCID: PMC7321113 DOI: 10.3390/molecules25112502] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial neurodegenerative disease. In recent years, several studies demonstrated that the gastroenteric system and intestinal microbiome influence central nervous system function. The pathological mechanisms triggered thereby change neuronal function in neurodegenerative diseases including dopaminergic neurons in Parkinson´s disease. In this study, we employed a model system for PD of cultured primary mesencephalic cells and used the pesticide rotenone to model dopaminergic cell damage. We examined neuroprotective effects of the Rho kinase inhibitor Fasudil and the short chain fatty acid (SCFA) propionic acid on primary neurons in cell morphological assays, cell survival, gene and protein expression. Fasudil application resulted in significantly enhanced neuritic outgrowth and increased cell survival of dopaminergic cells. The application of propionic acid primarily promoted cell survival of dopaminergic cells against rotenone toxicity and increased neurite outgrowth to a moderate extent. Interestingly, Fasudil augmented gene expression of synaptophysin whereas gene expression levels of tyrosine hydroxylase (TH) were substantially increased by propionic acid. Concerning protein expression propionic acid treatment increased STAT3 levels but did not lead to an increased phosphorylation indicative of pathway activation. Our findings indicate that both Fasudil and propionic acid treatment show beneficial potential in rotenone-lesioned primary mesencephalic cells.
Collapse
Affiliation(s)
- Friederike Ostendorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
| | - Judith Metzdorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (F.O.); (J.M.); (R.G.); (A.H.)
- Neurodegeneration Research, Centre for Protein Diagnostics (ProDi), Ruhr University, 44801 Bochum, Germany
- Correspondence:
| |
Collapse
|
129
|
Determination of KD025 (SLx-2119), a Selective ROCK2 Inhibitor, in Rat Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and its Pharmacokinetic Application. Molecules 2020; 25:molecules25061369. [PMID: 32192179 PMCID: PMC7144358 DOI: 10.3390/molecules25061369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
KD025 (SLx-2119), the first specific Rho-associated protein kinase 2 (ROCK2) inhibitor, is a potential new drug candidate currently undergoing several phase 2 clinical trials for psoriasis, idiopathic pulmonary fibrosis, chronic graft-versus-host disease, and systemic sclerosis. In this study, a bio-analytical method was developed and fully validated for the quantification of KD025 in rat plasma and for application in pharmacokinetic studies. KD025 and GSK429286A (the internal standard) in rat plasma samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry with m/z transition values of 453.10 → 366.10 and 433.00 → 178.00, respectively. The method was fully validated according to the United State Food and Drug Administration guidelines in terms of selectivity, linearity, accuracy, precision, sensitivity, matrix effects, extraction recovery, and stability. The method enabled the quantification of KD025 levels in rat plasma following oral administration of 5 mg/kg KD025 and intravenous administration of 2 mg/kg KD025 to rats, respectively. Our findings suggest that the developed method is practical and reliable for pharmacokinetic studies of KD025 in preclinical animals.
Collapse
|
130
|
Koch JC, Kuttler J, Maass F, Lengenfeld T, Zielke E, Bähr M, Lingor P. Compassionate Use of the ROCK Inhibitor Fasudil in Three Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:173. [PMID: 32231638 PMCID: PMC7083210 DOI: 10.3389/fneur.2020.00173] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
The Rho kinase (ROCK) inhibitor Fasudil is a promising drug for a disease-modifying therapy of amyotrophic lateral sclerosis (ALS). In preclinical models, Fasudil was shown to increase motor neuron survival, inhibit axonal degeneration, enhance axonal regeneration and modulate microglial function in vitro and in vivo. It prolonged survival and improved motor function of SOD1-G93A-mice. Recently, a phase IIa clinical trial has been commenced to investigate the safety, tolerability, and efficacy of Fasudil in ALS patients at an early stage of disease (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Although Fasudil has been approved in Japan for many years for the treatment of vasospasms following subarachnoid hemorrhage and is known to have a favorable side effect profile in these patients, there is no data on its use in human patients with ALS or any other neurodegenerative conditions. Here, we report the first three cases of compassionate use of Fasudil in patients with ALS. Between May 2017 and February 2019, one male (66 years old) and two female (62 and 68 years old) subjects with probable or definite ALS according to the El Escorial criteria (one of the females having a pathogenic SOD1 mutation) were administered Fasudil 30 mg intravenously twice daily over 45 min on 20 consecutive working days. Blood pressure, heart rate and routine laboratory tests were constantly controlled. All three subjects tolerated the Fasudil infusions well without any obvious side effects. Interestingly, the slow vital capacity showed a significant increase in one of the patients. Taken together, we report here the first compassionate use of the ROCK inhibitor Fasudil in three ALS patients, which was well-tolerated.
Collapse
Affiliation(s)
- Jan C Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Josua Kuttler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Teresa Lengenfeld
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Eirini Zielke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| |
Collapse
|
131
|
The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J Clin Med 2020; 9:jcm9030740. [PMID: 32182899 PMCID: PMC7141240 DOI: 10.3390/jcm9030740] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The main features that are commonly attributed to mitochondria consist of the regulation of cell proliferation, ATP generation, cell death and metabolism. However, recent scientific advances reveal that the intrinsic dynamicity of the mitochondrial compartment also plays a central role in proinflammatory signaling, identifying these organelles as a central platform for the control of innate immunity and the inflammatory response. Thus, mitochondrial dysfunctions have been related to severe chronic inflammatory disorders. Strategies aimed at reestablishing normal mitochondrial physiology could represent both preventive and therapeutic interventions for various pathologies related to exacerbated inflammation. Here, we explore the current understanding of the intricate interplay between mitochondria and the innate immune response in specific inflammatory diseases, such as neurological disorders and cancer.
Collapse
|
132
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
133
|
Porazinski S, Parkin A, Pajic M. Rho-ROCK Signaling in Normal Physiology and as a Key Player in Shaping the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:99-127. [PMID: 32030687 DOI: 10.1007/978-3-030-35582-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Porazinski
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Ashleigh Parkin
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Marina Pajic
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia.
| |
Collapse
|
134
|
Identification of novel functions of the ROCK2-specific inhibitor KD025 by bioinformatics analysis. Gene 2020; 737:144474. [PMID: 32057928 DOI: 10.1016/j.gene.2020.144474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCKs) have various cellular functions, which include actin cytoskeleton remodeling and vesicular trafficking, and there are two major mammalian ROCK isotypes, namely, ROCK1 (ROKβ) and ROCK2 (ROKα). The ROCK2-specific inhibitor KD025 (SLx-2119) is currently undergoing phase II clinical trials, but its cellular functions have not been fully explored. In this study, we investigated the functions of KD025 at the genomics level by bioinformatics analysis using the GSE8686 microarray dataset from the NCBI GEO database, in three different primary human cell lines. An initial microarray analysis conducted by Boerma et al. focused on the effects of KD025 on cell adhesion and blood coagulation, but did not provide comprehensive information on the functions of KD025. Our analysis of differentially expressed genes (DEGs) showed ~70% coincidence with Boerma et al.'s findings, and newly identified that CCND1, CXCL2, NT5E, and SMOX were differentially expressed by KD025. However, due to low numbers of co-regulated DEGs, we were unable to extract the functions of KD025 with significance. To overcome this limitation, we used gene set enrichment analysis (GSEA) and the heatmap hierarchical clustering method. We confirmed KD025 regulated inflammation and adipogenesis pathways, as previously reported experimentally. In addition, we found KD025 has novel regulatory functions on various pathways, including oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling. Further studies are required to systematically characterize these newly identified functions of KD025.
Collapse
|
135
|
Mulherkar S, Tolias KF. RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury. Cells 2020; 9:E245. [PMID: 31963704 PMCID: PMC7016605 DOI: 10.3390/cells9010245] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBIs, which range in severity from mild to severe, occur when a traumatic event, such as a fall, a traffic accident, or a blow, causes the brain to move rapidly within the skull, resulting in damage. Long-term consequences of TBI can include motor and cognitive deficits and emotional disturbances that result in a reduced quality of life and work productivity. Recovery from TBI can be challenging due to a lack of effective treatment options for repairing TBI-induced neural damage and alleviating functional impairments. Central nervous system (CNS) injury and disease are known to induce the activation of the small GTPase RhoA and its downstream effector Rho kinase (ROCK). Activation of this signaling pathway promotes cell death and the retraction and loss of neural processes and synapses, which mediate information flow and storage in the brain. Thus, inhibiting RhoA-ROCK signaling has emerged as a promising approach for treating CNS disorders. In this review, we discuss targeting the RhoA-ROCK pathway as a therapeutic strategy for treating TBI and summarize the recent advances in the development of RhoA-ROCK inhibitors.
Collapse
Affiliation(s)
- Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA;
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
136
|
Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A, Lewis PN, Angus McQuibban G. ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nat Commun 2020; 11:88. [PMID: 31900402 PMCID: PMC6941965 DOI: 10.1038/s41467-019-13781-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
The accumulation of damaged mitochondria causes the death of dopaminergic neurons. The Parkin-mediated mitophagy pathway functions to remove these mitochondria from cells. Targeting this pathway represents a therapeutic strategy for several neurodegenerative diseases, most notably Parkinson's disease. We describe a discovery pipeline to identify small molecules that increase Parkin recruitment to damaged mitochondria and ensuing mitophagy. We show that ROCK inhibitors promote the activity of this pathway by increasing the recruitment of HK2, a positive regulator of Parkin, to mitochondria. This leads to the increased targeting of mitochondria to lysosomes and removal of damaged mitochondria from cells. Furthermore, ROCK inhibitors demonstrate neuroprotective effects in flies subjected to paraquat, a parkinsonian toxin that induces mitochondrial damage. Importantly, parkin and rok are required for these effects, revealing a signaling axis which controls Parkin-mediated mitophagy that may be exploited for the development of Parkinson's disease therapeutics.
Collapse
Affiliation(s)
- Natalia Moskal
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Victoria Riccio
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Mikhail Bashkurov
- Network Biology Collaborative Centre, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rediet Taddese
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Network Biology Collaborative Centre, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Peter N Lewis
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - G Angus McQuibban
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
137
|
Somogyi M, Szimler T, Baksa A, Végh BM, Bakos T, Paréj K, Ádám C, Zsigmond Á, Megyeri M, Flachner B, Sajó R, Gráczer É, Závodszky P, Hajdú I, Beinrohr L. A versatile modular vector set for optimizing protein expression among bacterial, yeast, insect and mammalian hosts. PLoS One 2019; 14:e0227110. [PMID: 31887188 PMCID: PMC6936851 DOI: 10.1371/journal.pone.0227110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
We have developed a unified, versatile vector set for expression of recombinant proteins, fit for use in any bacterial, yeast, insect or mammalian cell host. The advantage of this system is its versatility at the vector level, achieved by the introduction of a novel expression cassette. This cassette contains a unified multi-cloning site, affinity tags, protease cleavable linkers, an optional secretion signal, and common restriction endonuclease sites at key positions. This way, genes of interest and all elements of the cassette can be switched freely among the vectors, using restriction digestion and ligation without the need of polymerase chain reaction (PCR). This vector set allows rapid protein expression screening of various hosts and affinity tags. The reason behind this approach was that it is difficult to predict which expression host and which affinity tag will lead to functional expression. The new system is based on four optimized and frequently used expression systems (Escherichia coli pET, the yeast Pichia pastoris, pVL and pIEx for Spodoptera frugiperda insect cells and pLEXm based mammalian systems), which were modified as described above. The resulting vector set was named pONE series. We have successfully applied the pONE vector set for expression of the following human proteins: the tumour suppressor RASSF1A and the protein kinases Aurora A and LIMK1. Finally, we used it to express the large multidomain protein, Rho-associated protein kinase 2 (ROCK2, 164 kDa) and demonstrated that the yeast Pichia pastoris reproducibly expresses the large ROCK2 kinase with identical activity to the insect cell produced counterpart. To our knowledge this is among the largest proteins ever expressed in yeast. This demonstrates that the cost-effective yeast system can match and replace the industry-standard insect cell expression system even for large and complex mammalian proteins. These experiments demonstrate the applicability of our pONE vector set.
Collapse
Affiliation(s)
- Márk Somogyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Tamás Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Attila Baksa
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Barbara M. Végh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Tamás Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Katalin Paréj
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Csaba Ádám
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Áron Zsigmond
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Márton Megyeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Beáta Flachner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Ráchel Sajó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Éva Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - István Hajdú
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
- * E-mail: (LB); (IH)
| | - László Beinrohr
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
- * E-mail: (LB); (IH)
| |
Collapse
|
138
|
Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J, Song LJ, Yu J, Zhao L, Zhang HT, Ma CG. The Rho kinase inhibitor fasudil attenuates Aβ 1-42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. Metab Brain Dis 2019; 34:1787-1801. [PMID: 31482248 DOI: 10.1007/s11011-019-00487-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a chronic, progressive, neurodegenerative disorder, is the most common type of dementia. Beta amyloid (Aβ) peptide aggregation and phosphorylated tau protein accumulation are considered as one of the causes for AD. Our previous studies have demonstrated the neuroprotective effect of the Rho kinase inhibitor fasudil, but the mechanism remains elucidated. In the present study, we examined the effects of fasudil on Aβ1-42 aggregation and apoptosis and identified the intracellular signaling pathways involved in these actions in primary cultures of mouse hippocampal neurons. The results showed that fasudil increased neurite outgrowth (52.84%), decreased Aβ burden (46.65%), Tau phosphorylation (96.84%), and ROCK-II expression. In addition, fasudil reversed Aβ1-42-induced decreased expression of Bcl-2 and increases in caspase-3, cleaved-PARP, phospho-JNK(Thr183/Tyr185), and phospho-ASK1(Ser966). Further, fasudil decreased mitochondrial membrane potential and intracellular calcium overload in the neurons treated with Aβ1-42. These results suggest that inhibition of Rho kinase by fasudil reverses Aβ1-42-induced neuronal apoptosis via the ASK1/JNK signal pathway, calcium ions, and mitochondrial membrane potential. Fasudil could be a drug of choice for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
- Bio-Signal technologies (HK) Limited, 9th Floor, Amtel Building,148 Des Voeux Road Central, Central, Hong Kong
| | - Jihong Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linhu Zhao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.
| |
Collapse
|
139
|
Shinozaki Y, Danjo Y, Koizumi S. Microglial ROCK is essential for chronic methylmercury‐induced neurodegeneration. J Neurochem 2019; 151:64-78. [DOI: 10.1111/jnc.14817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| |
Collapse
|
140
|
Dayal N, Mikek CG, Hernandez D, Naclerio GA, Yin Chu EF, Carter-Cooper BA, Lapidus RG, Sintim HO. Potently inhibiting cancer cell migration with novel 3H-pyrazolo[4,3-f]quinoline boronic acid ROCK inhibitors. Eur J Med Chem 2019; 180:449-456. [PMID: 31330446 DOI: 10.1016/j.ejmech.2019.06.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023]
Abstract
Rho-associated protein kinases (ROCKs) are ubiquitously expressed in most adult tissues, and are involved in modulating the cytoskeleton, protein synthesis and degradation pathways, synaptic function, and autophagy to list a few. A few ROCK inhibitors, such as fasudil and netarsudil, are approved for clinical use. Here we present a new ROCK inhibitor, boronic acid containing HSD1590, which is more potent than netarsudil at binding to or inhibiting ROCK enzymatic activities. This compound exhibits single digit nanomolar binding to ROCK (Kds < 2 nM) and subnanomolar enzymatic inhibition profile (ROCK2 IC50 is 0.5 nM for HSD1590. Netarsudil, an FDA-approved drug, inhibited ROCK2 with IC50 = 11 nM under similar conditions). Whereas netarsudil was cytotoxic to breast cancer cell line, MDA-MB-231 (greater than 80% growth inhibition at concentrations greater than 5 μM), HSD1590 displayed low cytotoxicity to MDA-MB-231. Interestingly, at 1 μM HSD1590 inhibited the migration of MDA-MB-231 whereas netarsudil did not.
Collapse
Affiliation(s)
- Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Clinton G Mikek
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Delmis Hernandez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - George A Naclerio
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Elizabeth Fei Yin Chu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Brandon A Carter-Cooper
- Translational Core Laboratory, University of Maryland Greenebaum Cancer Center, 655 W Baltimore Street, Baltimore, MD, 21201, USA
| | - Rena G Lapidus
- Translational Core Laboratory, University of Maryland Greenebaum Cancer Center, 655 W Baltimore Street, Baltimore, MD, 21201, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA; Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation and Infectious Diseases, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
141
|
Wang J, Sui RX, Miao Q, Wang Q, Song LJ, Yu JZ, Li YH, Xiao BG, Ma CG. Effect of Fasudil on remyelination following cuprizone-induced demyelination. CNS Neurosci Ther 2019; 26:76-89. [PMID: 31124292 PMCID: PMC6930827 DOI: 10.1111/cns.13154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Background Multiple sclerosis is characterized by demyelination/remyelination, neuroinflammation, and neurodegeneration. Cuprizone (CPZ)‐induced toxic demyelination is an experimental animal model commonly used to study demyelination and remyelination in the central nervous system. Fasudil is one of the most thoroughly studied Rho kinase inhibitors. Methods Following CPZ exposure, the degree of demyelination in the brain of male C57BL/6 mice was assessed by Luxol fast blue, Black Gold II, myelin basic protein immunofluorescent staining, and Western blot. The effect of Fasudil on behavioral change was determined using elevated plus maze test and pole test. The possible mechanisms of Fasudil action were examined by immunohistochemistry, flow cytometry, ELISA, and dot blot. Results Fasudil improved behavioral abnormalities, inhibited microglia‐mediated neuroinflammation, and promoted astrocyte‐derived nerve growth factor and ciliary neurotrophic factor, which should contribute to protection and regeneration of oligodendrocytes. In addition, Fasudil inhibited the production of myelin oligodendrocyte glycoprotein antibody and the infiltration of peripheral CD4+ T cells and CD68+ macrophages, which appears to be related to the integrity of the blood‐brain barrier. Conclusion These results provide evidence for the therapeutic potential of Fasudil in CPZ‐induced demyelination. However, how Fasudil acts on microglia, astrocytes, and immune cells remains to be further explored.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yan-Hua Li
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, China.,Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
142
|
Zhang XF, Ajeti V, Tsai N, Fereydooni A, Burns W, Murrell M, De La Cruz EM, Forscher P. Regulation of axon growth by myosin II-dependent mechanocatalysis of cofilin activity. J Cell Biol 2019; 218:2329-2349. [PMID: 31123185 PMCID: PMC6605792 DOI: 10.1083/jcb.201810054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Synergism between myosin II contractility and cofilin activity modulates serotonin-dependent axon growth. Normally, cofilin-dependent decreases in actin density are compensated by increases in point contact density and traction force; however, myosin hyperactivation leads to catastrophic decreases in actin network density and neurite retraction. Serotonin (5-HT) is known to increase the rate of growth cone advance via cofilin-dependent increases in retrograde actin network flow and nonmuscle myosin II activity. We report that myosin II activity is regulated by PKC during 5-HT responses and that PKC activity is necessary for increases in traction force normally associated with these growth responses. 5-HT simultaneously induces cofilin-dependent decreases in actin network density and PKC-dependent increases in point contact density. These reciprocal effects facilitate increases in traction force production in domains exhibiting decreased actin network density. Interestingly, when PKC activity was up-regulated, 5-HT treatments resulted in myosin II hyperactivation accompanied by catastrophic cofilin-dependent decreases in actin filament density, sudden decreases in traction force, and neurite retraction. These results reveal a synergistic relationship between cofilin and myosin II that is spatiotemporally regulated in the growth cone via mechanocatalytic effects to modulate neurite growth.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Visar Ajeti
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT
| | - Nicole Tsai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.,Department of Ophthalmology, University of California, San Francisco, California, CA
| | - Arash Fereydooni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - William Burns
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| | - Michael Murrell
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Paul Forscher
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT
| |
Collapse
|
143
|
Screening of a neuronal cell model of tau pathology for therapeutic compounds. Neurobiol Aging 2019; 76:24-34. [DOI: 10.1016/j.neurobiolaging.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
|
144
|
Joshi AR, Muke I, Bobylev I, Lehmann HC. ROCK inhibition improves axonal regeneration in a preclinical model of amyotrophic lateral sclerosis. J Comp Neurol 2019; 527:2334-2340. [PMID: 30861116 DOI: 10.1002/cne.24679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Alteration of the RhoA/ROCK (Rho kinase) pathway has been shown to be neuroprotective in SOD1G93A mice, the most commonly used animal model of ALS. Since previous studies indicate that, apart from neuroprotection, ROCK inhibitor Y-27632 can also accelerate regeneration of motor axons, we here assessed the regenerative capability of axons in SOD1G93A mice with and without treatment with Y-27632. Regeneration of axons was examined after sciatic nerve crush in pre- and symptomatic SOD1G93A mice. Proregenerative effects of Y-27632 were studied during the disease course in the SOD1G93A mouse model. In symptomatic SOD1G93A mice, axonal regeneration was markedly reduced compared to presymptomatic SOD1G93A mice and wild types. Treatment with Y-27632 improved functional and morphological measures of motor axons after sciatic crush in all tested conditions. Y-27632 treatment did not increase the lifespan of symptomatic SOD1G93A mice, but did improve axonal (re)innervation of neuromuscular junctions. Our study provides proof of concept that axonal regeneration of motor neurons harboring SOD1G93A is impaired, but amenable for pharmacological interventions aiming to accelerate axonal regeneration. Given the lack of treatments for ALS, approaches to improve axonal regeneration, including by inhibiting ROCK, should be further explored.
Collapse
Affiliation(s)
- Abhijeet R Joshi
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Ines Muke
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Ilja Bobylev
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| |
Collapse
|
145
|
Wang L, Xu J, Guo D, Zhou X, Jiang W, Wang J, Tang J, Zou Y, Bi M, Li Q. Fasudil alleviates brain damage in rats after carbon monoxide poisoning through regulating neurite outgrowth inhibitor/oligodendrocytemyelin glycoprotein signalling pathway. Basic Clin Pharmacol Toxicol 2019; 125:152-165. [PMID: 30916885 DOI: 10.1111/bcpt.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Carbon monoxide (CO) poisoning can lead to many serious neurological symptoms. Currently, there are no effective therapies for CO poisoning. In this study, rats exposed to CO received hyperbaric oxygen therapy, and those in the Fasudil group were given additional Fasudil injection once daily. We found that the escape latency in CO poisoning group (CO group) was significantly prolonged, the T1 /Ttotal was obviously decreased, and the mean escape time and the active escape latency were notably extended compared with those in normal control group (NC group, P < 0.05). After administration of Fasudil, the escape latency was significantly shortened, T1 /Ttotal was gradually increased as compared with CO group (>1 week, P < 0.05). Ultrastructural damage of neurons and blood-brain barrier of rats was serious in CO group, while the structural and functional integrity of neuron and mitochondria maintained relatively well in Fasudil group. Moreover, we also noted that the expressions of neurite outgrowth inhibitor (Nogo), oligodendrocyte-myelin glycoprotein (OMgp) and Rock in brain tissue were significantly increased in CO group, and the elevated levels of the three proteins were still observed at 2 months after CO poisoning. Fasudil markedly reduced their expressions compared with those of CO group (P < 0.05). In summary, the activation of Nogo-OMgp/Rho signalling pathway is associated with brain injury in rats with CO poisoning. Fasudil can efficiently down-regulate the expressions of Nogo, OMgp and Rock proteins, paving a way for the treatment of acute brain damage after CO poisoning.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China.,Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jianghua Xu
- Department of neurology, Yantai YEDA Hospital, Yantai Shandong, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Xudong Zhou
- The First Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Wenwen Jiang
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jinglin Wang
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Mingjun Bi
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| |
Collapse
|
146
|
Lingor P, Weber M, Camu W, Friede T, Hilgers R, Leha A, Neuwirth C, Günther R, Benatar M, Kuzma-Kozakiewicz M, Bidner H, Blankenstein C, Frontini R, Ludolph A, Koch JC. ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:293. [PMID: 30972018 PMCID: PMC6446974 DOI: 10.3389/fneur.2019.00293] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives: Disease-modifying therapies for amyotrophic lateral sclerosis (ALS) are still not satisfactory. The Rho kinase (ROCK) inhibitor fasudil has demonstrated beneficial effects in cell culture and animal models of ALS. For many years, fasudil has been approved in Japan for the treatment of vasospasm in patients with subarachnoid hemorrhage with a favorable safety profile. Here we describe a clinical trial protocol to repurpose fasudil as a disease-modifying therapy for ALS patients. Methods: ROCK-ALS is a multicenter, double-blind, randomized, placebo-controlled phase IIa trial of fasudil in ALS patients (EudraCT: 2017-003676-31, NCT: 03792490). Safety and tolerability are the primary endpoints. Efficacy is a secondary endpoint and will be assessed by the change in ALSFRS-R, ALSAQ-5, slow vital capacity (SVC), ECAS, and the motor unit number index (MUNIX), as well as survival. Efficacy measures will be assessed before (baseline) and immediately after the infusion therapy as well as on days 90 and 180. Patients will receive a daily dose of either 30 or 60 mg fasudil, or placebo in two intravenous applications for a total of 20 days. Regular assessments of safety will be performed throughout the treatment period, and in the follow-up period until day 180. Additionally, we will collect biological fluids to assess target engagement and evaluate potential biomarkers for disease progression. A total of 120 patients with probable or definite ALS (revised El Escorial criteria) and within 6-18 months of the onset of weakness shall be included in 16 centers in Germany, Switzerland and France. Results and conclusions: The ROCK-ALS trial is a phase IIa trial to evaluate the ROCK-inhibitor fasudil in early-stage ALS-patients that started patient recruitment in 2019.
Collapse
Affiliation(s)
- Paul Lingor
- Department of Neurology, Technical University of Munich, Munich, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - William Camu
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, Montpellier, France
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Reinhard Hilgers
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St., Gallen, Switzerland
| | - René Günther
- Department of Neurology, Technical University of Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, United States
| | | | - Helen Bidner
- Münchner Studienzentrum, Technical University of Munich, Munich, Germany
| | | | - Roberto Frontini
- Pharmacy at the University of Leipzig Medical Center, Leipzig, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan C. Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
147
|
The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway. PLoS One 2019; 14:e0214100. [PMID: 30889218 PMCID: PMC6424404 DOI: 10.1371/journal.pone.0214100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
With the expansion of the aged population, it is predicted that neurodegenerative diseases (NDDs) will become a major threat to public health worldwide. However, existing therapies can control the symptoms of the diseases at best, rather than offering a fundamental cure. As for the complex pathogenesis, clinical and preclinical researches have indicated that oxidative stress, a central role in neuronal degeneration, is a possible therapeutic target in the development of novel remedies. In this study, the motor neuron-like cell line NSC-34 was employed as an experimental model in probing the effects induced by the combination of non-invasive low intensity pulsed electric field (LIPEF) and fucoidan on the H2O2-induced neuron damage. It was found that single treatment of the LIPEF could protect the NSC-34 cells from oxidative stress, and the protective effect was enhanced by combining the LIPEF and fucoidan. Notably, it was observed that single treatment of the LIPEF obviously suppressed the H2O2-enhanced expression of ROCK protein and increased the phosphorylation of Akt in the H2O2-treated NSC-34 cells. Moreover, the LIPEF can be easily modified to concentrate on a specific area. Accordingly, this technique can be used as an advanced remedy for ROCK inhibition without the drawback of drug metabolism. Therefore, we suggest the LIPEF would be a promising strategy as a treatment for motor neurodegeneration and warrant further probe into its potential in treating other neuronal degenerations.
Collapse
|
148
|
Abstract
The role of autophagy in subarachnoid hemorrhage (SAH) remains unclear. This study aimed to investigate the role of ROCK2 in the regulation of hippocampus autophagy after SAH. Thirty-six Sprague-Dawley rats were randomly divided into three groups - the sham group, the SAH group, and the SAH+ ROCK2 inhibitor group (or the drug group) - and analyzed through a behavior test. The hippocampus tissues were analyzed using immunochemistry and western blot analysis. We observed injured morphology in the hippocampus and impaired learning and memory ability in the rats in the SAH group, accompanied by upregulated ROCK2 expression and increased beclin-1 and LC3-II expression. Compared with the SAH group, we observed normal morphology in the hippocampus and better learning and memory ability in the rats in the drug group, accompanied by downregulated ROCK2 expression and increased beclin-1 and LC3-II expression. SAH activates autophagy in the hippocampus, but this could be inhibited by ROCK2. Inhibition of ROCK2 promotes autophagy and reduces the injury in the hippocampus, leading to the recovery of learning and memory ability following SAH. ROCK2 may represent a new target for the treatment of SAH.
Collapse
|
149
|
Mattii L, Pardini C, Ippolito C, Bianchi F, Sabbatini ARM, Vaglini F. Rho-inhibition and neuroprotective effect on rotenone-treated dopaminergic neurons in vitro. Neurotoxicology 2019; 72:51-60. [PMID: 30769001 DOI: 10.1016/j.neuro.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Mesencephalic cell cultures are a good model to study the vulnerability of dopaminergic neurons and reproduce, in vitro, experimental models of Parkinson's disease. Rotenone associated as an environmental neurotoxin related to PD, is able to provoke dopaminergic neuron degeneration by inhibiting complex I of the mitochondrial respiratory chain and by inducing accumulation of α-synuclein. Recently, rotenone has been described to activate RhoA, a GTPase protein. In the present study we evaluated a possible neuroprotective effect of Rho-inhibitor molecules on rotenone-damaged dopaminergic (DA) neurons obtained from mouse primary mesencephalic cell culture. Our results showed that Clostridium Botulinum C3 toxin (C3) and simvastatin, as RhoA inhibitors, were able to protect DA neurons from rotenone damages. In fact, pretreatment with C3 or simvastatin significantly prevented the reduction of [3H]dopamine uptake, neurites injury and the expression patterns of proteins like α-syn, actin and connexin 43.
Collapse
Affiliation(s)
- Letizia Mattii
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Carla Pardini
- Department of Translational Research and of New Surgical and Medical Technologies, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | - Francesco Bianchi
- Department of Clinical and Experimental Medicine, Unit of Histology, via Roma 55, University of Pisa, 56126 Pisa, Italy
| | | | - Francesca Vaglini
- Department of Translational Research and of New Surgical and Medical Technologies, via Roma 55, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
150
|
König S, Hadrian K, Schlatt S, Wistuba J, Thanos S, Böhm M. Topographic protein profiling of the age-related proteome in the retinal pigment epithelium of Callithrix jacchus with respect to macular degeneration. J Proteomics 2019; 191:1-15. [DOI: 10.1016/j.jprot.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022]
|