101
|
Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics 2022; 14:pharmaceutics14020254. [PMID: 35213987 PMCID: PMC8875190 DOI: 10.3390/pharmaceutics14020254] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022] Open
Abstract
Doxorubicin (DOX) is one of the most widely used anthracycline anticancer drugs due to its high efficacy and evident antitumoral activity on several cancer types. However, its effective utilization is hindered by the adverse side effects associated with its administration, the detriment to the patients’ quality of life, and general toxicity to healthy fast-dividing cells. Thus, delivering DOX to the tumor site encapsulated inside nanocarrier-based systems is an area of research that has garnered colossal interest in targeted medicine. Nanoparticles can be used as vehicles for the localized delivery and release of DOX, decreasing the effects on neighboring healthy cells and providing more control over the drug’s release and distribution. This review presents an overview of DOX-based nanocarrier delivery systems, covering loading methods, release rate, and the cytotoxicity of liposomal, micellar, and metal organic frameworks (MOFs) platforms.
Collapse
Affiliation(s)
- Mihad Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Nahid S. Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
| | - Rana Sabouni
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence: ; Tel.: +971-6-515-2970
| |
Collapse
|
102
|
Li D, Sun W, Chen H, Lei H, Li X, Liu H, Huang GY, Shi WJ, Ying GG, Luo Y, Xie L. Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150460. [PMID: 34818796 DOI: 10.1016/j.scitotenv.2021.150460] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is a broad-spectrum anticancer drug and has been frequently detected in aquatic environments due to its incomplete removal by wastewater treatment facilities and slow degradation in waters. Its toxicity in fish remains largely unknown. In this study, zebrafish eggs <4 h post fertilization (hpf) were exposed to CP at the concentrations from 0.5 to 50.0 μg/L until 168 hpf, and its toxicity was evaluated by biochemical, transcriptomic, and behavioral approaches. The results showed that malformation and mortality rates increased with CP concentrations. The 7-day malformation EC50 and mortality (LC30) by CP were calculated to be 86.8 μg/L and 7.5 mg/L, respectively. Inhibited startle response (light to dark) (a minimal of 19%) and reduced swimming velocity (a minimal of 30%) were observed in the CP-exposed larvae. The thicknesses of retinal ganglion layer, inner plexiform layer, and inner nuclear layer in the retina were increased after exposure to CP. Meanwhile, exposure to CP increased karyorrhexis and karyolysis in the liver tissue. Transcriptomic analysis identified 607 differentially expressed genes (DEGs) (159 up-regulated and 448 down-regulated). A significant reduction in the transcripts of sgk1 (the FoxO pathway), jun (the MAPK pathway), and diabloa (apoptosis pathway) were observed in the CP-treated larvae. This study has demonstrated that low concentrations of CP cause malformation, reduced swimming capacity, histopathological alterations in the retina and liver tissues, and interference on transcriptional expressions of key genes associated with different pathways. The ecological risk of CP and other anticancer drugs to aquatic organisms merits future investigation.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
103
|
Antoszczak M, Otto-Ślusarczyk D, Kordylas M, Struga M, Huczyński A. Synthesis of Lasalocid-Based Bioconjugates and Evaluation of Their Anticancer Activity. ACS OMEGA 2022; 7:1943-1955. [PMID: 35071884 PMCID: PMC8771711 DOI: 10.1021/acsomega.1c05434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 06/06/2023]
Abstract
Using rationally designed bioconjugates is an attractive strategy to develop novel anticancer drugs with enhanced therapeutic potential and minimal side effects compared to the native structures. With respect to the promising activity of lasalocid (LAS) toward various cancer cells, this polyether ionophore seems to be an ideal candidate for bioconjugation. Herein, we describe the synthetic access to a cohort of nine conjugated products of LAS, in which the ionophore biomolecule was successfully combined via covalent bonds with selected anticancer therapeutics or other anticancer active components. The in vitro screening of a series of cancer cell lines allowed us to identify three products with improved anticancer activity profiles compared to those of the starting materials. The results indicate that human prostate cancer cells (PC3) and human primary colon cancer cells (SW480) were essentially more sensitive to exposure to LAS derivatives than human keratinocytes (HaCaT). Furthermore, the selected products were stronger inducers of late apoptosis and/or necrosis in PC3 and SW480 cancer cells, when compared to the metastatic variant of colon cancer cells (SW620). To establish the anticancer mechanism of LAS-based bioconjugates, the levels of interleukin 6 (IL-6) and reactive oxygen species (ROS) were measured; the tested compounds significantly reduced the release of IL-6, while the level of ROS was significantly higher in all the cell lines studied.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Marta Kordylas
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marta Struga
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Huczyński
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
104
|
Gouthami K, Veeraraghavan V, Nagaraja P. In-silico characterization of phytochemicals identified from Vitex negundo (L) extract as potential therapy for Wnt-signaling proteins. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Colorectal cancer is the third most diagnosed disease in the world population and current chemotherapy has been used for targeting the cell proliferation and metastasizing ability of tumor cells. Potent chemotherapeutic drugs for colorectal cancer are capecitabine, fluorouracil, irinotecan, etc. which have toxic effects in normal tissues and adverse effects in multiple organs leading to major obstacles in clinical use. The aim of the study is the use of plant-derived compounds that improve the effectiveness of chemotherapeutics with lower and alleviate toxic side effects and reduce the risk of tumor progression.
Results
The current study is performed using Vitex negundo leaf which has been demonstrated to have positive effects against colorectal cancer. The use of computational approaches will help improve the identification and screening of lead molecules using AutoDock 4.2 and AutoDock Vina. Using computational approaches will help to improve lead identification and screening. Herein, we have retrieved six phytochemicals from published literature and investigated their inhibitory effect with Wnt-associated signaling proteins. Authentication of phytocompounds and Wnt-associated signaling proteins was done using AutoDock.4.2.
Conclusions
The results are screened based on the number of hydrogen bonds, binding energy, and interacting amino acids. The Isoorientin, luteolin, and Chrysophanol get the highest binding energy with target receptors. The binding energy is calculated with all target receptors from the range of − 6.0 to − 8.9 kcal/mol. The In-silico drug likeliness properties are predicted to be the best interacting compounds based on Lipinski Rule of 5 and ADMET analysis. Hence, we propose that Isoorientin, luteolin, and Chrysophanol are the potential inhibitors of Wnt signaling inhibitors, and preclinical studies are needed to confirm the promising therapeutic ability of colorectal cancer.
Collapse
|
105
|
Extraction of Pecan nut (Carya illinoinensis) oil using different techniques and its antitumor potential in human cancer cells. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
106
|
Claudia Pedrozo da Silva A, Fabiano de Freitas C, Aparecida Errerias Fernandes Cardinali C, Lazzarotto Braga T, Caetano W, Ida Bonini Ravanelli M, Hioka N, Luiz Tessaro A. Biotin-functionalized silica nanoparticles loaded with Erythrosine B asselective photodynamic treatment for Glioblastoma Multiforme. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
107
|
FDA-Approved Drugs for Hematological Malignancies-The Last Decade Review. Cancers (Basel) 2021; 14:cancers14010087. [PMID: 35008250 PMCID: PMC8750348 DOI: 10.3390/cancers14010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Hematological malignancies are diseases involving the abnormal production of blood cells. The aim of the study is to collect comprehensive information on new drugs used in the treatment of blood cancers which have introduced into therapy in the last decade. The approved drugs were analyzed for their structures and their biological activity mechanisms. Abstract Hematological malignancies, also referred to as blood cancers, are a group of diseases involving abnormal cell growth and persisting in the blood, lymph nodes, or bone marrow. The development of new targeted therapies including small molecule inhibitors, monoclonal antibodies, bispecific T cell engagers, antibody-drug conjugates, recombinant immunotoxins, and, finally, Chimeric Antigen Receptor T (CAR-T) cells has improved the clinical outcomes for blood cancers. In this review, we summarized 52 drugs that were divided into small molecule and macromolecule agents, approved by the Food and Drug Administration (FDA) in the period between 2011 and 2021 for the treatment of hematological malignancies. Forty of them have also been approved by the European Medicines Agency (EMA). We analyzed the FDA-approved drugs by investigating both their structures and mechanisms of action. It should be emphasized that the number of targeted drugs was significantly higher (46 drugs) than chemotherapy agents (6 drugs). We highlight recent advances in the design of drugs that are used to treat hematological malignancies, which make them more effective and less toxic.
Collapse
|
108
|
Dewi FRP, Ahmar RF, Alifiyah NI, Shoukat N, Wahyuningsih SPA. The potential of A. Muricata Bioactive Compounds to Inhibit HIF1α Expression Via Disruption of Tyrosine Kinase Receptor Activity: an In Silico Study. Acta Inform Med 2021; 29:176-181. [PMID: 34759456 PMCID: PMC8563029 DOI: 10.5455/aim.2021.29.176-181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Cancer is a debilitating disease that is on the increase in both developed and developing countries. The plant extract of A. muricata have been known to have a variety of anticancer effects, including anti-angiogenic potential. An in silico study is needed as a preliminary study to understand the mechanism underline this process. Objective: The aim of this study was to investigate the potential of the bioactive compounds of A. muricata in regulating angiogenesis process, primarily by the regulation of hypoxia inducible factor (HIF)-1α expression by in silico study. Methods: This study was performed by in silico analysis including the bioactive compounds preparation, biological activity prediction, protein target and pathway analysis, 3D protein modelling, protein-ligand and protein-protein docking, and the visualization of docking results. Results: There are 3 bioactive compounds of A. muricata with the ability to inhibit HIF-1α expression, including kaempferol, genistein, and glycitein. The inhibition of HIF-1α expression was associated with phosphoinositide 3-kinases (PI3K)/Akt signaling pathway, which involved tyrosine kinase receptor activity on the cell membrane. Based on the silico analysis in this study, we shown that kaempferol, genistein, and glycitein inhibit HIF-1α expression through the disruption of interleukin (IL)-6R and toll-like receptor (TLR)-4 and their respective ligands interaction. Conclusion: The findings of this study show that A. muricata bioactive compounds could inhibit HIF-1α expression through disruption of the tyrosine kinase receptor binding with its ligand.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Rasyidah Fauzia Ahmar
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Na'ilah Insani Alifiyah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Nadia Shoukat
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
109
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Palaga T. The chemotherapeutic drug carboplatin affects macrophage responses to LPS and LPS tolerance via epigenetic modifications. Sci Rep 2021; 11:21574. [PMID: 34732786 PMCID: PMC8566489 DOI: 10.1038/s41598-021-00955-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Following re-exposure to lipopolysaccharide (LPS), macrophages exhibit an immunosuppressive state known as LPS tolerance, which is characterized by repressed proinflammatory cytokine production. LPS-induced tolerance in macrophages is mediated in part by epigenetic changes. Carboplatin, an anticancer chemotherapeutic drug, exerts its effect by inhibiting DNA replication and transcription, as well as through epigenetic modifications. Through an unbiased screen, we found that carboplatin rescued TNF-α and IL-6 production in LPS-tolerant macrophages. Transcriptomic analysis and gene set enrichment analyses revealed that p53 was one of the most significantly upregulated hallmarks in both LPS-primed and LPS-tolerant macrophages in the presence of carboplatin, while E2F and G2/M were the most negatively regulated hallmarks. Heterochromatin protein 1 (HP1-α), which is associated with gene silencing, was significantly reduced in carboplatin-treated LPS-tolerant macrophages at the mRNA and protein levels. Dynamic changes in the mRNA level of genes encoding H3K9me3 methyltransferases, setdb2, kdm4d, and suv39h1 were induced in the presence of carboplatin in LPS-tolerant macrophages. Taken together, we provide evidence that carboplatin treatment interferes with proinflammatory cytokine production during the acute LPS response and LPS tolerance in macrophages, possibly via H3K9me3 modification.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
110
|
Merikhian P, Darvishi B, Jalili N, Esmailinejad MR, Khatibi AS, Kalbolandi SM, Salehi M, Mosayebzadeh M, Barough MS, Majidzadeh-A K, Yadegari F, Rahbarizadeh F, Farahmand L. Recombinant nanobody against MUC1 tandem repeats inhibits growth, invasion, metastasis, and vascularization of spontaneous mouse mammary tumors. Mol Oncol 2021; 16:485-507. [PMID: 34694686 PMCID: PMC8763658 DOI: 10.1002/1878-0261.13123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/20/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Neda Jalili
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Azadeh Sharif Khatibi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Mosayebzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi Barough
- Cancer Immunotherapy and Regenerative Medicine, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Yadegari
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
111
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021; 445:214104. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
112
|
Hrichi H, Kouki N, Tar H. Analytical methods for the quantification of cisplatin, carboplatin, and oxaliplatin in various matrices over the last two decades. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412918666210929105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Platinum derivatives including cisplatin and its later generations carboplatin, and oxaliplatin remain the most largely used drugs in the therapy of malignant diseases. They exert notable anticancer activity towards numerous types of solid tumors such as gastric, colorectal, bladder, ovary, and several others. The chemotherapeutic activity of these compounds, however, is associated with many unwanted side effects and drug resistance problems limiting their application and effectiveness. Proper dosage is still an inherent problem, as these drugs are usually prescribed in small doses.
Objective:
Several analytical methods have been reported for the accurate quantification of cisplatin, carboplatin, and oxaliplatin and their metabolites either alone or in combination with other chemotherapeutic drugs, in different matrices such as pharmaceutical formulations, biological fluids, cancer cells, and environmental samples. The main goal of this review is to systematically study the analytical methods already used for the analysis of cisplatin, carboplatin, and oxaliplatin in various matrices during the last two decades.
Results and Conclusion:
In the literature, reviews showed that numerous analytical methods such as electroanalytical, UV-visible spectrophotometry, chromatographic, fluorescence, atomic absorption spectrophotometry, and other spectroscopic methods combined with mass spectrometry were used for the determination of these compounds in various matrices.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Noura Kouki
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| | - Haja Tar
- Chemistry Department, College of Science and Arts, Qassim University, Buraidah, P.O. Box: 51911, Saudi Arabia
| |
Collapse
|
113
|
Maity S, Bhuyan T, Pattanayak JP, Ghosh SS, Bandyopadhyay D. Real-time transport kinetics of drug encapsulated nanoparticles into apoptotic cancer cells inside microchannels. NANOTECHNOLOGY 2021; 32:505704. [PMID: 34479231 DOI: 10.1088/1361-6528/ac2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Development of nanocomposites as drug delivery vectors is a burgeoning field of research. However, the usage of such newly invented nanomatrices are often limited by the shortcomings associated with the testing of their real-life efficacy. Many drugs fail because a monolayer framework ofin vitrocell line screening method does not adequately mimic thein vivothree-dimensional microenvironments. In this direction, the study unveils the development of a continuous flow microreactor wherein the cellulose acetate nanoparticles (CANPs) with varying sizes are prepared before encapsulating them with an anticancer drug-doxorubicin (DOX). Subsequently, anin vitromicrofluidic drug delivery model has been introduced in which the HeLa cells specific to cervical cancer is treated with the DOX encapsulated CANPs-DOX@CANPs. Thereafter, the transport of the drugs from the fluidic to cellular environment, their transport inside the cell, and the real-time kinetics of the cancer cell apoptosis have been analyzed systematically to uncover the real-time efficacy and cytotoxic effects of the nanocomposite. Interestingly, experiments reveal, (i) ∼89.4% DOX loading on the nanocomposite owing to a facile electrostatic interaction, (ii) a pH-dependent controlled release of drug during the transport with the cancer cells, and (iii) cell apoptosis after the diffused inoculation of the drug. A mathematical model has been developed to emulate the drug transport from the surrounding fluid to the cancer cells. Experiments together with the mathematical model uncover that the kinetics of cancer cell death is limited by the reaction at the cell-nucleus. The microfluidic model has shown significant potential to be translated as a useful tool for the real-time and on-demandin vitroscreening of the cancer drugs.
Collapse
Affiliation(s)
- Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam-781039, India
| | | | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam-781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam-781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam-781039, India
| |
Collapse
|
114
|
Tayel SI, Muharram NM, Fotoh DS, Elbarbary HS, Abd-Elhafiz HI, El-Masry EA, Taha AE, Soliman SE. Prognostic Impact of Genetic Variants of MECP2 and TIRAP on Clinical Outcomes of Systemic Lupus Erythematosus with and without Nephritis. Biomolecules 2021; 11:1378. [PMID: 34572591 PMCID: PMC8466489 DOI: 10.3390/biom11091378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune illness with a growing prevalence in many populations. Few studies have examined genetic predisposition to SLE, so we aimed to examine the clinical impact of the genetic polymorphisms MECP2 rs2734647and TIRAP rs8177374 on the outcomes and therapeutic precision of SLE with and without nephritis. This study included 110 SLE patients-divided into 63 with lupus nephritis (LN), and 47 without nephritis-and 100 controls. Laboratory measurements including CRP, ESR, ACR, CBC, anti-ds-DNA, vitamin A, C3, and C4 were carried out, along with genotyping of MECP2 rs2734647and TIRAP rs8177374 by real-time PCR and sequencing. Treg %, vitamin A, C3, and C4 were lower, whereas Th17 % was higher, in patients vs. controls (p < 0.001). The T allele of MECP2 rs2734647 was higher in LN than in non-nephritis and control subjects. Moreover, the T allele of TIRAP rs8177374 was higher in LN than in non-nephritis and control subjects. The MECP2 and TIRAP genes could play a role in predisposition to SLE, and can also predict disease progress to nephritis, helping to personalize medicine.
Collapse
Affiliation(s)
- Safaa I. Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt; (N.M.M.); (S.E.S.)
- Medical Biochemistry Unit, College of Medicine, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Nashwa M. Muharram
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt; (N.M.M.); (S.E.S.)
- Medical Biochemistry Unit, College of Medicine, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Dina S. Fotoh
- Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt;
| | - Hany S. Elbarbary
- Renal Unit, Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt;
- Renal Unit, Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Huda I. Abd-Elhafiz
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt;
| | - Eman A. El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia; (E.A.E.-M.); (A.E.T.)
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt
| | - Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia; (E.A.E.-M.); (A.E.T.)
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa E. Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin el Kom 32511, Egypt; (N.M.M.); (S.E.S.)
- Medical Biochemistry Unit, Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
115
|
Gautam M, Gabrani R. Combinatorial Effect of Temozolomide and Naringenin in Human Glioblastoma Multiforme Cell Lines. Nutr Cancer 2021; 74:1071-1078. [PMID: 34431435 DOI: 10.1080/01635581.2021.1952438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioblastoma multiforme (GBM) is a grade IV, lethal, and the most common type of brain tumor. GBM can acquire resistance to temozolomide (TMZ) recommended for its treatment. Naringenin (NAG), a flavonoid generally found in grapefruit, has antioxidant, anti-proliferative, and anti-inflammatory properties. It has been reported that phytochemicals can reduce resistance and improve the efficacy of a chemo-resistant drug. The combinatorial effect of TMZ and NAG on cell proliferation was evaluated using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay, and the apoptosis in the U87MG and LN229 GBM cells were evaluated by change in fluorescence intensity. The effect of NAG and TMZ on anchorage-independent single-cell colony formation and cell migration was investigated. NAG and TMZ demonstrated enhanced cytotoxic effects on U87MG and LN229 cell lines. The combination index value being less than one indicated the synergistic action of the two drugs in restricting the growth of the cells. The NAG and TMZ together resulted in higher fluorescence intensity as compared to the alone drug. Further, the study showed a marked reduction in the migration of the cells and the formation of a single cell colony.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1952438.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
116
|
Zarghami Dehaghani M, Yousefi F, Sajadi SM, Tajammal Munir M, Abida O, Habibzadeh S, Mashhadzadeh AH, Rabiee N, Mostafavi E, Saeb MR. Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT). Molecules 2021; 26:4920. [PMID: 34443508 PMCID: PMC8398462 DOI: 10.3390/molecules26164920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Chemotherapy with anti-cancer drugs is considered the most common approach for killing cancer cells in the human body. However, some barriers such as toxicity and side effects would limit its usage. In this regard, nano-based drug delivery systems have emerged as cost-effective and efficient for sustained and targeted drug delivery. Nanotubes such as carbon nanotubes (CNT) and boron nitride nanotubes (BNNT) are promising nanocarriers that provide the cargo with a large inner volume for encapsulation. However, understanding the insertion process of the anti-cancer drugs into the nanotubes and demonstrating drug-nanotube interactions starts with theoretical analysis. METHODS First, interactions parameters of the atoms of 5-FU were quantified from the DREIDING force field. Second, the storage capacity of BNNT (8,8) was simulated to count the number of drugs 5-FU encapsulated inside the cavity of the nanotubes. In terms of the encapsulation process of the one drug 5-FU into nanotubes, it was clarified that the drug 5-FU was more rapidly adsorbed into the cavity of the BNNT compared with the CNT due to the higher van der Waals (vdW) interaction energy between the drug and the BNNT. RESULTS The obtained values of free energy confirmed that the encapsulation process of the drug inside the CNT and BNNT occurred spontaneously with the free energies of -14 and -25 kcal·mol-1, respectively. DISCUSSION However, the lower value of the free energy in the system containing the BNNT unraveled more stability of the encapsulated drug inside the cavity of the BNNT comparing the system having CNT. The encapsulation of Fluorouracil (5-FU) anti-cancer chemotherapy drug (commercial name: Adrucil®) into CNT (8,8) and BNNT (8,8) with the length of 20 Å in an aqueous solution was discussed herein applying molecular dynamics (MD) simulation.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 11155-4563, Iran;
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran;
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Erbil P.O. Box 625, Iraq;
- Department of Phytochemistry, SRC, Soran University, Soran P.O. Box 624, Iraq
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.T.M.); (O.A.)
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.T.M.); (O.A.)
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran P.O. Box 11155-9161, Iran;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
117
|
Li D, Chen H, Liu H, Schlenk D, Mu J, Lacorte S, Ying GG, Xie L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106543. [PMID: 33813231 DOI: 10.1016/j.envint.2021.106543] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anticancer drugs are a group of therapeutic agents used to enhance cell death in targeted cell types of neoplasia. Because of frequent use and eventual discharge, they have been often detected in wastewater from pharmaceutical factories and hospitals, domestic wastewater, and surface waters. The occurrence of these drugs in aquatic ecosystems and their effects on aquatic organisms have been poorly characterized. This review focuses on the global occurrence of major classes of anticancer drugs in water and sediments of freshwater ecosystems and their ecotoxicological effects at different biological levels. While the availability of data is fairly limited, concentrations of most anticancer drugs range from < 2 ng/L to 762 µg/L in receiving water, while levels in sediments and sludge vary from 0.25 to 42.5 µg/kg. Their detection frequencies were 58%, 52% (78%) and 59% in hospital wastewater, wastewater treatment plant effluents (influents) and surface water, respectively. Predicted log Kow values of vincristine, imatinib mesylate and tamoxifen are higher than 3 and have estimated half-lives>60 d in waters using quantitative structure-activity relationship models, indicating high potential for persistence and bioaccumulation. Based on a species sensitivity distribution evaluation of 9 compounds, crustaceans are most sensitive to anticancer drugs. The most hazardous compound is cisplatin which has a hazard concentration at the 5th percentile. For Daphnia magna, the acute toxicities of major classes of anticancer drugs are ranked as platinum complexes > endocrine therapy agents > antibiotics > antimetabolite agents > alkylating agents. Using hazard quotient analysis based primarily on the lowest observed effect concentrations (LOECs), cyclophosphamide, cisplatin, 5-fluorouracil, imatinib mesylate, bicalutamide, etoposide and paclitaxel have the highest hazard for aquatic organisms. Further research is needed to identify appropriate chronic endpoints for risk assessment thresholds as well as to better understand the mechanisms of action and the potential multigenerational toxicity, and trophic transfer in ecosystems.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
118
|
Kouchakpour F, Chaibakhsh N, Naeemi AS. Efficient removal of cytotoxic drugs from wastewater by single-stage combined photocatalysis-algae treatment process. ENVIRONMENTAL TECHNOLOGY 2021; 42:3178-3190. [PMID: 32045560 DOI: 10.1080/09593330.2020.1725139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
In this study, the efficiency of a single-stage combined photocatalysis-algae treatment process in the removal of the anticancer drug, flutamide (FLU), from aqueous solution has been evaluated. The removal abilities of the individual blue-green alga (Anabaena sp.), nano-sized MoS2 photocatalyst under visible light irradiation, and combined photocatalysis-algal treatment process were investigated. Using response surface optimization technique, 85.1% of the FLU removal was achieved at the optimum conditions of pH 7.0, nanophotocatalyst dose of 15.23 mg and 12.12 mL of the alga in 30 min. Compared to the individual biological and chemical treatment methods, a higher FLU removal efficiency was obtained at a shorter reaction time by using the combined treatment system. Kinetics study showed that FLU removal by the algal treatment, photocatalysis, and the combined processes followed the modified Freundlich, pseudo-first-order, and nonlinear sigmoidal kinetic models, respectively. The results indicate that a synergistic effect appears when algal treatment process and photocatalysis are performed simultaneously. The novel combined system is a low-cost and efficient microalgae-based technology for the removal of cytotoxic compounds from wastewaters.
Collapse
Affiliation(s)
- Farnaz Kouchakpour
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
119
|
Foletto VS, da Rosa TF, Serafin MB, Bottega A, Hörner R. Repositioning of non-antibiotic drugs as an alternative to microbial resistance: a systematic review. Int J Antimicrob Agents 2021; 58:106380. [PMID: 34166776 DOI: 10.1016/j.ijantimicag.2021.106380] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/10/2021] [Accepted: 06/10/2021] [Indexed: 01/19/2023]
Abstract
The global spread of microbial resistance coupled with high costs and slow pace in the discovery of a new antibiotic have made drug repositioning an attractive and promising alternative in the treatment of infections caused by multidrug resistant (MDR) microorganisms. The reuse involves the production of compounds with lower costs and development time, using diversified production technologies. The present systematic review aimed to present a selection of studies published in the last 20 years, which report the antimicrobial activity of non-antibiotic drugs that are candidates for repositioning, which could be used against the current microbial multidrug resistance. A search was performed in the PubMed, SciELO and Google Scholar databases using the following search strategies: [(drug repurposing) OR (drug repositioning) OR (repositioning) AND (non-antibiotic) AND (antibacterial activity) AND (antimicrobial activity)]. Overall, 112 articles were included, which explored the antimicrobial activity in antidepressants, antihypertensives, anti-inflammatories, antineoplastics, hypoglycemic agents, among other drugs. It was concluded that they have significant antimicrobial activity in vitro and in vivo, against standard strain and clinical isolates (Gram-negative and Gram-positive) and fungi. When associated with antibacterials, most of these drugs had their antibacterial activity enhanced. It was also a consensus of the studies included in this review that the presence of aromatic rings in the molecular structure contributes to antimicrobial activity. This review highlights the potential repositioning of several classes of non-antibiotic drugs as promising candidates for repositioning in the treatment of severe bacterial infections of MDR bacteria, extensively resistant (XDR) and pan-resistant (PDR) to drugs.
Collapse
Affiliation(s)
- Vitória S Foletto
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Taciéli F da Rosa
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Marissa B Serafin
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Angelita Bottega
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil
| | - Rosmari Hörner
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Farmacêuticas, Santa Maria, RS, Brasil; Universidade Federal de Santa Maria, Departamento de Análises Clínicas e Toxicológicas, Santa Maria, RS, Brasil.
| |
Collapse
|
120
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
121
|
Pawar S, Kumar K, Gupta MK, Rawal RK. Synthetic and Medicinal Perspective of Fused-Thiazoles as Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1379-1402. [PMID: 32723259 DOI: 10.2174/1871520620666200728133017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is second leading disease after cardiovascular disease. Presently, Chemotherapy, Radiotherapy and use of chemicals are some treatments available these days. Thiazole and its hybrid compounds extensively used scaffolds in drug designing and development of novel anticancer agents due to their wide pharmacological profiles. Fused thiazole scaffold containing drugs are available in market as a promising group of anticancer agents. METHODS The detailed study has been done using different database that focused on potent thiazole hybrid compounds with anticancer activity. The literature included in this review is focused on novel fused thiazole derivatives exhibiting anticancer potency in last decade. RESULTS Literature suggested that thiazoles and its fused and linked congener serve excellent pharmacological profile as an anticancer agent. Various synthetic strategies for fused thiazole are also summarized in this article. Novel thiazole and its fused congener showed anticancer activity against various cancer cell lines. INTERPRETATION Thiazole is a promising scaffold reported in literature with broad range of biological activities. This article covers the thiazole compounds fused with other carbocyclic/heterocycle including benzene, imidazole, pyridine, pyrimidine, quinoline, phenothiazine, thiopyrano, steroids, pyrrole etc. with anticancer activity from last decades. Several inhibitors for breast cancer, colon cancer, melanoma cancer, ovarian cancer, tubulin cancer etc. were reported in this review. Thus, this review will definitely aid to develop a lead for the new selective anticancer agents in future.
Collapse
Affiliation(s)
- Swati Pawar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| | - Kapil Kumar
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana-509301, India
| | - Manish K Gupta
- SGT College of Pharmacy, SGT University, Gurugram-Badli Road, Gurugram-122505, Haryana, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| |
Collapse
|
122
|
Synthesis, Spectroscopic, and Theoretical Study of Copper and Cobalt Complexes with Dacarbazine. MATERIALS 2021; 14:ma14123274. [PMID: 34199318 PMCID: PMC8231934 DOI: 10.3390/ma14123274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Dacarbazine (DAC) 5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide is an imidazole-carboxamide derivative that is structurally related to purines. DAC belongs to the triazene compounds, which are a group of alkylating agents with antitumor and mutagenic properties. DAC is a non-cell cycle specific drug, active in all phases of the cellular cycle. In the frame of this work the 3d metal complexes (cobalt and copper) with dacarbazine were synthesized. Their spectroscopic properties by the use of FT-IR, FT-Raman, and 1HNMR were studied. The structures of dacarbazine and its complexes with copper(II) and cobalt(II) were calculated using DFT methods. The effect of metals on the electronic charge distribution of dacarbazine was discussed on the basis of calculated NBO atomic charges. The reactivity of metal complexes in relation to ligand alone was estimated on the basis of calculated energy of HOMO and LUMO orbitals. The aromaticity of the imidazole ring in dacarbazine and the complexes were compared (on the basis of calculated geometric indices of aromaticity). Thermal stability of the investigated 3d-metal complexes with dacarbazine and the products of their thermal decomposition were analyzed.
Collapse
|
123
|
Wang J, Han S, Zhang Z, Wang J, Zhang G. Preparation and Performance of Chemotherapy Drug-Loaded Graphene Oxide-Based Nanosheets That Target Ovarian Cancer Cells via Folate Receptor Mediation. J Biomed Nanotechnol 2021; 17:960-970. [PMID: 34082881 DOI: 10.1166/jbn.2021.3080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Graphene oxide (GO) is one of the most popular nanomaterials that widely used to achieve effective cancer treatment. In this study, a novel, folic acid-decorated graphene oxide (FA-GO)-mediated drug delivery system was synthesized by loading the chemotherapy drug cisplatin (CDDP) or paclitaxel (PTX) to the large surface area of GO for ovarian cancer target therapy. In vitro study showed that the therapeutic effects of FA-GO-CDDP or FA-GO-PTX were increased with folate-binding protein (FBP) expression levels. The GO-CDDP or GO-PTX modified with FA enhanced cancer cell death by promoting DNA damage, ROS production, and apoptotic pathway activation. In vivo anticancer study demonstrated that FA-GO-CDDP nanosheets showed excellent therapeutic performance and attenuated the body weight loss evoked by CDDP treatment. Our results indicate that the chemotherapy agent-loaded FA-GO nanosheets have high potential therapeutic effects against FBP high expressing ovarian cancer.
Collapse
Affiliation(s)
- Jing Wang
- Harbin Medical University, Harbin, 150001, China
| | - Shiyu Han
- Harbin Medical University, Harbin, 150001, China
| | - Zhanteng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiao Wang
- School of Automation, Central South University, Changsha 410083, China
| | | |
Collapse
|
124
|
Ramezani-Aliakbari M, Varshosaz J, Sadeghi-Aliabadi H, Hassanzadeh F, Rostami M. Biotin-Targeted Nanomicellar Formulation of an Anderson-Type Polyoxomolybdate: Synthesis and In Vitro Cytotoxicity Evaluations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6475-6489. [PMID: 34010005 DOI: 10.1021/acs.langmuir.1c00623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study is aimed at developing a micellar carrier for an Anderson-type manganese polyoxomolybdate (TRIS-MnPOMo) to improve the potency and reduce the general toxicity. The biotin-targeted stearic acid-polyethylene glycol (SPB) polymeric conjugate was selected for the first time as a micelle-forming basis for the delivery of TRIS-MnPOMo to breast cancer cells. The cytotoxicity of TRIS-MnPOMo and its nanomicellar form (TRIS-MnPOMo@SPB) was evaluated against MCF-7, MDA-MB-231 (breast cancer cell lines), and HUVEC (normal cell line) in vitro using the MTT assay. The quantity of cellular uptake and apoptosis level were studied properly using standard methods. The hydrodynamic size, zeta potential, and polydispersity index of the prepared micelles were 140 nm, -15.6 mV, and 0.16, respectively. The critical micelle concentration was about 30 μg/mL, which supports the colloidal stability of the micellar dispersion. The entrapment efficiency was interestingly high (about 82%), and a pH-responsive release of TRIS-MnPOMo was successfully achieved. The micellar form showed better cytotoxicity than the free TRIS-MnPOMo on cancer cells without any significant heme and normal cell toxicity. Biotin-targeted nanomicelles internalized into the MDA-MB-231 cells interestingly better than nontargeted micelles and TRIS-MnPOMo, most probably via the endocytosis pathway. Furthermore, at the same concentration, micelles remarkably increased the level of induced apoptosis in MDA-MB-231 cells. In conclusion, TRIS-MnPOMo@SPB could profoundly improve potency, safety, and cellular uptake; these results are promising for further evaluations in vivo.
Collapse
Affiliation(s)
- Maryam Ramezani-Aliakbari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
125
|
Makki AA, Elderderi S, Massot V, Respaud R, Byrne HJ, Tauber C, Bertrand D, Mohammed E, Chourpa I, Bonnier F. In situ Analytical Quality Control of chemotherapeutic solutions in infusion bags by Raman spectroscopy. Talanta 2021; 228:122137. [PMID: 33773705 DOI: 10.1016/j.talanta.2021.122137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/04/2023]
Abstract
Analytical Quality Control (AQC) in centralised preparation units of oncology centers is a common procedure relying on the identification and quantification of the prepared chemotherapeutic solutions for safe intravenous administration to patients. Although the use of Raman spectroscopy for AQC has gained much interest, in most applications it remains coupled to a flow injection analyser (FIA) requiring withdrawal of the solution for analysis. In addition to current needs for more rapid and cost-effective analysis, the risk of exposure of clinical staff to the toxic molecules during daily handling is a serious concern to address. Raman spectroscopic analysis, for instance by Confocal Raman Microscopy (CRM), could enable direct analysis (non-invasive) for AQC directly in infusion bags. In this study, 3 anticancer drugs, methotrexate (MTX), 5-fluorouracil (5-FU) and gemcitabine (GEM) have been selected to highlight the potential of CRM for withdrawal free analysis. Solutions corresponding to the clinical range of each drug were prepared in 5% glucose and data was collected from infusion bags placed under the Raman microscope. Firstly, 100% discrimination has been obtained by Partial Least Squares Discriminant Analysis (PLS-DA) confirming that the identification of drugs can be performed. Secondly, using Partial Least Squares Regression (PLSR), quantitative analysis was performed with mean % error of predicted concentrations of respectively 3.31%, 5.54% and 8.60% for MTX, 5-FU and GEM. These results are in accordance with the 15% acceptance criteria used for the current clinical standard technique, FIA, and the Limits of Detection for all drugs were determined to be substantially lower than the administered range, thus highlighting the potential of confocal Raman spectroscopy for direct analysis of chemotherapeutic solutions.
Collapse
Affiliation(s)
- Alaa A Makki
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 20, 21111, Wad Madani, Sudan
| | - Suha Elderderi
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 20, 21111, Wad Madani, Sudan
| | - Victor Massot
- CHU de Tours, Unité de Biopharmacie Clinique Oncologique, Pharmacie, France
| | - Renaud Respaud
- Université de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Clovis Tauber
- Université de Tours, INSERM UMR 1253 IBrain, 37000, Tours, France
| | | | - Elhadi Mohammed
- University of Gezira, Faculty of Pharmacy, Medicinal and Aromatic Plants Research Center (MAPRC), P.O. Box 20, 21111, Wad Madani, Sudan
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France
| | - Franck Bonnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France.
| |
Collapse
|
126
|
Belkadi A, Kenouche S, Melkemi N, Daoud I, Djebaili R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 2021. [DOI: 10.1007/s11224-021-01796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
127
|
Yu H, Singh Badhan RK. The Pharmacokinetics of Gefitinib in a Chinese Cancer Population Group: A Virtual Clinical Trials Population Study. J Pharm Sci 2021; 110:3507-3519. [PMID: 34015277 DOI: 10.1016/j.xphs.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Gefitinib, a selective inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, is used to treat non-small-cell lung cancer (NSCLC). Lung cancer rates are high in China and are expected to increase over the next decade. CYP 2D6 intermediate metaboliser (IM) phenotypes are more prevalent in the Chinese population compared to Caucasians; the increased risk of drug-drug interactions (DDI) with chemotherapy polypharmacy may lead to different clinical pharmacokinetics outcomes for Chinese patients. This study developed and validated a virtual Chinese cancer population for the pragmatic assessment of gefitinib DDI as a victim drug in Chinese and Caucasian cancer populations. When assessing the impact of 2D6 phenotypes on bupropion mediated CYP 2D6 DDI in Chinese cancer population, we found that AUC increased by at least 60% in extensive metabolizers (EM) and 30% in IM. As a result, fmCYP2D6 was reduced by 15% in IM in the presence of bupropion, translating into > 70% of EM subjects and > 48% of IM subjects with trough concentrations at steady state (Ctrough,ss) below the gefitinib target trough level. The PBPK model predicted that a 500 mg once daily dose in both EM and IM subjects successfully reduced the percent of subjects below the Ctrough,ss. Such changes in Ctrough,ss warrant further investigation and highlight the ability of pharmacokinetic modelling to investigate populations that may be difficult to recruit for traditional clinical studies.
Collapse
Affiliation(s)
- He Yu
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Raj K Singh Badhan
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
128
|
El Orche A, Adade CA, Mefetah H, Cheikh A, Karrouchi K, El Karbane M, Bouatia M. Chemometric Analysis of UV-Visible Spectral Fingerprints for the Discrimination and Quantification of Clinical Anthracycline Drug Preparation Used in Oncology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5580102. [PMID: 34041297 PMCID: PMC8121585 DOI: 10.1155/2021/5580102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
In clinical treatment, the analytical quality assessment of the delivery of chemotherapeutic preparations is required to guarantee the patient's safety regarding the dose and most importantly the appropriate anticancer drug. On its own, the development of rapid analytical methods allowing both qualitative and quantitative control of the formulation of prepared solutions could significantly enhance the hospital's workflow, reducing costs, and potentially providing optimal patient care. UV-visible spectroscopy is a nondestructive, fast, and economical technique for molecular characterization of samples. A discrimination and quantification study of three chemotherapeutic drugs doxorubicin, daunorubicin, and epirubicin was conducted, using clinically relevant concentration ranges prepared in 0.9% NaCl solutions. The application of the partial least square discriminant analysis PLS-DA method on the UV-visible spectral data shows a perfect discrimination of the three drugs with a sensitivity and specificity of 100%. The use of partial least square regression PLS shows high quantification performance of these molecules in solution represented by the low value of root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSCECV) on the one hand and the high value of R-square on the other hand. This study demonstrated the viability of UV-visible fingerprinting (routine approach) coupled with chemometric tools for the classification and quantification of chemotherapeutic drugs during clinical preparation.
Collapse
Affiliation(s)
- Aimen El Orche
- Laboratory of Chemical Processes and Applied Materials, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Casimir Adade Adade
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hafid Mefetah
- Rabat Pediatrics Hospital, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Amine Cheikh
- Departement of Pharmacy, Faculty of Pharmacy, Abulcasis University, Rabat, Morocco
| | - Khalid Karrouchi
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Miloud El Karbane
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mustapha Bouatia
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
129
|
Kelbert M, Pereira CS, Daronch NA, Cesca K, Michels C, de Oliveira D, Soares HM. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124520. [PMID: 33239208 DOI: 10.1016/j.jhazmat.2020.124520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The degradation of an anticancer drug by laccase was investigated for the first time, bringing a new approach to treat these hazardous substances through the direct enzymatic application. Degradations of doxorubicin by laccase were performed in different enzymatic concentrations, pH values and temperatures through kinetic studies. The highest enzymatic degradation of doxorubicin was achieved at pH 7 and 30 ºC, which resembles effluent characteristics from wastewater treatment plants. Assays were carried out in different doxorubicin concentrations to comprehend the enzymatic kinetics of degradation. Michaelis-Menten kinetic parameters obtained were maximum velocity obtained (Vmax) of 702.8 µgDOX h-1 L-1 and Michaelis-Menten constant (KM) of 4.05 µM, which showed a good affinity for the substrate. The toxicity was evaluated against L-929 cell line, and the degraded doxorubicin solution did not show a reduction in cell viability in the concentration of 250 µg L-1. In contrast, the doxorubicin shows a reduction of 27% in cell viability. Furthermore, in the highest tested concentration (1000 µg L-1), enzymatic degradation reduced in up 41.4% the toxicity of doxorubicin, which indicates laccase degrades doxorubicin to non-toxic compounds. In conclusion, this study provides a new application to laccase since the results showed great potential to remove anticancer drugs from effluents.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
130
|
Nguyen THP, Kumar VB, Ponnusamy VK, Mai TTT, Nhat PT, Brindhadevi K, Pugazhendhi A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
131
|
Lefebvre-Raine M, Paquet N, Triffault-Bouchet G, Langlois VS. Embryotoxicity of Five Cytostatics in Fathead Minnow (Pimephales promelas) Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:747-752. [PMID: 33713142 DOI: 10.1007/s00128-021-03146-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Cytostatics are compounds used in chemotherapy, known to be genotoxic, mutagenic, and teratogenic at low concentrations. The amount of cytostatic drugs prescribed increases every year as does their release into the aquatic ecosystems, which possibly is a major concern for the health of aquatic organisms. This study aimed to evaluate the putative toxicity of five cytostatics to fathead minnow (Pimephales promelas) larvae: tamoxifen, capecitabine, methotrexate, cyclophosphamide, and ifosfamide. Eggs collected post-fertilization were exposed for 6 days to a range of concentrations, including one above environmental level. At all environmental concentrations, no significant difference in mortality, hatching time, length, heart rate, and presence of malformations were found. Altogether, these cytostatics do not seem embryotoxic to fish. Although, an increased proportion of complete swim bladder were found after ifosfamide's exposure, suggesting an interaction with the thyroid axis, involved in swim bladder development. Complementary work should address other endpoints, such as behavioral changes, reproductive success, and transgenerational effects.
Collapse
Affiliation(s)
- M Lefebvre-Raine
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada
| | - N Paquet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - G Triffault-Bouchet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - V S Langlois
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada.
| |
Collapse
|
132
|
Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des 2021; 27:185-196. [PMID: 33238864 DOI: 10.2174/1381612826666201125103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via a series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional cancer treatment approaches can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. OBJECTIVE Pointing to the importance of new avenues for cancer management and P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes to develop novel medicines in cancer treatment. METHODS Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus" database up to 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. RESULTS AND DISCUSSION In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
133
|
Al-Aamri HM, Irving HR, Bradley C, Meehan-Andrews T. Intrinsic and extrinsic apoptosis responses in leukaemia cells following daunorubicin treatment. BMC Cancer 2021; 21:438. [PMID: 33879127 PMCID: PMC8059319 DOI: 10.1186/s12885-021-08167-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Daunorubicin is used clinically in the treatment of myeloma, acute lymphatic and myelocytic leukaemia. The toxic lesions caused by daunorubicin induce various modes of cell death, including apoptosis. Apoptosis is highly regulated programmed cell death that can be initiated mainly via two pathways, through death receptors (extrinsic) or involvement of the mitochondria (intrinsic). Induction of apoptosis via these pathways has been alluded following treatment with daunorubicin, but never compared in acute lymphoblastic leukaemia over a time course. METHODS This study investigated the mechanisms of daunorubicin induced apoptosis in the treatment of CCRF-CEM, MOLT-4 (acute T-lymphoblastic leukaemia) and SUP-B15 (acute B-lymphoblastic leukaemia) cells. Cells were treated with daunorubicin for 4 h, and then placed in recovery medium (without daunorubicin) for 4 h, 12 h and 24 h. Apoptotic response was analysing using annexin-V expression, caspase activity, mitochondrial membrane potential change and an array to detect 43 apoptotic proteins. RESULTS Daunorubicin induced apoptosis in all leukemic cell lines, but with different levels and duration of response. Both apoptosis levels and caspase activity increased after four hours recovery then declined in CCRF-CEM and MOLT-4 cells. However, SUP-B15 cells displayed initially comparable levels but remained elevated over the 24 h assessment period. Changes in mitochondrial membrane potential occurred in both MOLT-4 and CCRF-CEM cells but not in SUP-B15 cells. Expression of apoptotic proteins, including Bcl-2, Bax, caspase 3 and FADD, indicated that daunorubicin potentially induced both extrinsic and intrinsic apoptosis in both CCRF-CEM and MOLT-4 cells, but only extrinsic apoptosis in SUP-B15 cells. CONCLUSIONS This study describes variations in sensitivities and timing of apoptotic responses in different leukaemia cell lines. These differences could be attributed to the lack of functional p53 in coordinating the cells response following cytotoxic treatment with daunorubicin, which appears to delay apoptosis and utilises alternative signalling mechanisms that need to be further explored.
Collapse
Affiliation(s)
- Hussain Mubarak Al-Aamri
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, VIC, 3552, Australia.,Oman College of Health Sciences, PO Box 293, 620, Ruwi, Sultanate of Oman
| | - Helen R Irving
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, VIC, 3552, Australia
| | - Christopher Bradley
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, VIC, 3552, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, VIC, 3552, Australia.
| |
Collapse
|
134
|
Bagherifar R, Kiaie SH, Hatami Z, Ahmadi A, Sadeghnejad A, Baradaran B, Jafari R, Javadzadeh Y. Nanoparticle-mediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives. J Nanobiotechnology 2021; 19:110. [PMID: 33865432 PMCID: PMC8052859 DOI: 10.1186/s12951-021-00861-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Nowadays, a potent challenge in cancer treatment is considered the lack of efficacious strategy, which has not been able to significantly reduce mortality. Chemoimmunotherapy (CIT) as a promising approach in both for the first-line and relapsed therapy demonstrated particular benefit from two key gating strategies, including chemotherapy and immunotherapy to cancer therapy; therefore, the discernment of their participation and role of potential synergies in CIT approach is determinant. In this study, in addition to balancing the pros and cons of CIT with the challenges of each of two main strategies, the recent advances in the cancer CIT have been discussed. Additionally, immunotherapeutic strategies and the immunomodulation effect induced by chemotherapy, which boosts CIT have been brought up. Finally, harnessing and development of the nanoparticles, which mediated CIT have expatiated in detail.
Collapse
Affiliation(s)
- Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Kiaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armin Ahmadi
- Department of Chemical & Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147, Urmia, Iran.
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, 5166-15731, Tabriz, Iran.
| |
Collapse
|
135
|
Li Q, Ma Q, Cheng J, Zhou X, Pu W, Zhong X, Guo X. Dihydroartemisinin as a Sensitizing Agent in Cancer Therapies. Onco Targets Ther 2021; 14:2563-2573. [PMID: 33880035 PMCID: PMC8053502 DOI: 10.2147/ott.s297785] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is one of the major threats to human health. Although humans have struggled with cancer for decades, the efficacy of treatments for most tumors is still very limited. Dihydroartemisinin (DHA) is a derivative of artemisinin, a first-line antimalarial drug originally developed in China. Beyond the anti-malarial effect, DHA has also been reported to show anti-inflammatory, anti-parasitosis, and immune-modulating properties in vitro and in vivo. Furthermore, an increasing number of studies report that DHA possesses anticancer activities on a wide range of cancer types both in vitro and in vivo, as well as enhances the efficacy of chemotherapy, targeted therapy, and even radiotherapy. However, the mechanisms of DHA on different tumors differ in various ways. In this review, we intend to summarize how DHA sensitizes cancer cells to anti-cancer therapies, highlight its molecular mechanisms and pharmacological effects in vitro and in vivo as well as in current clinical trials, and discuss potential issues concerning DHA. Hopefully, more attention will be paid to DHA as a sensitizer for cancer therapy in the future.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xi Zhou
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Wenjie Pu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| |
Collapse
|
136
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
137
|
Insight into the Sorption of 5-Fluorouracil and Methotrexate onto Soil-pH, Ionic Strength, and Co-Contaminant Influence. Molecules 2021; 26:molecules26061674. [PMID: 33802784 PMCID: PMC8002423 DOI: 10.3390/molecules26061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays anticancer drugs (ADs), like other pharmaceuticals, are recognized as new emerging pollutants, meaning that they are not commonly monitored in the environment; however, they have great potential to enter the environment and cause adverse effects there. The current scientific literature highlights the problem of their presence in the aquatic environment by publishing more and more results on their analytics and ecotoxicological evaluation. In order to properly assess the risk associated with the presence of ADs in the environment, it is also necessary to investigate the processes that are important in understanding the environmental fate of these compounds. However, the state of knowledge on mobility of ADs in the environment is still very limited. Therefore, the main aim of our study was to investigate the sorption potential of two anticancer drugs, 5-fluorouracil (5-FU) and methotrexate (MTX), onto different soils. Special attention was paid to the determination of the influence of pH and ionic strength as well as presence of co-contaminants (cadmium (Cd2+) and another pharmaceutical-metoprolol (MET)) on the sorption of 5-FU and MTX onto soil. The obtained distribution coefficient values (Kd) ranged from 2.52 to 6.36 L·kg-1 and from 6.79 to 12.94 L·kg-1 for 5-FU and MTX, respectively. Investigated compounds may be classified as slightly or low mobile in the soil matrix (depending on soil). 5-FU may be recognized as more mobile in comparison to MET. It was proved that presence of other soil contaminants may strongly influence their mobility in soil structures. The investigated co-contaminant (MET) caused around 25-fold increased sorption of 5-FU, whereas diminished sorption of MTX. Moreover, the influence of environmental conditions such as pH and ionic strength on their sorption has been clearly demonstrated.
Collapse
|
138
|
Rathi B, Devanesan S, AlSalhi MS, Ranjith Singh AJ. In-vitro free radical scavenging effect and cytotoxic analysis of Black Cummins and Honey formulation. Saudi J Biol Sci 2021; 28:1576-1581. [PMID: 33732043 PMCID: PMC7938148 DOI: 10.1016/j.sjbs.2020.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The antioxidant potential and antiproliferative activity of the extracts of Nigella sativa seeds (Black Cummins) and honey formulations are to be explored. METHOD The gas chromatography-mass spectrum (GC-MS) and Thin Layer Chromatography (TLC) fingerprint of Black Cummins and Honey formulation revealed alkaloid, saponin, volatile oil, flavonoid, glycosides, sugar, and phenolic compound in the extract. GC-MS profiling of the cold extract of Nigella sativa seeds and honey formulation shows peaks for eleven fractions of compounds. Using TLC, the phenolic compounds of Nigella sativa seeds and honey formulations were separated. RESULTS The current study discovers the cytotoxic effect of black Cummins seeds and honey formulation on human ovarian cancer (PA-1) cell line as assessed by MTT assay. PA-1 cells were inhibited with the increasing concentration of Nigella sativa seeds extract and honey formulation. CONCLUSION The study validates the importance of the tested extracts in the treatment of cancer.
Collapse
Affiliation(s)
- Bharathi Rathi
- Department of Biochemistry, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | - Mohamad S. AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
139
|
Oseni BA, Azubuike CP, Okubanjo OO, Igwilo CI, Panyam J. Encapsulation of Andrographolide in poly(lactide-co-glycolide) Nanoparticles: Formulation Optimization and in vitro Efficacy Studies. Front Bioeng Biotechnol 2021; 9:639409. [PMID: 33681172 PMCID: PMC7930629 DOI: 10.3389/fbioe.2021.639409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Andrographolide is a potential chemopreventive and chemotherapeutic agent that suffers from poor aqueous solubility. Encapsulation in poly(lactide-co-glycolide) (PLGA) nanoparticles can overcome solubility issues and enable sustained release of the drug, resulting in improved therapeutic efficacy. In this study, andrographolide was encapsulated in PLGA nanoparticles via emulsion solvent evaporation technique. Effect of various formulation parameters including polymer composition, polymer molecular weight, polymer to drug ratio, surfactant concentration and the organic solvent used on nanoparticle properties were investigated. A selected formulation was used to determine the effect of encapsulation in nanoparticles on andrographolide's in vitro anticancer efficacy. Nanoparticles formulated using a polymer with 85:15 lactide to glycolide ratio and ethyl acetate as the organic solvent were found to be optimal based on average hydrodynamic particle size (135 ± 4 nm) and drug loading (2.6 ± 0.6%w/w). This formulation demonstrated sustained release of andrographolide over 48 h and demonstrated significantly greater in vitro anticancer efficacy compared to free drug in a metastatic breast cancer cell line. These results suggest that additional, more in-depth efficacy studies are warranted for the nanoparticle formulation of andrographolide.
Collapse
Affiliation(s)
- Bukola A. Oseni
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Chukwuemeka P. Azubuike
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Omotunde O. Okubanjo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Cecilia I. Igwilo
- Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Lagos, Nigeria
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| |
Collapse
|
140
|
Janarny G, Gunathilake KDPP, Ranaweera KKDS. Nutraceutical potential of dietary phytochemicals in edible flowers-A review. J Food Biochem 2021; 45:e13642. [PMID: 33533514 DOI: 10.1111/jfbc.13642] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/01/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Edible flowers have been in traditional cuisine and phytotherapy for centuries. Recently, the consumption of edible flowers has increased significantly as the phytochemicals in them are known to have numerous health benefits. Information on nutraceutical potentials and health benefits of the phytochemicals available in different varieties of edible flowers and their uses are discussed. It is found that the major groups of dietary phytochemicals in edible flowers include flavonoids, phenolic acids, and anthocyanins and they are capable of exerting antioxidant, anti-inflammatory, anti-diabetic, anticancer, cardioprotective, hepatoprotective gastroprotective, and genoprotective effects. PRACTICAL APPLICATIONS: Edible flowers are good sources of phytochemicals and possessing antioxidant, anti-inflammatory properties, anticancer, anti-diabetic, and cardio-protective properties. However, many edible flowers remain unexplored and underutilized. This review gives eye openings that more in-depth investigations need to be conducted on different edible flowers and they need to be incorporated into commercialized foods and drugs or need to be used for novel nutraceutical development to deliver the potential health benefits to consumers.
Collapse
Affiliation(s)
- Ganesamoorthy Janarny
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | |
Collapse
|
141
|
Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 2021; 107:104527. [PMID: 33317839 DOI: 10.1016/j.bioorg.2020.104527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of "pyrrolidine-2,5-dione" moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with "imidazoline-2,4-dione" moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via E. Orabona, 4, 70126 Bari, Italy
| | - Natalia Yu Anisimova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Tatiana S Spirina
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Darina V Sokolova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Galina B Smirnova
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - Jun-Yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Darmstadt, Germany
| | - Vadim S Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia; Department of Biochemistry, People's Friendship University, Moscow, Russia.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy.
| | - C S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India.
| |
Collapse
|
142
|
A combined structure-based pharmacophore modeling and 3D-QSAR study on a series of N-heterocyclic scaffolds to screen novel antagonists as human DHFR inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-020-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
143
|
Rybczyńska-Tkaczyk K, Korniłłowicz-Kowalska T, Szychowski KA. Possibility to Biotransform Anthracyclines by Peroxidases Produced by Bjerkandera adusta CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity. Molecules 2021; 26:molecules26020462. [PMID: 33477273 PMCID: PMC7830877 DOI: 10.3390/molecules26020462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to evaluate the bioremoval mechanism of anthracycline antibiotics by the white-rot fungus B. adusta CCBAS 930. The activity of oxidoreductases and levels of phenolic compounds and free radicals were determined during the biotransformation of anthraquinone antibiotics: daunomycin (DNR) and doxorubicin (DOX) by B. adusta strain CCBAS 930. Moreover, phytotoxicity (Lepidium sativum L.), ecotoxicity (Vibrio fischeri), genotoxicity and cytotoxicity of anthraquinone dyes were evaluated before and after biological treatment. More than 80% and 90% of DNR and DOX were removed by biodegradation (decolorization). Initial solutions of DNR and DOX were characterized by eco-, phyto-, geno- and cytotoxicity. Despite efficient decolorization, secondary metabolites, toxic to bacteria, formed during biotransformation of anthracycline antibiotics in B. adusta CCBAS 930 cultures. DNR and DOX metabolites did not increase reactive oxygen species (ROS) production in human fibroblasts and resazurin reduction. DNR metabolites did not change caspase-3 activity.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland;
- Correspondence:
| | - Teresa Korniłłowicz-Kowalska
- Department of Environmental Microbiology, Laboratory of Mycology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland;
| | - Konrad A. Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego Street 2, 35-225 Rzeszow, Poland;
| |
Collapse
|
144
|
Huang X, Blum NT, Lin J, Shi J, Zhang C, Huang P. Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy. MATERIALS HORIZONS 2021; 8:78-101. [PMID: 34821291 DOI: 10.1039/d0mh00715c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compared to traditional drug delivery systems, DNA nanostructure-based drug delivery systems have several advantages including programmable sequences, precise size and shape, high drug payloads, excellent biocompatibility and biodegradability. To date, a wide range of chemotherapeutic drug-DNA hybrid nanostructures have been developed for anti-tumor therapy. In this review, the constructions of various DNA nanostructures for anticancer drug delivery are firstly summarized. Next, the anticancer drug loading methods for DNA nanostructures are presented. Then, the recent applications of chemotherapeutic drug-DNA hybrid nanostructures for drug delivery are highlighted. In the end, the challenges and opportunities of the chemotherapeutic drug-DNA hybrid nanostructure-based delivery system are discussed. The designs of drug-DNA hybrid systems, including the constructions of nanostructures and the strategies for drug loading, largely influence the efficiency of drug delivery. Recent studies have focused on the development of novel drug-DNA hybrid systems to acquire more precise and efficient therapy for various diseases. A systematic review of the design strategies of chemotherapeutic drug-DNA hybrid nanostructures will benefit the innovation and development of the chemotherapeutic drug-based chemotherapy in clinics.
Collapse
Affiliation(s)
- Xiangang Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | | | | | | | | | | |
Collapse
|
145
|
Vimala K, Kannan S. Phyto-drug conjugated nanomaterials enhance apoptotic activity in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:275-305. [PMID: 33931143 DOI: 10.1016/bs.apcsb.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cancer continues to be one of the leading causes of death worldwide and is a major obstacle to increased life expectancy. However, survival has not improved significantly with average cancer standard treatment strategies over the past few decades; survival rates have remained low, with tumor metastasis, adverse drug reactions, and drug resistance. Therefore, substitute therapies are essential to treat this dreadful disease. Recently, research has shown that natural compounds in plants, such as phytochemicals, are extensively exploited for their anticarcinogenic potential. Phytochemicals may show their anticancer activity different cancer cell markers may alter molecular pathways, which promote in cellular events such as cell cycle arrest and apoptosis, regulate antioxidant status, cell proliferation, migration, invasion and toxicity. Although their outstanding anticancer activity, however, their pharmacological budding is hindered by their low aqueous solubility, poor bioavailability, and poor penetration into cells, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues. In this situation, nanotechnology has developed novel inventions to increase the potential use of phytochemicals in anticancer therapy. Nanoparticles can improve the solubility and stability of phytochemicals, specific tumor cell/tissue targeting, enhanced cellular uptake, reduction of phytochemicals. Therapeutic doses of phytochemicals for a long time. Additional benefits include better blood stability, multifunctional design of nanocarriers and improvement in countermeasures. This review summarizes the advances in the use of nanoparticles for the treatment of cancer, as well as various nano-drug deliveries of phytochemicals against cancer. In particular, we are introducing several applications of nanoparticles in combination with phyto-drug for the treatment of cancer.
Collapse
Affiliation(s)
- Karuppaiya Vimala
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
146
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
147
|
Abdel-Sattar E, Abdel-Monem AR, Hegazy MEF, El-Halawany AM, Afifi SM. Genetic diversity, LC-ESI-MS chemical profile and in vivo antitumor activity of three Egyptian soybean cultivars. Nat Prod Res 2021; 35:135-139. [PMID: 31135193 DOI: 10.1080/14786419.2019.1610955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 10/26/2022]
Abstract
Soybean (Glycine max L.) is one of the most important and widely consumed food plants worldwide. The objective of this study was to investigate the metabolite profiling of three Egyptian soybean cultivars (Giza 22, Giza 35 and Giza 111) and their in vivo antitumor effect. Random amplified polymorphic DNA (RAPD) analysis developed polymorphism level of 75% in 72 distinct markers. Applying LC-ESI-MS analysis, twenty-nine metabolites were recognized from the 80% methanol extract of all cultivars. In vivo antitumor activity of the 80% methanolic extract against solid Ehrlich ascites carcinoma (EAC) inoculated in mice model, showed a significant diminishing in tumor volume and reduced Glutathione (rGSH) and a significant increase in malondialdehyde (MDA) which was supported by histopathological examination. Among the studied cultivars, Giza 22 cultivar contained the highest total phenolic content (TPC) that may contribute to its impressive antioxidant capacity and antitumor activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/metabolism
- Carcinoma, Ehrlich Tumor/pathology
- Chromatography, Liquid
- Drug Screening Assays, Antitumor
- Egypt
- Glutathione/metabolism
- Male
- Malondialdehyde/metabolism
- Mice
- Phenols/analysis
- Plant Extracts/chemistry
- Polymorphism, Genetic
- Random Amplified Polymorphic DNA Technique
- Glycine max/chemistry
- Glycine max/genetics
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Essam Abdel-Sattar
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ali M El-Halawany
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif Mahmoud Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
148
|
Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal Biochem 2020; 610:113891. [PMID: 32763305 DOI: 10.1016/j.ab.2020.113891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023]
Abstract
Pharmacokinetic (PK) study of anticancer drugs in cancer patients is highly crucial for dose selection and dosing intervals in clinical applications. Once an anticancer drug is administered, it undergoes various metabolic pathways; to determine these pathways, it is necessary to follow the administered drug in biological samples via different analytical methods. In addition, multi-drug quantification methods in patients undergoing multi-drug regimens of cancer therapy can have several benefits, such as reduced sampling time and analysis costs. In order to collect and categorize these studies, we conducted a systematic review of HPLC methods reported for the analysis of anticancer drugs in biological samples. A systematic search was performed on PubMed Medline, Scopus, and Web of Science databases, and 116 studies were included. In summary of included studies, when the objective of a method was to quantify a single drug, MS, or UV detectors were utilized equivalently. On the other hand, in methods with the aim of quantifying drug and metabolite(s) in a single run, MS detectors were the most utilized. This review can provide a comprehensive insight for researchers prior to developing a quantification method and selecting a detector.
Collapse
Affiliation(s)
- Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zohreh Mirjalili
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Namini
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Chavoshy
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
149
|
Iqbal Farooqi S, Arshad N, Perveen F, Ali Channar P, Saeed A, Javed A, Hökelek T, Flörke U. Structure and surface analysis of ibuprofen-organotin conjugate: Potential anti-cancer drug candidacy of the compound is proven by in-vitro DNA binding and cytotoxicity studies. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
150
|
Synthesis, In Silico and In Vitro Assessment of New Quinazolinones as Anticancer Agents via Potential AKT Inhibition. Molecules 2020; 25:molecules25204780. [PMID: 33080996 PMCID: PMC7594071 DOI: 10.3390/molecules25204780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
A series of novel quinazolinone derivatives (2–13) was synthesized and examined for their cytotoxicity to HepG2, MCF-7, and Caco-2 in an MTT assay. Among these derivatives, compounds 4 and 9 exhibited significant cytotoxic activity against Caco-2, HepG2, and MCF-7 cancer cells. Compound 4 had more significant inhibitory effects than compound 9 on Caco-2, HepG2, and MCF-7 cell lines, with IC50 values of 23.31 ± 0.09, 53.29 ± 0.25, and 72.22 ± 0.14µM, respectively. The AKT pathway is one of human cancer’s most often deregulated signals. AKT is also overexpressed in human cancers such as glioma, lung, breast, ovarian, gastric, and pancreas. A molecular docking study was performed to analyze the inhibitory action of newly synthetic quinazolinone derivatives against Homo sapiens AKT1 protein. Molecular docking simulations were found to be in accordance with in vitro studies, and hence supported the biological activity. The results suggested that compounds 4 and 9 could be used as drug candidates for cancer therapy via its potential inhibition of AKT1 as described by docking study.
Collapse
|