101
|
Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, Bhushan A. DNA methylation directs functional maturation of pancreatic β cells. J Clin Invest 2015; 125:2851-60. [PMID: 26098213 DOI: 10.1172/jci79956] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to postprandial increases in glucose levels to prevent hyperglycemia and inhibit insulin secretion under fasting conditions to protect against hypoglycemia. β cells lack this functional capability at birth and acquire glucose-stimulated insulin secretion (GSIS) during neonatal life. Here, we have shown that during postnatal life, the de novo DNA methyltransferase DNMT3A initiates a metabolic program by repressing key genes, thereby enabling the coupling of insulin secretion to glucose levels. In a murine model, β cell-specific deletion of Dnmt3a prevented the metabolic switch, resulting in loss of GSIS. DNMT3A bound to the promoters of the genes encoding hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) - both of which regulate the metabolic switch - and knockdown of these two key DNMT3A targets restored the GSIS response in islets from animals with β cell-specific Dnmt3a deletion. Furthermore, DNA methylation-mediated repression of glucose-secretion decoupling genes to modulate GSIS was conserved in human β cells. Together, our results reveal a role for DNA methylation to direct the acquisition of pancreatic β cell function.
Collapse
|
102
|
Abdellatif AM, Ogata K, Kudo T, Xiafukaiti G, Chang YH, Katoh MC, El-Morsy SE, Oishi H, Takahashi S. Role of large MAF transcription factors in the mouse endocrine pancreas. Exp Anim 2015; 64:305-12. [PMID: 25912440 PMCID: PMC4548003 DOI: 10.1538/expanim.15-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The members of the MAF family of transcription factors are homologs of v-Maf –the
oncogenic component of the avian retrovirus AS42. The MAF family is subdivided into 2
groups, small and large MAFs. To elucidate the role of the large MAF transcription factors
in the endocrine pancreas, we analyzed large MAF gene knockout mice. It has been shown
that Mafa−/− mice develop phenotypes including abnormal islet
structure soon after birth. This study revealed that Ins1 and
Ins2 transcripts and the protein contents were significantly reduced in
Mafa−/− mice at embryonic day 18.5. In addition,
Mafa−/−;Mafb−/− mice contained
less than 10% of the insulin transcript and protein of those of wild-type mice, suggesting
that Mafa and Mafb cooperate to maintain insulin levels
at the embryonic stage. On the other hand, the number of insulin-positive cells in
Mafa−/− mice was comparable to that of wild-type mice, and
even under a Mafb-deficient background the number of insulin-positive
cells was not decreased, suggesting that Mafb plays a dominant role in
embryonic β-cell development. We also found that at 20 weeks of age
Mafa−/−;Mafb+/− mice showed a
higher fasting blood glucose level than single Mafa−/− mice.
In summary, our results indicate that Mafa is necessary for the
maintenance of normal insulin levels even in embryos and that Mafb is
important for the maintenance of fasting blood glucose levels in the
Mafa-deficient background in adults.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
van der Meulen T, Huising MO. Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 2015; 54:R103-17. [PMID: 25791577 PMCID: PMC4373662 DOI: 10.1530/jme-14-0290] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| | - Mark O Huising
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
104
|
Riley KG, Pasek RC, Maulis MF, Peek J, Thorel F, Brigstock DR, Herrera PL, Gannon M. Connective tissue growth factor modulates adult β-cell maturity and proliferation to promote β-cell regeneration in mice. Diabetes 2015; 64:1284-98. [PMID: 25392241 PMCID: PMC4375083 DOI: 10.2337/db14-1195] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA(-)) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment.
Collapse
Affiliation(s)
- Kimberly G Riley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Raymond C Pasek
- Department of Medicine, Vanderbilt University, Nashville, TN
| | | | - Jennifer Peek
- The School for Science and Math at Vanderbilt, Vanderbilt University, Nashville, TN
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - David R Brigstock
- Center for Cell and Vascular Biology, Children's Research Institute, The Ohio State University, Columbus, OH
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN Department of Medicine, Vanderbilt University, Nashville, TN Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
105
|
Nishimura W, Takahashi S, Yasuda K. MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 2015; 58:566-74. [PMID: 25500951 DOI: 10.1007/s00125-014-3464-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The plasticity of adult somatic cells allows for their dedifferentiation or conversion to different cell types, although the relevance of this to disease remains elusive. Perturbation of beta cell identity leading to dedifferentiation may be implicated in the compromised functions of beta cells in diabetes, which is a current topic of islet research. This study aims to investigate whether or not v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), a mature beta cell marker, is involved in maintaining mature beta cell phenotypes. METHODS The fate and gene expression of beta cells were analysed in Mafa knockout (KO) mice and mouse models of diabetes in which the expression of MafA was reduced in the majority of beta cells. RESULTS Loss of MafA reduced the beta to alpha cell ratio in pancreatic islets without elevating blood glucose to diabetic levels. Lineage tracing analyses showed reduced/lost expression of insulin in most beta cells, with a minority of the former beta cells converted to glucagon-expressing cells in Mafa KO mice. The upregulation of genes that are normally repressed in mature beta cells or transcription factors that are transiently expressed in endocrine progenitors was identified in Mafa KO islets as a hallmark of dedifferentiation. The compromised beta cells in db/db and multiple low-dose streptozotocin mice underwent similar dedifferentiation with expression of Mafb, which is expressed in immature beta cells. CONCLUSIONS/INTERPRETATION The maturation factor MafA is critical for the homeostasis of mature beta cells and regulates cell plasticity. The loss of MafA in beta cells leads to a deeper loss of cell identity, which is implicated in diabetes pathology.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan,
| | | | | |
Collapse
|
106
|
Gopurappilly R, Bhonde R. Transcriptional profiling and functional network analyses of islet-like clusters (ILCs) generated from pancreatic stem cells in vitro. Genomics 2015; 105:211-9. [PMID: 25622784 DOI: 10.1016/j.ygeno.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
We have earlier reported the generation of islet-like clusters (ILCs) from mesenchymal stromal cell (MSC)-like cells present in murine pancreas. Here we compare these ILCs to native primary islets by transcriptome screening. Genes were categorized into functional clusters and network analysis was done by Ingenuity Pathway Analysis (IPA). The fold changes for a selected panel of molecules were validated with quantitative real time PCR. A differential expression of 6516 genes (p-value ≤ 0.05, 1.5 fold change) with upregulated expression of numerous inflammatory and 'Epithelial to Mesenchymal Transition' molecules (EMT) was seen. A significant increase in the early β-cell marker expression in the ILCs indicated their progenitor status. Although not fully mature, ILCs offer certain advantages including the large number of easily inducible initiator MSCs. These 'naïve' cells may aid to devise protocols for generating functional islet equivalents. Moreover their maturation upon transplantation under local microenvironmental niche is highly possible.
Collapse
Affiliation(s)
| | - Ramesh Bhonde
- School of Regenerative Medicine (SORM), Manipal University, Bangalore 560065, India.
| |
Collapse
|
107
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
108
|
Nagasaki H, Katsumata T, Oishi H, Tai PH, Sekiguchi Y, Koshida R, Jung Y, Kudo T, Takahashi S. Generation of insulin-producing cells from the mouse liver using β cell-related gene transfer including Mafa and Mafb. PLoS One 2014; 9:e113022. [PMID: 25397325 PMCID: PMC4232560 DOI: 10.1371/journal.pone.0113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
Recent studies on the large Maf transcription factors have shown that Mafb and Mafa have respective and distinctive roles in β-cell development and maturation. However, whether this difference in roles is due to the timing of the gene expression (roughly, expression of Mafb before birth and of Mafa after birth) or to the specific function of each gene is unclear. Our aim was to examine the functional differences between these genes that are closely related to β cells by using an in vivo model of β-like cell generation. We monitored insulin gene transcription by measuring bioluminescence emitted from the liver of insulin promoter-luciferase transgenic (MIP-Luc-VU) mice. Adenoviral gene transfers of Pdx1/Neurod/Mafa (PDA) and Pdx1/Neurod/Mafb (PDB) combinations generated intense luminescence from the liver that lasted for more than 1 week and peaked at 3 days after transduction. The peak signal intensities of PDA and PDB were comparable. However, PDA but not PDB transfer resulted in significant bioluminescence on day 10, suggesting that Mafa has a more sustainable role in insulin gene activation than does Mafb. Both PDA and PDB transfers ameliorated the glucose levels in a streptozotocin (STZ)-induced diabetic model for up to 21 days and 7 days, respectively. Furthermore, PDA transfer induced several gene expressions necessary for glucose sensing and insulin secretion in the liver on day 9. However, a glucose tolerance test and liver perfusion experiment did not show glucose-stimulated insulin secretion from intrahepatic β-like cells. These results demonstrate that bioluminescence imaging in MIP-Luc-VU mice provides a noninvasive means of detecting β-like cells in the liver. They also show that Mafa has a markedly intense and sustained role in β-like cell production in comparison with Mafb.
Collapse
Affiliation(s)
- Haruka Nagasaki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tokio Katsumata
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (HO); (ST)
| | - Pei-Han Tai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukari Sekiguchi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryusuke Koshida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yunshin Jung
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (HO); (ST)
| |
Collapse
|
109
|
Heddad Masson M, Poisson C, Guérardel A, Mamin A, Philippe J, Gosmain Y. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion. Endocrinology 2014; 155:3781-92. [PMID: 25057789 DOI: 10.1210/en.2013-1843] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Collapse
Affiliation(s)
- Mounia Heddad Masson
- Department of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Medical School, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
110
|
Inada A, Inada O, Fujii NL, Fujishima K, Inai T, Fujii H, Sueishi K, Kurachi K. β-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology 2014; 155:3829-42. [PMID: 25057794 DOI: 10.1210/en.2014-1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously we have generated transgenic (Tg) mice developing severe diabetes early in life with a profound depletion of β-cells with β-cell-directed expression of inducible cAMP early repressor-Iγ. Only male mice continue to demonstrate hyperglycemia throughout life. To investigate this sexual dimorphism, we treated severely diabetic male Tg mice with orchiectomy (ORX) or 17β-estradiol (E2) pellet implantation alone or in combination with ORX and E2-implantation to change the circulating levels and patterns of the ratio of estradiol to androgens. In the Tg-ORX group, the blood-glucose levels decreased to a certain level within several weeks but never reached the female Tg-control level. In contrast, the Tg-ORX+E2 or Tg-E2 group showed a more rapid drop in blood glucose to the basal level with a substantial increase in β-cells, thus preventing the occurrence of severe diabetes in the male mice. The β-cells, not only within islet but also in and adjacent to ducts and scattered β-cell clusters, were strongly induced by 1 week after treatment, and the islet morphology dramatically changed. Enhanced β-cell induction in the ducts occurred concomitantly with markedly increased levels of pancreatic duodenal homeobox-1 and related transcription factors. The glucose-lowering and β-cell-increasing effects were independent of the age at which the treatment is started. These data provide evidence that the circulating level of E2 and the ratio of E2 to T greatly affect the blood glucose levels, the β-cell induction, and the islet morphology in diabetic male Tg mice. This novel mechanism offers great potential for developing strategies to increase the number of β-cells in vivo.
Collapse
Affiliation(s)
- Akari Inada
- Departments of Diabetes and Genes and Advanced Medical Initiatives (A.I., O.I., K.F.), Developmental Molecular Anatomy (T.I.), and Pathophysiological and Experimental Pathology (HY.F., K.S.), and Medical Institute of Bioregulation (K.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; and Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Nishimura W, Oishi H, Funahashi N, Fujiwara T, Takahashi S, Yasuda K. Generation and characterization of MafA-Kusabira Orange mice. Endocr J 2014; 62:37-51. [PMID: 25273397 DOI: 10.1507/endocrj.ej14-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MafA and MafB are basic leucine zipper transcription factors expressed in mature pancreatic β- and α-cells, respectively. MafA is not only an insulin gene transcription factor but is also critical for the maturation and maintenance of β-cell function, whereas MafB is expressed in immature β-cells during development and in compromised β-cells in diabetes. In this study, we developed a mouse model to easily trace the promoter activity of MafA in β-cells as a tool for studying β-cell differentiation, maturation, regeneration and function using the expression of the fluorescent protein Kusabira Orange (KOr) driven by the BAC-mafA promoter. The expression of KOr was highly restricted to β-cells in the transgenic pancreas. By crossing MafA-KOr mice with MafB(GFP/+) reporter mice, simultaneous monitoring of MafA and MafB expressions in the isolated islets was successfully performed. This system can be a useful tool for examining dynamic changes in the differentiation and function of pancreatic islets by visualizing the expressions of MafA and MafB.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Cell Differentiation
- Crosses, Genetic
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Luminescent Agents/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- MafB Transcription Factor/genetics
- MafB Transcription Factor/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organ Specificity
- Promoter Regions, Genetic
- Recombinant Proteins/metabolism
- Tissue Culture Techniques
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | | | | | |
Collapse
|
112
|
Lee SH, Piran R, Keinan E, Pinkerton A, Levine F. Induction of β-cell replication by a synthetic HNF4α antagonist. Stem Cells 2014; 31:2396-407. [PMID: 23922283 DOI: 10.1002/stem.1496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/19/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023]
Abstract
Increasing the number of β cells is critical to a definitive therapy for diabetes. Previously, we discovered potent synthetic small molecule antagonists of the nuclear receptor transcription factor HNF4α. The natural ligands of HNF4α are thought to be fatty acids. Because obesity, in which there are high circulating levels of free fatty acids, is one of the few conditions leading to β-cell hyperplasia, we tested the hypothesis that a potent HNF4α antagonist might stimulate β-cell replication. A bioavailable HNF4α antagonist was injected into normal mice and rabbits and β-cell ablated mice and the effect on β-cell replication was measured. In normal mice and rabbits, the compound induced β-cell replication and repressed the expression of multiple cyclin-dependent kinase inhibitors, including p16 that plays a critical role in suppressing β-cell replication. Interestingly, in β-cell ablated mice, the compound induced α- and δ-cell, in addition to β-cell replication, and β-cell number was substantially increased. Overall, the data presented here are consistent with a model in which the well-known effects of obesity and high fat diet on β-cell replication occur by inhibition of HNF4α. The availability of a potent synthetic HNF4α antagonist raises the possibility that this effect might be a viable route to promote significant increases in β-cell replication in diseases with reduced β-cell mass, including type I and type II diabetes.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
113
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
114
|
Vishwakarma SK, Rahamathulla S, Bardia A, Tiwari SK, Srinivas G, Raj A, Tripura C, Sandhya A, Habeeb MA, Khan AA, Pande G, Reddy KP, Reddy PY. In vitro quantitative and relative gene expression analysis of pancreatic transcription factors Pdx-1, Ngn-3, Isl-1, Pax-4, Pax-6 and Nkx-6.1 in trans-differentiated human hepatic progenitors. J Diabetes Investig 2014; 5:492-500. [PMID: 25411615 PMCID: PMC4188105 DOI: 10.1111/jdi.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
AIMS/INTRODUCTION Diabetes is a major health concern throughout the world because of its increasing prevalence in epidemic proportions. β-Cell deterioration in the pancreas is a crucial factor for the progression of diabetes mellitus. Therefore, the restoration of β-cell mass and its function is of vital importance for the development of effective therapeutic strategies and most accessible cell sources for the treatment of diabetes mellitus. MATERIALS AND METHODS Human fetuses (12-20 weeks gestation age) were used to isolate human hepatic progenitor cells (hHPCs) from fetal liver using a two-step collagenase digestion method. Epithelial cell adhesion molecule-positive (EpCAM+ve)-enriched hHPCs were cultured in vitro and induced with 5-30 mmol/L concentration of glucose for 0-32 h. Pdx-1 expression and insulin secretion was analyzed using immunophenotypic and chemifluorescence assays, respectively. Relative gene expression was quantified in induced hHPCs, and compared with uninduced and pancreatic cells to identify the activated transcription factors (Pdx-1, Ngn-3, Isl-1, Pax-4, Pax-6 and Nkx-6.1) involved in β-cell production. RESULTS EpCAM+ve cells derived from human fetal liver showed high in vitro trans-differentiation potential towards the β-cell phenotype with 23 mmol/L glucose induction after 24 h. The transcription factors showed eminent expression in induced cells. The expression level of transcription factors was found significantly high in 23 mmol/L-induced hHPCs as compared with the uninduced cells. CONCLUSIONS The present study has shown an exciting new insight into β-cell development from hHPCs trans-differentiation. Relative quantification of gene expression in trans-differentiated cells offers vast possibility for the production of a maximum number of functionally active pancreatic β-cells for a future cure of diabetes.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Syed Rahamathulla
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Avinash Bardia
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Santosh K Tiwari
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Gunda Srinivas
- Center for Cellular and Molecular Biology (CCMB)Osmania UniversityHyderabadAndhra PradeshIndia
| | - Avinash Raj
- Center for Cellular and Molecular Biology (CCMB)Osmania UniversityHyderabadAndhra PradeshIndia
| | - Chaturvedula Tripura
- Center for Cellular and Molecular Biology (CCMB)Osmania UniversityHyderabadAndhra PradeshIndia
| | | | - Mohammed Aejaz Habeeb
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Aleem A Khan
- Center for Liver Research and Diagnostics (CLRD)Deccan College of Medical SciencesKanchanbaghHyderabadAndhra PradeshIndia
| | - Gopal Pande
- Center for Cellular and Molecular Biology (CCMB)Osmania UniversityHyderabadAndhra PradeshIndia
| | - K Pratap Reddy
- Department of ZoologyOsmania UniversityHyderabadAndhra PradeshIndia
| | | |
Collapse
|
115
|
MafA is required for postnatal proliferation of pancreatic β-cells. PLoS One 2014; 9:e104184. [PMID: 25126749 PMCID: PMC4134197 DOI: 10.1371/journal.pone.0104184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/16/2014] [Indexed: 12/05/2022] Open
Abstract
The postnatal proliferation and maturation of insulin-secreting pancreatic β-cells are critical for glucose metabolism and disease development in adults. Elucidation of the molecular mechanisms underlying these events will be beneficial to direct the differentiation of stem cells into functional β-cells. Maturation of β-cells is accompanied by increased expression of MafA, an insulin gene transcription factor. Transcriptome analysis of MafA knockout islets revealed MafA is required for the expression of several molecules critical for β-cell function, including Glut2, ZnT8, Granuphilin, Vdr, Pcsk1 and Urocortin 3, as well as Prolactin receptor (Prlr) and its downstream target Cyclin D2 (Ccnd2). Inhibition of MafA expression in mouse islets or β-cell lines resulted in reduced expression of Prlr and Ccnd2, and MafA transactivated the Prlr promoter. Stimulation of β-cells by prolactin resulted in the phosphorylation and translocation of Stat5B and an increased nuclear pool of Ccnd2 via Prlr and Jak2. Consistent with these results, the loss of MafA resulted in impaired proliferation of β-cells at 4 weeks of age. These results suggest that MafA regulates the postnatal proliferation of β-cells via prolactin signaling.
Collapse
|
116
|
Hang Y, Yamamoto T, Benninger RKP, Brissova M, Guo M, Bush W, Piston DW, Powers AC, Magnuson M, Thurmond DC, Stein R. The MafA transcription factor becomes essential to islet β-cells soon after birth. Diabetes 2014; 63:1994-2005. [PMID: 24520122 PMCID: PMC4030115 DOI: 10.2337/db13-1001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large Maf transcription factors, MafA and MafB, are expressed with distinct spatial-temporal patterns in rodent islet cells. Analysis of Mafa(-/-) and pancreas-specific Mafa(∆panc) deletion mutant mice demonstrated a primary role for MafA in adult β-cell activity, different from the embryonic importance of MafB. Our interests here were to precisely define when MafA became functionally significant to β-cells, to determine how this was affected by the brief period of postnatal MafB production, and to identify genes regulated by MafA during this period. We found that islet cell organization, β-cell mass, and β-cell function were influenced by 3 weeks of age in Mafa(Δpanc) mice and compromised earlier in Mafa(Δpanc);Mafb(+/-) mice. A combination of genome-wide microarray profiling, electron microscopy, and metabolic assays were used to reveal mechanisms of MafA control. For example, β-cell replication was produced by actions on cyclin D2 regulation, while effects on granule docking affected first-phase insulin secretion. Moreover, notable differences in the genes regulated by embryonic MafB and postnatal MafA gene expression were found. These results not only clearly define why MafA is an essential transcriptional regulator of islet β-cells, but also why cell maturation involves coordinated actions with MafB.
Collapse
Affiliation(s)
- Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Tsunehiko Yamamoto
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard K P Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Will Bush
- Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN
| | - David W Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TNDivision of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TNVeterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Mark Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Debbie C Thurmond
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
117
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
118
|
Pandian GN, Taniguchi J, Sugiyama H. Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control. Clin Transl Med 2014; 3:6. [PMID: 24679123 PMCID: PMC3984496 DOI: 10.1186/2001-1326-3-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Recent scientific breakthroughs in stem cell biology suggest that a sustainable treatment approach to cure diabetes mellitus (DM) can be achieved in the near future. However, the transplantation complexities and the difficulty in obtaining the stem cells from adult cells of pancreas, liver, bone morrow and other cells is a major concern. The epoch-making strategy of transcription-factor based cellular reprogramming suggest that these barriers could be overcome, and it is possible to reprogram any cells into functional β cells. Contemporary biological and analytical techniques help us to predict the key transcription factors needed for β-cell regeneration. These β cell-specific transcription factors could be modulated with diverse reprogramming protocols. Among cellular reprogramming strategies, small molecule approach gets proclaimed to have better clinical prospects because it does not involve genetic manipulation. Several small molecules targeting certain epigenetic enzymes and/or signaling pathways have been successful in helping to induce pancreatic β-cell specification. Recently, a synthetic DNA-based small molecule triggered targeted transcriptional activation of pancreas-related genes to suggest the possibility of achieving desired cellular phenotype in a precise mode. Here, we give a brief overview of treating DM by regenerating pancreatic β-cells from various cell sources. Through a comprehensive overview of the available transcription factors, small molecules and reprogramming strategies available for pancreatic β-cell regeneration, this review compiles the current progress made towards the generation of clinically relevant insulin-producing β-cells.
Collapse
Affiliation(s)
| | | | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
119
|
Pdx1 maintains β cell identity and function by repressing an α cell program. Cell Metab 2014; 19:259-71. [PMID: 24506867 PMCID: PMC3950964 DOI: 10.1016/j.cmet.2013.12.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/10/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022]
Abstract
Pdx1 is a homeobox-containing transcription factor that plays a key role in pancreatic development and adult β cell function. In this study, we traced the fate of adult β cells after Pdx1 deletion. As expected, β-cell-specific removal of Pdx1 resulted in severe hyperglycemia within days. Surprisingly, a large fraction of Pdx1-deleted cells rapidly acquired ultrastructural and physiological features of α cells, indicating that a robust cellular reprogramming had occurred. Reprogrammed cells exhibited a global transcriptional shift that included derepression of the α cell transcription factor MafB, resulting in a transcriptional profile that closely resembled that of α cells. These findings indicate that Pdx1 acts as a master regulator of β cell fate by simultaneously activating genes essential for β cell identity and repressing those associated with α cell identity. We discuss the significance of these findings in the context of the emerging notion that loss of β cell identity contributes to the pathogenesis of type 2 diabetes.
Collapse
|
120
|
Martens GA, Motté E, Kramer G, Stangé G, Gaarn LW, Hellemans K, Nielsen JH, Aerts JM, Ling Z, Pipeleers D. Functional characteristics of neonatal rat β cells with distinct markers. J Mol Endocrinol 2014; 52:11-28. [PMID: 24049066 DOI: 10.1530/jme-13-0106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas.
Collapse
Affiliation(s)
- G A Martens
- Diabetes Research Center, Brussels Free University (VUB), Laarbeeklaan 103, B1090 Brussel, Belgium Department of Clinical Chemistry and Radioimmunology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B1090 Brussels, Belgium Department of Medical Biochemistry, Academisch Medisch Centrum, Amsterdam, The Netherlands Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Li W, Nakanishi M, Zumsteg A, Shear M, Wright C, Melton DA, Zhou Q. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife 2014; 3:e01846. [PMID: 24714494 PMCID: PMC3977343 DOI: 10.7554/elife.01846] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin(+) β-cells, glucagon(+) α-cells, and somatostatin(+) δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001.
Collapse
Affiliation(s)
- Weida Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Mio Nakanishi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
- Stem Cell and Cancer Research Institute, McMaster University, Ontario, Canada
| | - Adrian Zumsteg
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Matthew Shear
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Christopher Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
122
|
Hamze Z, Vercherat C, Bernigaud-Lacheretz A, Bazzi W, Bonnavion R, Lu J, Calender A, Pouponnot C, Bertolino P, Roche C, Stein R, Scoazec JY, Zhang CX, Cordier-Bussat M. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma. Endocr Relat Cancer 2013; 20:833-48. [PMID: 24157940 PMCID: PMC3841063 DOI: 10.1530/erc-13-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The protein MENIN is the product of the multiple endocrine neoplasia type I (MEN1) gene. Altered MENIN expression is one of the few events that are clearly associated with foregut neuroendocrine tumours (NETs), classical oncogenes or tumour suppressors being not involved. One of the current challenges is to understand how alteration of MENIN expression contributes to the development of these tumours. We hypothesised that MENIN might regulate factors maintaining endocrine-differentiated functions. We chose the insulinoma model, a paradigmatic example of well-differentiated pancreatic NETs, to study whether MENIN interferes with the expression of v-MAF musculoaponeurotic fibrosarcoma oncogene homologue A (MAFA), a master glucose-dependent transcription factor in differentiated β-cells. Immunohistochemical analysis of a series of human insulinomas revealed a correlated decrease in both MENIN and MAFA. Decreased MAFA expression resulting from targeted Men1 ablation was also consistently observed in mouse insulinomas. In vitro analyses using insulinoma cell lines showed that MENIN regulated MAFA protein and mRNA levels, and bound to Mafa promoter sequences. MENIN knockdown concomitantly decreased mRNA expression of both Mafa and β-cell differentiation markers (Ins1/2, Gck, Slc2a2 and Pdx1) and, in parallel, increased the proliferation rate of tumours as measured by bromodeoxyuridine incorporation. Interestingly, MAFA knockdown alone also increased proliferation rate but did not affect the expression of candidate proliferation genes regulated by MENIN. Finally, MENIN variants with missense mutations detected in patients with MEN1 lost the WT MENIN properties to regulate MAFA. Together, our findings unveil a previously unsuspected MENIN/MAFA connection regarding control of the β-cell differentiation/proliferation balance, which could contribute to tumorigenesis.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Cell Differentiation
- Cell Proliferation
- Chromatin Immunoprecipitation
- Female
- Glucose/pharmacology
- Humans
- Immunoenzyme Techniques
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulinoma/genetics
- Insulinoma/metabolism
- Insulinoma/pathology
- Maf Transcription Factors, Large/antagonists & inhibitors
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Male
- Mice
- Mice, Knockout
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Z Hamze
- INSERM U1052/CNRS UMR5286/Université de Lyon, Lyon1 UMR-S1052, Cancer Research Center of Lyon, Lyon F-69008, France Service de Génétique Moléculaire et Clinique, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon F-69437, France UMR 3347/CNRS, U1021/INSERM, Institut Curie, Orsay F-91405, France Service Central d'Anatomie et Cytologie Pathologiques, Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon F-69437, France Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Li Y, Xiao J, Tian H, Pei Y, Lu Y, Han X, Liu Y, Zhong W, Sun B, Fang F, Shu H. The DPP-4 inhibitor MK0626 and exercise protect islet function in early pre-diabetic kkay mice. Peptides 2013; 49:91-9. [PMID: 24025600 DOI: 10.1016/j.peptides.2013.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitor and exercise have proven to be effective treatments for diabetes. However, the effects of these interventions in compensatory hyperinsulinemia prediabetic period are unknown. The purpose of this study was to determine if these interventions have protective effects on β-cell function and preventive effects on the onset of diabetes in prediabetic kkay mice. After 2 weeks of high-fat diet feeding, we treated 7-week-old mice with a normal diet, high-fat diet, exercise training, or the DPP-4 inhibitor for 8 weeks. C57BL/6J mice served as a normal control. Kkay mice without intervention developed diabetes at week 15, but no diabetic mice were observed in the DPP-4I or exercise groups as well as the normal control group. The DPP-4I and exercise groups showed improved body weight, blood glucose level, glucose tolerance, insulin sensitivity, islet area, and islet morphology. In addition, the proportion of Ki67-positive β-cells in the treatment groups was obviously higher than that in the untreated groups. MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) expression in the treated groups increased markedly. However PDX-1 (pancreatic and duodenal homeobox-1) expression did not differ significantly among the groups. The results show that exercise and DPP-4I treatment conducted during the hyperinsulinemic prediabetic stage contribute to the maintenance of β-cell function and morphology, enhance β-cell proliferation, extend the compensatory insulin hypersecretion period, and delay disease onset. The expression of PDX-1 was not altered significantly during the early stages of diabetes. However, the reduced expression of the insulin transcription factor MafA may play an important role in the development of prediabetes.
Collapse
Affiliation(s)
- Yupeng Li
- Tianjin Medical University, Metabolic Diseases Hospital & Tianjin Endocrinology Institute, No. 66, TongAn Road, Heping District, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
He KH, Juhl K, Karadimos M, El Khattabi I, Fitzpatrick C, Bonner-Weir S, Sharma A. Differentiation of pancreatic endocrine progenitors reversibly blocked by premature induction of MafA. Dev Biol 2013; 385:2-12. [PMID: 24183936 DOI: 10.1016/j.ydbio.2013.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Specification and maturation of insulin(+) cells accompanies a transition in expression of Maf family of transcription factors. In development, MafA is expressed after specification of insulin(+) cells that are expressing another Maf factor, MafB; after birth, these insulin(+) MafA(+) cells stop MafB expression and gain glucose responsiveness. Current differentiation protocols for deriving insulin-producing β-cells from stem cells result in β-cells lacking both MafA expression and glucose-stimulated insulin secretion. So driving expression of MafA, a β-cell maturation factor in endocrine precursors could potentially generate glucose-responsive MafA(+) β cells. Using inducible transgenic mice, we characterized the final stages of β-cell differentiation and maturation with MafA pause/release experiments. We found that forcing MafA transgene expression, out of its normal developmental context, in Ngn3(+) endocrine progenitors blocked endocrine differentiation and prevented the formation of hormone(+) cells. However, this arrest was reversible such that with stopping the transgene expression, the cells resumed their differentiation to hormone(+) cells, including α-cells, indicating that the block likely occurred after progenitors had committed to a specific hormonal fate. Interestingly, this delayed resumption of endocrine differentiation resulted in a greater proportion of immature insulin(+)MafB(+) cells at P5, demonstrating that during maturation the inhibition of MafB in β-cell transitioning from insulin(+)MafB(+) to insulin(+)MafB(-) stage is regulated by cell-autonomous mechanisms. These results demonstrate the importance of proper context of initiating MafA expression on the endocrine differentiation and suggest that generating mature Insulin(+)MafA(+) β-cells will require the induction of MafA in a narrow temporal window to achieve normal endocrine differentiation.
Collapse
Affiliation(s)
- KaiHui Hu He
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Kirstine Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Michael Karadimos
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Connor Fitzpatrick
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, United States
| |
Collapse
|
125
|
Guo L, Inada A, Aguayo-Mazzucato C, Hollister-Lock J, Fujitani Y, Weir GC, Wright CV, Sharma A, Bonner-Weir S. PDX1 in ducts is not required for postnatal formation of β-cells but is necessary for their subsequent maturation. Diabetes 2013; 62:3459-68. [PMID: 23775765 PMCID: PMC3781453 DOI: 10.2337/db12-1833] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pancreatic duodenal homeobox-1 (Pdx1), a transcription factor required for pancreatic development and maintenance of β-cell function, was assessed for a possible role in postnatal β-cell formation from progenitors in the pancreatic ducts by selectively deleting Pdx1 from the ducts. Carbonic anhydrase II (CAII)(Cre);Pdx1(Fl) mice were euglycemic for the first 2 postnatal weeks but showed moderate hyperglycemia from 3 to 7 weeks of age. By 10 weeks, they had near-normal morning fed glucose levels but showed severely impaired glucose tolerance and insulin secretion. Yet the loss of Pdx1 did not result in decreased islet and β-cell mass at 4 and 10 weeks of age. Within the same pancreas, there was a mixed population of islets, with PDX1 and MAFA protein expression normal in some cells and severely diminished in others. Even at 10 weeks, islets expressed immaturity markers. Thus, we conclude that Pdx1 is not necessary for the postnatal formation of β-cells but is essential for their full maturation to glucose-responsive β-cells.
Collapse
Affiliation(s)
- Lili Guo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Akari Inada
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Diabetes and Genes, Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Cristina Aguayo-Mazzucato
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Hollister-Lock
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yoshio Fujitani
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gordon C. Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Christopher V.E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Arun Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Susan Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Corresponding author: Susan Bonner-Weir,
| |
Collapse
|
126
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
127
|
El Khattabi I, Sharma A. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. Mol Endocrinol 2013; 27:1078-90. [PMID: 23660596 PMCID: PMC3706838 DOI: 10.1210/me.2012-1346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/30/2013] [Indexed: 12/19/2022] Open
Abstract
The reduction in the expression of glucose-responsive insulin gene transcription factor MafA accompanies the development of β-cell dysfunction under oxidative stress/diabetic milieu. Humans with type 2 diabetes have reduced MafA expression, and thus preventing this reduction could overcome β-cell dysfunction and diabetes. We previously showed that p38 MAPK, but not glycogen synthase kinase 3 (GSK3), is a major regulator of MafA degradation under oxidative stress. Here, we examined the mechanisms of this degradation and whether preventing MafA degradation under oxidative stress will overcome β-cell dysfunction. We show that under oxidative and nonoxidative conditions p38 MAPK directly binds to MafA and triggers MafA degradation via ubiquitin proteasomal pathway. However, unlike nonoxidative conditions, MafA degradation under oxidative stress depended on p38 MAPK-mediated phosphorylation at threonine (T) 134, and not T57. Furthermore the expression of alanine (A) 134-MafA, but not A57-MafA, reduced the oxidative stress-mediated loss of glucose-stimulated insulin secretion, which was independent of p38 MAPK action on protein kinase D, a regulator of insulin secretion. Interestingly, the expression of proteasomal activator PA28γ that degrades GSK3-phosphorylated (including T57) MafA was reduced under oxidative stress, explaining the dominance of p38 MAPK over the GSK3 pathway in regulating MafA stability under oxidative stress. These results identify two distinct pathways mediating p38 MAPK-dependent MafA degradation under oxidative and nonoxidative conditions and show that inhibiting MafA degradation under oxidative stress ameliorates β-cell dysfunction and could lead to novel therapies for diabetes.
Collapse
Affiliation(s)
- Ilham El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
128
|
Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC, Stein R. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123:3305-16. [PMID: 23863625 DOI: 10.1172/jci65390] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes (T2DM) commonly arises from islet β cell failure and insulin resistance. Here, we examined the sensitivity of key islet-enriched transcription factors to oxidative stress, a condition associated with β cell dysfunction in both type 1 diabetes (T1DM) and T2DM. Hydrogen peroxide treatment of β cell lines induced cytoplasmic translocation of MAFA and NKX6.1. In parallel, the ability of nuclear PDX1 to bind endogenous target gene promoters was also dramatically reduced, whereas the activity of other key β cell transcriptional regulators was unaffected. MAFA levels were reduced, followed by a reduction in NKX6.1 upon development of hyperglycemia in db/db mice, a T2DM model. Transgenic expression of the glutathione peroxidase-1 antioxidant enzyme (GPX1) in db/db islet β cells restored nuclear MAFA, nuclear NKX6.1, and β cell function in vivo. Notably, the selective decrease in MAFA, NKX6.1, and PDX1 expression was found in human T2DM islets. MAFB, a MAFA-related transcription factor expressed in human β cells, was also severely compromised. We propose that MAFA, MAFB, NKX6.1, and PDX1 activity provides a gauge of islet β cell function, with loss of MAFA (and/or MAFB) representing an early indicator of β cell inactivity and the subsequent deficit of more impactful NKX6.1 (and/or PDX1) resulting in overt dysfunction associated with T2DM.
Collapse
|
129
|
Katz LS, Geras-Raaka E, Gershengorn MC. Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 2013; 22:2551-60. [PMID: 23627894 DOI: 10.1089/scd.2013.0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this article, we describe novel conditions for culture, expansion, and transdifferentiation of primary human dermal fibroblasts (hDFs) to induce expression of transcription factors (TFs) and hormones characteristic of the islets of Langerhans. We show that histones associated with the insulin gene are hyperacetylated and that insulin gene DNA is less methylated in islet cells compared to cells that do not express insulin. Using two compounds that alter the epigenetic signature of cells, romidepsin (Romi), a histone deacetylase inhibitor, and 5-Azacytidine (5-AzC), a chemical analogue of cytidine that cannot be methylated, we show that hDFs exhibit a distinctive regulation of expression of TFs involved in islet development as well as of induction of glucagon and insulin. Overexpression of Pdx1, a TF important for islet differentiation, and silencing of musculoaponeurotic fibrosarcoma oncogene homolog B, a TF that is expressed in mature glucagon-producing cells, result in induction of insulin to a higher level compared to Romi and 5-AzC alone. The cells obtained from this protocol exhibit glucose-stimulated insulin secretion and lower blood glucose levels of diabetic mice. These data show that fully differentiated nonislet-derived cells could be made to transdifferentiate to islet-like cells and that combining epigenetic modulation with TF modulation leads to enhanced insulin expression.
Collapse
Affiliation(s)
- Liora S Katz
- Laboratory of Endocrinology and Receptor Biology, NIDDK, NIH, Bethesda, Maryland 20892-8029, USA
| | | | | |
Collapse
|
130
|
DWORSCHAK GABRIELC, DRAAKEN MARKUS, HILGER ALINA, BORN MARK, REUTTER HEIKO, LUDWIG MICHAEL. An incompletely penetrant novel MAFB (p.Ser56Phe) variant in autosomal dominant multicentric carpotarsal osteolysis syndrome. Int J Mol Med 2013; 32:174-8. [DOI: 10.3892/ijmm.2013.1373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/16/2013] [Indexed: 11/06/2022] Open
|
131
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression programs in the pancreas; however, little is known about the role of miRNA pathways during endocrine cell specification and maturation during neonatal life. In this study, we deleted Dicer1, an essential RNase for active miRNAs biogenesis, specifically from NGN3+ endocrine progenitor cells. We found that deletion of Dicer1 in endocrine progenitors did not affect the specification of hormone-expressing endocrine cells. However, the islets in the mutant mice in the neonatal period exhibited morphological defects in organization and loss of hormone expression, and the mutant mice subsequently developed diabetes. Dicer1-deficient β-cells lost insulin expression while maintaining the expression of β-cell transcription factors such as Pdx1 and Nkx6.1 early in the postnatal period. Surprisingly, transcriptional profiling showed that that the Dicer1-deficient endocrine cells expressed neuronal genes before the onset of diabetes. The derepression of neuronal genes was associated with a loss in binding of the neuronal transcriptional repressor RE-1-silencing transcription factor to its targets in Dicer1-deficient β-cells. These studies suggest that miRNAs play a critical role in suppressing neuronal genes during the maturation of endocrine cells.
Collapse
Affiliation(s)
- Murtaza S. Kanji
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Interdepartmental Ph.D. Program (MBIDP), University of California, Los Angeles, Los Angeles, California
| | - Martin G. Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Anil Bhushan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Molecular Biology Interdepartmental Ph.D. Program (MBIDP), University of California, Los Angeles, Los Angeles, California
- Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California
- Corresponding author: Anil Bhushan,
| |
Collapse
|
132
|
Yamato E, Tashiro F, Miyazaki JI. Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6. PLoS One 2013; 8:e61211. [PMID: 23560115 PMCID: PMC3616144 DOI: 10.1371/journal.pone.0061211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/06/2013] [Indexed: 12/19/2022] Open
Abstract
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic islet β cells is important for understanding and treating diabetes. MIN6 cells, a transformed β-cell line derived from a mouse insulinoma, retain GSIS and are a popular in vitro model for insulin secretion. However, in long-term culture, MIN6 cells' GSIS capacity is lost. We previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as “responder cells.” In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (“responder genes”), but extremely low expression in the Pr-HP cells. Another group of genes (“non-responder genes”) was expressed at high levels in the Pr-HP cells, but at extremely low levels in the responder cells. Some of the responder genes were involved in secretory machinery or glucose metabolism, including Chrebp, Scgn, and Syt7. Among the non-responder genes were Car2, Maf, and Gcg, which are not normally expressed in islet β cells. Interestingly, we found a disproportionate number of known imprinted genes among the responder genes. Our findings suggest that the global expression profiling of GSIS-competent and GSIS-incompetent MIN6 cells will help delineate the gene regulatory networks for insulin secretion.
Collapse
Affiliation(s)
- Eiji Yamato
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (EY); (JM)
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (EY); (JM)
| |
Collapse
|
133
|
Haase TN, Rasmussen M, Jaksch CAM, Gaarn LW, Petersen CK, Billestrup N, Nielsen JH. Growth arrest specific protein (GAS) 6: a role in the regulation of proliferation and functional capacity of the perinatal rat beta cell. Diabetologia 2013; 56:763-73. [PMID: 23334461 DOI: 10.1007/s00125-012-2821-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/13/2012] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Maternal low-protein (LP) diet during gestation results in a reduced beta cell mass in the offspring at birth and this may hamper the ability to adapt to high-energy food and sedentary lifestyle later in life. To investigate the biology behind the LP-offspring phenotype, this study aimed to identify differentially expressed genes in the pancreas and their potential role in the fetal programming. METHODS Wistar rats were given either an LP diet or normal-chow (NC) diet during gestation and differentially expressed genes in the offspring around the time of birth were identified using RNA microarray and quantitative PCR. The role of a differentially expressed gene, growth arrest specific protein 6 (GAS6), was evaluated in vitro using neonatal rat islets. RESULTS The mRNA level of Gas6, known to be mitogenic in other tissues, was reduced in LP offspring. The mRNA content of Mafa was increased in LP offspring suggesting an early maturation of beta cells. When applied in vitro, GAS6 increased proliferation of neonatal pancreatic beta cells, while reducing glucose-stimulated insulin secretion without changing the total insulin content of the islets. In addition, GAS6 decreased the mRNA content of Mafa. CONCLUSIONS/INTERPRETATION We propose a role for GAS6 in the regulation of pancreatic beta cells in the critical period around the time of birth. Our results support the hypothesis that the reduced beta cell mass seen in LP offspring is caused by a change in the intra-uterine environment that favours premature maturation of the beta cells.
Collapse
Affiliation(s)
- T N Haase
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3b, Building 6.5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
134
|
Chen AE, Borowiak M, Sherwood RI, Kweudjeu A, Melton DA. Functional evaluation of ES cell-derived endodermal populations reveals differences between Nodal and Activin A-guided differentiation. Development 2013; 140:675-86. [PMID: 23293299 DOI: 10.1242/dev.085431] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Embryonic stem (ES) cells hold great promise with respect to their potential to be differentiated into desired cell types. Of interest are organs derived from the definitive endoderm, such as the pancreas and liver, and animal studies have revealed an essential role for Nodal in development of the definitive endoderm. Activin A is a related TGFβ member that acts through many of the same downstream signaling effectors as Nodal and is thought to mimic Nodal activity. Detailed characterization of ES cell-derived endodermal cell types by gene expression analysis in vitro and functional analysis in vivo reveal that, despite their similarity in gene expression, Nodal and Activin-derived endodermal cells exhibit a distinct difference in functional competence following transplantation into the developing mouse embryo. Pdx1-expressing cells arising from the respective endoderm populations exhibit extended differences in their competence to mature into insulin/c-peptide-expressing cells in vivo. Our findings underscore the importance of functional cell-type evaluation during stepwise differentiation of stem cells.
Collapse
Affiliation(s)
- Alice E Chen
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
135
|
Hickey RD, Galivo F, Schug J, Brehm MA, Haft A, Wang Y, Benedetti E, Gu G, Magnuson MA, Shultz LD, Lagasse E, Greiner DL, Kaestner KH, Grompe M. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Res 2013; 11:503-15. [PMID: 23562832 DOI: 10.1016/j.scr.2013.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/01/2013] [Accepted: 02/09/2013] [Indexed: 01/19/2023] Open
Abstract
Cell replacement is an emerging therapy for type 1 diabetes. Pluripotent stem cells have received a lot of attention as a potential source of transplantable β-cells, but their ability to form teratomas poses significant risks. Here, we evaluated the potential of primary mouse gall bladder epithelial cells (GBCs) as targets for ex vivo genetic reprogramming to the β-cell fate. Conditions for robust expansion and genetic transduction of primary GBCs by adenoviral vectors were developed. Using a GFP reporter for insulin, conditions for reprogramming were then optimized. Global expression analysis by RNA-sequencing was used to quantitatively compare reprogrammed GBCs (rGBCs) to true β-cells, revealing both similarities and differences. Adenoviral-mediated expression of NEUROG3, Pdx1, and MafA in GBCs resulted in robust induction of pancreatic endocrine genes, including Ins1, Ins2, Neurod1, Nkx2-2 and Isl1. Furthermore, expression of GBC-specific genes was repressed, including Sox17 and Hes1. Reprogramming was also enhanced by addition of retinoic acid and inhibition of Notch signaling. Importantly, rGBCs were able to engraft long term in vivo and remained insulin-positive for 15weeks. We conclude that GBCs are a viable source for autologous cell replacement in diabetes, but that complete reprogramming will require further manipulations.
Collapse
Affiliation(s)
- Raymond D Hickey
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97203, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
137
|
Butler AE, Robertson RP, Hernandez R, Matveyenko AV, Gurlo T, Butler PC. Beta cell nuclear musculoaponeurotic fibrosarcoma oncogene family A (MafA) is deficient in type 2 diabetes. Diabetologia 2012; 55:2985-8. [PMID: 22847061 PMCID: PMC3556170 DOI: 10.1007/s00125-012-2666-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS The beta cell transcriptional factor musculoaponeurotic fibrosarcoma oncogene family A (MafA) regulates genes important for beta cell function. Loss of nuclear MafA has been implicated in beta cell dysfunction in animal models of type 2 diabetes. We sought to establish if nuclear MafA is less abundant in beta cell nuclei in humans with type 2 diabetes. METHODS Pancreas obtained at surgery from five non-diabetic individuals and six individuals with type 2 diabetes was immunostained for insulin, glucagon and MafA. RESULTS Beta cell nuclear MafA was markedly decreased in type 2 diabetes (1.6 ± 1.2% vs 46.3 ± 8.3%, p < 0.001). CONCLUSIONS/INTERPRETATION Beta cell nuclear MafA is markedly decreased in humans with type 2 diabetes, which may contribute to impaired beta cell dysfunction.
Collapse
Affiliation(s)
- A. E. Butler
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Veteran Avenue, 24-130 Warren Hall, Los Angeles, CA 90095-7073, USA
| | - R. P. Robertson
- Pacific Northwest Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, Departments of Medicine and Pharmacology, University of Washington, Seattle, WA, USA
| | - R. Hernandez
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Veteran Avenue, 24-130 Warren Hall, Los Angeles, CA 90095-7073, USA
| | - A. V. Matveyenko
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Veteran Avenue, 24-130 Warren Hall, Los Angeles, CA 90095-7073, USA
| | - T. Gurlo
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Veteran Avenue, 24-130 Warren Hall, Los Angeles, CA 90095-7073, USA
| | - P. C. Butler
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Veteran Avenue, 24-130 Warren Hall, Los Angeles, CA 90095-7073, USA
| |
Collapse
|
138
|
Acinar-to-ductal metaplasia induced by adenovirus-mediated pancreatic expression of Isl1. PLoS One 2012; 7:e47536. [PMID: 23077629 PMCID: PMC3471997 DOI: 10.1371/journal.pone.0047536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022] Open
Abstract
Tubular complexes (TCs) are aggregates of duct-like monolayered cells in the developing and regenerating pancreas. Recent studies showed that TCs have regenerative potential, including islet neogenesis. We previously delivered adenovirus vector (AdV) into exocrine cells of the pancreas by intra-common bile ductal (ICBD) injection, and found that AdV expressing Pdx1, a pancreas-specific transcription factor, causes TC formation and islet neogenesis. We also established RTF-Pdx1-EGFP mice, which ubiquitously express Pdx1 when tetracycline is removed from the drinking water. However, exogenous Pdx1 expression in adult RTF-Pdx1-EGFP mice did not cause any pathological changes in the pancreas during three weeks of observation after tetracycline withdrawal. To examine whether the host immune response induced by AdV was involved in TC formation, we delivered AdVs expressing pancreas-related transcription factors or an irrelevant protein into the pancreas of RTF-Pdx1-EGFP mice. Histological analyses showed that both AdV injection and Pdx1 expression are required for TC formation. We also analyzed the effects of these ICBD-injected AdVs. AdV expressing Isl1, a proendocrine transcription factor, effectively induced TC formation through acinar-to-ductal metaplasia, and exogenous Pdx1 expression facilitated this process. Considering the regenerative potential of TCs, a strategy that efficiently induces TC formation may lead to novel therapies for diabetes.
Collapse
|
139
|
Welters HJ, El Ouaamari A, Kawamori D, Meyer J, Hu J, Smith DM, Kulkarni RN. Rosiglitazone promotes PPARγ-dependent and -independent alterations in gene expression in mouse islets. Endocrinology 2012; 153:4593-9. [PMID: 22807489 PMCID: PMC3512010 DOI: 10.1210/en.2012-1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The glitazone class of insulin-sensitizing agents act, in part, by the activation of peroxisome proliferator-activated receptor (PPAR)-γ in adipocytes. However, it is unclear whether the expression of PPARγ in the islets is essential for their potential β-cell-sparing properties. To investigate the in vivo effects of rosiglitazone on β-cell biology, we used an inducible, pancreatic and duodenal homeobox-1 enhancer element-driven, Cre recombinase to knockout PPARγ expression specifically in adult β-cells (PPARgKO). Subjecting the PPARgKO mice to a chow diet led to virtually undetectable changes in glucose or insulin sensitivity, which was paralleled by minimal changes in islet gene expression. Similarly, challenging the mutant mice with a high-fat diet and treatment with rosiglitazone did not alter insulin sensitivity, glucose-stimulated insulin secretion, islet size, or proliferation in the knockout mice despite PPARγ-dependent and -independent changes in islet gene expression. These data suggest that PPARγ expression in the β-cells is unlikely to be directly essential for normal β-cell function or the insulin-sensitizing actions of rosiglitazone.
Collapse
Affiliation(s)
- Hannah J Welters
- Peninsula College of Medicine and Dentistry, University of Exeter, Exeter EX2 5DW, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
The lack or dysfunction of insulin-producing β-cells is the cause of all forms of diabetes. In vitro generation of β-cells from pluripotent stem cells for cell-replacement therapy or triggering endogenous mechanisms of β-cell repair have great potential in the field of regenerative medicine. Both approaches rely on a thorough understanding of β-cell development and homeostasis. Here, we briefly summarize the current knowledge of β-cell differentiation during pancreas development in the mouse. Furthermore, we describe how this knowledge is translated to instruct differentiation of both mouse and human pluripotent stem cells towards the β-cell lineage. Finally, we shortly summarize the current efforts to identify stem or progenitor cells in the adult pancreatic organ and to harness the endogenous regenerative potential. Understanding development and regeneration of β-cells already led to identification of molecular targets for therapy and informed on pathomechanisms of diabetes. In the future this knowledge might [corrected] lead to β-cell repair and replacement therapies.
Collapse
Affiliation(s)
- Aurelia Raducanu
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | | |
Collapse
|
141
|
Bonomi L, Brown M, Ungerleider N, Muse M, Matzuk MM, Schneyer A. Activin B regulates islet composition and islet mass but not whole body glucose homeostasis or insulin sensitivity. Am J Physiol Endocrinol Metab 2012; 303:E587-96. [PMID: 22739106 PMCID: PMC3468507 DOI: 10.1152/ajpendo.00177.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Based on the phenotype of the activin-like kinase-7 (ALK7)-null mouse, activins A and B have been proposed to play distinct roles in regulating pancreatic islet function and glucose homeostasis, with activin A acting to enhance islet function and insulin release while activin B antagonizes these actions. We therefore hypothesized that islets from activin B-null (BBKO) mice would have enhanced glucose-stimulated insulin secretion. In addition, we hypothesized that this enhanced islet function would translate into increased whole body glucose tolerance. We tested these hypotheses by analyzing glucose homeostasis, insulin secretion, and islet function in BBKO mice. No differences were observed in fasting glucose or insulin levels, glucose tolerance, or insulin sensitivity compared with weight-matched young or older males. Similarly, there were no significant differences in insulin secretion comparing islets from WT or BBKO males at either age. However, BBKO islets were more sensitive to activin A, myostatin (MSTN), and follistatin (FST) treatments, so that activin A and FST inhibited and MSTN enhanced glucose stimulated insulin secretion. While mean islet area and the distribution of islet areas were not different between the genotypes, islet mass, islet number, and the proportion of α-cells/islet were significantly reduced in BBKO islets. These results indicate that activin B does not antagonize activin A to influence whole body glucose homeostasis or β-cell function but does influence islet mass and proportion of α-cells/islet. Therefore, loss of activin B signaling alone does not account for the ALK7-null phenotype, but activin B may have important roles in modulating islet mass, islet number, and the cellular composition of islets.
Collapse
Affiliation(s)
- Lara Bonomi
- Pioneer Valley Life Science Institute, University of Massachusetts-Amherst, Springfield MA, USA
| | | | | | | | | | | |
Collapse
|
142
|
Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev Biol 2012; 371:156-69. [PMID: 22964416 DOI: 10.1016/j.ydbio.2012.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/27/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022]
Abstract
Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.
Collapse
|
143
|
Matsuoka TA. Molecular mechanism of pancreatic β-cell dysfunction under diabetic conditions. Diabetol Int 2012. [DOI: 10.1007/s13340-012-0091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
144
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
145
|
Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, Khater SM, El-Halawani SM, Ibrahim RY, Uin GS, Kloc M, Calne RY, Ghoneim MA. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 2012; 22:133-45. [PMID: 22710060 DOI: 10.3727/096368912x647162] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Harvesting, expansion, and directed differentiation of human bone marrow-derived mesenchymal stem cells (BM-MSCs) could provide an autologous source of surrogate β-cells that would alleviate the limitations of availability and/or allogenic rejection following pancreatic or islet transplantation. Bone marrow cells were obtained from three adult type 2 diabetic volunteers and three nondiabetic donors. After 3 days in culture, adherent MSCs were expanded for two passages. At passage 3, differentiation was carried out in a three-staged procedure. Cells were cultured in a glucose-rich medium containing several activation and growth factors. Cells were evaluated in vitro by flow cytometry, immunolabeling, RT-PCR, and human insulin and c-peptide release in responses to increasing glucose concentrations. One thousand cell clusters were inserted under the renal capsule of diabetic nude mice followed by monitoring of their diabetic status. At the end of differentiation, ∼5-10% of cells were immunofluorescent for insulin, c-peptide or glucagon; insulin, and c-peptide were coexpressed. Nanogold immunolabeling for electron microscopy demonstrated the presence of c-peptide in the rough endoplasmic reticulum. Insulin-producing cells (IPCs) expressed transcription factors and genes of pancreatic hormones similar to those expressed by pancreatic islets. There was a stepwise increase in human insulin and c-peptide release by IPCs in response to increasing glucose concentrations. Transplantation of IPCs into nude diabetic mice resulted in control of their diabetic status for 3 months. The sera of IPC-transplanted mice contained human insulin and c-peptide but negligible levels of mouse insulin. When the IPC-bearing kidneys were removed, rapid return of diabetic state was noted. BM-MSCs from diabetic and nondiabetic human subjects could be differentiated without genetic manipulation to form IPCs that, when transplanted, could maintain euglycemia in diabetic mice for 3 months. Optimization of the culture conditions are required to improve the yield of IPCs and their functional performance.
Collapse
|
146
|
Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 2012; 349:447-58. [PMID: 22592624 DOI: 10.1007/s00441-012-1424-6] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/25/2012] [Indexed: 12/11/2022]
Abstract
Amniotic membrane (AM) or amnion is a thin membrane on the inner side of the fetal placenta; it completely surrounds the embryo and delimits the amniotic cavity, which is filled by amniotic liquid. In recent years, the structure and function of the amnion have been investigated, particularly the pluripotent properties of AM cells, which are an attractive source for tissue transplantation. AM has anti-inflammatory, anti-bacterial, anti-viral and immunological characteristics, as well as anti-angiogenic and pro-apoptotic features. AM is a promoter of epithelialization and is a non-tumorigenic tissue and its use has no ethical problems. Because of its attractive properties, AM has been applied in several surgical procedures related to ocular surface reconstruction and the genito-urinary tract, skin, head and neck, among others. So far, the best known and most auspicious applications of AM are ocular surface reconstruction, skin applications and tissue engineering. However, AM can also be applied in oncology. In this area, AM can prevent the delivery of nutrients and oxygen to cancer cells and consequently interfere with tumour angiogenesis, growth and metastasis.
Collapse
Affiliation(s)
- A C Mamede
- Biophysics Unit, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | | | |
Collapse
|
147
|
Lima MJ, Docherty HM, Chen Y, Vallier L, Docherty K. Pancreatic transcription factors containing protein transduction domains drive mouse embryonic stem cells towards endocrine pancreas. PLoS One 2012; 7:e36481. [PMID: 22563503 PMCID: PMC3341374 DOI: 10.1371/journal.pone.0036481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Protein transduction domains (PTDs), such as the HIV1-TAT peptide, have been previously used to promote the uptake of proteins into a range of cell types, including stem cells. Here we generated pancreatic transcription factors containing PTD sequences and administered these to endoderm enriched mouse embryonic stem (ES) cells under conditions that were designed to mimic the pattern of expression of these factors in the developing pancreas. The ES cells were first cultured as embryoid bodies and treated with Activin A and Bone morphogenetic protein 4 (BMP4) to promote formation of definitive endoderm. Cells were subsequently plated as a monolayer and treated with different combinations of the modified recombinant transcription factors Pdx1 and MafA. The results demonstrate that each transcription factor was efficiently taken up by the cells, where they were localized in the nuclei. RT-qPCR was used to measure the expression levels of pancreatic markers. After the addition of Pdx1 alone for a period of five days, followed by the combination of Pdx1 and TAT-MafA in a second phase, up-regulation of insulin 1, insulin 2, Pdx1, Glut2, Pax4 and Nkx6.1 was observed. As assessed by immunocytochemistry, double positive insulin and Pdx1 cells were detected in the differentiated cultures. Although the pattern of pancreatic markers expression in these cultures was comparable to that of a mouse transformed β-cell line (MIN-6) and human islets, the expression levels of insulin observed in the differentiated ES cell cultures were several orders of magnitude lower. This suggests that, although PTD-TFs may prove useful in studying the role of exogenous TFs in the differentiation of ES cells towards islets and other pancreatic lineages, the amount of insulin generated is well below that required for therapeutically useful cells.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Yuanxiao Chen
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ludovic Vallier
- The Anne McLaren Laboratory for Regenerative Medicine, Cambridge, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
148
|
Karadimos MJ, Kapoor A, El Khattabi I, Sharma A. β-cell preservation and regeneration for diabetes treatment: where are we now? ACTA ACUST UNITED AC 2012; 2:213-222. [PMID: 23049620 DOI: 10.2217/dmt.12.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last decade, our knowledge of β-cell biology has expanded with the use of new scientific techniques and strategies. Growth factors, hormones and small molecules have been shown to enhance β-cell proliferation and function. Stem cell technology and research into the developmental biology of the pancreas have yielded new methods for in vivo and in vitro regeneration of β cells from stem cells and endogenous progenitors as well as transdifferentiation of non-β cells. Novel pharmacological approaches have been developed to preserve and enhance β-cell function. Strategies to increase expression of insulin gene transcription factors in dysfunctional and immature β cells have ameliorated these impairments. Hence, we suggest that strategies to minimize β-cell loss and to increase their function and regeneration will ultimately lead to therapy for both Type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Michael J Karadimos
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA ; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
149
|
Dai C, Brissova M, Hang Y, Thompson C, Poffenberger G, Shostak A, Chen Z, Stein R, Powers AC. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 2012; 55:707-18. [PMID: 22167125 PMCID: PMC3268985 DOI: 10.1007/s00125-011-2369-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/11/2011] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Our understanding of the transcription factors that control the development and function of rodent islet beta cells is advancing rapidly, yet less is known of the role they play in similar processes in human islets. METHODS To characterise the abundance and regulation of key proteins involved in glucose-regulated insulin secretion in human islets, we examined the expression of MAFA, MAFB, GLUT2 (also known as SLC2A2), βGK (also known as GCK) and PDX1 in isolated, highly purified human islets with an intact insulin secretory pattern. We also assessed these features in islets from two different mouse strains (C57BL/6J and FVB). RESULTS Compared with mouse islets, human islets secreted more insulin at baseline glucose (5.6 mmol/l), but less upon stimulation with high glucose (16.7 mmol/l) or high glucose plus 3-isobutyl-1-methyl-xanthine. Human islets had relatively more MAFB than PDX1 mRNA, while mouse islets had relatively more Pdx1 than Mafb mRNA. However, v-maf musculoaponeurotic fibrosarcoma oncogene homologue (MAF) B protein was found in human islet alpha and beta cells. This is unusual as this regulator is only produced in islet alpha cells in adult mice. The expression of insulin, MAFA, βGK and PDX1 was not glucose-regulated in human islets with an intact insulin secretory pattern. CONCLUSIONS/INTERPRETATION Our results suggest that human islets have a distinctive distribution and function of key regulators of the glucose-stimulated insulin secretion pathway, emphasising the urgent need to understand the processes that regulate human islet beta cell function.
Collapse
Affiliation(s)
- C. Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - M. Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - Y. Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
| | - C. Thompson
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - G. Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - A. Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - Z. Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
| | - R. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
| | - A. C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, 7435 MRBIV, Nashville, TN 37232 USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN USA
- VA Tennessee Valley Healthcare System, Nashville, TN USA
| |
Collapse
|
150
|
Du A, McCracken KW, Walp ER, Terry NA, Klein TJ, Han A, Wells JM, May CL. Arx is required for normal enteroendocrine cell development in mice and humans. Dev Biol 2012; 365:175-88. [PMID: 22387004 DOI: 10.1016/j.ydbio.2012.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
Enteroendocrine cells of the gastrointestinal (GI) tract play a central role in metabolism, digestion, satiety and lipid absorption, yet their development remains poorly understood. Here we show that Arx, a homeodomain-containing transcription factor, is required for the normal development of mouse and human enteroendocrine cells. Arx expression is detected in a subset of Neurogenin3 (Ngn3)-positive endocrine progenitors and is also found in a subset of hormone-producing cells. In mice, removal of Arx from the developing endoderm results in a decrease of enteroendocrine cell types including gastrin-, glucagon/GLP-1-, CCK-, secretin-producing cell populations and an increase of somatostatin-expressing cells. This phenotype is also observed in mice with endocrine-progenitor-specific Arx ablation suggesting that Arx is required in the progenitor for enteroendocrine cell development. In addition, depletion of human ARX in developing human intestinal tissue results in a profound deficit in expression of the enteroendocrine cell markers CCK, secretin and glucagon while expression of a pan-intestinal epithelial marker, CDX2, and other non-endocrine markers remained unchanged. Taken together, our findings uncover a novel and conserved role of Arx in mammalian endocrine cell development and provide a potential cause for the chronic diarrhea seen in both humans and mice carrying Arx mutations.
Collapse
Affiliation(s)
- Aiping Du
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|