101
|
Rowan-Hull AM, Rao R, Robertson SA, Johnson PRV. ISL-1 is induced in stomach mesenchyme in the presence of pancreatic epithelia. J Pediatr Surg 2009; 44:348-52. [PMID: 19231532 DOI: 10.1016/j.jpedsurg.2008.10.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/23/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND/PURPOSE beta-Cell replacement offers a potential cure for type 1 diabetes mellitus in children. We have previously shown that stomach mesenchyme (SM) is competent to derive islet tissue by mesenchymal-to-epithelial transition (iMET). The aim of this study was to further characterize the developmental fate of this SM in the presence of pancreatic epithelia (PE) in SM/PE recombinants. The homeobox ISL-1 was examined in these recombinants because this gene is restricted to the dorsal pancreatic mesenchyme and endocrine cells in early pancreatic development. METHODS Chick-quail recombinants of SM + PE (n = 15) and whole stomach controls (n = 8) were cultured for 7 days. In addition, organ blocks were examined after normal development at days 4 to 10 (n = 4 for each stage). Tissues were analyzed using immunochemistry against quail-specific antigen and ISL-1. RESULTS Thirteen of 15 SM + PE recombinants expressed the ISL-1 protein in cells from SM origin. Nine of 15 of these recombinants showed iMET and coexpression of insulin, and ISL-1 was recorded. CONCLUSIONS Pancreatic epithelium is able to reprogram SM to a more caudal pancreatic fate when cocultured. Islet tissue by mesenchymal-to-epithelial transition observed in recombinants showed coexpression of insulin and ISL-1. These experiments are important to identify the molecular mechanisms behind iMET for potential therapeutic use for treating children with diabetes.
Collapse
|
102
|
Abstract
The endoderm germ layer contributes to the respiratory and gastrointestinal tracts and to all of their associated organs. Over the past decade, studies in vertebrate model organisms, including frog, fish, chick, and mouse, have greatly enhanced our understanding of the molecular basis of endoderm organ development. We review this progress with a focus on early stages of endoderm organogenesis including endoderm formation, gut tube morphogenesis and patterning, and organ specification. Lastly, we discuss how developmental mechanisms that regulate endoderm organogenesis are used to direct differentiation of embryonic stem cells into specific adult cell types, which function to alleviate disease symptoms in animal models.
Collapse
Affiliation(s)
- Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229
| |
Collapse
|
103
|
Abstract
Although endodermal organs including the liver, pancreas, and intestine are of significant therapeutic interest, the mechanism by which the endoderm is divided into organ domains during embryogenesis is not well understood. To better understand this process, global gene expression profiling was performed on early endodermal organ domains. This global analysis was followed up by dynamic immunofluorescence analysis of key transcription factors, uncovering novel expression patterns as well as cell surface proteins that allow prospective isolation of specific endodermal organ domains. Additionally, a repressive interaction between Cdx2 and Sox2 was found to occur at the prospective stomach-intestine border, with the hepatic and pancreatic domains forming at this boundary, and Hlxb9 was revealed to have graded expression along the dorsal-ventral axis. These results contribute to understanding the mechanism of endodermal organogenesis and should assist efforts to replicate this process using pluripotent stem cells.
Collapse
Affiliation(s)
- Richard I Sherwood
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
104
|
Abstract
Liver and pancreas progenitors develop from endoderm cells in the embryonic foregut. Shortly after their specification, liver and pancreas progenitors rapidly acquire markedly different cellular functions and regenerative capacities. These changes are elicited by inductive signals and genetic regulatory factors that are highly conserved among vertebrates. Interest in the development and regeneration of the organs has been fueled by the intense need for hepatocytes and pancreatic beta cells in the therapeutic treatment of liver failure and type I diabetes. Studies in diverse model organisms have revealed evolutionarily conserved inductive signals and transcription factor networks that elicit the differentiation of liver and pancreatic cells and provide guidance for how to promote hepatocyte and beta cell differentiation from diverse stem and progenitor cell types.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
105
|
Zaret KS, Watts J, Xu J, Wandzioch E, Smale ST, Sekiya T. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:119-26. [PMID: 19028990 PMCID: PMC2773436 DOI: 10.1101/sqb.2008.73.040] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endoderm is a multipotent progenitor cell population in the embryo that gives rise to the liver, pancreas, and other cell types and provides paradigms for understanding cell-type specification. Studies of isolated embryo tissue cells and genetic approaches in vivo have defined fibroblast growth factor/mitogen-activated protein kinase (FGF/MAPK) and bone morphogenetic protein (BMP) signaling pathways that induce liver and pancreatic fates in the endoderm. In undifferentiated endoderm cells, the FoxA and GATA transcription factors are among the first to engage silent genes, helping to endow competence for cell-type specification. FoxA proteins can bind their target sites in highly compacted chromatin and open up the local region for other factors to bind; hence, they have been termed "pioneer factors." We recently found that FoxA proteins remain bound to chromatin in mitosis, as an epigenetic mark. In embryonic stem cells, which lack FoxA, FoxA target sites can be occupied by FoxD3, which in turn helps to maintain a local demethylation of chromatin. By these means, a cascade of Fox factors helps to endow progenitor cells with the competence to activate genes in response to tissue-inductive signals. Understanding such epigenetic mechanisms for transcriptional competence coupled with knowledge of the relevant signals for cell-type specification should greatly facilitate efforts to predictably differentiate stem cells to liver and pancreatic fates.
Collapse
Affiliation(s)
- K S Zaret
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
106
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
107
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
108
|
Morrison GM, Oikonomopoulou I, Migueles RP, Soneji S, Livigni A, Enver T, Brickman JM. Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell 2008; 3:402-15. [PMID: 18940732 DOI: 10.1016/j.stem.2008.07.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/01/2008] [Accepted: 07/22/2008] [Indexed: 01/12/2023]
Abstract
The use of embryonic stem cell (ESC) differentiation to generate functional hepatic or pancreatic progenitors and as a tool for developmental biology is limited by an inability to isolate in vitro equivalents of regionally specified anterior definitive endoderm (ADE). To address this, we devised a strategy using a fluorescent reporter gene under the transcriptional control of the anterior endoderm marker Hex alongside the definitive mesendoderm marker Cxcr4. Isolation of Hex(+)Cxcr4(+) differentiating ESCs yielded a population expressing ADE markers that both can be expanded and is competent to undergo differentiation toward liver and pancreatic fates. Hex reporter ESCs were also used to define conditions for ADE specification in serum-free adherent culture and revealed an unexpected role for FGF signaling in the generation of ADE. Our findings in defined monolayer differentiation suggest FGF signaling is an important regulator of early anterior mesendoderm differentiation rather than merely a mediator of morphogenetic movement.
Collapse
Affiliation(s)
- Gillian M Morrison
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Retinoic acid, a derivative of vitamin A, is an essential component of cell-cell signaling during vertebrate organogenesis. In early development, retinoic acid organizes the trunk by providing an instructive signal for posterior neuroectoderm and foregut endoderm and a permissive signal for trunk mesoderm differentiation. At later stages, retinoic acid contributes to the development of the eye and other organs. Recent studies suggest that retinoic acid may act primarily in a paracrine manner and provide insight into the cell-cell signaling networks that control differentiation of pluripotent cells.
Collapse
Affiliation(s)
- Gregg Duester
- Burnham Institute for Medical Research, Development and Aging Program, La Jolla, CA 92037, USA.
| |
Collapse
|
110
|
Abstract
The Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutrophil defect, and skeletal abnormalities. The molecular basis for this syndrome was recently identified as a defect in a novel nucleolar protein termed the Shwachman-Bodian-Diamond syndrome (SBDS) protein. Beyond human pathologic descriptions, there are little data addressing the role of SBDS during pancreas and granulocytes development. We hypothesize that sbds gene function is essential for pancreas and myeloid development in the zebrafish. By homology searching, we identified the zebrafish sbds ortholog and then analyzed its expression by reverse transcriptase-polymerase chain reaction and in situ hybridization. We found that the sbds gene is expressed dynamically during development. To study the function of sbds during development, we induced loss of gene function by morpholino-mediated gene knockdown. The knockdown induced a morphogenetic defect in the pancreas, altering the spatial relationship between exocrine and endocrine components. We also noted granulopoiesis defect using myeloperoxidase as a marker. We conclude that sbds function is essential for normal pancreas and myeloid development in zebrafish. These data provide novel insight into the role of the sbds gene and support using zebrafish as a model system to study sbds gene function and for evaluation of novel therapies.
Collapse
Affiliation(s)
- Narayanan Venkatasubramani
- Department of Pediatrics and Children's Research Institute, Medical College Of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
111
|
Chung WS, Stainier DYR. Intra-endodermal interactions are required for pancreatic beta cell induction. Dev Cell 2008; 14:582-93. [PMID: 18410733 PMCID: PMC2396532 DOI: 10.1016/j.devcel.2008.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/18/2007] [Accepted: 02/04/2008] [Indexed: 11/19/2022]
Abstract
The cellular origin of signals that regulate pancreatic beta cell induction is not clearly defined. Here, we investigate the seeming paradox that Hedgehog/Smoothened signaling functions during gastrulation to promote pancreatic beta cell development in zebrafish, yet has an inhibitory role during later stages of pancreas development in amniotes. Our cell transplantation experiments reveal that in zebrafish, Smoothened function is not required in beta cell precursors. At early somitogenesis stages, when the zebrafish endoderm first forms a sheet, pancreatic beta cell precursors lie closest to the midline; however, the requirement for Smoothened lies in their lateral neighbors, which ultimately give rise to the exocrine pancreas and intestine. Thus, pancreatic beta cell induction requires Smoothened function cell-nonautonomously during gastrulation, to allow subsequent intra-endodermal interactions. These results clarify the function of Hedgehog signaling in pancreas development, identify an unexpected cellular source of factors that regulate beta cell specification, and uncover complex patterning and signaling interactions within the endoderm.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biochemistry and Biophysics, and the Diabetes Center, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
112
|
Spence JR, Wells JM. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Dyn 2008; 236:3218-27. [PMID: 17973329 DOI: 10.1002/dvdy.21366] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diseases that affect endodermally derived organs such as the lungs, liver, and pancreas include cystic fibrosis, chronic hepatitis, and diabetes, respectively. Despite the prevalence of these diseases, cures remain elusive. While several promising transplantation-based therapies exist for some diseases such as Type 1 diabetes, they are currently limited by the availability of donor-derived tissues. Embryonic stem cells are a promising and renewable source of tissue for transplantation; however, directing their differentiation into specific, adult cell lineages remains a significant challenge. In this review, we will focus on one endodermally derived organ, the pancreas, and discuss how studies of embryonic pancreas development have been used as the basis for the directed, step-wise differentiation of mouse and human embryonic stem cells into pancreatic endocrine cells that are capable of rescuing Type 1 diabetes in animal models.
Collapse
Affiliation(s)
- Jason R Spence
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati Ohio 45229-3039, USA
| | | |
Collapse
|
113
|
Robertson SA, Rowan-Hull AM, Johnson PRV. The spleen--a potential source of new islets for transplantation? J Pediatr Surg 2008; 43:274-8. [PMID: 18280273 DOI: 10.1016/j.jpedsurg.2007.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Islet transplantation offers the potential to reverse diabetes soon after diagnosis and has achieved considerable success in adults. Its use in children has been limited by long-term immunosuppression requirements and donor pancreas shortages. An ideal alternative source of islets would be from autologous precursor cells. The aim of this study was to determine whether the spleen can produce insulin-producing cells (IPCs) in our established model of pancreatic development. METHODS Embryonic quail spleens (day 4.5) and chick pancreatic epithelium (day 4) were microdissected and recombined in a ratio of 1:1 (n = 12), 2:1 (n = 9) and 2:2 (n = 5). They were cultured for 7 days, sectioned, and analysed by fluorescent immunochemistry. Controls were performed to ensure clean separation. RESULTS Overall, 12 (46%) of 26 recombinants contained IPCs of splenic origin, occurring in 5 (42%) of 12 of the of 1 spleen-1 epithelium recombinants, 3 (33%) of 9 of the 2 spleen-1 epithelium recombinants, and 4 (80%) of 5 of the 2 spleen-2 epithelia recombinants. Controls were negative. CONCLUSIONS Preliminary results suggest developing avian spleens can differentiate into IPCs. Increased tissue mass enhanced the likelihood of this occurring. Mesenchyme-to-epithelia ratio did not influence this. The spleen could be an ideal autologous islet source for transplantation in children.
Collapse
Affiliation(s)
- Stuart A Robertson
- Paediatric Surgical Research Laboratory, Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom
| | | | | |
Collapse
|
114
|
PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 2008; 40:789-803. [DOI: 10.1016/j.biocel.2007.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/12/2007] [Accepted: 10/17/2007] [Indexed: 01/29/2023]
|
115
|
Millien G, Beane J, Lenburg M, Tsao PN, Lu J, Spira A, Ramirez. MI. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction. Gene Expr Patterns 2008; 8:124-39. [PMID: 18023262 PMCID: PMC2440337 DOI: 10.1016/j.modgep.2007.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 08/31/2007] [Accepted: 09/14/2007] [Indexed: 11/30/2022]
Abstract
To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.
Collapse
Affiliation(s)
- Guetchyn Millien
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jennifer Beane
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Marc Lenburg
- Depatment of Genetics and Genomics, Boston University School of Medicine, Boston, MA 02118
| | - Po-Nien Tsao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jining Lu
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Avrum Spira
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Maria I. Ramirez.
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
116
|
Spagnoli FM, Brivanlou AH. The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. Development 2007; 135:451-61. [PMID: 18094028 DOI: 10.1242/dev.008458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mechanisms underlying regional specification of distinct organ precursors within the endoderm, including the liver and pancreas, are still poorly understood. This is particularly true for stages between endoderm formation and the initiation of organogenesis. In this report, we have investigated these intermediate steps downstream of the early endodermal factor Gata5, which progressively lead to the induction of pancreatic fate. We have identified TGIF2 as a novel Gata5 target and demonstrate its function in the establishment of the pancreatic region within dorsal endoderm in Xenopus. TGIF2 acts primarily by restricting BMP signaling in the endoderm to allow pancreatic formation. Consistently, we found that blocking BMP signaling by independent means also perturbs the establishment of pancreatic identity in the endoderm. Previous findings demonstrated a crucial role for BMP signaling in determining dorsal/ventral fates in ectoderm and mesoderm. Our results now extend this trend to the endoderm and identify TGIF2 as the molecular link between dorsoventral patterning of the endoderm and pancreatic specification.
Collapse
Affiliation(s)
- Francesca M Spagnoli
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
117
|
Moore-Scott BA, Opoka R, Lin SCJ, Kordich JJ, Wells JM. Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn 2007; 236:1997-2003. [PMID: 17576135 DOI: 10.1002/dvdy.21204] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Little is known about how the endoderm germ layer is patterned along the anterior-posterior (A-P) axis before the formation of a gut tube (embryonic day [e] 7.5-8.5 in mouse), largely due to a paucity of molecular markers of endoderm. In particular, there are few genes that mark posterior domains of endoderm that give rise to the midgut and hindgut. We have identified 8 molecular markers that are expressed in discrete domains of the gastrula stage endoderm (e7.5), suggesting that a significant level of pattern exists in the endoderm before the formation of a gut tube. Three genes Tmprss2, NM_029639, and Dsp are expressed in a presumptive midgut domain overlying the node, a domain for which molecular markers have not previously been identified. Two genes, Klf5 and Epha2 are expressed in posterior endoderm associated with the primitive streak. Expression of these five genes persists in the midgut and/or hindgut at e8.5, 9.5 and 10.5, suggesting that these genes are markers of these domains throughout these stages of development. We have identified three genes Slc39a8, Amot, and Dp1l1, which are expressed in the visceral endoderm at e7.5. Starting at e9.5, Dp1l1 is expressed de novo in the liver, midgut, and hindgut. Our findings suggest that presumptive midgut and hindgut domains are being established at the molecular level by the end of gastrulation, earlier than previously thought, and emphasize the importance of endoderm patterning before the formation of the fetal gut.
Collapse
Affiliation(s)
- Billie A Moore-Scott
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
118
|
Manfroid I, Delporte F, Baudhuin A, Motte P, Neumann CJ, Voz ML, Martial JA, Peers B. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development 2007; 134:4011-21. [PMID: 17942484 DOI: 10.1242/dev.007823] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.
Collapse
Affiliation(s)
- Isabelle Manfroid
- GIGA-Research-Unité de Biologie Moléculaire et Génie Génétique, Tour B34, Université de Liège, B-4000 Sart Tilman, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 2007; 211:415-27. [PMID: 17683480 PMCID: PMC2375830 DOI: 10.1111/j.1469-7580.2007.00790.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2007] [Indexed: 01/02/2023] Open
Abstract
It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Research, Anatomy Section, University of Udine, Italy.
| | | | | |
Collapse
|
120
|
Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev 2007; 28:685-705. [PMID: 17881611 DOI: 10.1210/er.2007-0016] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreas morphogenesis and cell differentiation are highly conserved among vertebrates during fetal development. The pancreas develops through simple budlike structures on the primitive gut tube to a highly branched organ containing many specialized cell types. This review presents an overview of key molecular components and important signaling sources illustrated by an extensive three-dimensional (3D) imaging of the developing mouse pancreas at single cell resolution. The 3D documentation covers the time window between embryonic days 8.5 and 14.5 in which all the pancreatic cell types become specified and therefore includes gene expression patterns of pancreatic endocrine hormones, exocrine gene products, and essential transcription factors. The 3D perspective provides valuable insight into how a complex organ like the pancreas is formed and a perception of ventral and dorsal pancreatic growth that is otherwise difficult to uncover. We further discuss how this global analysis of the developing pancreas confirms and extends previous studies, and we envisage that this type of analysis can be instrumental for evaluating mutant phenotypes in the future.
Collapse
Affiliation(s)
- Mette Christine Jørgensen
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | |
Collapse
|
121
|
Frandsen U, Porneki AD, Floridon C, Abdallah BM, Kassem M. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochem Biophys Res Commun 2007; 362:568-74. [PMID: 17761145 DOI: 10.1016/j.bbrc.2007.07.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/30/2007] [Indexed: 11/26/2022]
Abstract
Human embryonic stem cells (hESCs) have the potential to provide alternative sources for pancreatic islet grafts. In the present study we have investigated the influence of Activin A and Activin B on the expression of the pancreas marker gene Pdx1 in hESCs differentiated as embryoid bodies (EBs). We report here that Activin B in a dose depend manner markedly up-regulates Pdx1 expression as compared to Activin A and untreated cultures. Pdx1(+) cells co-express FOXA2 but lacks, however, co-expression with nkx6.1, a marker combination that in the present study is shown precisely to identify embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development is suppressed in the pancreatic anlage. In conclusion, Activin B is a potent inducer of Pdx1 as well as Shh in differentiating hESCs. The data suggest that additional suppression of Shh signaling may be required to allow for proper specification of pancreatic cell lineages in hESCs.
Collapse
Affiliation(s)
- Ulrik Frandsen
- KMEB Laboratory, Medical Biotechnology Center, Winslevparken 25.1, DK-5000 Odense C, Denmark.
| | | | | | | | | |
Collapse
|
122
|
Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK, Abraham S, Sadasivam A, Soong PL, Wang ST, Lim R, Sun W, Colman A, Dunn NR. Directed Differentiation of Human Embryonic Stem Cells into the Pancreatic Endocrine Lineage. Stem Cells Dev 2007; 16:561-78. [PMID: 17784830 DOI: 10.1089/scd.2007.0029] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem (hES) cells represent a potentially unlimited source of transplantable beta-cells for the treatment of diabetes. Here we describe a differentiation strategy that reproducibly directs HES3, an National Institutes of Health (NIH)-registered hES cell line, into cells of the pancreatic endocrine lineage. HES3 cells are removed from their feeder layer and cultured as embryoid bodies in a three-dimensional matrix in the presence of Activin A and Bmp4 to induce definitive endoderm. Next, growth factors known to promote the proliferation and differentiation of pancreatic ductal epithelial cells to glucose-sensing, insulin-secreting beta-cells are added. Pdx1 expression, which identifies pancreatic progenitors, is detected as early as day 12 of differentiation. By day 34, Pdx1+ cells comprise between 5% and 20% of the total cell population and Insulin gene expression is up-regulated, with release of C-peptide into the culture medium. Unlike another recent report of the induction of insulin+ cells in differentiated hES cell populations, we are unable to detect the expression of other pancreatic hormones in insulin+ cells. When transplanted into severe combined immunodeficiency (SCID) mice, differentiated cell populations retain their endocrine identity and synthesize insulin.
Collapse
|
123
|
Denner L, Bodenburg Y, Zhao JG, Howe M, Cappo J, Tilton RG, Copland JA, Forraz N, McGuckin C, Urban R. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif 2007; 40:367-80. [PMID: 17531081 PMCID: PMC6496474 DOI: 10.1111/j.1365-2184.2007.00439.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES In this study, we investigated the potential of umbilical cord blood stem cell lineages to produce C-peptide and insulin. MATERIALS AND METHODS Lineage negative, CD133+ and CD34+ cells were analyzed by flow cytometry to assess expression of cell division antigens. These lineages were expanded in culture and subjected to an established protocol to differentiate mouse embryonic stem cells (ESCs) toward the pancreatic phenotype. Phase contrast and fluorescence immunocytochemistry were used to characterize differentiation markers with particular emphasis on insulin and C-peptide. RESULTS All 3 lineages expressed SSEA-4, a marker previously reported to be restricted to the ESC compartment. Phase contrast microscopy showed all three lineages recapitulated the treatment-dependent morphological changes of ESCs as well as the temporally restricted expression of nestin and vimentin during differentiation. After engineering, each isolate contained both C-peptide and insulin, a result also obtained following a much shorter protocol for ESCs. CONCLUSIONS Since C-peptide can only be derived from de novo synthesis and processing of pre-proinsulin mRNA and protein, we conclude that these results are the first demonstration that human umbilical cord blood-derived stem cells can be engineered to engage in de novo synthesis of insulin.
Collapse
Affiliation(s)
- L Denner
- Stark Diabetes Center and McCoy Diabetes Mass Spectrometry Research Laboratory, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Wendl T, Adzic D, Schoenebeck JJ, Scholpp S, Brand M, Yelon D, Rohr KB. Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals. Development 2007; 134:2871-9. [PMID: 17611226 DOI: 10.1242/dev.02872] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thyroid is an endocrine gland in all vertebrates that develops from the ventral floor of the anterior pharyngeal endoderm. Unravelling the molecular mechanisms of thyroid development helps to understand congenital hypothyroidism caused by the absence or reduction of this gland in newborn humans. Severely reduced or absent thyroid-specific developmental genes concomitant with the complete loss of the functional gland in the zebrafish hands off (han, hand2) mutant reveals the han gene as playing a novel, crucial role in thyroid development. han-expressing tissues surround the thyroid primordium throughout development. Fate mapping reveals that, even before the onset of thyroid-specific developmental gene expression, thyroid precursor cells are in close contact with han-expressing cardiac lateral plate mesoderm. Grafting experiments show that han is required in surrounding tissue, and not in a cell-autonomous manner, for thyroid development. Loss of han expression in the branchial arches and arch-associated cells after morpholino knock-down of upstream regulator genes does not impair thyroid development, indicating that other han-expressing structures, most probably cardiac mesoderm, are responsible for the thyroid defects in han mutants. The zebrafish ace (fgf8) mutant has similar thyroid defects as han mutants, and chemical suppression of fibroblast growth factor (FGF) signalling confirms that this pathway is required for thyroid development. FGF-soaked beads can restore thyroid development in han mutants, showing that FGFs act downstream of or in parallel to han. These data suggest that loss of FGF-expressing tissue in han mutants is responsible for the thyroid defects.
Collapse
Affiliation(s)
- Thomas Wendl
- Institute for Developmental Biology, University of Cologne, Gyrhofstrasse 17, 50923 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Pan FC, Chen Y, Bayha E, Pieler T. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech Dev 2007; 124:518-31. [PMID: 17643968 DOI: 10.1016/j.mod.2007.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 06/01/2007] [Accepted: 06/06/2007] [Indexed: 12/23/2022]
Abstract
Early patterning of the endoderm as a prerequisite for pancreas specification involves retinoic acid (RA) as a critical signalling molecule in gastrula stage Xenopus embryos. In extension of our previous studies, we made systematic use of early embryonic endodermal and mesodermal explants. We find RA to be sufficient to induce pancreas-specific gene expression in dorsal but not ventral endoderm. The differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm is important for the distinct responsiveness of dorsal versus ventral explants. Furthermore, BMP signalling, that is repressed dorsally, prevents the formation of pancreatic precursor cells in the ventral endoderm of gastrula stage Xenopus embryos. An additional requirement for mesoderm suggests the production of one or more further pancreas inducing signals by this tissue. Finally, recombination of manipulated early embryonic explants, and also inhibition of RA activity in whole embryos, reveal that RA signalling, as it is relevant for pancreas development, operates simultaneously on both mesodermal and endodermal germ layers.
Collapse
Affiliation(s)
- Fong Cheng Pan
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|
126
|
Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R, Kim JH. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 2007; 50:1228-38. [PMID: 17457565 DOI: 10.1007/s00125-007-0634-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 01/15/2007] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The relative lack of successful pancreatic differentiation of human embryonic stem cells (hESCs) may suggest that directed differentiation of hESCs into definitive endoderm and subsequent commitment towards a pancreatic fate are not readily achieved. The aim of this study was to investigate whether sequential exposure of hESCs to epigenetic signals that mimic in vivo pancreatic development can efficiently generate pancreatic endodermal cells, and whether these cells can be further matured and reverse hyperglycaemia upon transplantation. MATERIALS AND METHODS The hESCs were sequentially treated with serum, activin and retinoic acid (RA) during embryoid body formation. The patterns of gene expression and protein production associated with embryonic germ layers and pancreatic endoderm were analysed by RT-PCR and immunostaining. The developmental competence and function of hESC-derived PDX1-positive cells were evaluated after in vivo transplantation. RESULTS Sequential treatment with serum, activin and RA highly upregulated the expression of the genes encoding forkhead box protein A2 (FOXA2), SRY-box containing gene 17 (SOX17), pancreatic and duodenal homeobox 1 (PDX1) and homeobox HB9 (HLXB9). The population of pancreatic endodermal cells that produced PDX1 was significantly increased at the expense of ectodermal differentiation, and a subset of the PDX1-positive cells also produced FOXA2, caudal-type homeobox transcription factor 2 (CDX2), and nestin (NES). After transplantation, the PDX1-positive cells further differentiated into mature cell types producing insulin and glucagon, resulting in amelioration of hyperglycaemia and weight loss in streptozotocin-treated diabetic mice. CONCLUSIONS/INTERPRETATION Our strategy allows the progressive differentiation of hESCs into pancreatic endoderm capable of generating mature pancreatic cell types that function in vivo. These findings may establish the basis of further investigations for the purification of transplantable islet progenitors derived from hESCs.
Collapse
Affiliation(s)
- J H Shim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, West Building/Room 304, Science Campus, 1 Anam-dong 5-ga, Sungbuk-goo, Seoul 136-713, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
In the avian embryo, the endoderm, which forms a simple flat-sheet structure after gastrulation, is regionally specified in a gradual manner along the antero-posterior and dorso-ventral axes, and eventually differentiates into specific organs with defined morphologies and gene expression profiles. In our study, we carried out transplantation experiments using early chick embryos to elucidate the timing of fate establishment in the endoderm. We showed that at stage 5, posteriorly grafted presumptive foregut endoderm expressed CdxA, a posterior endoderm marker, but not cSox2, an anterior endoderm marker. Conversely, anteriorly grafted presumptive mid-hindgut endoderm expressed cSox2 but not CdxA. At stage 8, posteriorly grafted presumptive foregut endoderm also expressed CdxA and not cSox2, but anteriorly grafted presumptive mid-hindgut endoderm showed no changes in its posterior-specific gene expression pattern. At stage 10, both posteriorly grafted foregut endoderm and anteriorly grafted mid-hindgut endoderm maintain their original gene expression patterns. These results suggest that the regional specification of the endoderm occurs between stages 8 and 10 in the foregut, and between stages 5 and 8 in the mid-hindgut.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Biological Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
128
|
Cano DA, Hebrok M, Zenker M. Pancreatic development and disease. Gastroenterology 2007; 132:745-62. [PMID: 17258745 DOI: 10.1053/j.gastro.2006.12.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/20/2006] [Indexed: 12/22/2022]
Affiliation(s)
- David A Cano
- Diabetes Center, Department of Medicine, University of California San Francisco, 94143, USA
| | | | | |
Collapse
|
129
|
Isolating endoderm and understanding developmental signals: defining sequential steps of embryonic stem cell differentiation to β cells. Curr Opin Organ Transplant 2007; 12:49-54. [PMID: 27792089 DOI: 10.1097/mot.0b013e3280116473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW False starts have marked early work towards efficiently differentiating embryonic stem cells to β cells. Recent research has returned to foundations of developmental biology by focusing first on achieving definitive endoderm differentiation as a requisite step to ultimately producing high-quality islet endocrine cells. The present review will highlight recent demonstrations of definitive endoderm differentiation from embryonic stem cells and emphasize how mesenchymal signals, learned from embryological studies, may be used to further induce pancreatic specification from embryonic stem cells. RECENT FINDINGS Recently, advances have been made in the identification and purification of cells having the expected characteristics of definitive endoderm, from which all pancreatic cell types are derived. These studies have defined putative markers of definitive endoderm and provided insights into embryological signals controlling endoderm formation in mice and humans. Emerging data about the relationship between developing definitive endoderm and the surrounding mesenchyme now suggest possible methods of replicating the pancreatic developmental process in embryonic stem cells in vitro. SUMMARY Lessons learned from understanding developmental mechanisms of definitive endoderm formation and pancreas specification in lower organisms and adapted in application to human embryonic stem cells will drive further advances in this field.
Collapse
|
130
|
Sherwood RI, Jitianu C, Cleaver O, Shaywitz DA, Lamenzo JO, Chen AE, Golub TR, Melton DA. Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Dev Biol 2007; 304:541-55. [PMID: 17328885 DOI: 10.1016/j.ydbio.2007.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/14/2006] [Accepted: 01/04/2007] [Indexed: 12/20/2022]
Abstract
In spite of the therapeutic importance of endoderm derivatives such as the pancreas, liver, lung, and intestine, there are few molecular markers specific for early endoderm. In order to identify endoderm-specific genes as well as to define transcriptional differences between definitive and visceral endoderm, we performed microarray analysis on E8.25 definitive and visceral endoderm. We have developed an early endoderm gene expression signature, and clarified the transcriptional similarities and differences between definitive and visceral endoderm. Additionally, we have developed methods for flow cytometric isolation of definitive and visceral endoderm. These results shed light on the mechanism of endoderm formation and should facilitate investigation of endoderm formation from embryonic stem cells.
Collapse
Affiliation(s)
- Richard I Sherwood
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
diIorio P, Alexa K, Choe SK, Etheridge L, Sagerström CG. TALE-family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Dev Biol 2006; 304:221-31. [PMID: 17289013 PMCID: PMC1868511 DOI: 10.1016/j.ydbio.2006.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 01/29/2023]
Abstract
sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.
Collapse
Affiliation(s)
- Phillip diIorio
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Kristen Alexa
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Letitiah Etheridge
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
- *To whom correspondence should be addressed: Department of Biochemistry and Molecular Pharmacology, 364 Plantation Street/LRB 822, Worcester, MA 01605, Phone: (506) 856-8006, Fax: (508) 856-8007,
| |
Collapse
|
132
|
Galis F, Dooren TJMV, Feuth JD, Metz JAJ, Witkam A, Ruinard S, Steigenga MJ, Wunaendts LCD. EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01896.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
133
|
Kriz V, Agren N, Lindholm CK, Lenell S, Saldeen J, Mares J, Welsh M. The SHB Adapter Protein Is Required for Normal Maturation of Mesoderm during in Vitro Differentiation of Embryonic Stem Cells. J Biol Chem 2006; 281:34484-91. [PMID: 16971391 DOI: 10.1074/jbc.m604084200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Definitive mesoderm arises from a bipotent mesendodermal population, and to study processes controlling its development at this stage, embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context, we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively, EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation, EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic, vascular, and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition, the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.
Collapse
Affiliation(s)
- Vitezslav Kriz
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | | | | | | | | | | | | |
Collapse
|
134
|
Xu Y, Wang S, Zhang J, Zhao A, Stanger BZ, Gu G. The fringe molecules induce endocrine differentiation in embryonic endoderm by activating cMyt1/cMyt3. Dev Biol 2006; 297:340-9. [PMID: 16920096 DOI: 10.1016/j.ydbio.2006.04.456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 01/31/2023]
Abstract
Endocrine differentiation in the early embryonic pancreas is regulated by Notch signaling. Activated Notch signaling maintains pancreatic progenitor cells in an undifferentiated state, whereas suppression of Notch leads to endocrine cell differentiation. Yet it is not known what mechanism is employed to inactivate Notch in a correct number of precursor cells to balance progenitor proliferation and differentiation. We report that an established Notch modifier, Manic Fringe (Mfng), is expressed in the putative endocrine progenitors, but not in exocrine pancreatic tissues, during early islet differentiation. Using chicken embryonic endoderm as an assaying system, we found that ectopic Mfng expression is sufficient to induce endodermal cells to differentiate towards an endocrine fate. This endocrine-inducing activity depends on inactivation of Notch. Furthermore, ectopic Mfng expression induces the expression of basic helix-loop-helix gene, Ngn3, and two zinc finger genes, cMyt1 and cMyt3. These results suggest that Mfng-mediated repression of Notch signaling could serve as a trigger for endocrine islet differentiation.
Collapse
Affiliation(s)
- Yanwen Xu
- Vanderbilt University, Department of Cell and Developmental Biology, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
135
|
Ober EA, Verkade H, Field HA, Stainier DYR. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 2006; 442:688-91. [PMID: 16799568 DOI: 10.1038/nature04888] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/15/2006] [Indexed: 11/09/2022]
Abstract
Endodermal organs such as the lung, liver and pancreas emerge at precise locations along the primitive gut tube. Although several signalling pathways have been implicated in liver formation, so far no single gene has been identified that exclusively regulates liver specification. In zebrafish, the onset of liver specification is marked by the localized endodermal expression of hhex and prox1 at 22 hours post fertilization. Here we used a screen for mutations affecting endodermal organ morphogenesis to identify a unique phenotype: prometheus (prt) mutants exhibit profound, though transient, defects in liver specification. Positional cloning reveals that prt encodes a previously unidentified Wnt2b homologue. prt/wnt2bb is expressed in restricted bilateral domains in the lateral plate mesoderm directly adjacent to the liver-forming endoderm. Mosaic analyses show the requirement for Prt/Wnt2bb in the lateral plate mesoderm, in agreement with the inductive properties of Wnt signalling. Taken together, these data reveal an unexpected positive role for Wnt signalling in liver specification, and indicate a possible common theme for the localized formation of endodermal organs along the gut tube.
Collapse
Affiliation(s)
- Elke A Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
136
|
Xu X, Kahan B, Forgianni A, Jing P, Jacobson L, Browning V, Treff N, Odorico J. Endoderm and Pancreatic Islet Lineage Differentiation from Human Embryonic Stem Cells. CLONING AND STEM CELLS 2006; 8:96-107. [PMID: 16776601 DOI: 10.1089/clo.2006.8.96] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human embryonic stem cells (HESCs) are a potential source of insulin-producing tissue for transplantation. Recent studies have begun to define factors that promote definitive endoderm formation from HESCs, but conditions permitting complete islet specification in vitro have not been described. Here, we study spontaneous differentiation of HESCs to definitive endoderm and pancreatic progenitor cells, and begin to determine which aspects of the protocol are required for this cell fate commitment. HESCs were differentiated in culture for up to 10 weeks, including an embryoid body (EB) formation step. Modifications to the protocol included elimination of the EB phase, varying initial cell cluster size when forming EBs, and addition of mesoderm-derived cells to EBs. Differentiated cells were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. HESCs are capable of spontaneous differentiation to cells expressing the definitive endoderm and pancreatic progenitor markers Foxa2, Sox17, and Pdx1, and ultimately, some cells express islet endocrine hormones. This differentiation occurs to a much greater extent when an EB formation step is included. Increased expression of endoderm markers during and after EB formation also correlated strongly with the size of cell clusters used to start EBs, as well as the addition of mesoderm- derived embryonic cells. This study demonstrates that a subset of differentiated HESC progeny adopt an endoderm fate and exhibit the capacity for further pancreatic lineage specification in vitro. Basal conditions were established for examining factors that can commit HESC-derived endoderm cells to specific pancreatic lineages.
Collapse
Affiliation(s)
- Xiaofang Xu
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, University Hospital, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Spagnoli FM, Brivanlou AH. The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification. Dev Biol 2006; 292:442-56. [PMID: 16680827 DOI: 10.1016/j.ydbio.2006.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Signaling mechanisms underlying the induction of the pre-pancreatic tissue within the endoderm remain poorly understood. Through an expression cloning strategy, we have identified a previously uncharacterized pancreatic factor that we named Shirin. Interestingly, the non-coding RNA regulatory sequence (3 UTR) of Shirin is sufficient to induce insulin expression in Xenopus embryos. Biochemical studies demonstrate that this RNA sequence is able to bind directly to a trans-acting factor, Vg1RBP, which was previously shown to be involved in the localization of endodermal determinant factors. Loss-of-function analysis indicates that Vg1RBP is required for establishment of pancreatic fate within the endoderm, suggesting a synergism between Vg1RBP and Shirin in the embryo. This study argues for a central role of post-transcriptional mechanisms in establishing pancreatic fate, where a 3 UTR may recruit factors necessary for pancreatic development, and highlights an unknown embryological activity of Vg1RBP.
Collapse
Affiliation(s)
- Francesca M Spagnoli
- The Rockefeller University, Laboratory of Molecular Vertebrae Embryology, New York, NY 10021, USA
| | | |
Collapse
|
138
|
Collombat P, Hecksher-Sørensen J, Serup P, Mansouri A. Specifying pancreatic endocrine cell fates. Mech Dev 2006; 123:501-12. [PMID: 16822656 DOI: 10.1016/j.mod.2006.05.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/18/2006] [Accepted: 05/20/2006] [Indexed: 02/04/2023]
Abstract
Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.
Collapse
Affiliation(s)
- Patrick Collombat
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
139
|
Stafford D, White RJ, Kinkel MD, Linville A, Schilling TF, Prince VE. Retinoids signal directly to zebrafish endoderm to specify insulin-expressing β-cells. Development 2006; 133:949-56. [PMID: 16452093 DOI: 10.1242/dev.02263] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate development, the endodermal germ layer becomes regionalized along its anteroposterior axis to give rise to a variety of organs, including the pancreas. Genetic studies in zebrafish and mice have established that the signaling molecule retinoic acid (RA) plays a crucial role in endoderm patterning and promotes pancreas development. To identify how RA signals to pancreatic progenitors in the endoderm, we have developed a novel cell transplantation technique, using the ability of the SOX32 transcription factor to confer endodermal identity, to selectively target reagents to (or exclude them from) the endodermal germ layer of the zebrafish. We show that RA synthesized in the anterior paraxial mesoderm adjacent to the foregut is necessary for the development of insulin-expressingβ-cells. Conversely, RA receptor function is required in the foregut endoderm for insulin expression, but not in mesoderm or ectoderm. We further show that activation of RA signal transduction in endoderm alone is sufficient to induce insulin expression. Our results reveal that RA is an instructive signal from the mesoderm that directly induces precursors of the endocrine pancreas. These findings suggest that RA will have important applications in the quest to induce islets from stem cells for therapeutic uses.
Collapse
Affiliation(s)
- David Stafford
- The Committee on Developmental Biology, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
140
|
Embryonic stem cell-based therapy for the treatment of diabetes mellitus: a work in progress. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000203883.87439.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
141
|
Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 2006; 290:189-99. [PMID: 16386727 DOI: 10.1016/j.ydbio.2005.11.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 11/04/2005] [Accepted: 11/14/2005] [Indexed: 12/21/2022]
Abstract
Understanding the tissue interactions that induce pancreatic progenitor cells from the embryonic endoderm provides insights into congenital malformations, tissue repair, and differentiating stem cells to a pancreatic fate. The specification of pancreatic progenitors within the dorsal endodermal epithelium has been thought to involve two phases of mesodermal interactions; first with the lateral plate mesoderm and notochord and then with aortic endothelial cells. Afterwards, branching morphogenesis of the pancreatic bud is induced by Isl-1-positive dorsal mesenchyme cells, whose growth is stimulated by factors in the circulation. Using mouse genetic models and embryo tissue explants, we show that the aortic endothelium and dorsal mesenchyme each possess an additional role in pancreatic induction, prior to the branching morphogenesis step. Specifically, we find that aortic endothelial cells promote the survival of nearby, Isl-1-positive dorsal mesenchyme, independently of factors from the circulation. Furthermore, we find that FGF10 signaling from the mesenchyme cells maintains Ptf1a expression in the dorsal pancreatic bud and appears genetically redundant with a role for the transcription factor gene HNF6 in promoting the induction of Pdx-1-positive dorsal endoderm. Together, these studies reveal a relay pathway from aortic endothelium to dorsal mesenchyme and then to the endoderm, along with functions of the dorsal mesenchyme that promote the initial differentiation of the dorsal pancreatic endoderm, prior to organ morphogenesis.
Collapse
Affiliation(s)
- Patrick Jacquemin
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université catholique de Louvain, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
142
|
Galis F, Van Dooren TJM, Feuth JD, Metz JAJ, Witkam A, Ruinard S, Steigenga MJ, Wijnaendts LCD. EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE. Evolution 2006. [DOI: 10.1554/06-064.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
143
|
Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2005; 123:42-55. [PMID: 16326079 DOI: 10.1016/j.mod.2005.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/25/2023]
Abstract
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.
Collapse
Affiliation(s)
- Jessica Dessimoz
- ISREC, Chemin des Boveresses 155, CH1066, Epalinges/Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
144
|
Mavropoulos A, Devos N, Biemar F, Zecchin E, Argenton F, Edlund H, Motte P, Martial JA, Peers B. sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 2005; 285:211-23. [PMID: 16055112 DOI: 10.1016/j.ydbio.2005.06.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 06/02/2005] [Accepted: 06/13/2005] [Indexed: 01/19/2023]
Abstract
Pancreas development relies on a network of transcription factors belonging mainly to the Homeodomain and basic Helix-Loop-Helix families. We show in this study that, in zebrafish, sox4, a member of the SRY-like HMG-box (SOX) family, is required for proper endocrine cell differentiation. We found that two genes orthologous to mammalian Sox4 are present in zebrafish and that only one of them, sox4b, is strongly expressed in the pancreatic anlage. Transcripts of sox4b were detected in mid-trunk endoderm from the 5-somite stage, well before the onset of expression of the early pancreatic gene pdx-1. Furthermore, by fluorescent double in situ hybridization, we found that expression of sox4b is mostly restricted to precursors of the endocrine compartment. This expression is not maintained in differentiated cells although transient expression can be detected in alpha cells and some beta cells. That sox4b-expressing cells belong to the endocrine lineage is further illustrated by their absence from the pancreata of slow-muscle-omitted mutant embryos, which specifically lack all early endocrine markers while retaining expression of exocrine markers. The involvement of sox4b in cell differentiation is suggested firstly by its up-regulation in mind bomb mutant embryos displaying accelerated pancreatic cell differentiation. In addition, sox4b knock-down leads to a drastic reduction in glucagon expression, while other pancreatic markers including insulin, somatostatin, and trypsin are not significantly affected. This disruption of alpha cell differentiation is due to down-regulation of the homeobox arx gene specifically in the pancreas. Taken together, these data demonstrate that, in zebrafish, sox4b is expressed transiently during endocrine cell differentiation and plays a crucial role in the generation of alpha endocrine cells.
Collapse
Affiliation(s)
- Anastasia Mavropoulos
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Center of Biomedical Integrative Genoproteomics (CBIG), Université de Liège, Institut de Chimie, Bâtiment B6, 4000 Liège (Sart-Tilman), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Pedersen JK, Nelson SB, Jorgensen MC, Henseleit KD, Fujitani Y, Wright CVE, Sander M, Serup P. Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev Biol 2005; 288:487-501. [PMID: 16297379 DOI: 10.1016/j.ydbio.2005.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 08/09/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
Nkx family members are essential for normal development of many different tissues such as the heart, lungs, thyroid, prostate, and CNS. Here, we describe the endodermal expression pattern of three Nkx6 family genes of which two shows conserved expression in the early pancreatic epithelium. In chicken, Nkx6.1 expression is not restricted to the presumptive pancreatic area but is more broadly expressed in the endoderm. In mice, expression of Nkx6.1 is restricted to the pancreatic epithelium. In both mice and chicken, Nkx6.2 and Pdx1 are expressed in very similar domains, identifying Nkx6.2 as a novel marker of pancreas endoderm. Additionally, our results show that Nkx6.3 is expressed transiently in pancreatic endoderm in chicken but not mouse embryos. At later stages, Nkx6.3 is found in the caudal stomach and rostral duodenum in both species. Finally, we demonstrate that Pdx1 is required for Nkx6.1 but not Nkx6.2 expression in mice and that ectopic Pdx1 can induce Nkx6.1 but not Nkx6.2 or Nkx6.3 expression in anterior chicken endoderm. These results demonstrate that Nkx6.1 lies downstream of Pdx1 in a genetic pathway and that Pdx1 is required and sufficient for Nkx6.1 expression in the early foregut endoderm.
Collapse
Affiliation(s)
- Jesper K Pedersen
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK-2820, Gentofte, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Studies on the signaling mechanism that control the specification of endoderm-derived organs have only recently begun. While many studies revealed genes involved in the differentiation, growth and morphogenesis of the pancreas through studies of mutant mice, still little is known about how endoderm give rise to specific domains. Although many genes are known to have a role in pancreatic differentiation, growth and morphogenesis, few genes are known to take part in the specification of the pancreas so far. Hallmarks as well as gene markers for early development of the pancreas, which are however still very limited, will be useful for dissecting early events in pancreatic specification. Here, I give a summary on the origin of the dorsal and ventral pancreatic progenitors, signals for inductions, and genes so far known to function in pancreatic differentiation. I also give a future prospect in the use of ES cells and other experimental models, towards a comprehensive understanding of gene networks in the progenitor cells or intermediate cell types which arise during various stages of differentiation.
Collapse
Affiliation(s)
- Shoen Kume
- Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan.
| |
Collapse
|
147
|
Martín M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dollé P, Gradwohl G. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol 2005; 284:399-411. [PMID: 16026781 DOI: 10.1016/j.ydbio.2005.05.035] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/10/2005] [Accepted: 05/26/2005] [Indexed: 12/19/2022]
Abstract
During embryogenesis, the pancreas arises from dorsal and ventral pancreatic protrusions from the primitive gut endoderm upon induction by different stimuli from neighboring mesodermal tissues. Recent studies have shown that Retinoic Acid (RA) signaling is essential for the development of the pancreas in non-mammalian vertebrates. To investigate whether RA regulates mouse pancreas development, we have studied the phenotype of mice with a targeted deletion in the retinaldehyde dehydrogenase 2 (Raldh2) gene, encoding the enzyme required to synthesize RA in the embryo. We show that Raldh2 is expressed in the dorsal pancreatic mesenchyme at the early stage of pancreas specification. RA-responding cells have been detected in pancreatic endodermal and mesenchymal cells. Raldh2-deficient mice do not develop a dorsal pancreatic bud. Mutant embryos lack Pdx 1 expression, an essential regulator of early pancreas development, in the dorsal but not the ventral endoderm. In contrast to Pdx 1-deficient mice, the early glucagon-expressing cells do not develop in Raldh2 knockout embryos. Shh expression is, as in the wild-type embryo, excluded from the dorsal endodermal region at the site where the dorsal bud is expected to form, indicating that the dorsal bud defect is not related to a mis-expression of Shh. Mesenchymal expression of the LIM homeodomain protein Isl 1, required for the formation of the dorsal mesenchyme, is altered in Raldh2--/-- embryos. The homeobox gene Hlxb9, which is essential for the initiation of the pancreatic program in the dorsal foregut endoderm, is still expressed in Raldh2--/-- dorsal epithelium but the number of HB9-expressing cells is severely reduced. Maternal supplementation of RA rescues early dorsal pancreas development and restores endodermal Pdx 1 and mesenchymal Isl 1 expression as well as endocrine cell differentiation. These findings suggest that RA signaling is important for the proper differentiation of the dorsal mesenchyme and development of the dorsal endoderm. We conclude that RA synthesized in the mesenchyme is specifically required for the normal development of the dorsal pancreatic endoderm at a stage preceding Pdx 1 function.
Collapse
|
148
|
Pedersen AH, Heller RS. A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem Biophys Res Commun 2005; 333:961-8. [PMID: 15970275 DOI: 10.1016/j.bbrc.2005.05.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/23/2005] [Indexed: 12/27/2022]
Abstract
Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of beta-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal beta-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken.
Collapse
Affiliation(s)
- Anna Hauntoft Pedersen
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK2820 Gentofte, Denmark
| | | |
Collapse
|
149
|
Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn 2005; 232:950-7. [PMID: 15739227 DOI: 10.1002/dvdy.20256] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies on nonmammalian vertebrate embryos have indicated that retinoic acid (RA) is required for pancreas development. We have analyzed mouse embryos carrying a null mutation of the gene encoding retinaldehyde dehydrogenase 2 (Raldh2), which controls RA synthesis. Raldh2-/- embryos specifically lack expression of Pdx1 (a homeobox gene required for pancreas development) and Prox1 in dorsal endodermal but not ventral endodermal pancreatic precursor tissues. Ventral endodermal expression of Hex is not affected in Raldh2-/- embryos, indicating that liver specification is not dependent upon RA. Also, expression of Foxa2 across the dorsoventral axis of the endoderm is not affected in Raldh2-/- embryos, indicating that a lack of RA does not cause a general defect in foregut endoderm development. Comparison of wild-type and Raldh2-/- embryos carrying an RA-reporter transgene demonstrates that RA activity is normally present throughout the endoderm except in the ventral-most region but is totally missing in endoderm of Raldh2-/- embryos. Thus, Raldh2 expressed in adjacent splanchnic lateral plate mesoderm provides an RA signal to dorsal endoderm. Dorsal Pdx1 expression is rescued in Raldh2-/- embryos by low-dose maternal administration of RA, which preferentially restores RA-reporter expression in the dorsal endoderm. Our findings demonstrate a specific role for RA in mouse embryos as a mesodermally synthesized signal needed for dorsal endodermal expression of Pdx1 during development of the dorsal pancreatic lineage.
Collapse
Affiliation(s)
- Andrei Molotkov
- OncoDevelopmental Biology Program, Burnham Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
150
|
Shi Y, Hou L, Tang F, Jiang W, Wang P, Ding M, Deng H. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 2005; 23:656-62. [PMID: 15849173 DOI: 10.1634/stemcells.2004-0241] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experimental induction of embryonic stem cells (ESCs) to become pancreatic beta cells can potentially provide ample resource for cell transplantation therapy of type I diabetes mellitus. Most of the previously reported induction strategies were long and complicated, and some required genetic manipulation. Moreover, it has been indicated that the insulin staining of ESC progeny was insulin uptake from the culture medium. Here we show that a simple three-step experimental approach based on the combination induction by activin A, all-trans retinoic acid, and other mature factors is able to induce murine ESCs to differentiate into insulin-producing cells in 2 weeks, and that insulin release of these induced cells is regulated by the glucose concentration. Our insulin-enhanced green fluorescent green protein reporter system excludes the possibility of insulin uptake. Transplantation of these ESC-derived insulin-positive cells can normalize blood glucose levels and rescue the survival of streptozocin-induced diabetic mice. The findings reported here offer a novel in vitro model to study the differentiation mechanism of pancreatic beta cells and a potential source of insulin-producing cells for transplantation therapy of type I diabetes mellitus.
Collapse
Affiliation(s)
- Yan Shi
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|