101
|
Njage PMK, Opiyo B, Wangoh J, Wambui J. Scale of production and implementation of food safety programs influence the performance of current food safety management systems: Case of dairy processors. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
102
|
Terio V, Bottaro M, Di Pinto A, Fusco G, Barresi T, Tantillo G, Martella V. Occurrence of Aichi virus in retail shellfish in Italy. Food Microbiol 2018; 74:120-124. [PMID: 29706327 DOI: 10.1016/j.fm.2018.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
AiV-1 is considered an emerging human enteric pathogens and foodborne transmission has been documented as an important source of exposure for humans, chiefly in relation to non-safe, risky food habits. We surveyed the presence of AiV-1 in retail shellfish, including oysters and mussles, identifying the virus in 3/170 (1.8%) of the analysed samples. The AiV-1 positive samples were of different geographic origin. Upon sequence analysis of a portion of the 3CD junction region, two AiV strains identified from harvesting areas in Northern Italy were characterised as genotype B and displayed 99-100% identity at the nucleotide level to other AiV-1 strains detected in sewages in Central Italy in 2012, suggesting that such strains are stably circulating in Italian ecosystems. Interestingly, a strain identified from mussles harvested in Southern Italy could not be characterised firmly, as inferred in the Bayesian analysis and by sequence comparison, indicating that different AiV strains are also circulating in Italy. Viral contamination in retail shellfish challenges the microbiological guidelines for food control and requires the development and optimization of additional diagnostic and prevention strategies.
Collapse
Affiliation(s)
- Valentina Terio
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy.
| | - Marilisa Bottaro
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Division of Caserta, Via Jervolino n. 19, 81029, Caserta, Italy
| | - Teodosio Barresi
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| | - Vito Martella
- Department of Veterinary Medicine (DiMeV), University of Bari, Provincial Road to Casamassima km 3, 70010, Valenzano (Ba), Italy
| |
Collapse
|
103
|
Viral shedding and clinical status of feline-norovirus-infected cats after reinfection with the same strain. Arch Virol 2018; 163:1503-1510. [PMID: 29445988 DOI: 10.1007/s00705-018-3770-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/03/2018] [Indexed: 12/19/2022]
Abstract
Norovirus (NoV) infection is the most common cause of acute gastroenteritis in humans of all ages worldwide. When cats are experimentally infected with feline norovirus (FNoV), they develop symptoms of acute gastroenteritis. Therefore, FNoV infection may serve as an animal model for the disease caused by human norovirus infection. In this study, we examined whether FNoV of cats infected with genogroup GVI are protected from reinfection with the same strain. The blood anti-FNoV IgG level was inversely correlated with the viral load in stool samples and the clinical score of FNoV-infected cats, but complete prevention of reinfection was not observed. These findings were similar to the results of a reinfection experiment with NoV in human volunteers.
Collapse
|
104
|
Markantonis N, Vasickova P, Kubankova M, Mikel P, Botsaris G. Detection of foodborne viruses in ready-to-eat meat products and meat processing plants. J Food Saf 2018. [DOI: 10.1111/jfs.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nikolas Markantonis
- Department of Agricultural Sciences, Biotechnology and Food Science; Cyprus University of Technology; Limassol Cyprus
| | - Petra Vasickova
- Department of Food and Feed Safety; Veterinary Research Institute; Brno Czech Republic
| | - Monika Kubankova
- Department of Food and Feed Safety; Veterinary Research Institute; Brno Czech Republic
| | - Pavel Mikel
- Department of Food and Feed Safety; Veterinary Research Institute; Brno Czech Republic
| | - George Botsaris
- Department of Agricultural Sciences, Biotechnology and Food Science; Cyprus University of Technology; Limassol Cyprus
| |
Collapse
|
105
|
Main Groups of Microorganisms of Relevance for Food Safety and Stability. INNOVATIVE TECHNOLOGIES FOR FOOD PRESERVATION 2018. [PMCID: PMC7150063 DOI: 10.1016/b978-0-12-811031-7.00003-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbiology is important to food safety, production, processing, preservation, and storage. Microbes such as bacteria, molds, and yeasts are employed for the foods production and food ingredients such as production of wine, beer, bakery, and dairy products. On the other hand, the growth and contamination of spoilage and pathogenic microorganisms is considered as one of the main causes to loss of foodstuff nowadays. Although technology, hygienic strategies, and traceability are important factors to prevent and delay microbial growth and contamination, food remains susceptible to spoilage and activity of pathogen microorganisms. Food loss by either spoilage or contaminated food affects food industry and consumers leading to economic losses and increased hospitalization costs. This chapter focuses on general aspects, characteristics, and importance of main microorganisms (bacteria, yeasts, molds, virus, and parasites) involved in food spoilage or contamination: known and recently discovered species; defects and alterations in foodstuff; most common food associated with each foodborne disease; resistance to thermal processing; occurrence in different countries; outbreaks; and associated symptoms.
Collapse
|
106
|
Romalde JL, Rivadulla E, Varela MF, Barja JL. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J Appl Microbiol 2017; 124:943-957. [PMID: 29094428 DOI: 10.1111/jam.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.
Collapse
Affiliation(s)
- J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
107
|
Papapanagiotou EP. Foodborne Norovirus State of Affairs in the EU Rapid Alert System for Food and Feed. Vet Sci 2017; 4:E61. [PMID: 29186840 PMCID: PMC5753641 DOI: 10.3390/vetsci4040061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023] Open
Abstract
The European Union Rapid Alert System for Food and Feed (EU RASFF) database is an invaluable instrument for analyzing notifications involving norovirus in food. The aim of this work was to carry out a thorough research of the alert and border rejection notifications submitted in the RASFF database from its onset until 31 August 2017. Some conclusions of interest were: (i) Denmark, France, Italy, the Netherlands and Norway have contributed the majority of alert notifications as notifying countries, (ii) France and Serbia have been cited more often in alert notifications as countries of origin, (iii) Italy and Spain have submitted the majority of border rejection notifications, (iv) Third Countries implicated more frequently in border rejection notifications for norovirus in bivalve molluscs were Vietnam and Tunisia, whereas in fruits and vegetables were China and Serbia, (v) "risk dispersion" from norovirus-contaminated food was narrow since, in just over half of all alert notifications and all of the border rejection notifications, only up to three countries were involved, and (vi) both raw (oysters and berries) and cooked (mussels) food products can present a health risk to consumers. The information retrieved from the RASFF database on norovirus-contaminated food could prove helpful in the planning of future norovirus risk analysis endeavors.
Collapse
Affiliation(s)
- Elias P Papapanagiotou
- Laboratory of Animal Food Products Hygiene-Veterinary Public Health, Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
108
|
Takahashi M, Okakura Y, Takahashi H, Imamura M, Takeuchi A, Shidara H, Kuda T, Kimura B. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int J Food Microbiol 2017; 266:104-108. [PMID: 29202339 DOI: 10.1016/j.ijfoodmicro.2017.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/07/2017] [Accepted: 11/22/2017] [Indexed: 01/29/2023]
Abstract
Hepatitis A virus (HAV) is well known worldwide as a causative virus of acute hepatitis. In recent years, numerous cases of HAV infection caused by HAV-contaminated berries have occurred around the world. Because berries are often consumed without prior heating, reliable disinfection of the raw fruit is important in order to prevent HAV outbreaks. Previous studies have found that murine norovirus strain 1 (MNV-1) and human norovirus GII.4 were inactivated in heat-denatured lysozyme solution. In this study, we investigated whether or not heat-denatured lysozyme is effective in inactivating HAV and whether it could be an effective disinfectant for berries contaminated with HAV or MNV-1. We examined the inactivating effect of heat-denatured lysozyme on three strains of HAV and found that it reduced the infectivity of all three strains. We then immersed blueberries and mixed berries into solutions of HAV or MNV-1, and disinfected them by soaking them in 1% heat-denatured lysozyme for 1min. Consequently, the infectious HAV and MNV-1 contaminating the berries were decreased by >3.1 log units in all samples. Our results demonstrate that heat-denatured lysozyme effectively inactivates HAV and suggest that heat-denatured lysozyme may be an effective disinfectant for berry fruit, which is a potential source of HAV food poisoning.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yumiko Okakura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Minami Imamura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Akira Takeuchi
- Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Hiroyuki Shidara
- Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
109
|
Uhrbrand K, Koponen IK, Schultz AC, Madsen AM. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus. J Appl Microbiol 2017; 124:990-1000. [PMID: 28921812 DOI: 10.1111/jam.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to identify the most efficient sampling method for quantitative PCR-based detection of airborne human norovirus (NoV). METHODS AND RESULTS A comparative experiment was conducted in an aerosol chamber using aerosolized murine norovirus (MNV) as a surrogate for NoV. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers: Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP sampler with four different filter types: NY, polycarbonate (PC), polytetrafluoroethylene (PTFE) and gelatine (GEL). The sampling efficiency of MNV was significantly influenced by both sampler and filter type. The GSP sampler was found to give significantly (P < 0·05) higher recovery of aerosolized MNV than 3P and NIO. A higher recovery was also found for GSP compared with TC, albeit not significantly. Finally, recovery of aerosolized MNV was significantly (P < 0·05) higher using NY than PC, PTFE and GEL filters. CONCLUSIONS The GSP sampler combined with a nylon filter was found to be the best method for personal filter-based sampling of airborne NoV. SIGNIFICANCE AND IMPACT OF THE STUDY The identification of a suitable NoV air sampler is an important step towards studying the association between exposure to airborne NoV and infection.
Collapse
Affiliation(s)
- K Uhrbrand
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - I K Koponen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - A C Schultz
- Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - A M Madsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| |
Collapse
|
110
|
Fatemizadeh SS, Yavarmanesh M, Habibi Najafi MB. Survival and partitioning of male-specific coliphage (MS2) as a surrogate for enteric viruses in the production process of traditional butter. J Food Saf 2017. [DOI: 10.1111/jfs.12344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Masoud Yavarmanesh
- Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | | |
Collapse
|
111
|
King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
112
|
Occurrence of norovirus infection in an asymptomatic population in Indonesia. INFECTION GENETICS AND EVOLUTION 2017; 55:1-7. [PMID: 28843544 DOI: 10.1016/j.meegid.2017.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis worldwide in all age groups, and asymptomatic individuals may contribute to NoV transmission as a reservoir. Nonetheless, little information is available regarding asymptomatic NoV infection in Indonesia. We performed an epidemiological analysis of NoV infection among asymptomatic healthy volunteers in the city of Surabaya, Indonesia (population ~2.75 million). A total of 512 stool samples from 18 individuals (age range 20-42years) collected from July 2015 to June 2016 were examined. The detection of NoV and the genotype classification were carried out by a reverse transcription-polymerase chain reaction (RT-PCR) direct sequencing method. NoV was detected in 14 of the 512 stool samples (2.7%), with 7 individuals (38.9%) having at least 1 positive stool sample. All 14 of the NoV strains detected belonged to genogroup GII. The phylogenetic analysis indicated that 10 strains (71.4%) were grouped with GII.2, 2 (14.3%) were GII.17, 1 was GII.4 Sydney 2012, and 1 was GII.1. The circulation of GII.Pg/GII.1 and GII.Pe/GII.4 Sydney 2012 recombinant variants was detected among an asymptomatic population in Surabaya, Indonesia. Of the 7 positive individuals, 2 were repeatedly infected with the same strain and heterogenous strains. Taken together, our results suggest that the excretion of NoV from healthy individuals is one of the sources of NoV outbreak.
Collapse
|
113
|
Yilmaz H, Karakullukcu A, Turan N, Cizmecigil UY, Yilmaz A, Ozkul AA, Aydin O, Gunduz A, Mete M, Zeyrek FY, Kirazoglu TT, Richt JA, Kocazeybek B. Genotypes of hepatitis a virus in Turkey: first report and clinical profile of children infected with sub-genotypes IA and IIIA. BMC Infect Dis 2017; 17:561. [PMID: 28800730 PMCID: PMC5553755 DOI: 10.1186/s12879-017-2667-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Background Hepatitis A virus (HAV) is a food and water-borne virus causing clinical (mainly hepatitis) and subclinical disease in humans. It is important to characterize circulating strains of HAV in order to prevent HAV infections using efficacious vaccines. The aim of this study was the detection and characterization of the circulating strains of HAV in Turkey by performing serology, RT-PCR, sequencing and phylogenetic analysis. Methods In this study, 355 HAV suspected cases were analysed by ELISA for the presence of antibodies to HAV. RNA was extracted from 54 HAV IgM positive human sera. None of the suspect cases were vaccinated against HAV and they never received blood transfusions. Samples found positive by RT-PCR using primers targeting the VP1/VP2A junction and VP1/VP3 capsid region of HAV, were subjected to sequencing and phylogenetic analyses. Results IgM type antibodies to HAV were detected in 54 patients. Twenty one of them were students. The age of IgM positive cases was between 3 and 60 years. IgM positivity differed in age groups and was higher in the age group 3 to 10 years. Phylogenetic analysis showed that the majority of HAV strains detected in this study belong to the “HAV 1B” cluster. In addition, the HAV sub-genotypes IA (KT874461.1) and IIIA (KT222963.1) were found in 2 children. These sub-genotypes were not previously reported in Turkey. The child who carried sub-genotype IIIA travelled to Afghanistan and presented with abdominal pain, icterus and vomitus. He was positive for anti-HAV IgM and IgG but negative for hepatitis B and C. Liver enzymes like aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase and lactate dehydrogenase were severely elevated. Bilirubin levels were also increased. White blood cells, neutrophils and hemoglobin were decreased while lymphocytes and monocytes were increased. Similar clinical signs and laboratory findings were reported for the child infected with sub-genotype IA but aspartate aminotransferase and alanine aminotransferase were not severely elevated. Conclusions The results indicate that molecular studies determining the HAV genotype variation in Turkey are timely and warranted. The majority of IgM positive cases in 3–10 year old patients indicate that childhood vaccination is important. Sub-genotype IB is the most prevalant genotype in Turkey. Surprisingly, sub-genotype IA and IIIA are also present in Turkey; future diagnostic efforts need to include diagnostic methods which can identify this emerging HAV genotypes. Our results also show that one important risk factor for contracting hepatitis A virus is international travel since genotype IIIA was detected in a child who had travelled to Afghanistan.
Collapse
Affiliation(s)
- Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey.
| | - Asiye Karakullukcu
- Department of Microbiology, Cerrahpasa Faculty of Medicine, University of Istanbul, Cerrahpasa, Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey
| | - Ayse A Ozkul
- Department of Child Health and Diseases, Faculty of Medicine, University of Izmir, Karsiyaka, Izmir, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, University of Istanbul, Avcilar, Istanbul, Turkey
| | - Alper Gunduz
- Division of Infectious Diseases and Clinical Microbiology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Mahmut Mete
- Department of Microbiology, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey
| | - Fadile Y Zeyrek
- Department of Microbiology, Faculty of Medicine, University of Harran, Urfa, Turkey
| | - Taner T Kirazoglu
- Department of Microbiology, Cerrahpasa Faculty of Medicine, University of Istanbul, Cerrahpasa, Istanbul, Turkey
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Bekir Kocazeybek
- Department of Microbiology, Cerrahpasa Faculty of Medicine, University of Istanbul, Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
114
|
Jeong MI, Park SY, Ha SD. Thermal inactivation of human norovirus on spinach using propidium or ethidium monoazide combined with real-time quantitative reverse transcription-polymerase chain reaction. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
115
|
Thermal inactivation of MS2 bacteriophage as a surrogate of enteric viruses in cow milk. J Verbrauch Lebensm 2017. [DOI: 10.1007/s00003-017-1119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
116
|
Shukla S, Cho H, Kwon OJ, Chung SH, Kim M. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review. Crit Rev Food Sci Nutr 2017; 58:405-419. [PMID: 27245816 DOI: 10.1080/10408398.2016.1182891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.
Collapse
Affiliation(s)
- Shruti Shukla
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea.,b Department of Energy and Materials Engineering , Dongguk University , Seoul , Republic of Korea
| | - Hyunjeong Cho
- c Experiment and Research Institute, National Agricultural Products Quality Management Service , Gimcheon-si , Gyeongsangbuk-do , Republic of Korea
| | - O Jun Kwon
- d Evaluation Team, Gyeongbuk Institute for Regional Program Evaluation , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| | - Soo Hyun Chung
- e Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Myunghee Kim
- a Department of Food Science and Technology , Yeungnam University , Gyeongsan-si , Gyeongsangbuk-do , Republic of Korea
| |
Collapse
|
117
|
Zhou Z, Zuber S, Cantergiani F, Butot S, Li D, Stroheker T, Devlieghere F, Lima A, Piantini U, Uyttendaele M. Inactivation of viruses and bacteria on strawberries using a levulinic acid plus sodium dodecyl sulfate based sanitizer, taking sensorial and chemical food safety aspects into account. Int J Food Microbiol 2017; 257:176-182. [PMID: 28668727 DOI: 10.1016/j.ijfoodmicro.2017.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
The efficacy of levulinic acid (LVA) in combination with sodium dodecyl sulfate (SDS) in removal of foodborne viruses, enteric bacterial pathogens and their surrogates on fresh strawberries was investigated. Inoculated strawberries were treated with potable water, sodium hypochlorite solution (50ppm), 0.5% LVA plus 0.5% SDS solution, and 5% LVA plus 2% SDS solution respectively for 2min, followed by spray-rinsing with potable water. Water washing removed at least 1.0-log of the tested viral and bacterial strains from the strawberries' surfaces. The 50ppm chlorine wash induced 3.4, 1.5 and 2.1-log reductions for hepatitis A virus (HAV), murine norovirus-1 (MNV-1) and MS2 bacteriophage, respectively. In comparison, the tested bacterial strains showed uniform reductions around 1.6-log CFU/ml. The 0.5% LVA plus 0.5% SDS wash induced 2.7, 1.4 and 2.4-log reductions for HAV, MNV-1 and MS2, which were comparable with the reductions induced by chlorine (P>0.05). For bacteria, over 2.0-log reductions were obtained for Enterococcus faecium, Listeria monocytogenes and Salmonella, while Escherichia coli O157:H7 and Escherichia coli P1 showed reductions of 1.9 and 1.8-log CFU/ml. Higher concentration of LVA plus SDS showed no significantly higher reductions (P>0.05). Sensory tests of washed strawberries and chemical residue analysis of LVA on strawberries after washing were also performed. In conclusion, this study demonstrates good performance of 0.5% LVA plus 0.5% SDS to reduce the levels of enteric pathogens if present on strawberries without altering taste and introducing chemical safety issues.
Collapse
Affiliation(s)
- Zijin Zhou
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Sophie Zuber
- Nestlé Research Centre, Food Safety & Quality Competence Pillar, 1000 Lausanne 26, Switzerland
| | - Frédérique Cantergiani
- Nestlé Research Centre, Food Safety & Quality Competence Pillar, 1000 Lausanne 26, Switzerland
| | - Sophie Butot
- Nestlé Research Centre, Food Safety & Quality Competence Pillar, 1000 Lausanne 26, Switzerland
| | - Dan Li
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Thomas Stroheker
- Nestlé Research Centre, Food Safety & Quality Competence Pillar, 1000 Lausanne 26, Switzerland
| | - Frank Devlieghere
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Anthony Lima
- Nestlé Research Centre, Food Safety & Quality Competence Pillar, 1000 Lausanne 26, Switzerland
| | - Umberto Piantini
- University of applied sciences western Switzerland, Institute of Life Technologies, Route du Rawyl 64, 1950 Sion, Switzerland
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
118
|
Abstract
Environmental surfaces (ES) are a significant route of enteric virus transmission. A variety of surface sampling methods are applied for virus recovery from ES. There is a need for standardization of ES sampling for recovery of enteric viruses.
Acute gastroenteritis causes the second highest infectious disease burden worldwide. Human enteric viruses have been identified as leading causative agents of acute gastroenteritis as well as foodborne illnesses in the U.S. and are generally transmitted by fecal-oral contamination. There is growing evidence of transmission occurring via contaminated fomite including food contact surfaces. Additionally, human enteric viruses have been shown to remain infectious on fomites over prolonged periods of time. To better understand viral persistence, there is a need for more studies to investigate this phenomenon. Therefore, optimization of surface sampling methods is essential to aid in understanding environmental contamination to ensure proper preventative measures are being applied. In general, surface sampling studies are limited and highly variable among recovery efficiencies and research parameters used (e.g., virus type/density, surface type, elution buffers, tools). This review aims to discuss the various factors impacting surface sampling of viruses from fomites and to explore how researchers could move towards a more sensitive and standard sampling method.
Collapse
Affiliation(s)
- Nicole L Turnage
- Department of Food Science, Center for Food Safety, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA.
| |
Collapse
|
119
|
La Bella G, Martella V, Basanisi MG, Nobili G, Terio V, La Salandra G. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:179-186. [PMID: 27943110 PMCID: PMC5429374 DOI: 10.1007/s12560-016-9273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/28/2016] [Indexed: 05/18/2023]
Abstract
Shellfish are an important vehicle for transmission of food-borne pathogens including norovirus (NoV) and hepatitis A virus (HAV). The risks related with consumption of shellfish are greater if these products are eaten raw or slightly cooked. As molluscs are filter-feeding organisms, they are able to concentrate pathogens dispersed in the water. Data on shellfish viral contamination are therefore useful to obtain a background information on the presence of contamination in the environment, chiefly in shellfish production areas and to generate a picture of the epidemiology of viral pathogens in local populations. From January 2013 to July 2015, 253 samples of bivalve molluscs collected in harvesting areas from a large coastal tract (860 km) of Southern Italy were screened for HAV and NoV of genogroups GI and GII, using real-time reverse transcription qualitative PCR. The RNA of HAV was not detected in any of the analyzed samples. In contrast, the RNA of NoV was identified in 14.2% of the samples with a higher prevalence of NoVs of genogroup GII (12.2%) than genogroup GI (1.6%). Upon sequence analysis of a short diagnostic region located in capsid region, the NoV strains were characterized as GII.2, GII.4 Sydney 2012, GII.6, GII.13, GI.4, and GI.6, all which were circulating in local populations in the same time span. These data confirm that consumption of mussels can expose consumers to relevant risks of infection. Also, matching between the NoV genotypes circulating in local population and detected in molluscs confirms the diffusion in the environment of NoVs.
Collapse
Affiliation(s)
- G La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Martella
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - M G Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - G Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - V Terio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", Valenzano (BA), Italy
| | - G La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy.
| |
Collapse
|
120
|
Abstract
Since the 1950s food safety hazards have been categorized simply as (micro) biological, chemical or physical hazards with no clear differentiation between those that cause acute and chronic harm. Indeed international risk assessment methods, including hazard analysis critical control point (HACCP) use these criteria. However, the spectrum of food related illness continues to grow now encompassing food allergy and intolerance, obesity, type 2 diabetes, stroke, heart disease, cancer as well as food poisoning, foodborne illness and food contamination. Therefore over a half-century later is this the time to redefine the spectrum of what constitutes food related illness? This paper considers whether such "redefinition" of food related intoxicating and infectious agents would provide more targeted policy instruments and lead to better risk assessment and thus mitigation of such risk within the food supply chain.
Collapse
Affiliation(s)
- Louise Manning
- a Royal Agricultural University, School of Agriculture, Food and the Environment , Cirencester , United Kingdom
| |
Collapse
|
121
|
Scavia G, Alfonsi V, Taffon S, Escher M, Bruni R, Medici DD, Pasquale SD, Guizzardi S, Cappelletti B, Iannazzo S, Losio NM, Pavoni E, Decastelli L, Ciccaglione AR, Equestre M, Tosti ME, Rizzo C, National Italian Task Force On Hepatitis A. A large prolonged outbreak of hepatitis A associated with consumption of frozen berries, Italy, 2013-14. J Med Microbiol 2017; 66:342-349. [PMID: 28086079 DOI: 10.1099/jmm.0.000433] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE In 2013/2014, Italy experienced one of the largest community-wide prolonged outbreaks of hepatitis A virus (HAV) throughout the country. The article provides a comprehensive description of the outbreak and the investigation carried out by a multidisciplinary National Task Force, in collaboration with regional and local public health authorities. Control strategies of food-borne HAV infection in both the human and food sectors are also described. METHODOLOGY Enhanced human epidemiological and microbiological surveillance together with microbiological monitoring of HAV in food and trace-back investigation were conducted. RESULTS A total of 1803 HAV cases were identified from 1 January 2013 to 31 August 2014, in Italy. Sequencing was possible for 368 cases (20.4 %), mostly collected between 1 January 2013 and 28 February 2014, and 246 cases (66.8 %) harboured an HAV outbreak strain. Imported frozen berries contaminated with HAV were identified as the vehicle of the outbreak which also involved many other European countries in 2013 and 2014. Epidemiological evidence obtained through a case-control study was supported by the finding of a 100 % nucleotide similarity of the VP1/2A sequences of HAVs detected in human and food samples. Trace-back investigation revealed an extremely complex supplying network with no possibility for a point source potentially explaining the vast contamination of berries found in Italy. CONCLUSION The investigation benefited from an excellent collaboration among different sectors who shared proactively the available information. Our findings highlight the importance of considering frozen berries among the highest risk factors for HAV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nadia Marina Losio
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Enrico Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Lucia Decastelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | | | | | | | | |
Collapse
|
122
|
Terio V, Bottaro M, Pavoni E, Losio MN, Serraino A, Giacometti F, Martella V, Mottola A, Di Pinto A, Tantillo G. Occurrence of hepatitis A and E and norovirus GI and GII in ready-to-eat vegetables in Italy. Int J Food Microbiol 2017; 249:61-65. [PMID: 28319799 DOI: 10.1016/j.ijfoodmicro.2017.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 01/19/2017] [Accepted: 03/11/2017] [Indexed: 02/08/2023]
Abstract
Fresh vegetables and their ready-to-eat (RTE) salads have become increasingly recognized as potential vehicles for foodborne diseases. The EU Reg. 1441/2007 establishes microbiological criteria for bacterial pathogens for products placed on the market during their shelf-life (i.e. Salmonella spp., Listeria monocytogenes) for pre-cut fruits and vegetables (RTE) whilst it does not address the problem of contamination by enteric viruses. In this study we investigated the contamination by hepatitis A virus (HAV), hepatitis E virus (HEV) and norovirus (NoV) in 911 ready-to-eat vegetable samples taken from products at retail in Apulia and in Lombardia. The vegetable samples were tested using validated real-time PCR (RT-qPCR) assays, ISO standardized virological methods and ISO culturing methods for bacteriological analysis. The total prevalence of HAV and HEV was 1.9% (18/911) and 0.6% (6/911), respectively. None of the samples analysed in this study was positive for NoV, Salmonella spp. or Listeria monocytogenes. The detection of HAV and HEV in RTE salads highlights a risk to consumers and the need to improve production hygiene. Appropriate implementation of hygiene procedures is required at all the steps of the RTE vegetable production chain and this should include monitoring of emerging viral pathogens.
Collapse
Affiliation(s)
- V Terio
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy.
| | - M Bottaro
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - E Pavoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi no. 9, 25124 Brescia, Italy
| | - M N Losio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi no. 9, 25124 Brescia, Italy
| | - A Serraino
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - F Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - V Martella
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - A Mottola
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - A Di Pinto
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - G Tantillo
- Department of Veterinary Medicine (DIMEV), University of Bari, Provincial Road to Casamassima, km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
123
|
Kokkinos P, Kozyra I, Lazic S, Söderberg K, Vasickova P, Bouwknegt M, Rutjes S, Willems K, Moloney R, de Roda Husman AM, Kaupke A, Legaki E, D'Agostino M, Cook N, von Bonsdorff CH, Rzeżutka A, Petrovic T, Maunula L, Pavlik I, Vantarakis A. Virological Quality of Irrigation Water in Leafy Green Vegetables and Berry Fruits Production Chains. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:72-78. [PMID: 27709435 DOI: 10.1007/s12560-016-9264-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/28/2016] [Indexed: 05/21/2023]
Abstract
This study condenses data acquired during investigations of the virological quality of irrigation water used in production of fresh produce. One hundred and eight samples of irrigation water were collected from five berry fruit farms in Finland (1), the Czech Republic (1), Serbia (2), and Poland (1), and sixty-one samples were collected from three leafy green vegetable farms in Poland, Serbia, and Greece. Samples were analyzed for index viruses of human or animal fecal contamination (human and porcine adenoviruses, and bovine polyoma viruses), and human pathogenic viruses (hepatitis A virus, hepatitis E virus, and noroviruses GI/GII). Both index and pathogenic viruses were found in irrigation water samples from the leafy green vegetables production chain. The data on the presence of index viruses indicated that the highest percentage of fecal contamination was of human origin (28.1 %, 18/64), followed by that of porcine (15.4 %, 6/39) and bovine (5.1 %, 2/39) origins. Hepatitis E virus (5 %, 1/20) and noroviruses GII (14.3 %, 4/28) were also detected. Samples from berry fruit production were also positive for both index and pathogenic viruses. The highest percentage of fecal contamination was of human origin (8.3 %, 9/108), followed by that of porcine, 4.5 % (4/89) and bovine, 1.1 % (1/89) origins. Norovirus GII (3.6 %, 2/56) was also detected. These data demonstrate that irrigation water used in primary production is an important vehicle of viral contamination for fresh produce, and thus is a critical control point which should be integrated into food safety management systems for viruses. The recommendations of Codex Alimentarius, as well as regulations on the use of water of appropriate quality for irrigation purposes, should be followed.
Collapse
Affiliation(s)
- P Kokkinos
- Environmental Microbiology Unit, Department of Public Health, University of Patras, University Campus, 26500, Patras, Greece
| | - I Kozyra
- National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - S Lazic
- Scientific Veterinary Institute "Novi Sad", Rumenacki put 20, 21000, Novi Sad, Serbia
| | - K Söderberg
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| | - P Vasickova
- Veterinary Research Institute, Hudcova 70, 721 00, Brno, Czech Republic
| | - M Bouwknegt
- National Institute for Public Health and the Environment, RIVM, Utrecht, The Netherlands
| | - S Rutjes
- National Institute for Public Health and the Environment, RIVM, Utrecht, The Netherlands
| | - K Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - R Moloney
- Environmental Health Service, Health Service Executive, Sandfield Centre, Ennis, Co., Clare, Ireland
| | - A M de Roda Husman
- National Institute for Public Health and the Environment, RIVM, Utrecht, The Netherlands
| | - A Kaupke
- National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - E Legaki
- Environmental Microbiology Unit, Department of Public Health, University of Patras, University Campus, 26500, Patras, Greece
| | - M D'Agostino
- Food and Environment Research Agency (FERA), Sand Hutton, York, UK
| | - N Cook
- Food and Environment Research Agency (FERA), Sand Hutton, York, UK
| | - C-H von Bonsdorff
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| | - A Rzeżutka
- National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| | - T Petrovic
- Scientific Veterinary Institute "Novi Sad", Rumenacki put 20, 21000, Novi Sad, Serbia.
| | - L Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland.
| | - I Pavlik
- Veterinary Research Institute, Hudcova 70, 721 00, Brno, Czech Republic.
| | - A Vantarakis
- Environmental Microbiology Unit, Department of Public Health, University of Patras, University Campus, 26500, Patras, Greece.
| |
Collapse
|
124
|
Fraisse A, Coudray-Meunier C, Martin-Latil S, Hennechart-Collette C, Delannoy S, Fach P, Perelle S. Digital RT-PCR method for hepatitis A virus and norovirus quantification in soft berries. Int J Food Microbiol 2017; 243:36-45. [DOI: 10.1016/j.ijfoodmicro.2016.11.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022]
|
125
|
Dábilla N, Nunes Vieira Almeida T, Carvalho Rebouças Oliveira A, Kipnis A, Neres Silva T, Souza Fiaccadori F, Teixeira de Sousa T, de Paula Cardoso DDD, Souza M. Norovirus in feces and nasopharyngeal swab of children with and without acute gastroenteritis symptoms: First report of GI.5 in Brazil and GI.3 in nasopharyngeal swab. J Clin Virol 2017; 87:60-66. [DOI: 10.1016/j.jcv.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
126
|
Abstract
Foodborne viral illness, resulting from the consumption of contaminated food or water containing pathogenic viruses, remains a major public health problem globally with substantial economic impact. Major challenges regarding recognizing, detecting, characterizing, and effectively responding to foodborne viral threats to health exist. Adequate health crisis management is largely dependent on early detection of potential public health threats, which is hampered by changing trends in disease outbreaks, from localized clusters of disease in confined populations to dispersed outbreaks with excellent opportunity for further transmission. In addition, no precise and consistent global baseline syndrome and diagnostic surveillance information exists. An integrated multidisciplinary approach with a combination of sustained pathogen syndrome and diagnostic surveillance, genomics-based, and standardized global analytical networks gathering clinical, epidemiological and genetic data alike would be required to understand the dynamics of foodborne viral infection and to mitigate potential effects of future threats. A huge global effort in virus syndrome and diagnostic surveillance may be justified in the light of global health impact in general, and timely with the development of new metagenomics tools that hold the promise of not only identifying viral pathogens, but possibly the complete microbiome in a single assay.
Collapse
|
127
|
Abstract
Viral gastroenteritis is among the most common illnesses affecting humans and has greatest impact at the extremes of age. The spectrum of disease can range from asymptomatic infections to severe disease with dehydration. In contrast to bacterial pathogens, enteric viruses cannot multiply outside their host; hence, the original inoculum into the common source determines infectivity. Prevention of contamination of food and water control primary cases, whereas careful nursing and handwashing prevent secondary cases. Effective vaccines are available and widely used to prevent rotaviral gastroenteritis, but vaccines for other causes of viral gastroenteritis are not yet available.
Collapse
|
128
|
Lianou A, Panagou EZ, Nychas GJE. Meat Safety—I Foodborne Pathogens and Other Biological Issues. LAWRIE´S MEAT SCIENCE 2017. [PMCID: PMC7152306 DOI: 10.1016/b978-0-08-100694-8.00017-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This chapter presents information pertinent to foodborne pathogens (bacteria and bacterial toxins, viruses, parasites) and other biological issues (prions) with importance to the safety of meat and meat products. Aspects covered refer mainly to the characteristics of the most important pathogenic organisms, their distribution in the environment, their transmission routes to humans, as well as their epidemiology and association with sporadic or epidemic foodborne illness. Current and emerging challenges to meat safety management also are discussed.
Collapse
|
129
|
Rapid and sensitive method to assess human viral pollution in shellfish using infectious F-specific RNA bacteriophages: Application to marketed products. Food Microbiol 2016; 63:248-254. [PMID: 28040176 DOI: 10.1016/j.fm.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022]
Abstract
F-specific RNA bacteriophages (FRNAPH) have been used as indicators of environmental fecal pollution for many years. While FRNAPH subgroup I (FRNAPH-I) are not host specific, some FRNAPH-II and -III strains appear specific to human pollution. Because a close relationship has been observed between FRNAPH-II genome and human norovirus (NoV) in shellfish, and because FRNAPH infectivity can easily be investigated unlike that of NoV, the detection of human infectious FRNAPH could therefore provide a valuable tool for assessing viral risk. In this study, an integrated cell culture real-time RT-PCR method has been developed to investigate infectious FRNAPH subgroup prevalence in oysters. This rapid screening method appears more sensitive than E. coli or NoV genome detection, and allows an FRNAPH subgroup present in low concentrations (0.05 PFU/g of oyster) to be detected in the presence of another 1000 times more concentrated, without any dissection step. Its application to marketed oysters (n = 135) over a 1-year period has allowed to identify the winter peak classically described for NoV or FRNAPH accumulation. Infectious FRNAPH were detected in 34% of batches, and 7% were suspected of having a human origin. This approach may be helpful to evaluate oyster's depuration processes, based on an infectious viral parameter.
Collapse
|
130
|
Adefisoye MA, Nwodo UU, Green E, Okoh AI. Quantitative PCR Detection and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:262-274. [PMID: 27236707 PMCID: PMC5093187 DOI: 10.1007/s12560-016-9246-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/18/2016] [Indexed: 05/18/2023]
Abstract
The occurrence of enteric viruses in reclaimed wastewater, their removal by efficient treatment processes and the public health hazards associated with their release into the environments are of great significance in environmental microbiology. In this study, TaqMan-based real-time polymerase chain reaction (qPCR) was used to assess the prevalence of human adenovirus (HAdV), rotavirus (RV) and hepatitis A virus (HAV) in the final effluents of two wastewater treatment plants in the Eastern Cape Province, South Africa, over a twelve-month sampling period. The correlation between the concentrations of viruses in the effluents samples and faecal coliform (FC) densities were assessed as to validate the use of FC as microbiological indicator in water quality assessment. HAdV was detected in 62.5 % (30/48) of the samples with concentrations ranging between 8.4 × 101 and 1.0 × 105 genome copies/L while HAV and RV were only detected at concentrations below the set detection limits. FCs densities ranged from 1 to 2.7 × 104 CFU/100 ml. Adenovirus species HAdV-B (serotype 2) and HAdV-F (serotype 41) were detected in 86.7 % (26/30) and 6.7 % (2/30) of the HAdV-positive samples, respectively. No consistent seasonal trend was observed in HAdV concentrations, however, increased concentrations of HAdV were generally observed in the winter months. Also, there was no correlation between the occurrence of HAdV and FC at both the treatment plants. The persistent occurrence of HAdV in the discharged treated effluents points to the potential public health risk through the release of HAdV into the receiving watersheds, and the possibility of their transmission to human population.
Collapse
Affiliation(s)
- Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Ezekiel Green
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
131
|
Takahashi H, Takahashi M, Ohshima C, Izawa Y, Uema M, Kuda T, Kimura B, Noda M. Differences in the viability of murine norovirus in different aquatic locations. MARINE POLLUTION BULLETIN 2016; 112:313-317. [PMID: 27527374 DOI: 10.1016/j.marpolbul.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Norovirus is detected from shellfish and environmental water more frequently in winter than in other seasons. However, there is no report regarding its viability in actual seawater in situ. We investigated the viability of murine norovirus strain 1 (MNV-1), a surrogate for human norovirus, in 2 types of aquatic locations, a seawater pool carrying oceanic water and inner bay carrying brackish water. Sterilized seawater was inoculated with MNV-1 and enclosed in dialysis tubes, which were placed at the 2 locations. MNV-1 exhibited higher level of viability in brackish than in oceanic water. Factors that influenced the viability of MNV-1 included salt concentration as well as temperature of the seawater. Therefore, based on our findings, coastal brackish water that is routinely used for harvesting or cleaning seafood at fishing ports may promote the viability of norovirus.
Collapse
Affiliation(s)
- Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Michiko Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Chihiro Ohshima
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Yukino Izawa
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Masashi Uema
- Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Mamoru Noda
- Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
132
|
Xu R, Shieh YC, Stewart DS. Comparison of RNA extraction kits for the purification and detection of an enteric virus surrogate on green onions via RT-PCR. J Virol Methods 2016; 239:61-68. [PMID: 27836658 DOI: 10.1016/j.jviromet.2016.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) offers a rapid and sensitive molecular method for detection of enteric viruses. Unfortunately, these assays are often hampered by the low virus titre found in foods and PCR inhibition due to matrix carryover during RNA extraction. Four commercial RNA extraction kits (Qiagen's QIAamp Viral RNA Mini and UltraSens Virus kits, MoBio UltraClean Tissue & Cells RNA Isolation kit, and Ambion MagMAX Viral RNA Isolation kit) were evaluated for their ability to extract and purify MS2 bacteriophage RNA, an enteric virus surrogate, from inoculated green onions, a food which has been associated with viral gastroenteritis outbreaks. Inoculated green onion wash concentrates and green onion pieces with and without Qiagen QIAshredder homogenization were assayed in the kit comparison. MS2 detection and PCR inhibition were evaluated using a duplex real-time RT-PCR for MS2 and an exogenous internal amplification control (IAC) assay. Without homogenization, MS2 inoculated at 40pfu/g was detected in at least 4 lots of green onion wash concentrates using the silica-membrane spin-column kits. Inhibition was a factor for the magnetic silica-based MagMAX kit, which resulted in detection of MS2 in 1 of 5. Addition of QIAshredder homogenization prior to extraction did not adversely affect the silica-membrane kit results but improved the MS2 detection by MagMAX to 5 of 5 lots. Use of a 1:10 dilution of primary RNA extracts also improved detection. The QIAamp Viral RNA Mini and MagMAX kits were further compared for detection of MS2 from green onion pieces inoculated at 20 and 5pfu/g. Using homogenization, the MagMAX kit detected 20pfu/g in only 1 of 2 green onion lots, whereas the QIAamp Viral RNA kit detected 2 of 2 lots at 5 pfu/g without homogenization.
Collapse
Affiliation(s)
- Ruoyang Xu
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 S. Archer Road, Bedford Park, IL 60501, United States.
| | - Y Carol Shieh
- U. S. Food and Drug Administration, 6502 S. Archer Road, Bedford Park, IL 60501, United States.
| | - Diana S Stewart
- U. S. Food and Drug Administration, 6502 S. Archer Road, Bedford Park, IL 60501, United States.
| |
Collapse
|
133
|
Moradi Moghadam S, Yavarmanesh M, Habibi Najafi MB. Survival of enteric viruses during yoghurt making process using male-specific coliphage. J Food Saf 2016. [DOI: 10.1111/jfs.12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Somayeh Moradi Moghadam
- Department of Food Science and Technology; Ferdowsi University of Mashhad-International Campus; Mashhad Iran
| | - Masoud Yavarmanesh
- Faculty of Agriculture, Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | | |
Collapse
|
134
|
Dalahmeh S, Lalander C, Pell M, Vinnerås B, Jönsson H. Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation. J Appl Microbiol 2016; 121:1427-1443. [DOI: 10.1111/jam.13273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 11/28/2022]
Affiliation(s)
- S.S. Dalahmeh
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - C. Lalander
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - M. Pell
- Department of Microbiology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - B. Vinnerås
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| | - H. Jönsson
- Department of Energy and Technology; Swedish University of Agricultural Sciences (SLU); Uppsala Sweden
| |
Collapse
|
135
|
Bourdoux S, Li D, Rajkovic A, Devlieghere F, Uyttendaele M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr Rev Food Sci Food Saf 2016; 15:1056-1066. [DOI: 10.1111/1541-4337.12224] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Siméon Bourdoux
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Dan Li
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Frank Devlieghere
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Dept. of Food Safety and Food Quality, Faculty of Bioscience Engineering; Ghent Univ; Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
136
|
Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters. Appl Environ Microbiol 2016; 82:5709-19. [PMID: 27422833 DOI: 10.1128/aem.01528-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II. IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated.
Collapse
|
137
|
Abstract
Enteric viruses are those human viruses that are primarily transmitted by the fecal-oral route, either by person-to-person contact or by ingestion of contaminated food or water. The importance of viral foodborne diseases is increasingly being recognized, and several international organizations have found that there is an upward trend in their incidence. Thus, in this review, state-of-the-art information regarding virus persistence in food and the environment is compiled.
Collapse
|
138
|
Takahashi H, Tsuchiya T, Takahashi M, Nakazawa M, Watanabe T, Takeuchi A, Kuda T, Kimura B. Viability of murine norovirus in salads and dressings and its inactivation using heat-denatured lysozyme. Int J Food Microbiol 2016; 233:29-33. [PMID: 27299671 DOI: 10.1016/j.ijfoodmicro.2016.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/29/2016] [Accepted: 06/05/2016] [Indexed: 11/28/2022]
Abstract
In recent years, a number of food poisoning outbreaks due to the contamination of norovirus in ready-to-eat (RTE) foods such as salads have been reported, and this issue is regarded as a global problem. The risk of contamination of fresh vegetables with norovirus has been previously reported, but the survivability of norovirus that contaminates salads remains unknown. In addition, there have been limited reports on the control of norovirus in food products by using inactivating agents. In this study, the viability of norovirus in various types of salads and dressings was examined using murine norovirus strain 1 (MNV-1) as a surrogate for the closely related human norovirus. In addition, the inactivation of MNV-1 in salads was examined using heat-denatured lysozyme, which had been reported to inactivate norovirus. MNV-1 was inoculated in 4 types of salads (coleslaw, thousand island salad, vinaigrette salad, egg salad) and 3 types of dressings (mayonnaise, thousand island dressing, vinaigrette dressing), stored at 4°C for 5days. The results revealed that in the vinaigrette dressing, the infectivity of MNV-1 decreased by 2.6logPFU/mL in 5days, whereas in the other dressings and salads, the infectivity of MNV-1 did not show any significant decrease. Next, 1% heat-denatured lysozyme was added to the 4 types of salads, and subsequently it was found that in 2 types of salads (thousand island salad, vinaigrette salad), the infectivity of MNV-1 decreased by >4.0logPFU/g, whereas in coleslaw salad, a decrease of 3.0logPFU/g was shown. However, in egg salads, the infectivity of MNV-1 did not show such decrease. These results suggest that norovirus can survive for 5days in contaminated salads. Further, these findings also indicated that heat-denatured lysozyme had an inactivating effect on norovirus, even in salads. In the future, heat-denatured lysozyme can be used as a novel norovirus-inactivating agent, although it is essential to investigate the mechanism of inactivating effect of heat-denatured lysozyme against norovirus.
Collapse
Affiliation(s)
- Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Tomoki Tsuchiya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Michiko Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Moemi Nakazawa
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoka Watanabe
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Akira Takeuchi
- Kewpie Corporation, Sengawa Kewport, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
139
|
Amimo JO, El Zowalaty ME, Githae D, Wamalwa M, Djikeng A, Nasrallah GK. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch Virol 2016; 161:887-897. [PMID: 26965436 DOI: 10.1007/s00705-016-2819-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Pigs harbor a variety of viruses that are closely related to human viruses and are suspected to have zoonotic potential. Little is known about the presence of viruses in smallholder farms where pigs are in close contact with humans and wildlife. This study provides insight into viral communities and the prevalence and characteristics of enteric viral co-infections in smallholder pigs in East Africa. Sequence-independent amplification and high-throughput sequencing were applied to the metagenomics analysis of viruses in feces collected from asymptomatic pigs. A total of 47,213 de novo-assembled contigs were constructed and compared with sequences from the GenBank database. Blastx search results revealed that 1039 contigs (>200 nt) were related to viral sequences in the GenBank database. Of the 1039 contigs, 612 were not assigned to any viral taxa because they had little similarity to known viral genomic or protein sequences, while 427 contigs had a high level of sequence similarity to known viruses and were assigned to viral taxa. The most frequent contigs related to mammalian viruses resembling members of the viral genera Astrovirus, Rotavirus, Bocavirus, Circovirus, and Kobuvirus. Other less abundant contigs were related to members of the genera Sapelovirus, Pasivirus, Posavirus, Teschovirus and Picobirnavirus. This is the first report on the diversity of the fecal virome of pig populations in East Africa. The findings of the present study help to elucidate the etiology of diarrheal diseases in pigs and identify potential zoonotic and emerging viruses in the region. Further investigations are required to compare the incidence of these viruses in healthy and diseased pigs in order to better elucidate their pathogenic role.
Collapse
Affiliation(s)
- Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, P.O Box 29053, Nairobi, 00625, Kenya.
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya.
| | | | - Dedan Githae
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Mark Wamalwa
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Apollinaire Djikeng
- Bioscieces of Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI), Hub, Nairobi, P.O Box 30709, Nairobi, 00100, Kenya
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
140
|
Zonta W, Mauroy A, Farnir F, Thiry E. Comparative Virucidal Efficacy of Seven Disinfectants Against Murine Norovirus and Feline Calicivirus, Surrogates of Human Norovirus. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:1-12. [PMID: 26445948 DOI: 10.1007/s12560-015-9216-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Human noroviruses (HuNoV) are the leading cause of acute non-bacterial gastroenteritis in humans and can be transmitted either by person-to-person contact or by consumption of contaminated food. A knowledge of an efficient disinfection for both hands and food-contact surfaces is helpful for the food sector and provides precious information for public health. The aim of this study was to evaluate the effect of seven disinfectants belonging to different groups of biocides (alcohol, halogen, oxidizing agents, quaternary ammonium compounds, aldehyde and biguanide) on infectious viral titre and on genomic copy number. Due to the absence of a cell culture system for HuNoV, two HuNoV surrogates, such as murine norovirus and feline calicivirus, were used and the tests were performed in suspension, on gloves and on stainless steel discs. When, as criteria of efficacy, a log reduction >3 of the infectious viral titre on both surrogates and in the three tests is used, the most efficacious disinfectants in this study appear to be biocidal products B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol and aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on genomic copy number for both surrogate viruses and in all three tests. The results of this study demonstrate that a halogen compound, oxidizing agents and a mix of QAC, alcohol and aldehyde are advisable for HuNoV disinfection of either potentially contaminated surfaces or materials in contact with foodstuffs.
Collapse
Affiliation(s)
- William Zonta
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Axel Mauroy
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Frederic Farnir
- Biostatistics and Bioinformatics Applied to Veterinary Science, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
141
|
Bartels J, Souza MN, Schaper A, Árki P, Kroll S, Rezwan K. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1973-81. [PMID: 26771147 DOI: 10.1021/acs.est.5b05124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.
Collapse
Affiliation(s)
- Julia Bartels
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Marina N Souza
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Amelie Schaper
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Pál Árki
- Institute of Electronic- and Sensor-Materials, Technical University (TU) Bergakademie Freiberg , Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Stephen Kroll
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX - Center for Materials and Processes, University of Bremen , Am Fallturm 1, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX - Center for Materials and Processes, University of Bremen , Am Fallturm 1, 28359 Bremen, Germany
| |
Collapse
|
142
|
Coudray-Meunier C, Fraisse A, Martin-Latil S, Delannoy S, Fach P, Perelle S. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System. PLoS One 2016; 11:e0147832. [PMID: 26824897 PMCID: PMC4732599 DOI: 10.1371/journal.pone.0147832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022] Open
Abstract
Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health.
Collapse
Affiliation(s)
- Coralie Coudray-Meunier
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Audrey Fraisse
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sandra Martin-Latil
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sabine Delannoy
- Université Paris-Est, ANSES, Food Safety Laboratory, Identypath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Patrick Fach
- Université Paris-Est, ANSES, Food Safety Laboratory, Identypath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sylvie Perelle
- Université Paris-Est, ANSES, Food Safety Laboratory, Enteric viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
- * E-mail:
| |
Collapse
|
143
|
Ibfelt T, Frandsen T, Permin A, Andersen LP, Schultz AC. Test and validation of methods to sample and detect human virus from environmental surfaces using norovirus as a model virus. J Hosp Infect 2016; 92:378-84. [PMID: 26905662 DOI: 10.1016/j.jhin.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Viruses cause a major proportion of human infections, especially gastroenteritis and respiratory infections in children and adults. Indirect transmission between humans via environmental surfaces may play a role in infections, but methods to investigate this have been sparse. AIM To validate and test efficient and reliable procedures to detect multiple human pathogenic viruses on surfaces. METHODS The study was divided into two parts. In Part A, six combinations of three different swabs (consisting of cotton, foamed cotton, or polyester head) and two different elution methods (direct lysis or immersion in alkaline glycine buffer before lysis) were tested for efficient recovery of human norovirus GII.7 and mengovirus from artificially contaminated surfaces. In Part B we determined the detection limit for norovirus GI.1 and GII.3 using the best procedure found in Part A linked with a commercial multiplex real-time quantitative polymerase chain reaction detection assay. FINDINGS Combining the polyester swab with direct lysis allowed recovery down to 100 and 10 genome copies/cm(2) of norovirus GI.1 and GII.3, respectively. This procedure resulted in the significant highest recovery of both norovirus and mengovirus, whereas no differences in amplification efficiencies were observed between the different procedures. CONCLUSION The results indicate that it is possible to detect low concentrations of virus on environmental surfaces. We therefore suggest that a polyester swab, followed by direct lysis, combined with a multiplex qPCR detection assay is an efficient screening tool that merits study of different respiratory and gastrointestinal viruses on environment surfaces.
Collapse
Affiliation(s)
- T Ibfelt
- Departments of Infection Control 6901 and Clinical Microbiology 9301, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - T Frandsen
- Departments of Infection Control 6901 and Clinical Microbiology 9301, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - A Permin
- National Food Institute, Technical University of Denmark, DTU, Denmark
| | - L P Andersen
- Departments of Infection Control 6901 and Clinical Microbiology 9301, Copenhagen University Hospital (Rigshospitalet), Denmark
| | - A C Schultz
- National Food Institute, Technical University of Denmark, DTU, Denmark
| |
Collapse
|
144
|
Abstract
A review of the relevant foodborne viruses is presented. Published data from scientific journals as well as the data presented in official reports and published on the Internet were used for this review. In the review, information is given for the main foodborne viruses, implicated virus species, and food matrices involved, some history data are given, as well as modes of transmission, and sources of the virus presence in food. Results of surveys on the presence of viruses in different kind of foods commodities (fresh produces and shellfish) and in some cases connections to caused outbreaks are presented. Also, possible zoonotic infection and implicated viruses that could be transmitted through food are given. Human Norovirus followed by hepatitis A virus are the most common foodborne viruses, which are transmitted by food consumed raw, such as shellfish, fresh vegetables, and berry fruit. In developed countries, hepatitis E virus is increasingly being recognized as an emerging viral foodborne pathogen that includes zoonotic transmission via pork products. The existing knowledge gaps and the major future expectations in the detection and surveillance of foodborne viruses are mentioned.
Collapse
|
145
|
Knight A, Haines J, Stals A, Li D, Uyttendaele M, Knight A, Jaykus LA. A systematic review of human norovirus survival reveals a greater persistence of human norovirus RT-qPCR signals compared to those of cultivable surrogate viruses. Int J Food Microbiol 2016; 216:40-9. [DOI: 10.1016/j.ijfoodmicro.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 01/01/2023]
|
146
|
Shahrampour D, Yavarmanesh M, Najafi MBH, Mohebbi M. Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:381-389. [PMID: 26264153 DOI: 10.1007/s12560-015-9212-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources.
Collapse
Affiliation(s)
- Dina Shahrampour
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Yavarmanesh
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohebbat Mohebbi
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
147
|
Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Crit Rev Food Sci Nutr 2015; 57:2970-2995. [DOI: 10.1080/10408398.2015.1082126] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
148
|
Kokkinos P, Mandilara G, Nikolaidou A, Velegraki A, Theodoratos P, Kampa D, Blougoura A, Christopoulou A, Smeti E, Kamizoulis G, Vantarakis A, Mavridou A. Performance of three small-scale wastewater treatment plants. A challenge for possible re use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17744-17752. [PMID: 26154042 DOI: 10.1007/s11356-015-4988-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The study focused on the assessment of the performance of three WWTPs in Greece by the estimation of the microbiological and chemical quality of influent and effluent sewage. Physicochemical parameters were recorded (temperature, pH, COD, BOD, suspended solids, conductivity), and meteorological data were collected (air temperature, rain). Microbiological parameters were analyzed (Escherichia coli, total coliforms, bacteriophages, Salmonella, human adenoviruses, Candida, Pseudallescheria boydii, helminths, parasites Cryptosporidium ssp., and Giardia spp.). Statistically significant correlations among the various aforementioned parameters were investigated, in an attempt to propose appropriate processing performance indicators. Furthermore, the study aimed to assess current joint ministerial decision (JMD) on wastewater reuse, for irrigation purposes; to evaluate its practicability and its potential for public health protection. In the vast majority, outlet samples from all three studied WWTPs were not appropriate for irrigation reuse purposes based on BOD50 and suspended solids limit values, set by the current JMD, for both limited and unrestricted irrigation applications. Reductions for E. coli, total coliforms, and bacteriophages were found to range between 2-3, 1.5-2.5, and 2-4 log10 values, respectively. Salmonella spp. was detected in outlet sewage samples from Patra (PAT), Arachova (ARH), and Livadeia (LEV), at 23% (3/13), 33% (4/12), and 38% (5/13), respectively. Molds were detected at 92.3% (12/13), 100% (13/13), and 91.6% (11/12), respectively, while Candida was found at 85% (11/13), 67% (8/12), and 46% (6/13). A high prevalence of Pseudallescheria boydii, in outlet samples from all studied WWTPs is an important public health issue, which underlines the need for further studies on this emerging fungal pathogen in wastewater reuse applications. Pseudallescheria boydii was found at 85% (11/13), 67% (8/12), and 46% (6/13), respectively. Helminths were found in both inlet and outlet samples, of all studied WWTPs, at 100%. Human adenoviruses, were detected at high percentages in outlet samples at 76.9% (10/13), 92.3% (12/13), 84.6% (11/13), respectively, while no influence of UV irradiation was recorded on the entry and exit loads of human adenoviruses. No influence of meteorological parameters was found on the microbiological and chemical parameters, with the exception of a weak positive correlation between environmental temperature and bacteriophages. A moderate positive correlation was found between BOD and suspended solids, bacteriophages, and total coliforms, bacteriophages and E. coli, and bacteriophages and adenoviruses. A significant positive correlation was found between total coliforms and E. coli, COD and BOD, and suspended solids and COD. No correlations were proved between human pathogens and bacterial indicator parameters. Collectively, our findings underlined the unsuitability of the current JMD on wastewater reuse in Greece, or public health protection. The study is expected to support the development of a public health risk assessment model based on quantitative risk assessment on the use of treated wastewater for irrigation purposes in Greece.
Collapse
Affiliation(s)
- P Kokkinos
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - G Mandilara
- Department of Microbiology, National School of Public Health, Alexandras Ave., Athens, Greece
| | - A Nikolaidou
- Department of Medical Laboratories, Technological Educational Institution of Athens, Athens, Greece
| | - A Velegraki
- Mycology Laboratory, Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - P Theodoratos
- Department of Public and Social Health, Technological Educational Institution of Athens, Athens, Greece
| | - D Kampa
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - A Blougoura
- Department of Public Health and Environmental Hygiene, Viotia Regional Division, Region of Central Greece, Livadia, Greece
| | - A Christopoulou
- Department of Medical Laboratories, Technological Educational Institution of Athens, Athens, Greece
| | | | - G Kamizoulis
- Department of Medical Laboratories, Technological Educational Institution of Athens, Athens, Greece
| | - A Vantarakis
- Environmental Microbiology Unit, Department of Public Health, Medical School, University of Patras, Patras, Greece.
| | - A Mavridou
- Department of Medical Laboratories, Technological Educational Institution of Athens, Athens, Greece
| |
Collapse
|
149
|
DiCaprio E, Purgianto A, Ma Y, Hughes J, Dai X, Li J. Attachment and localization of human norovirus and animal caliciviruses in fresh produce. Int J Food Microbiol 2015; 211:101-8. [PMID: 26188496 DOI: 10.1016/j.ijfoodmicro.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022]
Abstract
Fresh produce is a high risk food for human norovirus (NoV) contamination. To help control this pathogen in fresh produce, a better understanding of the interaction of human NoV and fresh produce needs to be established. In this study the attachment of human NoV and animal caliciviruses (murine norovirus, MNV-1; Tulane virus, TV) to fresh produce was evaluated, using both visualization and viral enumeration techniques. It was found that a human NoV GII.4 strain attached efficiently to the Romaine lettuce leaves and roots and green onion shoots, and that washing with PBS or 200 ppm of chlorine removed less than 0.4 log of viral RNA copies from the tissues. In contrast, TV and MNV-1 bound more efficiently to Romaine lettuce leaves than to the roots, and simple washing removed less than 1 log of viruses from the lettuce leaves and 1-4 log PFU of viruses from roots. Subsequently, the location of virus particles in fresh produce was visualized using a fluorescence-based Quantum Dots (Q-Dots) assay and confocal microscopy. It was found that human NoV virus-like particles (VLPs), TV, and MNV-1 associated with the surface of Romaine lettuce and were found aggregating in and around the stomata. In green onions, human NoV VLPs were found between the cells of the epidermis and cell walls of both the shoots and roots. However, TV and MNV-1 were found to be covering the surface of the epidermal cells in both the shoots and roots of green onions. Collectively, these results demonstrate that (i) washing with 200 ppm chlorine is ineffective in removing human NoV from fresh produce; and (ii) different viruses vary in their localization patterns to different varieties of fresh produce.
Collapse
Affiliation(s)
- Erin DiCaprio
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia Purgianto
- Department of Food Science and Technology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John Hughes
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiangjun Dai
- Department of Food Science and Technology, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
150
|
Takahashi M, Takahashi H, Kuda T, Kimura B. Viability and heat resistance of murine norovirus on bread. Int J Food Microbiol 2015; 216:127-31. [PMID: 26485672 DOI: 10.1016/j.ijfoodmicro.2015.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 07/22/2015] [Accepted: 09/27/2015] [Indexed: 01/25/2023]
Abstract
Contaminated bread was the cause of a large-scale outbreak of norovirus disease in Japan in 2014. Contamination of seafood and uncooked food products by norovirus has been reported several times in the past; however the outbreak resulting from the contamination of bread products was unusual. A few reports on the presence of norovirus on bread products are available; however there have been no studies on the viability and heat resistance of norovirus on breads, which were investigated in this study. ce:italic>/ce:italic> strain 1 (MNV-1), a surrogate for human norovirus, was inoculated directly on 3 types of bread, but the infectivity of MNV-1 on bread samples was almost unchanged after 5days at 20°C. MNV-1 was inoculated on white bread that was subsequently heated in a toaster for a maximum of 2min. The results showed that MNV-1 remained viable if the heating period was insufficient to inactivate. In addition, bread dough contaminated with MNV-1 was baked in the oven. Our results indicated that MNV-1 may remain viable on breads if the heating duration or temperature is insufficient.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan.
| | - Takashi Kuda
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|