101
|
Abstract
Apoptosis is a form of programmed cell death that is essential for the development of the embryo and adult tissue plasticity. In adults, it is observed mainly in those tissues undergoing active differentiation such as the hematopoietic system, testis, ovary, and intestinal epithelium. Apoptosis can be triggered by many factors, such as hormones, cytokines, and drugs, depending on the type of the cell. While the intracellular signaling mechanisms may vary in different cells, they all display similar morphological and biochemical features at the later stages of the apoptotic process. This review focuses on the factors controlling ovarian apoptosis, emphasizing observations made on GnRH-induced apoptotic process in goldfish follicles.Key words: apoptosis, ovary, GnRH.
Collapse
|
102
|
Abstract
Cell suicide is a normal process that participates in a wide variety of physiological processes, including tissue homeostasis, immune regulation, and fertility. Physiological cell death typically occurs by apoptosis, as opposed to necrosis. Defects in apoptotic cell-death regulation contribute to many diseases, including disorders associated with cell accumulation (e.g. cancer, autoimmunity, inflammation and restenosis) or where cell loss occurs (e.g. stroke, heart failure, neurodegeneration, AIDS and osteoporosis). At the center of the apoptosis machinery is a family of intracellular proteases, known as 'caspases', that are responsible directly or indirectly for the morphological and biochemical events that characterize apoptosis. Multiple positive and negative regulators of these cell-death proteases have been discovered in the genomes of mammals, amphibians, insects, nematodes, and other animal species, as well as a variety of animal viruses. Inputs from signal-transduction pathways into the core of the cell-death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell-death responses or cell-survival maintenance. Knowledge of the molecular mechanisms of apoptosis has provided important insights into the causes of multiple diseases where aberrant cell-death regulation occurs and has revealed new approaches for identifying small-molecule drugs for more effectively treating these illnesses.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
103
|
Abstract
Programmed cell death plays critical roles in a wide variety of physiological processes during fetal development and in adult tissues. In most cases, physiological cell death occurs by apoptosis as opposed to necrosis. Defects in apoptotic cell death regulation contribute to many diseases, including disorders where cell accumulation occurs (cancer, restenosis) or where cell loss ensues (stroke, heart failure, neurodegeneration, AIDS). In recent years, the molecular machinery responsible for apoptosis has been elucidated, revealing a family of intracellular proteases, the caspases, which are responsible directly or indirectly for the morphological and biochemical changes that characterize the phenomenon of apoptosis. Diverse regulators of the caspases have also been discovered, including activators and inhibitors of these cell death proteases. Inputs from signal transduction pathways into the core of the cell death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell death responses or cell survival maintenance. Knowledge of the molecular mechanisms of apoptosis is providing insights into the causes of multiple pathologies where aberrant cell death regulation occurs and is beginning to provide new approaches to the treatment of human diseases.
Collapse
Affiliation(s)
- J C Reed
- Burnham Institute, La Jolla, California 92037, USA.
| |
Collapse
|
104
|
Ledgerwood EC, O'Rahilly S, Surani MA. The imprinted gene Peg3 is not essential for tumor necrosis factor alpha signaling. J Transl Med 2000; 80:1509-11. [PMID: 11045567 DOI: 10.1038/labinvest.3780160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The imprinted gene Peg3 encodes a zinc-finger protein which has been proposed to be involved in tumor necrosis factor alpha (TNF) signaling via an interaction with TNF receptor-associated factor 2 (TRAF2). Primary embryonic fibroblasts derived from mice with a null mutation in Peg3 showed no abnormalities in TNF-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) or phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38. In addition, the loss of Peg3 function did not increase the sensitivity of the cells to the cytotoxic action of TNF. These results suggest that Peg3 does not play an essential role in TNF signal transduction.
Collapse
Affiliation(s)
- E C Ledgerwood
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, United Kingdom.
| | | | | |
Collapse
|
105
|
|
106
|
Doostzadeh-Cizeron J, Yin S, Goodrich DW. Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-kappa B activation. J Biol Chem 2000; 275:25336-41. [PMID: 10840029 DOI: 10.1074/jbc.m000793200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the mechanisms involved in responses to extracellular or mitochondrial apoptotic signals have received considerable attention, the mechanisms utilized within the nucleus to transduce apoptotic signals are not well understood. We have characterized apoptosis induced by the nuclear death domain-containing protein p84N5. Adenovirus-mediated N5 gene transfer or transfection of p84N5 expression vectors induces apoptosis in tumor cell lines with nearly 100% efficiency as indicated by cellular morphology, DNA fragmentation, and annexin V staining. Using peptide substrates and Western blotting, we have determined that N5-induced apoptosis is initially accompanied by activation of caspase-6. Activation of caspases-3 and -9 does not peak until 3 days after the peak of caspase-6 activity. Expression of p84N5 also leads to activation of NF-kappaB as indicated by nuclear translocation of p65RelA and transcriptional activation of a NF-kappaB-dependent reporter promoter. Changes in the relative expression level of Bcl-2 family proteins, including Bak and Bcl-Xs, are also observed during p84N5-induced apoptosis. Finally, we demonstrate that p84N5-induced apoptosis does not require p53 and is not inhibited by p53 coexpression. We propose that p84N5 is involved in an apoptotic pathway distinct from those triggered by death domain-containing receptors or by p53.
Collapse
Affiliation(s)
- J Doostzadeh-Cizeron
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
107
|
Harbour ME, Gregory JW, Jenkins HR, Evans BA. Proliferative response of different human osteoblast-like cell models to proinflammatory cytokines. Pediatr Res 2000; 48:163-8. [PMID: 10926290 DOI: 10.1203/00006450-200008000-00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Children with inflammatory bowel disease are known to be at risk of osteopenia. The cause of this osteopenia is likely to be multifactorial, but the inflammatory process with its characteristic overproduction of cytokines has been implicated. To investigate this possible contribution of the disease activity to the development of osteopenia, we performed in vitro assays of the proliferation of osteoblast-like cells of differing origins in response to the inflammatory cytokines tumor necrosis factor-alpha and IL-1/beta. Osteoblast-like cells derived from pediatric bone explants, adherent stromal cells derived from bone marrow (osteoprogenitors), MG-63 osteosarcoma cells, and SV-40 virally transformed osteoprogenitor cells (HCC1) were studied. Tumor necrosis factor-alpha stimulated the proliferation of cells in primary cultures (i.e. from explants and marrow samples) in a linear, dose-dependent manner. In contrast, inhibition of proliferation was observed with the established cell lines (MG-63 and HCC1). IL-1beta stimulated proliferation of all cells apart from the immortalized human bone marrow cell line, HCC1, in which case potent inhibition was observed. We conclude that proinflammatory cytokines are potent regulators of osteoblast-like cell proliferation, and that the responses are specific to cell type. The opposite results obtained with established cell lines compared with the primary cultures suggest that careful consideration should be given to choosing the most suitable cell line for in vitro studies relating to in vivo mechanisms predisposing to osteopenia.
Collapse
Affiliation(s)
- M E Harbour
- Department of Child Health, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
108
|
Abstract
Tumour Necrosis Factor alpha (TNF alpha), is an inflammatory cytokine produced by macrophages/monocytes during acute inflammation and is responsible for a diverse range of signalling events within cells, leading to necrosis or apoptosis. The protein is also important for resistance to infection and cancers. TNF alpha exerts many of its effects by binding, as a trimer, to either a 55 kDa cell membrane receptor termed TNFR-1 or a 75 kDa cell membrane receptor termed TNFR-2. Both these receptors belong to the so-called TNF receptor superfamily. The superfamily includes FAS, CD40, CD27, and RANK. The defining trait of these receptors is an extra cellular domain comprised of two to six repeats of cysteine rich motifs. Additionally, a number of structurally related "decoy receptors" exist that act to sequester TNF molecules, thereby rescuing cells from apoptosis. The crystal structures of TNF alpha, TNF beta, the extracellular domain of TNFR-1 (denoted sTNFR-1), and the TNF beta sTNFR-1 complex have been defined by crystallography. This article will review the structure/function relationships of the TNF alpha and the TNF receptor superfamily. It will also discuss insights as to how structural features play a role in the pleiotropic effects of TNF alpha.
Collapse
Affiliation(s)
- H T Idriss
- Centre for Biomolecular Sciences, The University, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom
| | | |
Collapse
|
109
|
Telliez JB, Xu GY, Woronicz JD, Hsu S, Wu JL, Lin L, Sukits SF, Powers R, Lin LL. Mutational analysis and NMR studies of the death domain of the tumor necrosis factor receptor-1. J Mol Biol 2000; 300:1323-33. [PMID: 10903872 DOI: 10.1006/jmbi.2000.3899] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor receptor-1 (TNFR-1) death domain (DD) is the intracellular functional domain responsible for the receptor signaling activities. To understand the transduction mechanism of TNFR-1 signaling we performed structural and functional analysis of the TNFR-DD. The secondary structure of the TNFR-DD shows that it consists of six anti-parallel alpha-helices. The determination of the topological fold and an extensive mutagenesis analysis revealed that there are two opposite faces that are involved in self-association and interaction with the TRADD death domain. Interestingly, the same critical residues in TNFR-DD are involved in both interactions. There is a good correlation between the binding activities of the mutant proteins and their cytotoxic activities. These results provide important insight into the molecular interactions mediating TNFR-DD self-association and subsequent recruitment of TRADD in the signaling activity of TNFR-1.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- Dimerization
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Osmolar Concentration
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Point Mutation/genetics
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Signal Transduction
- Structure-Activity Relationship
- TNF Receptor-Associated Factor 1
Collapse
Affiliation(s)
- J B Telliez
- Department of Musculoskeletal Science, Genetics Institute, Cambridge, MA 02140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Wu GS, Kim K, el-Deiry WS. KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:143-51. [PMID: 10810622 DOI: 10.1007/0-306-46817-4_13] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TRAIL and its emerging receptors are the newest members of the TNF receptor super-family. The activation of TRAIL receptors by ligand binding leads to apoptosis through caspase activation through an as yet unclear signaling pathway that does not require the FADD adaptor. The TRAIL receptor KILLER/DR5, is induced by DNA damage and appears to be regulated by the tumor suppressor gene p53. Both the Fas receptor and KILLER/DR5 provide potential links between DNA damage-mediated activation of the p53 tumor suppressor and caspase activation. While further evaluation of the role of TRAIL receptors in human cancer is ongoing, initial studies suggest that both KILLER/DR5 and DR4 may be targets for inactivation and that these pro-apooptotic receptors may be tumor suppressor genes. Understanding the regulation of TRAIL and its receptors may thus be beneficial for the development of novel approaches for cancer treatment. TRAIL appears to be a cancer-specific cytotoxic agent and thus offers promise as a novel therapy for cancer either through replacement of the cytokine or potentially via gene replacement. Preliminary studies suggest the potential to combine TRAIL with classical cytotoxic chemotherapeutic drugs to achieve synergistic cell killing.
Collapse
Affiliation(s)
- G S Wu
- Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
111
|
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 2000; 68:383-424. [PMID: 10872455 DOI: 10.1146/annurev.biochem.68.1.383] [Citation(s) in RCA: 1995] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.
Collapse
Affiliation(s)
- W C Earnshaw
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
112
|
Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 2000; 19:3325-36. [PMID: 10880445 PMCID: PMC313930 DOI: 10.1093/emboj/19.13.3325] [Citation(s) in RCA: 390] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The innate immune system uses Toll family receptors to signal for the presence of microbes and initiate host defense. Bacterial lipoproteins (BLPs), which are expressed by all bacteria, are potent activators of Toll-like receptor-2 (TLR2). Here we show that the adaptor molecule, myeloid differentiation factor 88 (MyD88), mediates both apoptosis and nuclear factor-kappaB (NF-kappaB) activation by BLP-stimulated TLR2. Inhibition of the NF-kappaB pathway downstream of MyD88 potentiates apoptosis, indicating that these two pathways bifurcate at the level of MyD88. TLR2 signals for apoptosis through MyD88 via a pathway involving Fas-associated death domain protein (FADD) and caspase 8. Moreover, MyD88 binds FADD and is sufficient to induce apoptosis. These data indicate that TLR2 is a novel 'death receptor' that engages the apoptotic machinery without a conventional cytoplasmic death domain. Through TLR2, BLP induces the synthesis of the precursor of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). Interestingly, BLP also activates caspase 1 through TLR2, resulting in proteolysis and secretion of mature IL-1beta. These results indicate that caspase activation is an innate immune response to microbial pathogens, culminating in apoptosis and cytokine production.
Collapse
Affiliation(s)
- A O Aliprantis
- Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 1001, USA
| | | | | | | | | |
Collapse
|
113
|
Abstract
The cellular and molecular basis of immune senescence is unclear. A number of mechanisms have been proposed. In this issue of the Journal of Clinical Immunology, some of the mechanisms for various immunologic abnormalities in aging are presented. In this article, various molecular steps of both death receptor and mitochondrial pathways of apoptosis in general are reviewed. In particular, the role of apoptosis in T-cell immune senescence is discussed.
Collapse
Affiliation(s)
- S Gupta
- Department of Medicine, University of California, Irvine 92697, USA
| |
Collapse
|
114
|
Diaz F, Bourguignon LY. Selective down-regulation of IP(3)receptor subtypes by caspases and calpain during TNF alpha -induced apoptosis of human T-lymphoma cells. Cell Calcium 2000; 27:315-28. [PMID: 11013462 DOI: 10.1054/ceca.2000.0126] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are at least three types of inositol 1,4,5-trisphosphate receptor (IP(3)R) [IP(3)-gated Ca(2+)channels], which are expressed in different cell types and mammalian tissues. In this study, we have identified three IP(3)R subtypes in human Jurkat T-lymphoma cells. All three subtypes have a molecular mass of about 260 kDa, and display Ca(2+)channel properties in an IP(3)-dependent manner. We have also demonstrated that TNFalpha promotes the activity of different proteases (e.g. caspase-8, caspase-3 and calpain), alters the TCR-mediated Ca(2+)response and subsequently induces apoptosis in Jurkat cells. During the first 6 h of incubation with TNFalpha, several IP(3)R subtype-related changes occur (e.g. proteolysis of IP(3)R subtypes, inhibition of IP(3)binding and impairment of IP(3)-mediated Ca(2+)flux) concomitantly with an elevation of protease (caspase-8, caspase-3 and calpain) activity. Furthermore, the caspase inhibitor, Z-VAD-fmk, significantly reduces TNFalpha-mediated perturbation of IP(3)R1 and IP(3)R2 (but not IP(3)R3) function; whereas the calpain inhibitor I, ALLN, is capable of blocking the inhibitory effect of TNFalpha on IP(3)R3 function. These findings suggest that IP(3)R1 and IP(3)R2 serve as cellular substrates for caspases, and IP(3)R3 is a substrate for calpain. We propose that the selective down-regulation of IP(3)R subtype-mediated Ca(2+)function by caspase-dependent and calpain-sensitive mechanisms may be responsible for the early onset of the apoptotic signal by TNFalpha in human T-cells.
Collapse
Affiliation(s)
- F Diaz
- Department of Cell Biology and Anatomy, University of Miami Medical School, Miami, USA
| | | |
Collapse
|
115
|
Saldeen J. Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 2000; 141:2003-10. [PMID: 10830283 DOI: 10.1210/endo.141.6.7523] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of activated macrophages within pancreatic islets in insulin-dependent diabetes mellitus suggests an involvement of beta-cell death by necrosis. The aim of this study was to investigate the frequencies and mechanisms of cytokine-induced beta-cell apoptosis and necrosis and the possible protection mediated by the antiapoptotic gene bcl-2. A combination of interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha increased both necrosis (17% of cells) and apoptosis (5% of cells) in isolated whole rat islets, as determined by vital staining and fluorescence microscopy. Hyperexpression of Bcl-2, achieved by stable transfection using a multicopy viral vector containing a bcl-2 complementary DNA in rat insulin-producing RINm5F cells, counteracted both apoptosis and necrosis. Cytokine-induced cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (which, in other cell types, may occur downstream or independently of a Bcl-2-preventable mitochondrial permeability transition) was observed in control- but neither in bcl-2-transfected cells nor in the presence of the iNOS inhibitor N(G)-methyl-L-arginine. Tumor necrosis factor-alpha alone did not clearly induce cell death or poly(ADP-ribose) polymerase-cleavage. These findings suggest that cytokines induce both necrosis and apoptosis in insulin-producing cells via a common Bcl-2-preventable nitric oxide-dependent pathway, which may involve mitochondrial permeability transition. The necrosis:apoptosis ratio might be increased by a relative lack of caspase activity.
Collapse
Affiliation(s)
- J Saldeen
- Department of Medical Cell Biology, Uppsala University, Sweden.
| |
Collapse
|
116
|
Hamabe W, Fukushima N, Yoshida A, Ueda H. Serum-free induced neuronal apoptosis-like cell death is independent of caspase activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 78:186-91. [PMID: 10891599 DOI: 10.1016/s0169-328x(00)00074-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cultured cortical neurons survived in a density-dependent manner under serum-free conditions. Low-density cultured cells died in an aurintricarboxylic acid (ATA)-sensitive manner, which was accompanied with marked chromatin condensation and nuclear fragmentation. These features, characteristic for apoptosis, were not attenuated by DEVD-CHO, a caspase-3-specific inhibitor, or zVAD-FMK, a broad range caspase inhibitor, while zVAD-FMK showed a marked inhibition of camptothecin-induced cell death. Therefore, cortical neurons died in an apoptosis-like and a caspase-independent manner under serum-free conditions.
Collapse
Affiliation(s)
- W Hamabe
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University School of Pharmaceutical Sciences, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
117
|
Nuttall ME, Nadeau DP, Fisher PW, Wang F, Keller PM, DeWolf WE, Goldring MB, Badger AM, Lee D, Levy MA, Gowen M, Lark MW. Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. J Orthop Res 2000; 18:356-63. [PMID: 10937621 DOI: 10.1002/jor.1100180306] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis was induced in a human chondrocyte cell line, T/C 28a4, by treatment with various stimuli, including camptothecin, tumor necrosis factor-alpha, staurosporine, okadaic acid, and reduced serum conditions. All stimuli induced a cytosolic DEVDase activity, coincident with apoptosis. Caspase activities in the lysates were characterized and quantitated with peptide cleavage profiles. To confirm that the results were not related to the immortalized nature of the cell line, primary human chondrocytes also were shown to undergo apoptosis under similar conditions, which resulted in increased cytosolic DEVDase activity. There was little or no caspase-1 (interleukin-1beta-converting enzyme) or caspase-8-like activity in the apoptotic cells. In all cases, the irreversible nonselective caspase inhibitor, Z-VAD-FMK, and the caspase-3-selective inhibitor, Ac-DMQD-CHO, inhibited DEVDase activity and apoptosis, whereas the caspase-1-selective inhibitor, Ac-YVAD-CHO, had no effect. Human chondrocytes were stably and transiently transfected with a type-II collagen gene (COL2A1) regulatory sequence driving a luciferase reporter as a specific marker of chondrocyte gene expression. Treatment of the cells with camptothecin or tumor necrosis factor-alpha plus cycloheximide significantly inhibited COL2A1 transcriptional activity. Significantly, cotreatment with Z-VAD-FMK or Ac-DMQD-CHO maintained COL2A1-reporter gene activity, indicating that the prevention of apoptosis by caspase-3 inhibition was sufficient to maintain cell functionality as assessed by the retention of type-II collagen promoter activity.
Collapse
Affiliation(s)
- M E Nuttall
- Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Linden R. The anti-death league: associative control of apoptosis in developing retinal tissue. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:146-58. [PMID: 10751664 DOI: 10.1016/s0165-0173(99)00073-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis, the major form of programmed cell death (PCD), is executed through a proteolytic cascade that can be differentially engaged by various extracellular signals. Modulation of both the sensitivity to PCD and of the actual sequence of apoptotic events is, therefore, strongly dependent on cell interactions. This paper reviews the use of a retinal explant preparation as a model of the organized nervous tissue, to study the effects of neural messengers in the control of sensitivity to apoptosis. Studies of retinal explants showed that dopamine, glutamate and nitric oxide may have anti-apoptotic effects upon developing retinal cells. At least the effects of nitric oxide are clearly paracrine. In addition, preliminary evidence has been gathered of a role for gap junctional communication in the control of sensitivity of retinal cells to the induction of apoptosis. These findings underscore the importance of selective cell interactions in the control of PCD in the developing nervous system.
Collapse
Affiliation(s)
- R Linden
- Instituto de Biofísica da UFRJ, Cidade Universitaria, Centro de Ciencias da Saude, Rio de Janeiro, Brazil.
| |
Collapse
|
119
|
Sun E, Zhang L, Zeng Y, Ge Q, Zhao M, Gao W. Apoptotic cells actively inhibit the expression of CD69 on Con A activated T lymphocytes. Scand J Immunol 2000; 51:231-6. [PMID: 10736091 DOI: 10.1046/j.1365-3083.2000.00666.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although apoptosis is commonly viewed as a silent cell death without damage to adjacent tissues, the effect of apoptosis on immunity has been unclear. We have investigated the influence of apoptotic cells on T-cell activation. The K562 or HL-60 human leukemia cell lines that had been induced apoptosis by FTY720 or cycloheximide (CHX) were added into the culture of mouse spleen cells stimulated with Con A. Six to 20 h later, the expression of CD69, an early T-cell activation antigen, was detected using flowcytometry. Living cells and necrotic cells served as control groups. Apoptotic K562 or HL-60 cells induced by either FTY720 or CHX unanimously inhibited CD69 expression on the CD3+ mouse T cells while living and necrotic cells did not. The inhibition was proportional to the number of apoptotic cells and was different in the T-cell subsets, showing a rapid and transient inhibition on the CD3+CD8+ T-cell activation but with a slow and continuous inhibition on CD3+CD8- T-cell activation. In conclusion, the apoptotic cells actively inhibit a T-cell activation that is independent of the cell lines or the apoptotic inducers, indicating that the apoptotic cells dominantly regulate T-cell immunity.
Collapse
Affiliation(s)
- E Sun
- Hemopurification and Renal Transplantation Center, Zhujiang Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
120
|
Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 2000; 28:537-49. [PMID: 10708197 DOI: 10.1097/00003246-200002000-00042] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To critically review the current understanding of the pathophysiologic events leading to the development of secondary multiple organ dysfunction (MODS) in critical illness and to examine the role of apoptosis (programmed cell death) as a mechanism involved in the progression of MODS. DATA SOURCES Research and review articles published since 1982 on the pathophysiology of MODS, particularly the role of cytokines, reactive oxygen species, heat shock proteins, and apoptosis. Research and review articles on the physiology of apoptosis. Articles include human/animal and in vitro/in vivo studies. DATA EXTRACTION The most prevalent mediating factors of MODS were examined for their potential to induce apoptosis, as reported in the literature. The combination of several of the above factors was also examined in terms of apoptosis-triggering potential. DATA SYNTHESIS Specific pathophysiologic conditions related to the onset of MODS have been shown to affect apoptotic rates in organ tissue cells and their respective endothelial cells in animal and in vitro models. These conditions include the following: a) increased release of inflammation-related cytokines; b) increased production of oxygen free radicals associated with ischemia/reperfusion injury and states of low tissue perfusion; c) expression and release of heat shock proteins from tissue cells and the liver; d) elevated glucocorticoid concentrations after adrenal cortex activation; and e) release of bacterial products into the systemic circulation. CONCLUSION The most important MODS-related pathophysiologic conditions known to date have been shown to affect programmed cell death rates in almost all cell types. Organ-specific cell death involving both parenchymal and microvasculature endothelial cells is conceivably underlying organ dysfunction. The hypothesis that increased apoptotic rates are involved in organ dysfunction may provide a unifying theory for the pathophysiology of MODS.
Collapse
Affiliation(s)
- E D Papathanassoglou
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
121
|
|
122
|
Alam A, Cohen LY, Aouad S, Sékaly RP. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999; 190:1879-90. [PMID: 10601362 PMCID: PMC2195712 DOI: 10.1084/jem.190.12.1879] [Citation(s) in RCA: 336] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Apoptosis induced by T cell receptor (TCR) triggering in T lymphocytes involves activation of cysteine proteases of the caspase family through their proteolytic processing. Caspase-3 cleavage was also reported during T cell stimulation in the absence of apoptosis, although the physiological relevance of this response remains unclear. We show here that the caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD) blocks proliferation, major histocompatibility complex class II expression, and blastic transformation during stimulation of peripheral blood lymphocytes. Moreover, T cell activation triggers the selective processing and activation of downstream caspases (caspase-3, -6, and -7), but not caspase-1, -2, or -4, as demonstrated even in intact cells using a cell-permeable fluorescent substrate. Caspase-3 processing occurs in different T cell subsets (CD4(+), CD8(+), CD45RA(+), and CD45RO(+)), and in activated B lymphocytes. The pathway leading to caspase activation involves death receptors and caspase-8, which is also processed after TCR triggering, but not caspase-9, which remains as a proenzyme. Most importantly, caspase activity results in a selective substrate specificity, since poly(ADP-ribose) polymerase (PARP), lamin B, and Wee1 kinase, but not DNA fragmentation factor (DFF45) or replication factor C (RFC140), are processed. Caspase and substrate processing occur in nonapoptotic lymphocytes. Thus, caspase activation is an early and physiological response in viable, stimulated lymphocytes, and appears to be involved in early steps of lymphocyte activation.
Collapse
Affiliation(s)
- Antoine Alam
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Luchino Y. Cohen
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Salah Aouad
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Rafick-Pierre Sékaly
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
- Department of Experimental Medicine, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
123
|
Rebel VI, Hartnett S, Hill GR, Lazo-Kallanian SB, Ferrara JL, Sieff CA. Essential role for the p55 tumor necrosis factor receptor in regulating hematopoiesis at a stem cell level. J Exp Med 1999; 190:1493-504. [PMID: 10562323 PMCID: PMC2195701 DOI: 10.1084/jem.190.10.1493] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1999] [Accepted: 09/07/1999] [Indexed: 01/08/2023] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal is a complicated process, and its regulatory mechanisms are poorly understood. Previous studies have identified tumor necrosis factor (TNF)-alpha as a pleiotropic cytokine, which, among other actions, prevents various hematopoietic progenitor cells from proliferating and differentiating in vitro. However, its role in regulating long-term repopulating HSCs in vivo has not been investigated. In this study, mice deficient for the p55 or the p75 subunit of the TNF receptor were analyzed in a variety of hematopoietic progenitor and stem cell assays. In older p55(-/-) mice (>6 mo), we identified significant differences in their hematopoietic system compared with age-matched p75(-/-) or wild-type counterparts. Increased marrow cellularity and increased numbers of myeloid and erythroid colony-forming progenitor cells (CFCs), paralleled by elevated peripheral blood cell counts, were found in p55-deficient mice. In contrast to the increased myeloid compartment, pre-B CFCs were deficient in older p55(-/-) mice. In addition, a fourfold decrease in the number of HSCs could be demonstrated in a competitive repopulating assay. Secondary transplantations of marrow cells from primary recipients of p55(-/-) marrow revealed impaired self-renewal ability of p55-deficient HSCs. These data show that, in vivo, signaling through the p55 subunit of the TNF receptor is essential for regulating hematopoiesis at the stem cell level.
Collapse
Affiliation(s)
- V I Rebel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Wu GS, Burns TF, McDonald ER, Meng RD, Kao G, Muschel R, Yen T, el-Deiry WS. Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 1999; 18:6411-8. [PMID: 10597242 DOI: 10.1038/sj.onc.1203025] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The TRAIL death receptor KILLER/DR5 is induced by DNA damaging agents in wild-type p53-expressing cells. Here we show that, unlike the p53-target CDK-inhibitor p21WAF1/CIP1, the TRAIL death receptor KILLER/DR5 is only induced in cells undergoing p53-dependent apoptosis and not cell cycle arrest. Thus GM glioblastoma cells carrying an inducible MMTV-driven p53 gene undergo cell cycle arrest and upregulate p21 but not KILLER/DR5 expression upon dexamethasone exposure. WI38 normal lung fibroblasts undergoing cell cycle arrest in response to ionizing irradiation also induce p21 but not KILLER/DR5 gene expression. KILLER/DR5 upregulation is also deficient in irradiated lymphoblastoid cells derived from patients with Ataxia Teleangiectasia suggesting a role for the ATM-p53 pathway in regulating KILLER/DR5 expression after DNA damage. Inhibition of transcription by Actinomycin D blocks both KILLER/DR5 and p21 induction in cells undergoing p53-dependent apoptosis. Our results suggest that the p53-dependent transcriptional induction of KILLER/DR5 death receptor is restricted to cells undergoing apoptosis and not cells undergoing exclusively p53-dependent G1 arrest.
Collapse
Affiliation(s)
- G S Wu
- Department of Medicine, Howard Hughes Medical Institute, University of Pennsylvania School of Medicine Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Whether we view the mitochondria as the headquarters for the leader of a crack suicide squad or as a prison for the leader of a militant coup, the role of the mitochondria in the apoptotic process is now well established. During apoptosis the integrity of the mitochondria is breeched, the mitochondrial transmembrane potential drops, the electron transport chain is disrupted. and proteins from the mitochondrial intermembrane space (MIS) such as cytochrome c are released into the cytosol, although not necessarily in that order. In the cytosol, cytochrome c forms part of a proteinaceous complex that directly activates caspase-9, one of the apical enzymes responsible for the dismantling of the cell. In this way a mitochondrial factor which is normally locked away from the rest of the cell can directly trigger apoptosis. The need to regulate the release of cytochrome c suggests that the mitochondria may be the decision center for whether a cell lives or dies. Various hypotheses have been formulated to explain how proteins of the MIS are released and how this process is regulated. These include the Bcl-2-regulated opening of a permeability transition pore or an increase in mitochondrial transmembrane potential followed by outer membrane rupture. It remains to be clarified which mitochondria specific events are essential for apoptosis and which are merely consequences of apoptosis.
Collapse
Affiliation(s)
- N J Waterhouse
- Division of Cellular Immunology, La Jolla Institute of Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
126
|
Künstle G, Hentze H, Germann PG, Tiegs G, Meergans T, Wendel A. Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 1999; 30:1241-51. [PMID: 10534346 DOI: 10.1002/hep.510300517] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several models of tumor necrosis factor (TNF)/TNF-receptor 1 (TNF-R1)-dependent liver injury in mice were investigated with respect to caspase-3-like protease activation representing a pivotal mechanism of apoptotic cell death. Injection of TNF or T-cell-activating agents (i.e., agonistic anti-CD3 antibody or staphylococcal enterotoxin B [SEB]) into galactosamine (GalN)-sensitized mice caused TNF/TNF-R1-dependent liver injury. Intravenous concanavalin A (Con A) alone induced TNF-mediated hepatotoxicity dependent on both TNF-R1 and TNF-R2. Hepatic caspase-3-like proteases were activated in GalN/TNF, GalN/anti-CD3, or GalN/SEB-treated mice, but not in Con A-treated mice. Consistently, the broad-spectrum caspase inhibitor, benzoyloxycarbonyl-val-ala-asp-fluoromethylketone (zVADfmk), prevented TNF-mediated hepatotoxicity in all GalN-dependent models, but failed to protect against Con A. Under transcriptional arrest, however, Con A induced TNF-R1-dependent, but not TNF-R2-dependent, activation of caspase-3-like proteases, and zVADfmk prevented animals from Con A-mediated liver injury under this condition. Histological analysis revealed distinct differences between Con A- and GalN/Con A-induced liver injury regarding apoptotic morphology of hepatocytes. We conclude that impaired transcription induces a switch of Con A hepatotoxicity toward a caspase-3-like protease-dependent pathway. The observation that the functional state of the transcriptional machinery decides whether TNF-driven hepatocyte apoptosis involves activation of caspase-3-like proteases or alternative signaling pathways in vivo might be of relevance for the immunopathology of the liver.
Collapse
Affiliation(s)
- G Künstle
- Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Kollias G, Douni E, Kassiotis G, Kontoyiannis D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis 1999; 58 Suppl 1:I32-9. [PMID: 10577971 PMCID: PMC1766575 DOI: 10.1136/ard.58.2008.i32] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now good evidence to demonstrate that aberrations in tumour necrosis factor (TNF) production in vivo may be either pathogenic or protective and several plausible mechanisms may explain these contrasting activities. According to the classic pro-inflammatory scenario, failure to regulate the production of TNF at a site of immunological injury may lead to chronic activation of innate immune cells and to chronic inflammatory responses, which may consequently lead to organ specific inflammatory pathology and tissue damage. However, more cryptic functions of this molecule may be considered to play a significant part in the development of TNF mediated pathologies. Direct interference of TNF with the differentiation, proliferation or death of specific pathogenic cell targets may be an alternative mechanism for disease initiation or progression. In addition to these activities, there is now considerable evidence to suggest that TNF may also directly promote or down regulate the adaptive immune response. A more complete understanding of the temporal and spatial context of TNF/TNF receptor (TNF-R) function and of the molecular and cellular pathways leading to the development of TNF/TNF-R mediated pathologies is necessary to fully comprehend relevant mechanisms of disease induction and progression in humans. In this paper, the potential pathogenic mechanisms exerted by TNF and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease are discussed. Elucidating the nature and level of contribution of these mechanisms in chronic inflammation and autoimmunity may lead to better regulatory and therapeutic applications.
Collapse
Affiliation(s)
- G Kollias
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127 Vas Sofias Avenue, Athens 115 21, Greece
| | | | | | | |
Collapse
|
128
|
Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci 1999. [PMID: 10493721 DOI: 10.1523/jneurosci.19-19-08199.1999] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) binds all known neurotrophins and has been suggested to either function as a coreceptor for the trk receptor tyrosine kinases or be involved in independent signaling leading to cell death. We have analyzed the effects of nerve growth factor (NGF) on the growth of cultured hippocampal pyramidal neurons and examined the possibility that the effects of NGF are mediated via generation of ceramide produced by neutral sphingomyelinase (N-SMase). During the initial hour of culture, the only detectable NGF receptor is p75NTR, which by comparative Western blot is expressed at 50- to 100-fold lower levels than on PC12 cells. At this early stage of culture, NGF accelerates neurite formation and outgrowth and induces ceramide formation in a dose-dependent manner. An NGF mutant that is deficient in p75NTR binding has no effect on neuronal morphology or ceramide formation. Furthermore, two anti-p75NTR antibodies (REX and 9651), which are known to compete with NGF for binding to p75NTR, mimic the effects of NGF, whereas a monoclonal antibody (MC192) targeted against a different epitope does not. Finally, scyphostatin, a specific N-SMase inhibitor, blocks the effects of NGF. We propose that a neurotrophin-p75NTR-ceramide signaling pathway influences outgrowth of hippocampal neurons. This signaling role of p75NTR may be distinct from other signaling pathways that lead to apoptosis.
Collapse
|
129
|
Kitada S, Zapata JM, Andreeff M, Reed JC. Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 106:995-1004. [PMID: 10520003 DOI: 10.1046/j.1365-2141.1999.01642.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulating signal transduction pathways represents a promising approach for altering the biological behaviour of haemopoietic malignancies. B-cell chronic lymphocytic leukaemia (B-CLL) cells were treated in vitro with CD40-ligand (CD40L) (CD154) or the protein kinase C modulator Bryostatin-1, exploring the effects on: (a) sensitivity to apoptosis induction by chemotherapeutic drugs (fludarabine, dexamethasone) or anti-Fas antibody; (b) expression of apoptosis-regulatory proteins (Bcl-2, Bcl-X, Mcl-1, Bax, Bak, BAG-1, Flip, XIAP); (c) expression of cell surface co-stimulatory antigens (CD80 [B7.1]; CD54 [ICAM-1]; CD70); and (d) expression of immune modulatory receptors (CD27, CD40, CD95 [Fas]). CD40L and Bryostatin decreased both spontaneous and drug-induced apoptosis in most B-CLL specimens tested. Apoptosis resistance was associated with CD40L- and Bryostatin-induced elevations in the anti-apoptotic Bcl-2 family protein Mcl-1. CD40L also induced striking increases in the levels of the anti-apoptotic protein Bcl-XL in B-CLLs. CD40L stimulated increases in the surface expression of CD40, CD54, CD69, CD70, CD80 and CD95, whereas Bryostatin induced expression of CD40, CD54, CD69 and CD95 but not the co-stimulatory molecules CD70 and CD80. Despite elevations in the expression of CD95 (Fas), anti-Fas antibodies failed to induce apoptosis of CD40L- and Bryostatin-treated B-CLL cells. This Fas-resistance was associated with increased expression of the Fas-antagonist Flip in CD40L-treated, and with elevations in the caspase inhibitor XIAP in Bryostatin-treated B-CLLs. The potential anti-apoptotic properties of CD40L and Bryostatin should be taken into consideration when employing these agents in clinical trials involving patients with B-CLL.
Collapse
Affiliation(s)
- S Kitada
- The Burnham Institute, Program on Apoptosis and Cell Death Research, La Jolla, California, USA
| | | | | | | |
Collapse
|
130
|
Abstract
Each day, approximately 50 to 70 billion cells perish in the average adult because of programmed cell death (PCD). Cell death in self-renewing tissues, such as the skin, gut, and bone marrow, is necessary to make room for the billions of new cells produced daily. So massive is the flux of cells through our bodies that, in a typical year, each of us will produce and, in parallel, eradicate a mass of cells equal to almost our entire body weight. The morphologic ritual cells go through when experiencing PCD has been termed apoptosis and is executed by a family of intracellular proteases, called caspases. Unlike accidental cell deaths caused by infarction and trauma, these physiologic deaths culminate in fragmentation of cells into membrane-encased bodies which are cleared through phagocytosis by neighboring cells without inciting inflammatory reactions or tissue scarring. Defects in the processes controlling PCD can extend cell life span, contributing to neoplastic cell expansion independently of cell division. Moreover, failures in normal apoptosis pathways contribute to carcinogenesis by creating a permissive environment for genetic instability and accumulation of gene mutations, promoting resistance to immune-based destruction, allowing disobeyance of cell cycle checkpoints that would normally induce apoptosis, facilitating growth factor/hormone-independent cell survival, supporting anchorage-independent survival during metastasis, reducing dependence on oxygen and nutrients, and conferring resistance to cytotoxic anticancer drugs and radiation. Elucidation of the genes that constitute the core machinery of the cell death pathway has provided new insights into tumor biology, revealing novel strategies for combating cancer.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA
| |
Collapse
|
131
|
Mesner PW, Bible KC, Martins LM, Kottke TJ, Srinivasula SM, Svingen PA, Chilcote TJ, Basi GS, Tung JS, Krajewski S, Reed JC, Alnemri ES, Earnshaw WC, Kaufmann SH. Characterization of caspase processing and activation in HL-60 cell cytosol under cell-free conditions. Nucleotide requirement and inhibitor profile. J Biol Chem 1999; 274:22635-45. [PMID: 10428844 DOI: 10.1074/jbc.274.32.22635] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The present studies compared caspase activation under cell-free conditions in vitro and in etoposide-treated HL-60 leukemia cells in situ. Immunoblotting revealed that incubation of HL-60 cytosol at 30 degrees C in the presence of cytochrome c and ATP (or dATP) resulted in activation of procaspases-3, -6, and -7 but not -2 and -8. Although similar selectivity was observed in intact cells, affinity labeling revealed that the active caspase species generated in vitro and in situ differed in charge and abundance. ATP and dATP levels in intact HL-60 cells were higher than required for caspase activation in vitro and did not change before caspase activation in situ. Replacement of ATP with the poorly hydrolyzable analogs 5'-adenylyl methylenediphosphate, 5'-adenylyl imidodiphosphate, or 5'-adenylyl-O-(3-thiotriphos-phate) slowed caspase activation in vitro, suggesting that ATP hydrolysis is required. Caspase activation in vitro was insensitive to phosphatase and kinase inhibitors (okadaic acid, staurosporine, and genistein) but was inhibited by Zn(2+), aurintricarboxylic acid, and various protease inhibitors, including 3,4-dichloroisocoumarin, N(alpha)-p-tosyl-L-phenylalanine chloromethyl ketone, N(alpha)-p-tosyl-L-lysine chloromethyl ketone, and N-(N(alpha)-benzyloxycarbonylphenylalanyl)alanine fluoromethyl ketone, each of which inhibited recombinant caspases-3, -6, -7, and -9. Experiments with anti-neoepitope antiserum confirmed that these agents inhibited caspase-9 activation. Collectively, these results suggest that caspase-9 activation requires nucleotide hydrolysis and is inhibited by agents previously thought to affect apoptosis by other means.
Collapse
Affiliation(s)
- P W Mesner
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P, Giese NA, Ozato K, Morse HC. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999; 190:411-21. [PMID: 10430629 PMCID: PMC2195590 DOI: 10.1084/jem.190.3.411] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a disease with marked expansion of granulocytes and macrophages that frequently progresses to a fatal blast crisis, thus resembling human chronic myelogenous leukemia (CML). One important feature of CML is decreased responsiveness of myeloid cells to apoptotic stimuli. Here we show that myeloid cells from mice deficient in ICSBP exhibit reduced spontaneous apoptosis and a significant decrease in sensitivity to apoptosis induced by DNA damage. In contrast, apoptosis in thymocytes from ICSBP-deficient mice is unaffected. We also show that overexpression of ICSBP in the human U937 monocytic cell line enhances the rate of spontaneous apoptosis and the sensitivity to apoptosis induced by etoposide, lipopolysaccharide plus ATP, or rapamycin. Programmed cell death induced by etoposide was specifically blocked by peptides inhibitory for the caspase-1 or caspase-3 subfamilies of caspases. Studies of proapoptotic genes showed that cells overexpressing ICSBP have enhanced expression of caspase-3 precursor protein. In addition, analyses of antiapoptotic genes showed that overexpression of ICSBP results in decreased expression of Bcl-X(L). These data suggest that ICSBP modulates survival of myeloid cells by regulating expression of apoptosis-related genes.
Collapse
Affiliation(s)
- L Gabriele
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0760, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Chan SL, Tammariello SP, Estus S, Mattson MP. Prostate apoptosis response-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J Neurochem 1999; 73:502-12. [PMID: 10428045 DOI: 10.1046/j.1471-4159.1999.0730502.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostate apoptosis response-4 (Par-4) is the product of a gene up-regulated in prostate cancer cells undergoing apoptosis. We now report that Par-4 mRNA and protein levels rapidly and progressively increase 4-24 h following trophic factor withdrawal (TFW) in cultured embryonic rat hippocampal neurons. The increased Par-4 levels follow an increase of reactive oxygen species, and precede mitochondrial membrane depolarization, caspase activation, and nuclear chromatin condensation/fragmentation. Pretreatment of cultures with 17beta-estradiol, vitamin E, and uric acid largely prevented Par-4 induction and cell death following TFW, demonstrating necessary roles for oxidative stress and membrane lipid peroxidation in TFW-induced neuronal apoptosis. Par-4 antisense oligonucleotide treatment blocked Par-4 protein increases and attenuated mitochondrial dysfunction, caspase activation, and cell death following TFW. Collectively, our data identify Par-4 as an early and pivotal player in neuronal apoptosis resulting from TFW and suggest that estrogen and antioxidants may prevent apoptosis, in part, by suppressing Par-4 production.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging and Department of Physiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | |
Collapse
|
134
|
Affiliation(s)
- M J Arends
- University of Cambridge, Department of Histopathology, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
135
|
Newton RC, Decicco CP. Therapeutic potential and strategies for inhibiting tumor necrosis factor-alpha. J Med Chem 1999; 42:2295-314. [PMID: 10395470 DOI: 10.1021/jm980541n] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- R C Newton
- Departments of Inflammatory Diseases Research and Chemical and Physical Sciences, The DuPont Pharmaceuticals Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA
| | | |
Collapse
|
136
|
Saile B, Matthes N, Knittel T, Ramadori G. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 1999; 30:196-202. [PMID: 10385656 DOI: 10.1002/hep.510300144] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor beta (TGF-beta) as well as tumor necrosis factor alpha (TNF-alpha) gene expression are up-regulated in chronically inflamed liver. These cytokines were investigated for their influence on apoptosis and proliferation of activated hepatic stellate cells (HSCs). Spontaneous apoptosis in activated HSC was significantly down-regulated by 53% +/- 8% (P <.01) under the influence of TGF-beta and by 28% +/- 2% (P <.05) under the influence of TNF-alpha. TGF-beta and TNF-alpha significantly reduced expression of CD95L in activated HSCs, whereas CD95 expression remained unchanged. Furthermore, HSC apoptosis induced by CD95-agonistic antibodies was reduced from 96% +/- 2% to 51 +/- 7% (P <.01) by TGF-beta, and from 96% +/- 2% to 58 +/- 2% (P <.01) by TNF-alpha, suggesting that intracellular antiapoptotic mechanisms may also be activated by both cytokines. During activation, HSC cultures showed a reduced portion of cells in the G0/G1 phase and a strong increment of G2-phase cells. This increment was significantly inhibited (G1 arrest) by administration of TGF-beta and/or TNF-alpha to activated cells. In liver sections of chronically damaged rat liver (CCl4 model), using desmin and CD95L as markers for activated HSC, most of these cells did not show apoptotic signs (TUNEL-negative). Taken together, these findings indicate that TGF-beta and/or TNF-alpha both inhibit proliferation and also apoptosis in activated HSC in vitro. Both processes seem to be linked to each other, and their inhibition could represent the mechanism responsible for prolonged survival of activated HSC in chronic liver damage in vivo.
Collapse
Affiliation(s)
- B Saile
- University of Göttingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Göttingen, Germany
| | | | | | | |
Collapse
|
137
|
Duan W, Rangnekar VM, Mattson MP. Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J Neurochem 1999; 72:2312-22. [PMID: 10349840 DOI: 10.1046/j.1471-4159.1999.0722312.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synapses are often located at great distances from the cell body and so must be capable of transducing signals into both local and distant responses. Although progress has been made in understanding biochemical cascades involved in neuronal death during development of the nervous system and in various neurodegenerative disorders, it is not known whether such cascades function locally in synaptic compartments. Prostate apoptosis response-4 (Par-4) is a leucine zipper and death domain-containing protein that plays a role in neuronal apoptosis. We now report that Par-4 levels are rapidly increased in cortical synaptosomes and in dendrites of hippocampal neurons in culture and in vivo, following exposure to apoptotic or excitotoxic insults. Par-4 expression is regulated at the translational level within synaptic compartments. Par-4 antisense treatment suppressed mitochondrial dysfunction and caspase activation in synaptosomes and prevented death of cultured hippocampal neurons following exposure to excitotoxic and apoptotic insults. Local translational regulation of death-related proteins in synaptic compartments may play a role in programmed cell death, adaptive remodeling of synapses, and neurodegenerative disorders.
Collapse
Affiliation(s)
- W Duan
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | |
Collapse
|
138
|
Kollias G, Douni E, Kassiotis G, Kontoyiannis D. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 1999; 169:175-94. [PMID: 10450517 DOI: 10.1111/j.1600-065x.1999.tb01315.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The specific role of the tumor necrosis factor (TNF)/TNF receptor (TNFR) system in disease pathogenesis still remains an unresolved puzzle. Recent studies in transgenic and knockout animals, where the pathogenic influence of genetically perturbed TNF expression has been evaluated, indicate that several pathways of TNF/TNFR action may contribute independently or in concert to initiate, promote or downregulate disease pathogenesis. Evidently, organ-specific inflammatory or autoimmune pathology may ensue due to sustained activation by TNF of innate immune cells and inflammatory responses, which may consequently lead to tissue damage and to organ-specific chronic pathology. However, more cryptic functions of this molecule may be considered to play a significant part in the development of TNF-mediated pathologies. Direct interference of TNF with the differentiation, proliferation or death of specific pathogenic cell targets may be an alternative mechanism for disease initiation or progression. In addition to these activities, there is now considerable evidence to suggest that TNF may also directly promote or downregulate the adaptive immune response. It is therefore evident that no general scenario may adequately describe the role of TNF in disease pathogenesis. In this article, we aim to place these diverse functions of TNF/TNFRs into context with the development of specific pathology in murine models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease.
Collapse
Affiliation(s)
- G Kollias
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| | | | | | | |
Collapse
|
139
|
Layne MD, Farmer SR. Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Exp Cell Res 1999; 249:177-87. [PMID: 10328964 DOI: 10.1006/excr.1999.4465] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a role in several disease states such as sepsis, cachexia, and non-insulin-dependent diabetes. TNF-alpha interferes with insulin signaling and inhibits differentiation-specific gene expression in adipose tissue and skeletal muscle. We have examined the mechanisms by which TNF-alpha, in comparison to basic fibroblast growth factor (bFGF), inhibits the insulin-like growth factor-I (IGF-I)-induced differentiation of C2C12 myoblasts. Adhesion of quiescent, suspended myoblasts to collagen in high concentrations of IGF-I (10 nM) induced these cells to proliferate during the initial 24 h postplating and in so doing transiently inhibited the expression of myogenin, an essential transcription factor controlling myoblast differentiation. Low doses of IGF-I (1 nM) were minimally mitogenic and enhanced muscle-specific gene expression. Quiescent myoblasts treated with bFGF in combination with IGF-I did not express myogenin, but expressed proliferating cell nuclear antigen and underwent DNA synthesis. In contrast, TNF-alpha in the presence or absence of 1 nM IGF-I, did not stimulate DNA synthesis in myoblasts. However, TNF-alpha inhibited myogenin mRNA and protein expression. Expression of the cyclin-dependent kinase inhibitor p21 correlated with myogenin expression and myoblast differentiation, but not with growth arrest. These results indicate that both TNF-alpha and bFGF inhibit myogenin expression but differentially influence myoblast proliferation.
Collapse
Affiliation(s)
- M D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
140
|
Kieser A, Kaiser C, Hammerschmidt W. LMP1 signal transduction differs substantially from TNF receptor 1 signaling in the molecular functions of TRADD and TRAF2. EMBO J 1999; 18:2511-21. [PMID: 10228165 PMCID: PMC1171333 DOI: 10.1093/emboj/18.9.2511] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Epstein-Barr virus latent membrane protein 1 (LMP1) binds tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) and the TNFR-associated death domain protein (TRADD). Moreover, it induces NF-kappaB and the c-Jun N-terminal kinase 1 (JNK1) pathway. Thus, LMP1 appears to mimick the molecular functions of TNFR1. However, TNFR1 elicits a wide range of cellular responses including apoptosis, whereas LMP1 constitutes a transforming protein. Here we mapped the JNK1 activator region (JAR) of the LMP1 molecule. JAR overlaps with the TRADD-binding domain of LMP1. In contrast to TNFR1, LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. Consequently, the molecular function of TRADD in LMP1 signaling differs from its role in TNFR1 signal transduction. Whereas NF-kappaB activation by LMP1 was blocked by a dominant-negative TRADD mutant, LMP1 induces JNK1 independently of the TRADD death domain and TRAF2, which binds to TRADD. Further downstream, JNK1 activation by TNFR1 involves Cdc42, whereas LMP1 signaling to JNK1 is independent of p21 Rho-like GTPases. Although both LMP1 and TNFR1 interact with TRADD and TRAF2, the different topologies of the signaling complexes correlate with substantial differences between LMP1 and TNFR1 signal transduction to JNK1.
Collapse
Affiliation(s)
- A Kieser
- Institute for Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 München, Germany
| | | | | |
Collapse
|
141
|
Moss JE, Aliprantis AO, Zychlinsky A. The regulation of apoptosis by microbial pathogens. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 187:203-59. [PMID: 10212981 DOI: 10.1016/s0074-7696(08)62419-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past few years, there has been remarkable progress unraveling the mechanism and significance of eukaryotic programmed cell death (PCD), or apoptosis. Not surprisingly, it has been discovered that numerous, unrelated microbial pathogens engage or circumvent the host's apoptotic program. In this chapter, we briefly summarize apoptosis, emphasizing those studies which assist the reader in understanding the subsequent discussion on PCD and pathogens. We then examine the relationship between virulent bacteria and apoptosis. This section is organized to reflect both common and diverse mechanisms employed by bacteria to induce PCD. A short discussion of parasites and fungi is followed by a detailed description of the interaction of viral pathogens with the apoptotic machinery. Throughout the review, apoptosis is considered within the broader contexts of pathogenesis, virulence, and host defense. Our goals are to update the reader on this rapidly expanding field and identify topics in the current literature which demand further investigation.
Collapse
Affiliation(s)
- J E Moss
- Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York City 10016, USA
| | | | | |
Collapse
|
142
|
Functional Fas Expression in Human Thymic Epithelial Cells. Blood 1999. [DOI: 10.1182/blood.v93.8.2660.408k09_2660_2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fas, a cell surface receptor, can induce apoptosis after cross-linking with its ligand. We report that Fas antigen is constitutively expressed in medullary epithelial cells of the human thymus. Expression is decreased in cultured thymic epithelial cells (TEC), similarly to HLA-DR antigen. TEC are resistant to anti-Fas–induced apoptosis after 4 days of primary culture, and this resistance is reversed by concomitant addition of cycloheximide. Cycloheximide also downregulated the expression of Fas-associated phosphatase-1, which has been found to inhibit Fas-induced apoptosis. This phosphatase could be involved in the resistance to Fas-induced apoptosis observed on day 4 of TEC culture. When TEC were subcultured after 10 to 13 days of primary culture, exposure to interleukin-1-β, tumor necrosis factor-, and interferon-γ, alone or together, reinduced Fas mRNA and protein expression. In coculture with activated thymocytes, TEC also upregulated Fas protein expression. Cytokine-activated TEC became sensitive to apoptosis induced by an agonistic anti-Fas antibody. This apoptosis was inhibited by Z-VAD-fmk but not by Z-DEVD-fmk and DEVDase activity was slightly increased in Fas-stimulated TEC, suggesting that DEVDase activity is not sufficient to induce TEC apoptosis. Taken together, these data show that the Fas receptor is expressed in medullary epithelial cells of the human thymus and is able to induce apoptosis.
Collapse
|
143
|
Abstract
Abstract
Fas, a cell surface receptor, can induce apoptosis after cross-linking with its ligand. We report that Fas antigen is constitutively expressed in medullary epithelial cells of the human thymus. Expression is decreased in cultured thymic epithelial cells (TEC), similarly to HLA-DR antigen. TEC are resistant to anti-Fas–induced apoptosis after 4 days of primary culture, and this resistance is reversed by concomitant addition of cycloheximide. Cycloheximide also downregulated the expression of Fas-associated phosphatase-1, which has been found to inhibit Fas-induced apoptosis. This phosphatase could be involved in the resistance to Fas-induced apoptosis observed on day 4 of TEC culture. When TEC were subcultured after 10 to 13 days of primary culture, exposure to interleukin-1-β, tumor necrosis factor-, and interferon-γ, alone or together, reinduced Fas mRNA and protein expression. In coculture with activated thymocytes, TEC also upregulated Fas protein expression. Cytokine-activated TEC became sensitive to apoptosis induced by an agonistic anti-Fas antibody. This apoptosis was inhibited by Z-VAD-fmk but not by Z-DEVD-fmk and DEVDase activity was slightly increased in Fas-stimulated TEC, suggesting that DEVDase activity is not sufficient to induce TEC apoptosis. Taken together, these data show that the Fas receptor is expressed in medullary epithelial cells of the human thymus and is able to induce apoptosis.
Collapse
|
144
|
Mashima T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 1999; 18:2423-30. [PMID: 10229193 DOI: 10.1038/sj.onc.1202558] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tumors result from the imbalance between cell growth and apoptosis. One of the characteristic changes in cancers is the abnormality in cytoskeleton, which suggests some roles of cytoskeletal proteins in tumorigenesis or the maintenance of tumor cells. Previously we showed that cytoskeletal actin is the substrate of caspases, the proteases responsible for apoptosis, while the role of actin cleavage in apoptosis remained unknown. To examine the cleavage of actin in vivo, we extensively performed immunoblot analysis using actin fragment-specific antibody. Here, we showed that, in some solid tumor cells, induction of apoptosis was accompanied by caspase-dependent actin-cleavage to 15 and 31 kDa fragments in vivo. To elucidate the role of actin-cleavage further, we introduced actin cleaved-fragments. We found that ectopic expression of an actin 15 kDa fragment induces morphological changes resembling those of apoptotic cells. The expression of the actin fragment induced a dramatic change of cellular actin localization, as visualized by enhanced green fluorescent protein (EGFP)-tagged actin, while the actin fragment expression did not cause caspase activation nor the cleavage of a marker substrate protein, poly (ADP-ribose) polymerase. These results indicate that actin cleavage could play a positive role in the morphological changes of apoptosis downstream of caspase activation.
Collapse
Affiliation(s)
- T Mashima
- Laboratory of Biomedical Research, Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | |
Collapse
|
145
|
Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 1999; 95:115-25. [PMID: 10229121 DOI: 10.1016/s0165-5728(98)00273-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor-alpha (TNF alpha) is a pleiotropic cytokine involved in inflammatory cascades associated with CNS injury. To examine the role of TNF alpha in the acute pathophysiology of traumatic brain injury (TBI), we studied its expression, localization and modulation in a clinically relevant rat model of non-penetrating head trauma. TNF alpha levels increased significantly in the injured cortex at 1 and 4, but not at 12, 24 or 72 h after severe lateral fluid-percussion trauma (2.6-2.7 atm). TNF alpha was not elevated after mild injury. At 1 and 4 h after severe TBI, marked increases of TNF alpha were localized immunocytochemically to neurons of the injured cerebral cortex. A small population of astrocytes, ventricular cells and microvessels, also showed positive TNF alpha staining, but this expression was not injury-dependent. Macrophages that were present in a hemorrhagic zone along the external capsule, corpus callosum and alveus hippocampus at 4 h after TBI did not express TNF alpha. Intracerebroventricular administration of a selective TNF alpha antagonist--soluble TNF alpha receptor fusion protein (sTNFR:Fc) (37.5 microg)--at 15 min before and 1 h after TBI, improved performance in a series of standardized motor tasks after injury. In contrast, intravenous administration of sTNFR:Fc (0.2, 1 or 5 mg/kg) at 15 min after trauma did not improve motor outcome. Collectively, this evidence suggests that enhanced early neuronal expression of TNF alpha after TBI contributes to subsequent neurological dysfunction.
Collapse
Affiliation(s)
- S M Knoblach
- Georgetown Institute for Cognitive and Computational Sciences, Georgetown University Medical Center, Washington, DC 20007-2197, USA.
| | | | | |
Collapse
|
146
|
Englaro W, Bahadoran P, Bertolotto C, Buscà R, Dérijard B, Livolsi A, Peyron JF, Ortonne JP, Ballotti R. Tumor necrosis factor alpha-mediated inhibition of melanogenesis is dependent on nuclear factor kappa B activation. Oncogene 1999; 18:1553-9. [PMID: 10102625 DOI: 10.1038/sj.onc.1202446] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melanogenesis is a physiological process resulting in the synthesis of melanin pigments which play a crucial protective role against skin photocarcinogenesis. In vivo, solar ultraviolet light triggers the secretion of numerous keratinocyte-derived factors that are implicated in the regulation of melanogenesis. Among these, tumor necrosis factor alpha (TNFalpha), a cytokine implicated in the pro-inflammatory response, down-regulates pigment synthesis in vitro. In this report, we aimed to determine the molecular mechanisms by which this cytokine inhibits melanogenesis in B16 melanoma cells. First, we show that TNFalpha inhibits the activity and protein expression of tyrosinase which is the key enzyme of melanogenesis. Further, we demonstrate that this effect is subsequent to a down-regulation of the tyrosinase promoter activity in both basal and cAMP-induced melanogenesis. Finally, we present evidence indicating that the inhibitory effect of TNFalpha on melanogenesis is dependent on nuclear factor kappa B (NFkappaB) activation. Indeed, overexpression of this transcription factor in B16 cells is sufficient to inhibit tyrosinase promoter activity. Furthermore, a mutant of inhibitory kappa B (IkappaB), that prevents NFkappaB activation, is able to revert the effect of TNFalpha on the tyrosinase promoter activity. Taken together, our results clarify the mechanisms by which TNFalpha inhibits pigmentation and point out the key role of NFkappaB in the regulation of melanogenesis.
Collapse
Affiliation(s)
- W Englaro
- Institut National de la Sant'e et de la Recherche Médicale, U-385, Faculté de médecine, Nice. France
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Natural killer (NK) cells are a cell of the innate immune system that play an important role in the early response to viral infections and tumours. Natural killer cells are cytolytic, and secrete cytokines that influence the developing antigen-specific immune response. In the present article the NK cell surface molecules regulating effector function, the NK cell effector mechanisms involved in apoptosis, and the role of NK cell effector mechanisms in immune responses are reviewed.
Collapse
Affiliation(s)
- H S Warren
- Cancer Research Unit, Canberra Hospital, Australian Capital Territory, Victoria, Australia
| | | |
Collapse
|
148
|
Abstract
Tumor necrosis factor-alpha (TNFalpha) may play a role in at least some of the neuronal death that occurs following brain insults or in neurodegenerative diseases. It is therefore important to characterize the mechanism underlying apoptosis induced by TNFalpha in neuronal cells and to identify factors capable of protecting neurons from this death. In the present study, we characterized the apoptotic effect of TNFalpha in PC12 cells, a model system commonly used for studying neuronal apoptosis, and examined the role of Bcl-2 and caspases in this process. We show that TNFalpha induces apoptosis in both naive and primed PC12 cells. The TNFalpha-induced apoptosis was inhibited by nerve growth factor (NGF) but not by insulin. These findings suggest that the apoptotic effect of TNFalpha can be inhibited by trophic factors and that the survival-promoting effect of NGF is mediated by a specific pathway not shared by all tyrosine kinase receptors. The effect of Bcl-2 on TNFalpha-induced apoptosis was examined in PC12 cells overexpressing Bcl-2. These cells were resistant to TNFalpha-induced apoptosis, suggesting that the apoptotic effect of TNFalpha in PC12 cells is mediated via a pathway controlled by Bcl-2. Examination of the role of caspase-3 like activity in TNFalpha-induced apoptosis showed that caspase-3-like proteases are activated, and their substrate, poly (ADP-ribose) polymerase, is cleaved following TNFalpha treatment. In addition, the broad-spectrum inhibitor of caspases, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), was found to inhibit the TNFalpha-induced apoptosis of PC12 cells. These results suggest that caspases are activated following TNFalpha treatment and are needed for TNFalpha-induced apoptosis in PC12 cells.
Collapse
Affiliation(s)
- R Haviv
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
149
|
Chow SC, Slee EA, MacFarlane M, Cohen GM. Caspase-1 is not involved in CD95/Fas-induced apoptosis in Jurkat T cells. Exp Cell Res 1999; 246:491-500. [PMID: 9925765 DOI: 10.1006/excr.1998.4333] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now well established that the caspases, a family of cysteine proteases, play a key role in apoptosis. Although overexpressing each of the caspases in cells triggered apoptosis, the precise role and contribution of individual caspases are still unclear. Caspase-1, the first caspase discovered, was initially implicated in mammalian apoptosis because of its similarity to the gene product ced-3. Using whole cells as well as an in vitro system to study apoptosis, the role of caspase-1 in Fas-mediated apoptosis in Jurkat T cells was examined in greater detail. Using various peptide-based caspase inhibitors, our results showed that N-acetyl-Tyr-Val-Ala-Asp chloromethyl ketone and benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone efficiently blocked Fas-mediated apoptosis in Jurkat T cells, whereas N-acetyl-Tyr-Val-Ala-Asp aldehyde, which is more specific for caspase-1, had little effect. Cell lysates derived from anti-Fas-stimulated cells, which readily induced apoptotic nuclei morphology and DNA fragmentation in isolated thymocyte nuclei, had no caspase-1 activity using proIL-1beta as a substrate. Time-course studies showed no caspase-1 activity during the activation of apoptosis in Jurkat cells by agonistic Fas antibodies. Furthermore, no pro-caspase-1 protein nor activated form of the protein was detected in normal or apoptotic Jurkat cells. In contrast, both caspase-2 and caspase-3 were readily detected as proenzymes in control cells and their activated forms were detected in apoptotic cells. Incubation of recombinant active caspase-1 with control cell lysates did not activate the apoptotic cascade as shown by the lack of detectable apoptotic nuclei promoting activity using isolated nuclei as substrate. However, under similar conditions proIL-1beta was readily processed into the mature cytokine, indicating that the recombinant caspase-1 remained active in the presence of control cell lysates. Taken together our results demonstrate that caspase-1 is not required for the induction of apoptosis in Jurkat T cells mediated by the Fas antigen.
Collapse
Affiliation(s)
- S C Chow
- Center for Mechanisms of Human Toxicity, Medical Research Council Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, United Kingdom.
| | | | | | | |
Collapse
|
150
|
Abstract
Perturbed cellular calcium homeostasis has been implicated in both apoptosis and necrosis, but the role of altered mitochondrial calcium handling in the cell death process is unclear. The temporal ordering of changes in cytoplasmic ([Ca2+]C) and intramitochondrial ([Ca2+]M) calcium levels in relation to mitochondrial reactive oxygen species (ROS) accumulation and membrane depolarization (MD) was examined in cultured neural cells exposed to either an apoptotic (staurosporine; STS) or a necrotic (the toxic aldehyde 4-hydroxynonenal; HNE) insult. STS and HNE each induced an early increase of [Ca2+]C followed by delayed increase of [Ca2+]M. Overexpression of Bcl-2 blocked the elevation of [Ca2+]M and the MD in cells exposed to STS but not in cells exposed to HNE. The cytoplasmic calcium chelator BAPTA-AM and the inhibitor of mitochondrial calcium uptake ruthenium red prevented both apoptosis and necrosis. STS and HNE each induced mitochondrial ROS accumulation and MD, which followed the increase of [Ca2+]M. Cyclosporin A prevented both apoptosis and necrosis, indicating critical roles for MD in both forms of cell death. Caspase activation occurred only in cells undergoing apoptosis and preceded increased [Ca2+]M. Collectively, these findings suggest that mitochondrial calcium overload is a critical event in both apoptotic and necrotic cell death.
Collapse
Affiliation(s)
- I I Kruman
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, 40536, USA
| | | |
Collapse
|