101
|
Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Lebedeva IV, Dent P, Pestka S, Fisher PB. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev 2003; 14:35-51. [PMID: 12485618 DOI: 10.1016/s1359-6101(02)00074-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The melanoma differentiation-associated gene-7 (mda-7) was cloned by subtraction hybridization as a molecule whose expression is elevated in terminally differentiated human melanoma cells. Current information based on structural and sequence homology, has led to the recognition of MDA-7 as an IL-10 family cytokine member and its renaming as IL-24. Northern blot analysis revealed mda-7/IL-24 expression in human tissues associated with the immune system such as spleen, thymus, peripheral blood leukocytes and normal melanocytes. The MDA-7/IL-24 mouse counterpart, FISP, appears to be a Th2-specific protein and the rat counterpart, C49A/MOB-5, is associated with wound healing and is also induced as a consequence of ras-transformation. A notable property of MDA-7/IL-24 is its ability to induce apoptosis in a large spectrum of human cancer derived cell lines, in mouse xenografts and upon intratumoral injection in human tumors (phase I clinical trials). Various aspects of this intriguing molecule including its cytokine and anti-tumoral effects are described and discussed.
Collapse
Affiliation(s)
- Moira Sauane
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, BB-1501, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem 2002; 277:49638-43. [PMID: 12397061 DOI: 10.1074/jbc.m209386200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins encoded by five of the six known Fanconi anemia (FA) genes form a heteromeric complex that facilitates repair of DNA damage induced by cross-linking agents. A certain number of these proteins, notably FANCC, also function independently to modulate apoptotic signaling, at least in part, by suppressing ground state activation of the pro-apoptotic interferon-inducible double-stranded RNA-dependent protein kinase (PKR). Because certain FANCC mutations interdict its anti-apoptotic function without interfering with the capacity of FANCC to participate functionally in the FA multimeric complex, we suspected that FANCC enhances cell survival independent of its participation in the complex. By investigating this function in both mammalian cells and in yeast, an organism with no FA orthologs, we show that FANCC inhibited the kinase activity of PKR both in vivo and in vitro, and this effect depended upon a physical interaction between FANCC and Hsp70 but not on interactions of FANCC with other Fanconi proteins. Hsp70, FANCC, and PKR form a ternary complex in lymphoblasts and in yeast expressing PKR. We conclude that Hsp70 requires the cooperation of FANCC to suppress PKR activity and support survival of hematopoietic cells and that FANCC does not require the multimeric FA complex to exert this function.
Collapse
Affiliation(s)
- Qishen Pang
- OHSU Cancer Institute, Department of Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
103
|
Kim SH, Gunnery S, Choe JK, Mathews MB. Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKR. Oncogene 2002; 21:8741-8. [PMID: 12483527 DOI: 10.1038/sj.onc.1205987] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
The interferon-inducible, double-stranded RNA (dsRNA)-activated protein kinase, PKR, plays key roles in regulation of cell growth and differentiation, and has been postulated as a tumor suppressor. Downstream effectors of PKR include the translation initiation factor, eIF2alpha, and the transcription factor, NF-kappaB. We found elevated levels of PKR protein, dsRNA-dependent PKR autophosphorylation activity, and phosphorylated eIF2alpha in melanoma cells compared to nontransformed melanocytes in culture. Treatment with interferon-alpha2b further induced PKR expression and activity. Immunohistochemical analysis of primary melanomas demonstrated minimal PKR immunoreactivity, but melanoma lymph node metastases expressed a high level of PKR protein. Furthermore, analysis of colon cancer specimens revealed that transformation from normal mucosa to adenomas and carcinomas was coincident with an increase in PKR expression. These data do not support the concept of PKR as a classic tumor suppressor but instead suggest that PKR upregulation occurs at defined steps in cancer progression, probably as a cellular response to neoplasia.
Collapse
Affiliation(s)
- Steve H Kim
- Department of Surgery, New Jersey Medical School/University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, New Jersey, NJ 07103, USA.
| | | | | | | |
Collapse
|
104
|
Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem 2002; 83:1215-25. [PMID: 12437593 DOI: 10.1046/j.1471-4159.2002.01237.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.
Collapse
Affiliation(s)
- Raymond Chuen-Chung Chang
- Department of Anatomy, Faculty of Medicine, and Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
105
|
Abstract
In the struggle between virus and host, control over the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host in order to complete their replication cycle. Many of the counter-assaults mounted by the immune system incorporate activation of the apoptotic pathway-particularly by members of the tumor necrosis factor cytokine family-as a mechanism to restrict viral replication. Thus, apoptosis serves as a powerful selective pressure for the virus to evade. However, for the host, success is harsh and potentially costly, as apoptosis often contributes to pathogenesis. Here we examine some of the molecular mechanisms by which viruses manipulate the apoptotic machinery to their advantage and how we (as vertebrates) have evolved and learned to cope with viral evasion.
Collapse
Affiliation(s)
- Chris A Benedict
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | |
Collapse
|
106
|
Mengesdorf T, Proud CG, Mies G, Paschen W. Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. Exp Neurol 2002; 177:538-46. [PMID: 12429199 DOI: 10.1006/exnr.2002.8002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transient global cerebral ischemia triggers suppression of the initiation step of protein synthesis, a process which is controlled by endoplasmic reticulum (ER) function. ER function has been shown to be disturbed after transient cerebral ischemia, as indicated by an activation of the ER-resident eIF2alpha kinase PERK. In this study, we investigated ischemia-induced changes in protein levels and phosphorylation states of the initiation factors eIF2alpha, eIF2B epsilon, and eIF4G1 and of p70 S6 kinase, proteins playing a central role in the control of the initiation of translation. Transient focal cerebral ischemia was induced in mice by occlusion of the left middle cerebral artery. Transient ischemia caused a long-lasting suppression of global protein synthesis. eIF2alpha was transiently phosphorylated after ischemia, peaking at 1-3 h of recovery. eIF2B epsilon and p70 S6 kinase were completely dephosphorylated during ischemia and phosphorylation did not recover completely following reperfusion. In addition, eIF2B epsilon, eIF4G1, and p70 S6 kinase protein levels decreased progressively with increasing recirculation time. Thus, several different processes contributed to ischemia-induced suppression of the initiation of protein synthesis: a long-lasting dephosphorylation of eIF2B epsilon and p70 S6K starting during ischemia, a transient phosphorylation of eIF2alpha during early reperfusion, and a marked decrease of eIF2B epsilon, eIF4G1, and p70 S6K protein levels starting during vascular occlusion (eIF4G1). Study of the mechanisms underlying ischemia-induced suppression of the initiation step of translation will help to elucidate the role of protein synthesis inhibition in the development of neuronal cell injury triggered by transient cerebral ischemia.
Collapse
Affiliation(s)
- Thorsten Mengesdorf
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, 50931, Köln, Germany
| | | | | | | |
Collapse
|
107
|
Vorburger SA, Pataer A, Yoshida K, Barber GN, Xia W, Chiao P, Ellis LM, Hung MC, Swisher SG, Hunt KK. Role for the double-stranded RNA activated protein kinase PKR in E2F-1-induced apoptosis. Oncogene 2002; 21:6278-88. [PMID: 12214268 DOI: 10.1038/sj.onc.1205761] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 06/06/2002] [Accepted: 06/14/2002] [Indexed: 02/04/2023]
Abstract
The transcription factor E2F-1 induces cell cycle progression at the G1/S checkpoint, and deregulation of E2F-1 provokes apoptosis in a wide variety of malignant cells. To date only p14(ARF) and p73, a p53 homologue, have been identified as E2F-1-inducible genes capable of mediating an apoptotic response. Here we show that adenovirus-mediated E2F-1 overexpression in cancer cells induces expression and autophosphorylation of the double-stranded RNA-dependent protein kinase PKR leading to phosphorylation of its downstream target, the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF-2alpha) and to apoptotic cell death. This PKR-dependent apoptosis occurs in cell lines with mutated p53 and in cell lines with mutated p53 and p73, and is significantly reduced by the chemical inhibition of PKR activation. Further, PKR(-/-) mouse embryo fibroblasts, but not PKR(+/+) mouse embryo fibroblasts, demonstrate significant resistance to E2F-1-induced apoptosis. We conclude that an important pathway of E2F-1-mediated apoptosis is dependent on PKR activation and does not require p53 or p73.
Collapse
Affiliation(s)
- Stephan A Vorburger
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Shir A, Levitzki A. Inhibition of glioma growth by tumor-specific activation of double-stranded RNA-dependent protein kinase PKR. Nat Biotechnol 2002; 20:895-900. [PMID: 12205508 DOI: 10.1038/nbt730] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activated double-stranded RNA (dsRNA-dependent protein kinase PKR is a potent growth inhibitory protein that is primarily activated in virally infected cells, inducing cell death. Here we investigate whether selective activation of PKR can be used to kill cancer cells that express mutated genes containing deletions or chromosomal translocations. We show that antisense (AS) RNA complementary to fragments flanking the deletion or translocation can produce a dsRNA molecule of sufficient length to activate PKR and induce cell death following hybridization with mutated but not wild-type mRNA. Using the U87MG Delta EGFR cell line, which expresses a truncated form of epidermal growth factor receptor (EGFR), Delta(2-7) EGFR, we found that expression of a 39-nucleotide (nt) AS RNA complementary to the unique exon 1 to 8 junction caused selective death of cells harboring the truncated EGFR both in vitro and in vivo but did not affect cells expressing wild-type EGFR. A lentiviral vector expressing the 39-nt AS sequence strongly inhibited glioblastoma growth in mouse brain when injected after tumor cell implantation. This PKR-mediated killing strategy may be useful in treating many cancers that express a unique RNA species.
Collapse
Affiliation(s)
- Alexei Shir
- Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | |
Collapse
|
109
|
Gupta V, Patel RC. Proapoptotic protein PACT is expressed at high levels in colonic epithelial cells in mice. Am J Physiol Gastrointest Liver Physiol 2002; 283:G801-8. [PMID: 12181197 DOI: 10.1152/ajpgi.00498.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The protein activator of RNA-activated protein kinase (PKR) is a proapoptotic protein called PACT. PKR is an interferon (IFN)-induced serine-threonine protein kinase that plays a central role in IFN's antiviral and antiproliferative activities. PKR activation in cells leads to phosphorylation of the alpha-subunit of the eukaryotic protein synthesis initiation factor (eIF)2alpha, inhibition of protein synthesis, and apoptosis. In the absence of viral infections, PKR is activated by its activator PACT, especially in response to diverse stress signals. Overexpression of PACT in cells causes enhanced sensitivity to stress-induced apoptosis. We examined PACT expression in different mouse tissues and evaluated its possible role in regulating apoptosis. PACT is expressed at high levels in colonic epithelial cells, especially as they exit the cell cycle and enter an apoptotic program. PACT expression also coincides with the presence of active PKR and phosphorylated eIF2alpha. These results suggest a possible role of PACT-mediated PKR activation in the regulation of epithelial cell apoptosis in mouse colon. In addition, transient overexpression of PACT in a nontransformed intestinal epithelial cell line leads to induction of apoptosis, further supporting PACT's role in inducing apoptosis.
Collapse
Affiliation(s)
- Vishal Gupta
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
110
|
De Lucca FL, Serrano SV, Souza LR, Watanabe MAE. Activation of RNA-dependent protein kinase and nuclear factor-kB by regulatory RNA from lipopolysaccharide-stimulated macrophages: implications for cytokine production. Eur J Pharmacol 2002; 450:85-9. [PMID: 12176113 DOI: 10.1016/s0014-2999(02)02072-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Our previous results showed that L-RNA, extracted from lipopolysaccharide-stimulated macrophages, induces interleukin-1, interleukin-8 and tumor necrosis factor-alpha (TNF-alpha) in resident macrophages. It was demonstrated the promoter of these cytokine genes contain nuclear factor-kB (NF-kappa B) binding sites. We hypothesized that this effect of L-RNA is mediated by RNA-dependent protein kinase (PKR) through NF-kappa B activation. We found that L-RNA activates PKR and induces NF-kappa B activation through degradation of its inhibitor I-kappa B alpha. These data support the idea that L-RNA acts as a regulatory RNA. A model for the mechanism of action of L-RNA is proposed.
Collapse
Affiliation(s)
- Fernando L De Lucca
- Department of Biochemistry and Immunology, School of Medicine University of São Paulo 14049-900, Ribeirão Preto, S.P., Brazil.
| | | | | | | |
Collapse
|
111
|
Huang X, Hutchins B, Patel RC. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J 2002; 366:175-86. [PMID: 11985496 PMCID: PMC1222748 DOI: 10.1042/bj20020204] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 04/16/2002] [Accepted: 05/02/2002] [Indexed: 11/17/2022]
Abstract
One of the key mediators of the antiviral and antiproliferative actions of interferon is double-stranded-RNA-dependent protein kinase (PKR). PKR activity is also involved in the regulation of cell proliferation, apoptosis and signal transduction. We have recently identified PACT, a novel protein activator of PKR, as an important modulator of PKR activity in cells in the absence of viral infection. PACT heterodimerizes with PKR and activates it by direct protein-protein interactions. Endogenous PACT acts as an activator of PKR in response to diverse stress signals, such as serum starvation and peroxide or arsenite treatment, and is therefore a novel, stress-modulated physiological activator of PKR. In this study, we have characterized the functional domains of PACT that are required for PKR activation. Our results have shown that, unlike the N-terminal conserved domains 1 and 2, the third conserved domain of PACT is dispensable for its binding of double-stranded RNA and inter action with PKR. However, a deletion of domain 3 results in a loss of PKR activation ability, in spite of a normal interaction with PKR, thereby indicating that domain 3 plays an essential role in PKR activation. Purified recombinant domain 3 could also activate PKR efficiently in vitro. Our results indicate that, although dispensable for PACT's high-affinity interaction with PKR, the third motif is essential for PKR activation. In addition, domain 3 and eukaryotic initiation factor 2alpha both interact with PKR through the same region within PKR, which we have mapped to lie between amino acid residues 318 and 551.
Collapse
Affiliation(s)
- Xu Huang
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, U.S.A
| | | | | |
Collapse
|
112
|
Eberle J, Fecker LF, Bittner JU, Orfanos CE, Geilen CC. Decreased proliferation of human melanoma cell lines caused by antisense RNA against translation factor eIF-4A1. Br J Cancer 2002; 86:1957-62. [PMID: 12085193 PMCID: PMC2375438 DOI: 10.1038/sj.bjc.6600351] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 03/14/2002] [Accepted: 04/09/2002] [Indexed: 12/12/2022] Open
Abstract
Control of translation initiation was recognised as a critical checkpoint for cell proliferation and tumorigenesis. In human melanoma cells, we have previously reported consistent overexpression of translation initiation factor eIF-4A1. Here, we investigated by transfection of antisense constructs its significance for the control of melanoma cell growth. The tetracycline-inducible expression system was established in melanoma cells, and three fragments of the 5'-, central-, and 3'-portion of the eIF-4A1 cDNA were subcloned in antisense and in sense orientation after a tetracycline inducible promoter. Significant proliferation decrease was obtained after transient transfection and induction of antisense RNA directed against the 5'- and the central portion (up to 10%), whereas, no effects were seen after induction of the 3'-fragment and the sense controls. Cell clones stably transfected with the central antisense fragment revealed after doxycycline induction reduced expression of endogeneous eIF-4A1 mRNA correlated with decreased proliferation rates (up to 6%). These data demonstrate the applicability of antisense strategies against translation factors in melanoma cells. Translation initiation factor eIF-4A1 contributes to the control of melanoma cell proliferation and may be taken into consideration when scheduling new therapeutic approaches targeting the translational control.
Collapse
Affiliation(s)
- J Eberle
- Department of Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Fabeckstrasse 60-62, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
113
|
Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2810-9. [PMID: 12047392 DOI: 10.1046/j.1432-1033.2002.02974.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long uORF-burdened 5'UTRs of many genes encoding regulatory proteins involved in cell growth and differentiation contain internal ribosomal entry site (IRES) elements. In a previous study we showed that utilization of the weak IRES of platelet-derived growth factor (PDGF2) is activated during megakaryocytic differentiation. The establishment of permissive conditions for IRES-mediated translation during differentiation has been confirmed by our demonstration of the enhanced activity of vascular endothelial growth factor, c-Myc and encephalomyocarditis virus IRES elements under these conditions, although their mRNAs are not naturally expressed in differentiated K562 cells. In contrast with the enhancement of IRES-mediated protein synthesis during differentiation, global protein synthesis is reduced, as judged by polysomal profiles and radiolabelled amino acid incorporation rate. The reduction in protein synthesis rate correlates with increased phosphorylation of the translation initiation factor eIF2 alpha. Furthermore, IRES use is decreased by over-expression of the dominant-negative form of the eIF2 alpha kinase, PKR, the vaccinia virus K3L gene, or the eIF2 alpha-S51A variant which result in decreased eIF2 alpha phosphorylation. These data demonstrate a connection between eIF2 alpha phosphorylation and activation of cellular IRES elements. It suggests that phosphorylation of eIF2 alpha, known to be important for cap-dependent translational control, serves to fine-tune the translation efficiency of different mRNA subsets during the course of differentiation and has the potential to regulate expression of IRES-containing mRNAs under a range of physiological circumstances.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | |
Collapse
|
114
|
Banerjee S, Narayanan K, Mizutani T, Makino S. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. J Virol 2002; 76:5937-48. [PMID: 12021326 PMCID: PMC136219 DOI: 10.1128/jvi.76.12.5937-5948.2002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Analyses of mitogen-activated protein kinases (MAPKs) in a mouse hepatitis virus (MHV)-infected macrophage-derived J774.1 cell line showed activation of two MAPKs, p38 MAPK and c-Jun N-terminal kinase (JNK), but not of extracellular signal-regulated kinase (ERK). Activation of MAPKs was evident by 6 h postinfection. However, UV-irradiated MHV failed to activate MAPKs, which demonstrated that MHV replication was necessary for their activation. Several other MHV-permissive cell lines also showed activation of both p38 MAPK and JNK, which indicated that the MHV-induced stress-kinase activation was not restricted to any particular cell type. The upstream kinase responsible for activating MHV-induced p38 MAPK was the MAPK kinase 3. Experiments with a specific inhibitor of p38 MAPK, SB 203580, demonstrated that MHV-induced p38 MAPK activation resulted in the accumulation of interleukin-6 (IL-6) mRNAs and an increase in the production of IL-6, regardless of MHV-induced general host protein synthesis inhibition. Furthermore, MHV production was suppressed in SB 203580-treated cells, demonstrating that activated p38 MAPK played a role in MHV replication. The reduced MHV production in SB 203580-treated cells was, at least in part, due to a decrease in virus-specific protein synthesis and virus-specific mRNA accumulation. Interestingly, there was a transient increase in the amount of phosphorylation of the translation initiation factor 4E (eIF4E) in infected cells, and this eIF4E phosphorylation was p38 MAPK dependent; it is known that phosphorylated eIF4E enhances translation rates of cap-containing mRNAs. Furthermore, the upstream kinase responsible for eIF4E phosphorylation, MAPK-interacting kinase 1, was also phosphorylated and activated in response to MHV infection. Our data suggested that host cells, in response to MHV replication, activated p38 MAPK, which subsequently phosphorylated eIF4E to efficiently translate certain host proteins, including IL-6, during virus-induced severe host protein synthesis inhibition. MHV utilized this p38 MAPK-dependent increase in eIF4E phosphorylation to promote virus-specific protein synthesis and subsequent progeny virus production. Enhancement of virus-specific protein synthesis through virus-induced eIF4E activation has not been reported in any other viruses.
Collapse
Affiliation(s)
- Sangeeta Banerjee
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | | | |
Collapse
|
115
|
Kammer GM, Perl A, Richardson BC, Tsokos GC. Abnormal T cell signal transduction in systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2002; 46:1139-54. [PMID: 12115215 DOI: 10.1002/art.10192] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gary M Kammer
- Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
116
|
Watkins SJ, Norbury CJ. Translation initiation and its deregulation during tumorigenesis. Br J Cancer 2002; 86:1023-7. [PMID: 11953842 PMCID: PMC2364173 DOI: 10.1038/sj.bjc.6600222] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Accepted: 02/08/2002] [Indexed: 12/16/2022] Open
Abstract
Regulation of protein synthesis at the level of translation initiation is fundamentally important for the control of cell proliferation under normal physiological conditions. Conversely, misregulation of protein synthesis is emerging as a major contributory factor in cancer development. Most bulk protein synthesis is initiated via recognition of the mRNA 5' cap and subsequent recognition of the initiator AUG codon by a directional scanning mechanism. However, several key regulators of tumour development are translated by a cap-independent pathway. Here we review eukaryotic translation initiation, its regulation and the ways in which this regulation can break down during tumorigenesis.
Collapse
Affiliation(s)
- S J Watkins
- Cancer Research UK Molecular Oncology Laboratory, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
117
|
Nakamura H, Kasuya H, Mullen JT, Yoon SS, Pawlik TM, Chandrasekhar S, Donahue JM, Chiocca EA, Chung RY, Tanabe KK. Regulation of herpes simplex virus γ134.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Invest 2002. [DOI: 10.1172/jci0210623] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
118
|
Radaeva S, Jaruga B, Hong F, Kim WH, Fan S, Cai H, Strom S, Liu Y, El-Assal O, Gao B. Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology 2002; 122:1020-34. [PMID: 11910354 DOI: 10.1053/gast.2002.32388] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Interferon (IFN)-alpha therapy is currently the primary choice for viral hepatitis and a promising treatment for hepatocellular carcinoma (HCC). Primary mouse and rat hepatocytes respond poorly to IFN-alpha stimulation. Thus, it is very important to examine the IFN-alpha signal pathway in primary human hepatocytes. METHODS The IFN-alpha-activated signals and genes in primary human hepatocytes and hepatoma cells were examined by Western blotting and microarray analyses. RESULTS Primary human hepatocytes respond very well to IFN-alpha stimulation as shown by activation of multiple signal transducer and activator of transcription factor (STAT) 1, 2, 3, 5, and multiple genes. The differential response to IFN-alpha stimulation in primary human and mouse hepatocytes may be caused by expression of predominant functional IFN-alpha receptor 2c (IFNAR2c) in primary human hepatocytes vs. expression of predominant inhibitory IFNAR2a in mouse hepatocytes. Microarray analyses of primary human hepatocytes show that IFN-alpha up-regulates about 44 genes by over 2-fold and down-regulates about 9 genes by 50%. The up-regulated genes include a variety of antiviral and tumor suppressors/proapoptotic genes. The down-regulated genes include c-myc and c-Met, the hepatocyte growth factor (HGF) receptor. Down-regulation of c-Met is caused by IFN-alpha suppression of the c-Met promoter through down-regulation of Sp1 binding and results in attenuation of HGF-induced signals and cell proliferation. CONCLUSIONS IFN-alpha directly targets human hepatocytes, followed by activation of multiple STATs and regulation of a wide variety of genes, which may contribute to the antiviral and antitumor activities of IFN-alpha in human liver.
Collapse
Affiliation(s)
- Svetlana Radaeva
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Nakamura H, Kasuya H, Mullen JT, Yoon SS, Pawlik TM, Chandrasekhar S, Donahue JM, Chiocca EA, Chung RY, Tanabe KK. Regulation of herpes simplex virus gamma(1)34.5 expression and oncolysis of diffuse liver metastases by Myb34.5. J Clin Invest 2002; 109:871-82. [PMID: 11927614 PMCID: PMC150923 DOI: 10.1172/jci10623] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myb34.5 is a herpes simplex virus 1 (HSV-1) mutant deleted in the gene for ribonucleotide reductase (ICP6). It also carries a version of gamma(1)34.5 (a viral gene product that promotes the dephosphorylation of eIF-2alpha) that is under control of the E2F-responsive cellular B-myb promoter, rather than of its endogenous promoter. Myb34.5 replication in tumor cells results in their destruction (oncolysis). gamma(1)34.5 expression by HSV-1 subverts an important cell defense mechanism against viral replication by preventing shutoff of protein synthesis after viral infection. Infection of colon carcinoma cells with Myb34.5 results in greater eIF-2alpha dephosphorylation and viral replication compared with infection with HSV-1 mutants completely defective in gamma(1)34.5 expression. In contrast, infection of normal hepatocytes with Myb34.5 results in low levels of eIF-2alpha dephosphorylation and viral replication that are similar to those observed with HSV-1 mutants completely defective in gamma(1)34.5 and ICP6. When administered intravascularly into mice with diffuse liver metastases, Myb34.5 has greater antineoplastic activity than HSV-1 mutants with completely defective gamma(1)34.5 expression and more restricted biodistribution compared with HSV-1 mutants with wild-type gamma(1)34.5 expression. Myb34.5 displays reduced virulence and toxicity compared to HSV-1 mutants with wild-type gamma(1)34.5 expression. Portal venous administration of Myb34.5 significantly reduces liver tumor burden in and prolongs the life of mice with diffuse liver metastases. Preexisting Ab's to HSV-1 do not reduce the antitumor efficacy of Myb34.5 in vivo.
Collapse
Affiliation(s)
- Hideo Nakamura
- Division of Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
121
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
122
|
Sans MD, Kimball SR, Williams JA. Effect of CCK and intracellular calcium to regulate eIF2B and protein synthesis in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2002; 282:G267-76. [PMID: 11804848 DOI: 10.1152/ajpgi.00274.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic secretagogues enhance acinar protein synthesis at physiological concentrations and inhibit protein synthesis at high concentrations. We investigated the potential role in this process of the eukaryotic translation initiation factor (eIF)2B. Cholecystokinin (CCK) at 10-100 pM did not significantly affect eIF2B activity, which averaged 35.4 nmol guanosine 5'-diphosphate exchanged per minute per milligram protein under control conditions; higher CCK concentrations reduced eIF2B activity to 38.2% of control. Carbamylcholine chloride (Carbachol, CCh), A-23187, and thapsigargin also inhibited eIF2B and protein synthesis, whereas bombesin and the CCK analog JMV-180 were without effect. Previous studies have shown that eIF2B can be negatively regulated by glycogen synthase kinase-3 (GSK-3). However, GSK-3 activity, as assessed by phosphorylation state, was inhibited at high concentrations of CCK, an effect that should have stimulated, rather than repressed, eIF2B activity. An alternative mechanism for regulating eIF2B is through phosphorylation of the alpha-subunit of eIF2, which converts it into an inhibitor of eIF2B. CCK, CCh, A-23187, and thapsigargin all enhanced eIF2alpha phosphorylation, suggesting that eIF2B activity is regulated by eIF2alpha phosphorylation under these conditions. Removal of Ca(2+) from the medium enhanced the inhibitory action of CCK on both protein synthesis and eIF2B activity as well as further increasing eIF2alpha phosphorylation. Although it is likely that other mechanisms account for the stimulation of acinar protein synthesis, these results suggest that the inhibition of acinar protein synthesis by CCK occurs as a result of depletion of Ca(2+) from the endoplasmic reticulum lumen leading to phosphorylation of eIF2alpha and inhibition of eIF2B.
Collapse
Affiliation(s)
- Maria Dolors Sans
- Department of Physiology, University of Michigan, 1301 St. Catherine St., 7737 Med Sci II, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
123
|
Kakuta S, Tagawa YI, Shibata S, Nanno M, Iwakura Y. Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology 2002; 105:92-100. [PMID: 11849319 PMCID: PMC1782640 DOI: 10.1046/j.0019-2805.2001.01342.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interferon-gamma (IFN-gamma) has pleiotropic activities other than its antivirus action, including cell growth inhibition, natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activation, and angiogenesis inhibitory activity, and these activities are supposed to be involved in its antitumour activity. However, it has not been completely elucidated which activity is mainly involved in the tumour suppression in vivo. In this study, we analysed inhibitory mechanisms of endogenous IFN-gamma against B16 melanoma experimental metastasis. After intravenous injection of tumour cells, tumour deposits in the lungs and liver were increased and life span was shorter in IFN-gamma(-/-) mice, indicating important roles for IFN-gamma in antitumour mechanisms. Interestingly, tumour deposits were not increased in IFN-gamma receptor (R)(-/-) mice. Furthermore, only low levels of cell-mediated immunity against the tumour and activation of NK cells were observed, indicating that antimetastatic effects of IFN-gamma is not mediated by host cells. The survival period of B16 melanoma-bearing IFN-gamma R(-/-) mice was, however, shorter than wild-type mice. These observations suggest that IFN-gamma prevents B16 melanoma experimental metastasis by directly inhibiting the cell growth, although antitumour host functions may also be involved in a later phase.
Collapse
Affiliation(s)
- Shigeru Kakuta
- Center for Experimental Medicine, Insitute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
124
|
Shir A, Levitzki A. Gene therapy for glioblastoma: future perspective for delivery systems and molecular targets. Cell Mol Neurobiol 2001; 21:645-56. [PMID: 12043839 PMCID: PMC11533808 DOI: 10.1023/a:1015143819375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A Shir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| | | |
Collapse
|
125
|
Martensen PM, Søgaard TM, Gjermandsen IM, Buttenschøn HN, Rossing AB, Bonnevie-Nielsen V, Rosada C, Simonsen JL, Justesen J. The interferon alpha induced protein ISG12 is localized to the nuclear membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5947-54. [PMID: 11722583 DOI: 10.1046/j.0014-2956.2001.02545.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferons exert their biological function mainly through the activation of interferon-stimulated genes (ISGs). ISG12 (originally designated p27) belongs to a family of small, interferon alpha inducible genes of unknown function. We have determined the 5' end sequence of ISG12 cDNA from the human cell lines HeLa and AMA by RACE. Comparing this sequence to ISG12 sequences in the expressed sequence tag (EST) database revealed the presence of two alternative splice variants of ISG12 in human cells exhibiting the same open reading frame. We have sequenced the promoter region of the ISG12 gene and found ISRE, IRF1/IRF2, and STAT elements correlating to the interferon alpha inducibility of the gene. Subsequently, we have expressed human ISG12, a 12-kDa hydrophobic protein in the baculovirus expression system and with a C-terminal FLAG-tag in the human cell line 293. Recombinant ISG12 sediments in the nuclear envelope in both cell types. Finally, we have been able to demonstrate the prevalence of the ISG12 gene product in the nuclear envelope of HeLa cells treated with interferon alpha by immunocytochemical analyses. ISG12 is the first interferon induced protein found localizing to the nuclear envelope.
Collapse
Affiliation(s)
- P M Martensen
- Department of. Molecular and Structural Biology, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Petrov T, Underwood BD, Braun B, Alousi SS, Rafols JA. Upregulation of iNOS expression and phosphorylation of eIF-2alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J Neurotrauma 2001; 18:799-812. [PMID: 11526986 DOI: 10.1089/089771501316919166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
When the inducible form of nitric oxide synthase (iNOS) is expressed after challenge to the nervous system, it results in abnormally high concentrations of nitric oxide (NO). Under such conditions, NO could phosphorylate the eukaryotic translation initiation factor (eIF)-2alpha, thus suppressing protein synthesis in neurons that play a role in endocrine and autonomic functions. Using the Marmarou model of traumatic brain injury (TBI), we observed a rapid increase (at 4 h after TBI) of iNOS mRNA in magno- and parvocellular supraoptic and paraventricular neurons, declining gradually by approximately 30% at 24 h and by approximately 80% at 48 h. Western analysis indicated a trend towards increased iNOS protein synthesis at 4 h, which peaked at 8 h, and tended to decrease at the later time points. At the same time points, we detected immunocytochemically the phosphorylated form of eIF-2alpha (eIF-2alpha[P]) as cytoplasmic and more often as nuclear labeling. The incidence of double-labeled [iNOS and eIF-2alpha(P)] neuronal profiles, particularly at 24 h and 48 h after TBI, was high. De novo protein synthesis assessed quantitatively after infusion of 35S methionine/cysteine was reduced by approximately 20% at 4 h, remained depressed at 24 h, and did not return to control levels up to 48 h following the trauma. The results suggest that iNOS may trigger phosphorylation of eIF-2alpha, which in turn interferes with protein synthesis at the translational (ribosomal complex) and transcriptional (chromatin) levels. The depression in protein synthesis may include downregulation of iNOS itself, which could be an autoregulatory inhibitory feedback mechanism for NO synthesis. Excessive amounts of NO may also participate in dysfunction of hypothalamic circuits that underlie endocrine and autonomic alterations following TBI.
Collapse
Affiliation(s)
- T Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
127
|
Mechanisms of beta-cell death in response to double-stranded (ds) RNA and interferon-gamma: dsRNA-dependent protein kinase apoptosis and nitric oxide-dependent necrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:273-83. [PMID: 11438474 PMCID: PMC1850419 DOI: 10.1016/s0002-9440(10)61693-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Viral infection is one environmental factor that has been implicated as a precipitating event that may initiate beta-cell damage during the development of diabetes. This study examines the mechanisms by which the viral replicative intermediate, double-stranded (ds) RNA impairs beta-cell function and induces beta-cell death. The synthetic dsRNA molecule polyinosinic-polycytidylic acid (poly IC) stimulates beta-cell DNA damage and apoptosis without impairing islet secretory function. In contrast, the combination of poly IC and interferon (IFN)-gamma stimulates DNA damage, apoptosis, and necrosis of islet cells, and this damage is associated with the inhibition of glucose-stimulated insulin secretion. Nitric oxide mediates the inhibitory and destructive actions of poly IC + IFN-gamma on insulin secretion and islet cell necrosis. Inhibitors of nitric oxide synthase, aminoguanidine, and N(G)-monomethyl-L-arginine, attenuate poly IC + IFN-gamma-induced DNA damage to levels observed in response to poly IC alone, prevent islet cell necrosis, and prevent the inhibitory actions on glucose-stimulated insulin secretion. N(G)-monomethyl-L-arginine fails to prevent poly IC- and poly IC + IFN-gamma-induced islet cell apoptosis. PKR, the dsRNA-dependent protein kinase that mediates the antiviral response in infected cells, is required for poly IC- and poly IC + IFN-gamma-induced islet cell apoptosis, but not nitric oxide-mediated islet cell necrosis. Alone, poly IC fails to stimulate DNA damage in islets isolated from PKR-deficient mice; however, nitric oxide-dependent DNA damage induced by the combination of poly IC + IFN-gamma is not attenuated by the genetic absence of PKR. These findings indicate that dsRNA stimulates PKR-dependent islet cell apoptosis, an event that is associated with normal islet secretory function. In contrast, poly IC + IFN-gamma-induced inhibition of glucose-stimulated insulin secretion and islet cell necrosis are events that are mediated by islet production of nitric oxide. These findings suggest that at least one IFN-gamma-induced antiviral response (islet cell necrosis) is mediated through a PKR-independent pathway.
Collapse
|
128
|
Liu C, Xu HY, Liu DX. Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol 2001; 75:6402-9. [PMID: 11413307 PMCID: PMC114363 DOI: 10.1128/jvi.75.14.6402-6409.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the causative agent of chicken infectious bronchitis, an acute, highly contagious viral respiratory disease. Replication of IBV in Vero cells causes extensive cytopathic effects (CPE), leading to destruction of the entire monolayer and the death of infected cells. In this study, we investigated the cell death processes during acute IBV infection and the underlying mechanisms. The results show that both necrosis and apoptosis may contribute to the death of infected cells in lytic IBV infection. Caspase-dependent apoptosis, as characterized by chromosomal condensation, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase degradation, was detected in IBV-infected Vero cells. Addition of the general caspase inhibitor z-VAD-FMK to the culture media showed inhibition of the hallmarks of apoptosis and increase of the release of virus to the culture media at 16 h postinfection. However, neither the necrotic process nor the productive replication of IBV in Vero cells was severely affected by the inhibition of apoptosis. Screening of 11 IBV-encoded proteins suggested that a 58-kDa mature cleavage product could induce apoptotic changes in cells transiently expressing the protein. This study adds one more example to the growing list of animal viruses that induce apoptosis during their replication cycles.
Collapse
Affiliation(s)
- C Liu
- Institute of Molecular Agrobiology, 1 Research Link, The National University of Singapore, Singapore 117406, Singapore.
| | | | | |
Collapse
|
129
|
Nielsen K, Boston RS. RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:785-816. [PMID: 11337416 DOI: 10.1146/annurev.arplant.52.1.785] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved alpha-sarcin loop of large rRNAs. This depurination inactivates the ribosome, thereby blocking its further participation in protein synthesis. RIPs are widely distributed among different plant genera and within a variety of different tissues. Recent work has shown that enzymatic activity of at least some RIPs is not limited to site-specific action on the large rRNAs of ribosomes but extends to depurination and even nucleic acid scission of other targets. Characterization of the physiological effects of RIPs on mammalian cells has implicated apoptotic pathways. For plants, RIPs have been linked to defense by antiviral, antifungal, and insecticidal properties demonstrated in vitro and in transgenic plants. How these effects are brought about, however, remains unresolved. At the least, these results, together with others summarized here, point to a complex biological role. With genetic, genomic, molecular, and structural tools now available for integrating different experimental approaches, we should further our understanding of these multifunctional proteins and their physiological functions in plants.
Collapse
Affiliation(s)
- Kirsten Nielsen
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612; e-mail: ;
| | | |
Collapse
|
130
|
Uma S, Yun BG, Matts RL. The heme-regulated eukaryotic initiation factor 2alpha kinase. A potential regulatory target for control of protein synthesis by diffusible gases. J Biol Chem 2001; 276:14875-83. [PMID: 11278914 DOI: 10.1074/jbc.m011476200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) has been reported to inhibit protein synthesis in eukaryotic cells by increasing the phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF) 2. However, the mechanism through which this increase occurs has not been characterized. In this report, we examined the effect of the diffusible gases nitric oxide (NO) and carbon monoxide (CO) on the activation of the heme-regulated eIF2alpha kinase (HRI) in rabbit reticulocyte lysate. Spectral analysis indicated that both NO and CO bind to the N-terminal heme-binding domain of HRI. Although NO was a very potent activator of HRI, CO markedly suppressed NO-induced HRI activation. The NO-induced activation of HRI was transduced through the interaction of NO with the N-terminal heme-binding domain of HRI and not through S-nitrosylation of HRI. We postulate that the regulation of HRI activity by diffusible gases may be of wider physiological significance, as we further demonstrate that NO generators increase eIF2alpha phosphorylation levels in NT2 neuroepithelial and C2C12 myoblast cells and activate HRI immunoadsorbed from extracts of these non-erythroid cell lines.
Collapse
Affiliation(s)
- S Uma
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
131
|
Hinz T, Flindt S, Marx A, Janssen O, Kabelitz D. Inhibition of protein synthesis by the T cell receptor-inducible human TDAG51 gene product. Cell Signal 2001; 13:345-52. [PMID: 11369516 DOI: 10.1016/s0898-6568(01)00141-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The T cell death associated gene 51 (TDAG51) was shown to be required for T cell receptor (TCR)-dependent induction of Fas/Apo1/CD95 expression in a murine T cell hybridoma. Despite the absence of a nuclear localization sequence and a nucleic acid binding domain, it was suggested to be localized in the nucleus and to function as a transcription factor regulating Fas-expression. However, we demonstrate that the human (h)TDAG51 protein is localized in the cytoplasm and the nucleoli, suggesting a role in ribosome biogenesis and/or translation regulation. Indeed, it strongly inhibited translation of a luciferase mRNA in a reticulocyte translational extract. Furthermore, cotransfection of hTDAG51 and the luciferase gene into 293T cells resulted in a strong inhibition of luciferase mRNA translation. Our findings were further strengthened by isolating in a yeast two-hybrid screen three proteins which are involved in the regulation of translation. We speculate that hTDAG51 couples TCR signaling to inhibition of protein biosynthesis in activated T lymphocytes.
Collapse
Affiliation(s)
- T Hinz
- Department of Immunology, Paul-Ehrlich-Institute, Paul-Ehrlich-Stasse 51-59, D-63225, Langen, Germany.
| | | | | | | | | |
Collapse
|
132
|
Barber GN. Host defense, viruses and apoptosis. Cell Death Differ 2001; 8:113-26. [PMID: 11313713 DOI: 10.1038/sj.cdd.4400823] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 02/08/2023] Open
Abstract
To thwart viral infection, the host has developed a formidable and integrated defense network that comprises our innate and adaptive immune response. In recent years, it has become clear that in an attempt to prevent viral replication, viral dissemination or persistent viral infection of the cell, many of these protective measures actually involve the induction of programmed cell death, or apoptosis. An initial response to viral infection primarily involves the innate arm of immunity and the killing of infected cells with cytotoxic lymphocytes such as natural killer (NK) cells through mechanisms that include the employment of perforin and granzymes. Once the virus has invaded the cell, however, a second host defense-mediated response is also triggered which involves the induction of a family of cytokines known as the interferons (IFNs). The IFNs, which are essential for initiating and coordinating a successful antiviral response, function by stimulating the adaptive arm of immunity involving cytotoxic T cells (CTLs), and by inducing a number of intracellular genes that directly prevent virus replication/cytolysis or that facilitate apoptosis. The IFN-induced gene family is now known to comprise the death ligand TRAIL, the dsRNA-dependent protein kinase (PKR), interferon regulatory factors (IRFs) and the promyelocytic leukemia gene (PML), all of which have been reported to be mediators of cell death. That DNA array analyses indicate that numerous cellular genes, many as yet uncharacterized, may similarly be induced by IFN, further emphasizes the likely importance that these cytokines have in the modulation of apoptosis. This likelihood is additionally underlined by the elaborate strategies developed by viruses to inhibit IFN-antiviral function and the mechanisms of cell death.
Collapse
Affiliation(s)
- G N Barber
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, FL 33136, USA.
| |
Collapse
|
133
|
Iordanov MS, Wong J, Bell JC, Magun BE. Activation of NF-kappaB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 2001; 21:61-72. [PMID: 11113181 PMCID: PMC88780 DOI: 10.1128/mcb.21.1.61-72.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded RNA (dsRNA) of viral origin triggers two programs of the innate immunity in virus-infected cells. One is intended to decrease the rate of host cell protein synthesis and thus to prevent viral replication. This program is mediated by protein kinase R (PKR) and by RNase L and contributes, eventually, to the self-elimination of the infected cell via apoptosis. The second program is responsible for the production of antiviral (type I) interferons and other alarmone cytokines and serves the purpose of preparing naive cells for the viral invasion. This second program requires the survival of the infected cell and depends on the expression of antiapoptotic genes through the activation of the NF-kappaB transcription factor. The second program therefore relies on ongoing transcription and translation. It has been proposed that PKR plays an essential role in the activation of NF-kappaB by dsRNA. Here we present evidence that the dsRNA-induced NF-kappaB activity and the expression of beta interferon and inflammatory cytokines do not require either PKR or RNase L. Our results indicate, therefore, that the two dsRNA-activated programs are separate and can function independently of each other.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
134
|
Grolleau A, Kaplan MJ, Hanash SM, Beretta L, Richardson B. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J Clin Invest 2000; 106:1561-8. [PMID: 11120763 PMCID: PMC381471 DOI: 10.1172/jci9352] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of peripheral blood T cells results in a rapid and substantial rise in translation rates and proliferation, but proliferation in response to mitogen stimulation is impaired in systemic lupus erythematosus (SLE). We have investigated translation rates and initiation factor activities in T cells from SLE patients in response to activating signals. Activation by PMA plus ionomycin strongly increased protein synthesis in control T cells but not in T cells from SLE patients. The rate of protein synthesis is known to be strongly dependent on the activity of two eukaryotic translation initiation factors, eIF4E and eIF2alpha. We show that following stimulation, eIF4E expression and phosphorylation increased equivalently in control and SLE T cells. Expression of eIF4E interacting proteins - eIF4G, an inducer, and 4E-BP1 and 4E-BP2, two specific repressors of eIF4E function - and the phosphorylation level of 4E-BP1, were all identical in control and SLE T cells. In contrast, the protein kinase PKR, which is responsible for the phosphorylation and consequent inhibition of eIF2alpha activity, was specifically overexpressed in activated SLE T cells, correlating with an increase in eIF2alpha phosphorylation. Therefore, high expression of PKR and subsequent eIF2alpha phosphorylation is likely responsible, at least in part, for impaired translational and proliferative responses to mitogens in T cells from SLE patients.
Collapse
Affiliation(s)
- A Grolleau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 365, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
135
|
Muñoz F, Martín ME, Manso-Tomico J, Berlanga J, Salinas M, Fando JL. Ischemia-induced phosphorylation of initiation factor 2 in differentiated PC12 cells: role for initiation factor 2 phosphatase. J Neurochem 2000; 75:2335-45. [PMID: 11080185 DOI: 10.1046/j.1471-4159.2000.0752335.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An in vitro model of ischemia was obtained by subjecting PC12 cells differentiated with nerve growth factor to a combination of glucose deprivation plus anoxia. Immediately after the ischemic period, the protein synthesis rate was significantly inhibited (80%) and western blots of cell extracts revealed a significant accumulation of phosphorylated eukaryotic initiation factor 2, alpha subunit, eIF2(alphaP) (42%). Upon recovery, eIF2(alphaP) levels returned to control values after 30 min, whereas protein synthesis was still partially inhibited (33%) and reached almost control values within 2 h. The activities of the mammalian eIF2alpha kinases, double-stranded RNA-activated protein kinase, mammalian GCN2 homologue, and endoplasmic reticulum-resident kinase, were determined. None of the eIF2alpha kinases studied showed increased activity in ischemic cells as compared with controls. Exposure of cells to cell-permeable inhibitors of protein phosphatases 1 and 2A, calyculin A or tautomycin, induced dose- and time-dependent accumulation of eIF2(alphaP), mimicking an ischemic effect. Protein phosphatase activity, as measured with [(32)P]phosphorylase a as a substrate, diminished during ischemia and returned to control levels upon 30-min recovery. In addition, the rate of eIF2(alphaP) dephosphorylation was significantly lower in ischemic cells, paralleling both the greatest translational inhibition and the highest eIF2(alphaP) levels. The endogenous phosphatase activity from control and ischemic extracts showed different sensitivity to inhibitor 2 and fostriecin in in vitro assays, inhibitor-2 effect in ischemic cells being lower than in control cells. Together these results indicate that an eIF2alpha phosphatase, probably protein phosphatase 1, is implicated in the ischemia-induced eIF2(alphaP) accumulation in PC12 cells.
Collapse
Affiliation(s)
- F Muñoz
- Department of Biochemistry and Molecular Biology, Alcalá University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
136
|
Patel CV, Handy I, Goldsmith T, Patel RC. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 2000; 275:37993-8. [PMID: 10988289 DOI: 10.1074/jbc.m004762200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon (IFN)-induced, double-stranded (ds)RNA-activated serine-threonine protein kinase, PKR, is a key mediator of the antiviral activities of IFNs. In addition, PKR activity is also involved in regulation of cell proliferation, apoptosis, and signal transduction. In virally infected cells, dsRNA has been shown to bind and activate PKR kinase function. Implication of PKR activity in normal cellular processes has invoked activators other than dsRNA because RNAs with perfectly duplexed regions of sufficient length that are able to activate PKR are absent in cellular RNAs. We have recently reported cloning of PACT, a novel protein activator of PKR. PACT heterodimerizes with PKR and activates it by direct protein-protein interaction. Overexpression of PACT in mammalian cells leads to phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha), the cellular substrate for PKR, and leads to inhibition of protein synthesis. Here, we present evidence that endogenous PACT acts as a protein activator of PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. Following exposure of cells to these stress agents, PACT is phosphorylated and associates with PKR with increased affinity. PACT-mediated activation of PKR leads to enhanced eIF2alpha phosphorylation followed by apoptosis. Based on the results presented here, we propose that PACT is a novel stress-modulated physiological activator of PKR.
Collapse
Affiliation(s)
- C V Patel
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
137
|
Corssmit EP, de Metz J, Sauerwein HP, Romijn JA. Biologic responses to IFN-alpha administration in humans. J Interferon Cytokine Res 2000; 20:1039-47. [PMID: 11152569 DOI: 10.1089/107999000750053690] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although interferon-alpha (IFN-alpha) was discovered over 40 years ago, it was many years before it was registered as a therapeutic agent. Because of its unique qualities, it has been registered for both antiviral and antitumor indications. In addition to its therapeutic effects in viral diseases and cancer, IFN-alpha interferes with several important physiologic systems. It interacts with the immune system and affects several neuroendocrine and metabolic circuits. The specific mechanisms by which IFN-alpha exerts its therapeutic effects are complex, and it is very difficult to tie the biologic actions of IFN-alpha to specific clinical effects.
Collapse
Affiliation(s)
- E P Corssmit
- Department of Endocrinology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
138
|
Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000; 81:2341-2364. [PMID: 10993923 DOI: 10.1099/0022-1317-81-10-2341] [Citation(s) in RCA: 723] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- S Goodbourn
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, London SW17 0RE, UK1
| | - L Didcock
- Biomolecular Sciences Building, North Haugh, University of St Andrews, Fife KY16 9TS, UK2
| | - R E Randall
- Biomolecular Sciences Building, North Haugh, University of St Andrews, Fife KY16 9TS, UK2
| |
Collapse
|
139
|
Morley SJ, Jeffrey I, Bushell M, Pain VM, Clemens MJ. Differential requirements for caspase-8 activity in the mechanism of phosphorylation of eIF2alpha, cleavage of eIF4GI and signaling events associated with the inhibition of protein synthesis in apoptotic Jurkat T cells. FEBS Lett 2000; 477:229-36. [PMID: 10908726 DOI: 10.1016/s0014-5793(00)01805-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previously we have reported that induction of apoptosis in Jurkat cells results in an inhibition of overall protein synthesis with the selective and rapid cleavage of eukaryotic initiation factor (eIF) 4GI. For the cleavage of eIF4GI, caspase-3 activity is both necessary and sufficient in vivo, in a process which does not require signaling through the p38 MAP kinase pathway. We now show that activation of the Fas/CD95 receptor promotes an early, transient increase in the level of eIF2alpha phosphorylation, which is temporally correlated with the onset of the inhibition of translation. This is associated with a modest increase in the autophosphorylation of the protein kinase activated by double-stranded RNA. Using a Jurkat cell line that is deficient in caspase-8 and resistant to anti-Fas-induced apoptosis, we show that whilst the cleavage of eIF4GI is caspase-8-dependent, the enhancement of eIF2alpha phosphorylation does not require caspase-8 activity and occurs prior to the cleavage of eIF4GI. In addition, activation of the Fas/CD95 receptor results in the caspase-8-dependent dephosphorylation and degradation of p70(S6K), the enhanced binding of 4E-BP1 to eIF4E, and, at later times, the cleavage of eIF2alpha. These data suggest that apoptosis impinges upon the activity of several polypeptides which are central to the regulation of protein synthesis and that multiple signaling pathways are involved in vivo.
Collapse
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | | | | | |
Collapse
|
140
|
Clemens MJ, Bushell M, Jeffrey IW, Pain VM, Morley SJ. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ 2000; 7:603-15. [PMID: 10889505 DOI: 10.1038/sj.cdd.4400695] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The rate of protein synthesis is rapidly down-regulated in mammalian cells following the induction of apoptosis. Inhibition occurs at the level of polypeptide chain initiation and is accompanied by the phosphorylation of the alpha subunit of initiation factor eIF2 and the caspase-dependent cleavage of initiation factors eIF4G, eIF4B, eIF2alpha and the p35 subunit of eIF3. Proteolytic cleavage of these proteins yields characteristic products which may exert regulatory effects on the translational machinery. Inhibition of caspase activity protects protein synthesis from long-term inhibition in cells treated with some, but not all, inducers of apoptosis. This review describes the initiation factor modifications and the possible signalling pathways by which translation may be regulated during apoptosis. We discuss the significance of the initiation factor cleavages and other changes for protein synthesis, and the implications of these events for our understanding of the cellular changes associated with apoptosis.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, Cellular and Molecular Sciences Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | | | |
Collapse
|
141
|
Caraglia M, Budillon A, Vitale G, Lupoli G, Tagliaferri P, Abbruzzese A. Modulation of molecular mechanisms involved in protein synthesis machinery as a new tool for the control of cell proliferation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3919-36. [PMID: 10866791 DOI: 10.1046/j.1432-1327.2000.01465.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past years, the attention of scientists has focused mainly on the study of the genetic information and alterations that regulate eukaryotic cell proliferation and that lead to neoplastic transformation. All therapeutic strategies against cancer are, to date, directed at DNA either with cytotoxic drugs or gene therapy. Little or no interest has been aroused by protein synthesis mechanisms. However, an increasing body of data is emerging about the involvement of translational processes and factors in control of cell proliferation, indicating that protein synthesis can be an additional target for anticancer strategies. In this paper we review the novel insights on the biochemical and molecular events leading to protein biosynthesis and we describe their involvement in cell proliferation and tumorigenesis. A possible mechanistic explanation is given by the interactions that occur between protein synthesis machinery and the proliferative signal transduction pathways and that are therefore suitable targets for indirect modulation of protein synthesis. We briefly describe the molecular tools used to block protein synthesis and the attempts made at increasing their efficacy. Finally, we propose a new multimodal strategy against cancer based on the simultaneous intervention on protein synthesis and signal transduction.
Collapse
Affiliation(s)
- M Caraglia
- Dipartimento di Biochimica e Biofisica, Seconda Università di Napoli, Italy
| | | | | | | | | | | |
Collapse
|
142
|
Tee AR, Proud CG. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene 2000; 19:3021-31. [PMID: 10871854 DOI: 10.1038/sj.onc.1203622] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment of cells with DNA-damaging agents, such as etoposide, can cause growth arrest or apoptosis. Treatment of Swiss 3T3 or RAT-1 cells with etoposide led to the dephosphorylation of both p70 S6 kinase and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), resulting in decreased p70 S6 kinase activity and an increase in 4E-BP1 binding to eIF4E. These effects were not prevented by the general caspase inhibitor, Z-VAD.FMK. These findings indicate caspase-independent inhibition of signalling pathways that involve the mammalian target of rapamycin (mTOR). Similar effects were observed in response to two other DNA-damaging agents, cisplatin and mitomycin-C. These events preceded apoptosis, which was assessed by caspase-3 activity assays and FACS analysis. This shows that inhibition of mTOR signalling is not a consequence of apoptosis, although it may play a role in the events that precede cell death. 4E-BP1 was cleaved during apoptosis yielding a fragment that retained the ability to bind eIF4E. Cleavage of 4E-BP1 was inhibited by treatment of the cells with Z-VAD.FMK, indicating it is caspase-dependent. Insulin elicited full activation of p70 S6 kinase and phosphorylation of 4E-PB1 in etoposide-treated cells prior to the onset of apoptosis, but not during cell death. This suggests that mTOR signalling becomes irreversibly inhibited only after entry into apoptosis. Oncogene (2000).
Collapse
Affiliation(s)
- A R Tee
- Department of Anatomy & Physiology, Medical Sciences Institute/Wellcome Trust Building Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | |
Collapse
|
143
|
Perler L, Schweizer M, Jungi TW, Peterhans E. Bovine viral diarrhoea virus and bovine herpesvirus-1 prime uninfected macrophages for lipopolysaccharide-triggered apoptosis by interferon-dependent and -independent pathways. J Gen Virol 2000; 81:881-7. [PMID: 10725412 DOI: 10.1099/0022-1317-81-4-881] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The flavivirus bovine viral diarrhoea (BVD) virus exists in two biotypes, cytopathic (cp) and non-cytopathic (ncp), defined by their effect on cultured cells. Cp BVD virus-infected cells undergo apoptosis and may promote apoptosis in uninfected cells by an indirect mechanism. Macrophages (Mφ) infected with cp, but not ncp, BVD virus release a factor(s) in the supernatant capable of priming uninfected Mφ for activation-induced apoptosis in response to lipopolysaccharide. A possible role of interferon (IFN) type I was suggested previously by the observation that this cytokine primed for activation-induced apoptosis and was present in supernatants of Mφ infected with cp, but not ncp, BVD virus. Here, supernatants of both Mφ infected with a wider range of cp BVD virus and Mφ infected with bovine herpesvirus-1 are shown to contain such priming activity. Two lines of evidence indicate that factors in addition to IFN type I prime uninfected Mφ for apoptosis. First, supernatants of Mφ infected with cp BVD virus contained much less IFN than is required for priming for apoptosis. Second, whereas antiviral activity was neutralized by a vaccinia virus-encoded IFN type I receptor, B18R, the capacity of the supernatant to prime for apoptosis was unaffected by this treatment. The apparent molecular mass of the factor(s) priming for apoptosis was between 30 and 100 kDa. Priming of uninfected cells for activation-induced apoptosis may add a new facet to virus pathogenesis and may contribute to the formation of lesions not related directly to virus replication.
Collapse
Affiliation(s)
- L Perler
- Institute of Veterinary Virology, University of Berne, Laenggass-Str. 122, CH-3012 Berne, Switzerland
| | | | | | | |
Collapse
|
144
|
Barber GN. The interferons and cell death: guardians of the cell or accomplices of apoptosis? Semin Cancer Biol 2000; 10:103-11. [PMID: 10936061 DOI: 10.1006/scbi.2000.0313] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interferons (IFNs) play an integral role in cellular host defense against virus infection and conceivably tumorigenesis. Despite over 50 years of research, however, the molecular mechanisms underlining IFN action remain to be fully elucidated, in part because of the large number of genes, with an uncharacterized function that appears to be induced by these cytokines. Although the majority of in vitro studies indicate that IFNs antiviral properties involve inhibiting viral replication while maintaining the integrity of the cell, numerous reports have now implicated that a number of IFN-induced genes, IFN transcriptional regulatory factors and IFN signaling molecules can also mediate apoptosis. Here, we review some of what is known about IFN's ability to invoke programmed cell death as part of an intricate arsenal intended to prevent viral infection and malignant disease.
Collapse
Affiliation(s)
- G N Barber
- Department of Microbiology and Immunology and the Sylvester Comprehensive Cancer Center, The University of Miami School of Medicine, FL 33136, USA.
| |
Collapse
|
145
|
Abstract
In many species, introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. The apparently widespread nature of RNAi in eukaryotes, ranging from trypanosome to mouse, has sparked great interest from both applied and fundamental standpoints. Here we review the technical improvements being made to increase the experimental potential of this technique. We also discuss recent advances in uncovering the proteins that act during the RNAi process, discoveries that have revealed enticing links between transposition, transgene silencing and RNAi.
Collapse
Affiliation(s)
- J M Bosher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP163, 67404 Illkirch Cedex, France
| | | |
Collapse
|
146
|
Iordanov MS, Paranjape JM, Zhou A, Wong J, Williams BR, Meurs EF, Silverman RH, Magun BE. Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol Cell Biol 2000; 20:617-27. [PMID: 10611240 PMCID: PMC85147 DOI: 10.1128/mcb.20.2.617-627.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH(2)-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i. e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections.
Collapse
Affiliation(s)
- M S Iordanov
- Department of Cell Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
There is enormous potential for the discovery of innovative cancer drugs with improved efficacy and selectivity for the third millennium. In this review we show how novel mechanism-based agents are being discovered by focusing on the molecular targets and pathways that are causally involved in cancer formation, maintenance and progression. We also show how new technologies, from genomics through high through-put bioscience, combinatorial chemistry, rational drug design and molecular pharmacodynamic and imaging techniques, are accelerating the pace of cancer drug discovery. The process of contemporary small molecule drug discovery is described and progress and current issues are reviewed. New and potential targets and pathways for therapeutic intervention are illustrated. The first examples of a new generation of molecular therapeutics are now entering hypothesis-testing clinical trials and showing activity. The early years of the new millennium will see a range of exciting new agents moving from bench to bedside and beginning to impact on the management and cure of cancer.
Collapse
Affiliation(s)
- M D Garrett
- CRC Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, U.K
| | | |
Collapse
|
148
|
Ito T, Warnken SP, May WS. Protein synthesis inhibition by flavonoids: roles of eukaryotic initiation factor 2alpha kinases. Biochem Biophys Res Commun 1999; 265:589-94. [PMID: 10558914 DOI: 10.1006/bbrc.1999.1727] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flavonoids such as genistein and quercetin suppress tumor cell growth in vitro and in vivo. Many metabolic enzymes, including protein kinases, are known to be inhibited by flavonoids, yet the molecular targets and biochemical mechanisms of the tumor growth suppression remain unclear. Here, we find that flavonoids inhibit protein synthesis in both mouse and human leukemia cells. This inhibition is associated with phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), a key regulatory mechanism of protein translation. Three mammalian eIF2alpha kinases have been identified: the interferon-inducible double-stranded RNA-dependent kinase (PKR), the heme-regulated inhibitor (HRI), and the very recently discovered PERK/PEK. We find that all of these eIF2alpha kinases can be activated by quercetin and genistein, indicating redundant roles of the eIF2alpha kinases. Thus, activation of eIF2alpha kinases appears to be a mechanism by which flavonoids can inhibit the growth of tumor and leukemia cells.
Collapse
Affiliation(s)
- T Ito
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555-1048, USA
| | | | | |
Collapse
|
149
|
Kaufman RJ. Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: a new role for an old actor. Proc Natl Acad Sci U S A 1999; 96:11693-5. [PMID: 10518510 PMCID: PMC33789 DOI: 10.1073/pnas.96.21.11693] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- R J Kaufman
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI 48105, USA.
| |
Collapse
|
150
|
Savinova O, Joshi B, Jagus R. Abnormal levels and minimal activity of the dsRNA-activated protein kinase, PKR, in breast carcinoma cells. Int J Biochem Cell Biol 1999; 31:175-89. [PMID: 10216952 DOI: 10.1016/s1357-2725(98)00140-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interferon induced, dsRNA-activated, protein kinase, PKR, is a key regulator of translational initiation, playing an important role in the regulation of cell proliferation, apoptosis and transformation. PKR levels correlate inversely with proliferative activity in several human tumor systems. This inverse relationship breaks down in human invasive ductal breast carcinomas which exhibit high levels of PKR (Haines et al., Tumor Biol. 17 (1996) 5-12). Consistent with the data from human tumors, the levels of PKR in several breast carcinoma cell lines, MCF7, T47D, BT20, MDAMB231 and MDAMB468, are paradoxically high compared to those found in the normal breast cell lines MCF10A and Hs578Bst. The activity of affinity- or immuno-purified PKR from MCF7, T47D, and BT20 cells appears to be severely attenuated, as judged by its ability to autophosphorylate, or phosphorylate eIF2 alpha. Furthermore, the activity of the kinase from breast carcinoma cells is refractory to stimulation by dsRNA or heparin. However, PKR from breast carcinoma cells remains functional with respect to its ability to bind dsRNA. The activity of PKR from MCF10A cells is reduced by prior incubation with extracts from MCF7 cells, suggesting that MCF7 extracts contain a transdominant inhibitor of PKR. Deregulation of PKR may therefore provide a mechanism for the development or maintenance of a transformed phenotype of human breast carcinomas, mimicking the effects of manipulation of PKR or eIF2 activity observed in experimental systems. Thus, breast carcinomas may provide the first indication of a role for PKR in the pathogenesis of a naturally occurring human cancer.
Collapse
Affiliation(s)
- O Savinova
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, USA
| | | | | |
Collapse
|