101
|
D'Arcy CE, Nobre LF, Arnaldo A, Ramaswamy V, Taylor MD, Naz-Hazrati L, Hawkins CE. Immunohistochemical and nanoString-Based Subgrouping of Clinical Medulloblastoma Samples. J Neuropathol Exp Neurol 2020; 79:437-447. [PMID: 32053195 DOI: 10.1093/jnen/nlaa005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
The diagnosis of medulloblastoma incorporates the histologic and molecular subclassification of clinical medulloblastoma samples into wingless (WNT)-activated, sonic hedgehog (SHH)-activated, group 3 and group 4 subgroups. Accurate medulloblastoma subclassification has important prognostic and treatment implications. Immunohistochemistry (IHC)-based and nanoString-based subgrouping methodologies have been independently described as options for medulloblastoma subgrouping, however have not previously been directly compared. We describe our experience with nanoString-based subgrouping in a clinical setting and compare this with our IHC-based results. Study materials included FFPE tissue from 160 medulloblastomas. Clinical data and tumor histology were reviewed. Immunohistochemical-based subgrouping using β-catenin, filamin A and p53 antibodies and nanoString-based gene expression profiling were performed. The sensitivity and specificity of IHC-based subgrouping of WNT and SHH-activated medulloblastomas was 91.5% and 99.54%, respectively. Filamin A immunopositivity highly correlated with SHH/WNT-activated subgroups (sensitivity 100%, specificity 92.7%, p < 0.001). Nuclear β-catenin immunopositivity had a sensitivity of 76.2% and specificity of 99.23% for detection of WNT-activated tumors. Approximately 23.8% of WNT cases would have been missed using an IHC-based subgrouping method alone. nanoString could confidently predict medulloblastoma subgroup in 93% of cases and could distinguish group 3/4 subgroups in 96.3% of cases. nanoString-based subgrouping allows for a more prognostically useful classification of clinical medulloblastoma samples.
Collapse
Affiliation(s)
- Colleen E D'Arcy
- Department of Anatomical Pathology, Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | - Cynthia E Hawkins
- Division of Pathology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
102
|
Brown NJ, Wilson B, Shahrestani S, Choi EH, Lien BV, Paladugu A, Tran K, Ransom SC, Tafreshi AR, Ransom RC, Sahyouni R, Chan AY, Yang I. The 100 Most Influential Publications on Medulloblastoma: Areas of Past, Current, and Future Focus. World Neurosurg 2020; 146:119-139. [PMID: 33212273 DOI: 10.1016/j.wneu.2020.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND This article is the first to identify the most influential articles on medulloblastoma using the citation analysis methodology. OBJECTIVE To perform a bibliometric analysis of the 100 most-cited articles on medulloblastoma. METHODS Using the Web of Science database, search criteria included the title-specific keyword "medulloblastoma" OR "cerebellar primitive neuroectodermal tumor (PNET)" OR "cerebellar PNET." Publications from 1900 to 2020 labeled "article," "review," "data set," or "clinical trial" were chosen and ranked based on total number of citations in descending order. Each article was evaluated based on the following variables: total citations, average citations per year, first author, institution of first author, title, publication year, country of origin, SCImago Journal Rank, and Scopus SNIP (Source Normalized Impact per Paper). RESULTS Our search yielded 4928 articles on medulloblastoma. The 100 most-cited articles ranged from 192 to 2017 across 42 unique journals; Journal of Clinical Oncology accounted for the most publications (16%). Paul A. Northcott was first author of the most articles on the list (n = 7.7%), and the most widely cited article was "Altered neural cell fates and medulloblastoma in mouse patched mutants" by Goodrich et al., published in Science (1997). CONCLUSIONS Because medulloblastoma represents the most common form of pediatric cancerous brain tumor, it is important to identify works that have significantly contributed to the body of knowledge regarding this disease. The 100 most-cited medulloblastoma articles comprise a significant collection of data regarding the histopathologic and molecular classification of medulloblastoma as well as clinical outcomes of therapeutics used to treat this disease.
Collapse
Affiliation(s)
- Nolan J Brown
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA.
| | - Bayard Wilson
- Department of Neurological Surgery, University of California, Los Angeles, California, USA
| | - Shane Shahrestani
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Department of Medical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Elliot H Choi
- School of Medicine, Case Western Reserve University, Cleveland, California, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Anushka Paladugu
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Katelynn Tran
- Department of Neuroscience, University of Southern California, Los Angeles, California, USA
| | - Seth C Ransom
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ali R Tafreshi
- Department of Neurological Surgery, Geisinger Health System, Danville, Pennsylvania, USA
| | - Ryan Chase Ransom
- Department of Neurologic Surgery, Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
| | - Ronald Sahyouni
- Department of Neurological Surgery, University of California, San Diego, La Jolla, California, USA
| | - Alvin Y Chan
- Department of Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Isaac Yang
- Department of Neurological Surgery, University of California, Los Angeles, California, USA
| |
Collapse
|
103
|
Abstract
Pediatric brain tumors are the leading cause of childhood cancer mortality with medulloblastoma (MB) representing the most frequent malignant tumor. Although standardization of therapy resulted in a 2-fold reduction in mortality in patients with MB by 2002, it became clear that further improvements in clinical outcome would require a deeper understanding of the biology of MB. Employing the four main molecular MB subgroups (Wnt, Shh, Group 3 and Group 4), a restratification into clinicogenomic risk categories quantified an unacceptable survival for the high-risk group, urging researchers to focus their efforts towards acquiring a greater biological understanding of these children. Advancing in parallel with the molecular characterization and understanding of pediatric MB is the clinicogenomic correlations giving rise to recommendations for neurosurgical care. While unique observations that distinct radiological patterns can be identified to inform the MB molecular subgroup preoperatively, current neurosurgical practice remains maximal safe surgical resection followed by risk-adapted provision of adjuvant therapy in the context of a clinical trial.
Collapse
|
104
|
Hill RM, Richardson S, Schwalbe EC, Hicks D, Lindsey JC, Crosier S, Rafiee G, Grabovska Y, Wharton SB, Jacques TS, Michalski A, Joshi A, Pizer B, Williamson D, Bailey S, Clifford SC. Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:865-874. [PMID: 33222802 PMCID: PMC7671998 DOI: 10.1016/s2352-4642(20)30246-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023]
Abstract
Background Disease relapse occurs in around 30% of children with medulloblastoma, and is almost universally fatal. We aimed to establish whether the clinical and molecular characteristics of the disease at diagnosis are associated with the nature of relapse and subsequent disease course, and whether these associations could inform clinical management. Methods In this multicentre cohort study we comprehensively surveyed the clinical features of medulloblastoma relapse (time to relapse, pattern of relapse, time from relapse to death, and overall outcome) in centrally reviewed patients who relapsed following standard upfront therapies, from 16 UK Children's Cancer and Leukaemia Group institutions and four collaborating centres. We compared these relapse-associated features with clinical and molecular features at diagnosis, including established and recently described molecular features, prognostic factors, and treatment at diagnosis and relapse. Findings 247 patients (175 [71%] boys and 72 [29%] girls) with medulloblastoma relapse (median year of diagnosis 2000 [IQR 1995–2006]) were included in this study. 17 patients were later excluded from further analyses because they did not meet the age and treatment criteria for inclusion. Patients who received upfront craniospinal irradiation (irradiated group; 178 [72%] patients) had a more prolonged time to relapse compared with patients who did not receive upfront craniospinal irradiation (non-irradiated group; 52 [21%] patients; p<0·0001). In the non-irradiated group, craniospinal irradiation at relapse (hazard ratio [HR] 0·27, 95% CI 0·11–0·68) and desmoplastic/nodular histology (0·23, 0·07–0·77) were associated with prolonged time to death after relapse, MYC amplification was associated with a reduced overall survival (23·52, 4·85–114·05), and re-resection at relapse was associated with longer overall survival (0·17, 0·05–0·57). In the irradiated group, patients with MBGroup3 tumours relapsed significantly more quickly than did patients with MBGroup4 tumours (median 1·34 [0·99–1·89] years vs 2·04 [1·39–3·42 years; p=0·0043). Distant disease was prevalent in patients with MBGroup3 (23 [92%] of 25 patients) and MBGroup4 (56 [90%] of 62 patients) tumour relapses. Patients with distantly-relapsed MBGroup3 and MBGroup4 displayed both nodular and diffuse patterns of disease whereas isolated nodular relapses were rare in distantly-relapsed MBSHH (1 [8%] of 12 distantly-relapsed MBSHH were nodular alone compared with 26 [34%] of 77 distantly-relapsed MBGroup3 and MBGroup4). In MBGroup3 and MBGroup4, nodular disease was associated with a prolonged survival after relapse (HR 0·42, 0·21–0·81). Investigation of second-generation MBGroup3 and MBGroup4 molecular subtypes refined our understanding of heterogeneous relapse characteristics. Subtype VIII had prolonged time to relapse and subtype II had a rapid time from relapse to death. Subtypes II, III, and VIII developed a significantly higher incidence of distant disease at relapse whereas subtypes V and VII did not (equivalent rates to diagnosis). Interpretation This study suggests that the nature and outcome of medulloblastoma relapse are biology and therapy-dependent, providing translational opportunities for improved disease management through biology-directed disease surveillance, post-relapse prognostication, and risk-stratified selection of second-line treatment strategies. Funding Cancer Research UK, Action Medical Research, The Tom Grahame Trust, The JGW Patterson Foundation, Star for Harris, The Institute of Child Health - Newcastle University - Institute of Child Health High-Risk Childhood Brain Tumour Network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).
Collapse
Affiliation(s)
- Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Gholamreza Rafiee
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK; School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Centre for Cancer Research & Cell Biology, UK
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thomas S Jacques
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Antony Michalski
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Abhijit Joshi
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle University Teaching Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Barry Pizer
- Institute of Translational Research, University of Liverpool, Liverpool, UK
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.
| |
Collapse
|
105
|
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24:1159-1181. [PMID: 32990091 DOI: 10.1080/14728222.2020.1823967] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. AREAS COVERED This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. EXPERT OPINION Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising.
Collapse
Affiliation(s)
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University of Rome La Sapienza, 00185 , Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza , 00161, Rome, Italy
| |
Collapse
|
106
|
Hicks D, Rafiee G, Schwalbe EC, Howell CI, Lindsey JC, Hill RM, Smith AJ, Adidharma P, Steel C, Richardson S, Pease L, Danilenko M, Crosier S, Joshi A, Wharton SB, Jacques TS, Pizer B, Michalski A, Williamson D, Bailey S, Clifford SC. The molecular landscape and associated clinical experience in infant medulloblastoma: prognostic significance of second-generation subtypes. Neuropathol Appl Neurobiol 2020; 47:236-250. [PMID: 32779246 DOI: 10.1111/nan.12656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
AIMS Biomarker-driven therapies have not been developed for infant medulloblastoma (iMB). We sought to robustly sub-classify iMB, and proffer strategies for personalized, risk-adapted therapies. METHODS We characterized the iMB molecular landscape, including second-generation subtyping, and the associated retrospective clinical experience, using large independent discovery/validation cohorts (n = 387). RESULTS iMBGrp3 (42%) and iMBSHH (40%) subgroups predominated. iMBGrp3 harboured second-generation subtypes II/III/IV. Subtype II strongly associated with large-cell/anaplastic pathology (LCA; 23%) and MYC amplification (19%), defining a very-high-risk group (0% 10yr overall survival (OS)), which progressed rapidly on all therapies; novel approaches are urgently required. Subtype VII (predominant within iMBGrp4 ) and subtype IV tumours were standard risk (80% OS) using upfront CSI-based therapies; randomized-controlled trials of upfront radiation-sparing and/or second-line radiotherapy should be considered. Seventy-five per cent of iMBSHH showed DN/MBEN histopathology in discovery and validation cohorts (P < 0.0001); central pathology review determined diagnosis of histological variants to WHO standards. In multivariable models, non-DN/MBEN pathology was associated significantly with worse outcomes within iMBSHH . iMBSHH harboured two distinct subtypes (iMBSHH-I/II ). Within the discriminated favourable-risk iMBSHH DN/MBEN patient group, iMBSHH-II had significantly better progression-free survival than iMBSHH-I , offering opportunities for risk-adapted stratification of upfront therapies. Both iMBSHH-I and iMBSHH-II showed notable rescue rates (56% combined post-relapse survival), further supporting delay of irradiation. Survival models and risk factors described were reproducible in independent cohorts, strongly supporting their further investigation and development. CONCLUSIONS Investigations of large, retrospective cohorts have enabled the comprehensive and robust characterization of molecular heterogeneity within iMB. Novel subtypes are clinically significant and subgroup-dependent survival models highlight opportunities for biomarker-directed therapies.
Collapse
Affiliation(s)
- D Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - G Rafiee
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - E C Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - C I Howell
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J C Lindsey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - R M Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - A J Smith
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - P Adidharma
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - C Steel
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Richardson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - L Pease
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - M Danilenko
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Crosier
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - A Joshi
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle University Teaching Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - B Pizer
- Institute of Translational Research, University of Liverpool, Liverpool, UK
| | | | - D Williamson
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S C Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
107
|
Upadhyaya SA, Robinson GW, Onar-Thomas A, Orr BA, Billups CA, Bowers DC, Bendel AE, Hassall T, Crawford JR, Partap S, Fisher PG, Tatevossian RG, Seah T, Qaddoumi IA, Vinitsky A, Armstrong GT, Sabin ND, Tinkle CL, Klimo P, Indelicato DJ, Boop FA, Merchant TE, Ellison DW, Gajjar A. Molecular grouping and outcomes of young children with newly diagnosed ependymoma treated on the multi-institutional SJYC07 trial. Neuro Oncol 2020; 21:1319-1330. [PMID: 30976811 DOI: 10.1093/neuonc/noz069] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This report documents the clinical characteristics, molecular grouping, and outcome of young children with ependymoma treated prospectively on a clinical trial. METHODS Fifty-four children (aged ≤3 y) with newly diagnosed ependymoma were treated on the St Jude Young Children 07 (SJYC07) trial with maximal safe surgical resection, 4 cycles of systemic chemotherapy, consolidation therapy using focal conformal radiation therapy (RT) (5-mm clinical target volume), and 6 months of oral maintenance chemotherapy. Molecular groups were determined by tumor DNA methylation using Infinium Methylation EPIC BeadChip and profiled on the German Cancer Research Center/Molecular Neuropathology 2.0 classifier. RESULTS One of the 54 study patients had metastases (cerebrospinal fluid positive) at diagnosis. Gross or near-total resection was achieved in 48 (89%) patients prior to RT. At a median follow-up of 4.4 years (range, 0.2-10.3 y), 4-year progression-free survival (PFS) was 75.1% ± 7.2%, and overall survival was 92.6% ± 4.4%. The molecular groups showed no significant difference in PFS (4-year estimates: posterior fossa ependymoma group A [PF-EPN-A; 42/54], 71.2% ± 8.3%; supratentorial ependymoma positive for v-rel avian reticuloendotheliosis viral oncogene homolog A [ST-EPN-RELA; 8/54], 83.3% ± 17.0%; and supratentorial ependymoma positive for Yes-associated protein [4/54], 100%, P = 0.22). Subtotal resection prior to RT was associated with an inferior PFS compared with gross or near-total resection (4-year PFS: 41.7% ± 22.5% vs 79.0% ± 7.1%, P = 0.024), as was PF-EPN-A group with 1q gain (P = 0.05). Histopathologic grading was not associated with outcomes (classic vs anaplastic; P = 0.89). CONCLUSIONS In this prospectively treated cohort of young children with ependymoma, ST-EPN-RELA tumors had a more favorable outcome than reported from retrospective data. Histologic grade did not impact outcome. PF-EPN-A with 1q gain and subtotal resection were associated with inferior outcomes.
Collapse
Affiliation(s)
- Santhosh A Upadhyaya
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Catherine A Billups
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel C Bowers
- Departments of Pediatrics and Neurological Surgery, University of Texas Southwestern Medical School/Children's Health, Dallas, Texas, USA
| | - Anne E Bendel
- Department of Hematology Oncology, Children's Hospitals and Clinics of Minnesota, Minneapolis, Minnesota, USA
| | - Tim Hassall
- Department of Medicine, Queensland Children's Hospital, South Brisbane, Australia
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California San Diego and Rady Childrens Hospital, San Diego, California, USA
| | - Sonia Partap
- Department of Neurology & Division of Child Neurology, Stanford University, Palo Alto, California, USA
| | - Paul G Fisher
- Department of Neurology & Division of Child Neurology, Stanford University, Palo Alto, California, USA
| | - Ruth G Tatevossian
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tiffany Seah
- Department of Medicine, University of Cambridge, London, UK
| | - Ibrahim A Qaddoumi
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna Vinitsky
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gregory T Armstrong
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Noah D Sabin
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Surgery, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Semmes-Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee and Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Danny J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida, USA
| | - Frederick A Boop
- Department of Surgery, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Semmes-Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee and Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
108
|
Janssens GO, Mandeville HC, Timmermann B, Maduro JH, Alapetite C, Padovani L, Horan G, Lassen-Ramshad Y, Dieckmann K, Ruebe C, Thorp N, Gandola L, Ajithkumar T, Boterberg T. A rapid review of evidence and recommendations from the SIOPE radiation oncology working group to help mitigate for reduced paediatric radiotherapy capacity during the COVID-19 pandemic or other crises. Radiother Oncol 2020; 148:216-222. [PMID: 32342872 PMCID: PMC7184972 DOI: 10.1016/j.radonc.2020.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To derive evidence-based recommendations for the optimal utilisation of resources during unexpected shortage of radiotherapy capacity. METHODS AND MATERIALS We have undertaken a rapid review of published literature on the role of radiotherapy in the multimodality treatment of paediatric cancers governing the European practise of paediatric radiotherapy. The derived data has been discussed with expert paediatric radiation oncologists to derive a hierarchy of recommendations. RESULTS The general recommendations to mitigate the potential detriment of an unexpected shortage of radiotherapy facilities include: (1) maintain current standards of care as long as possible (2) refer to another specialist paediatric radiotherapy department with similar level of expertise (3) prioritise use of existing radiotherapy resources to treat patients with tumours where radiotherapy has the most effect on clinical outcome (4) use chemotherapy to defer the start of radiotherapy where timing of radiotherapy is not expected to be detrimental (5) active surveillance for low-grade tumours if appropriate and (6) consider iso-effective hypofractionated radiotherapy regimens only for selected patients with predicted poor prognosis. The effectiveness of radiotherapy and recommendations for prioritisation of its use for common and challenging paediatric tumours are discussed. CONCLUSION This review provides evidence-based treatment recommendations during unexpected shortage of paediatric radiotherapy facilities. It has wider applications for the optimal utilisation of facilities, to improve clinical outcome in low- and middle-income countries, where limited resources continue to be a challenge.
Collapse
Affiliation(s)
- Geert O Janssens
- Department of Radiation Oncology, University Medical Centre Utrecht, The Netherlands; Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Henry C Mandeville
- Department of Radiotherapy, The Royal Marsden Hospital, Sutton, United Kingdom; The Institute of Cancer Research, Sutton, United Kingdom
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ) and German Cancer Consortium (DKTK), Germany
| | - John H Maduro
- Princess Maxima Centre for Paediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Claire Alapetite
- Department of Radiation Oncology & Proton Center, Institut Curie, France
| | - Laetitia Padovani
- Aix-Marseille University, Oncology Radiotherapy Department, CRCM Inserm, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, APHM, France
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | | | - Karin Dieckmann
- Department of Radiotherapy Medical University Vienna, Austria
| | - Christian Ruebe
- Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Nicky Thorp
- Department of Radiotherapy, The Clatterbridge Cancer Centre, Wirral, United Kingdom; The Proton Beam Therapy Centre, The Christie Hospital, Manchester, United Kingdom
| | - Lorenza Gandola
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom.
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
109
|
Wijaya J, Gose T, Schuetz JD. Using Pharmacology to Squeeze the Life Out of Childhood Leukemia, and Potential Strategies to Achieve Breakthroughs in Medulloblastoma Treatment. Pharmacol Rev 2020; 72:668-691. [PMID: 32571983 PMCID: PMC7312347 DOI: 10.1124/pr.118.016824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eliminating cancer was once thought of as a war. This analogy is still apt today; however, we now realize that cancer is a much more formidable enemy than scientists originally perceived, and in some cases, it harbors a profound ability to thwart our best efforts to defeat it. However, before we were aware of the complexity of cancer, chemotherapy against childhood acute lymphoblastic leukemia (ALL) was successful because it applied the principles of pharmacology. Herein, we provide a historic perspective of the experience at St. Jude Children's Research Hospital. In 1962, when the hospital opened, fewer than 3% of patients experienced durable cure. Through judicious application of pharmacologic principles (e.g., combination therapy with agents using different mechanisms of action) plus appropriate drug scheduling, dosing, and pharmacodynamics, the survival of patients with ALL now exceeds 90%. We contrast this approach to treating ALL with the contemporary approach to treating medulloblastoma, in which genetics and molecular signatures are being used to guide the development of more-efficacious treatment strategies with minimal toxicity. Finally, we highlight the emerging technologies that can sustain and propel the collaborative efforts to squeeze the life out of these cancers. SIGNIFICANCE STATEMENT: Up until the early 1960s, chemotherapy for childhood acute lymphoblastic leukemia was mostly ineffective. This changed with the knowledge and implementation of rational approaches to combination therapy. Although the therapeutics of brain cancers such as medulloblastoma are not as refined (in part because of the blood-brain barrier obstacle), recent extraordinary advances in knowledge of medulloblastoma pathobiology has led to innovations in disease classification accompanied with strategies to improve therapeutic outcomes. Undoubtedly, additional novel approaches, such as immunological therapeutics, will open new avenues to further the goal of taming cancer.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tomoka Gose
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
110
|
Mahajan A. How I Treat Medulloblastoma in Children. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_136_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractMedulloblastoma (MB) is the most common malignant tumor of the central nervous system in children with up to a third of these tumors presenting in children under 3 years of age. Its exquisite radio and chemosensitivity renders high cure rates in children in whom optimal resection has been achieved. Optimal surgery followed by radiation alone can cure about half of these children. The addition of chemotherapy has improved the outcomes dramatically and over 70% of children over 3 years of age with optimal resection and no metastasis can expect to be cured. Increasingly, the focus is on limiting the long-term sequelae of treatment. Precise molecular characterization can enable us to identify patients who can achieve optimal outcomes even in the absence of radiation. Insights into disease biology and molecular characterization have led to dramatic changes in our understanding, risk stratification, prognostication, and treatment approach in these children. In India, there is limited access to molecular profiling, making it challenging to apply biology driven approach to treatment in each child with MB. The Indian Society of Neuro-Oncology guidelines and the SIOP PODC adapted treatment recommendations for standard-risk MB based on the current evidence and logistic realities of low-middle income countries are a useful adjunct to guide clinical practice on a day-to-day basis in our setting.
Collapse
Affiliation(s)
- Amita Mahajan
- Department of Pediatric Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| |
Collapse
|
111
|
Brinkman TM, Gurney JG. Early and Often: The Need for Comprehensive Discussion of Treatment-Induced Cancer Late Effects. Pediatrics 2020; 145:peds.2020-0498. [PMID: 32284428 DOI: 10.1542/peds.2020-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tara M Brinkman
- St Jude Children's Research Hospital, Memphis, Tennessee; and
| | - James G Gurney
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, Tennessee
| |
Collapse
|
112
|
Robinson GW, Gajjar A. Genomics Paves the Way for Better Infant Medulloblastoma Therapy. J Clin Oncol 2020; 38:2010-2013. [PMID: 32352857 DOI: 10.1200/jco.20.00593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
113
|
Mynarek M, von Hoff K, Pietsch T, Ottensmeier H, Warmuth-Metz M, Bison B, Pfister S, Korshunov A, Sharma T, Jaeger N, Ryzhova M, Zheludkova O, Golanov A, Rushing EJ, Hasselblatt M, Koch A, Schüller U, von Deimling A, Sahm F, Sill M, Riemenschneider MJ, Dohmen H, Monoranu CM, Sommer C, Staszewski O, Mawrin C, Schittenhelm J, Brück W, Filipski K, Hartmann C, Meinhardt M, Pietschmann K, Haberler C, Slavc I, Gerber NU, Grotzer M, Benesch M, Schlegel PG, Deinlein F, von Bueren AO, Friedrich C, Juhnke BO, Obrecht D, Fleischhack G, Kwiecien R, Faldum A, Kortmann RD, Kool M, Rutkowski S. Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. J Clin Oncol 2020; 38:2028-2040. [PMID: 32330099 DOI: 10.1200/jco.19.03057] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The HIT-2000-BIS4 trial aimed to avoid highly detrimental craniospinal irradiation (CSI) in children < 4 years of age with nonmetastatic medulloblastoma by systemic chemotherapy, intraventricular methotrexate, and risk-adapted local radiotherapy. PATIENTS AND METHODS From 2001-2011, 87 patients received systemic chemotherapy and intraventricular methotrexate. Until 2006, CSI was reserved for nonresponse or progression. After 2006, local radiotherapy was introduced for nonresponders or patients with classic medulloblastoma (CMB) or large-cell/anaplastic medulloblastoma (LCA). DNA methylation profiles of infantile sonic hedgehog-activated medulloblastoma (SHH-INF) were subdivided into iSHH-I and iSHH-II subtypes in the HIT-2000-BIS4 cohort and a validation cohort (n = 71) from the HIT group and Russia. RESULTS Five years after diagnosis, patients with desmoplastic medulloblastoma (DMB) or medulloblastoma with extensive nodularity (MBEN; n = 42) had 93% progression-free survival (5y-PFS), 100% overall survival (5y-OS), and 93% CSI-free (5y-CSI-free) survival. Patients with CMB/LCA (n = 45) had 37% 5y-PFS, 62% 5y-OS, and 39% 5y-CSI-free survival. Local radiotherapy did not improve survival in patients with CMB/LCA. All DMB/MBEN assessed by DNA methylation profiling belonged to the SHH-INF subgroup. Group 3 patients (5y-PFS, 36%; n = 14) relapsed more frequently than the SHH-INF group (5y-PFS, 93%; n = 28) or group 4 patients (5y-PFS, 83%; n = 6; P < .001). SHH-INF split into iSHH-I and iSHH-II subtypes in HIT-2000-BIS4 and the validation cohort, without prognostic impact (5y-PFS: iSHH-I, 73%, v iSHH-II, 83%; P = .25; n = 99). Intelligence quotient (IQ) was significantly lower in patients after CSI (mean IQ, 90 [no radiotherapy], v 74 [CSI]; P = .012). CONCLUSION Systemic chemotherapy and intraventricular methotrexate led to favorable survival in both iSHH subtypes of SHH-activated DMB/MBEN with acceptable neurotoxicity. Survival in patients with non-wingless (WNT)/non-SHH disease with CMB/LCA was not improved by local radiotherapy. Patients with group 4 disease had more favorable survival rates than those with group 3 medulloblastoma.
Collapse
Affiliation(s)
- Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charite - University Medical Center Berlin, Berlin, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society for Neuropathology and Neuroanatomy, University of Bonn, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Holger Ottensmeier
- Department of Pediatric Hematology and Oncology, University Children's Hospital Wuerzburg, Wuerzburg, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stefan Pfister
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center; and Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Natalie Jaeger
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, N. N. Burdenko Neurosurgical Institute, Moscow, Russia
| | - Olga Zheludkova
- Department of Pediatric Oncology, Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - Andrey Golanov
- Department of Stereotactic Radiotherapy and Radiosurgery, N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | | | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Arend Koch
- Department of Neuropathology, Charite - University Medical Center Berlin, Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neuropathology, University Medical Center Hamburg-Eppendorf; and Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center; and Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center; and Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | | | - Hildegard Dohmen
- Institute for Neuropathology, University Hospital Gießen and Marburg, Gießen, Germany
| | - Camelia Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg; and Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Clemens Sommer
- Institute for Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ori Staszewski
- Institute of Neuropathology and Berta-Ottenstein-Programme for Advanced Clinician Scientists, University of Freiburg, Freiburg, Germany
| | - Christian Mawrin
- Institute for Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute for Pathology and Neuropathology, University Medical Center Tuebingen, Tuebingen, Germany
| | - Wolfgang Brück
- Institute for Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Katharina Filipski
- Institute of Neurology (Edinger Institute), University Hospital, Frankfurt Am Main; German Cancer Consortium, Partner Site Frankfurt/Mainz; and German Cancer Research Center, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Matthias Meinhardt
- Institute for Pathology, University Medical Center Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | - Christine Haberler
- Institute of Neurology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nicolas U Gerber
- Department of Oncology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Michael Grotzer
- Department of Oncology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Paul Gerhardt Schlegel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Wuerzburg, Wuerzburg, Germany
| | - Frank Deinlein
- Department of Pediatric Hematology and Oncology, University Children's Hospital Wuerzburg, Wuerzburg, Germany
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, University Hospital of Geneva; and Department of Pediatrics, CANSEARCH Research Laboratory, University of Geneva, Geneva, Switzerland
| | - Carsten Friedrich
- Division of Pediatric Oncology and Hematology, University Children's Hospital Rostock, Rostock, Germany
| | - Björn-Ole Juhnke
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Fleischhack
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | | | - Marcel Kool
- Hopp Children's Cancer Center at the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology (B062), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
114
|
Waszak SM, Robinson GW, Gudenas BL, Smith KS, Forget A, Kojic M, Garcia-Lopez J, Hadley J, Hamilton KV, Indersie E, Buchhalter I, Kerssemakers J, Jäger N, Sharma T, Rausch T, Kool M, Sturm D, Jones DTW, Vasilyeva A, Tatevossian RG, Neale G, Lombard B, Loew D, Nakitandwe J, Rusch M, Bowers DC, Bendel A, Partap S, Chintagumpala M, Crawford J, Gottardo NG, Smith A, Dufour C, Rutkowski S, Eggen T, Wesenberg F, Kjaerheim K, Feychting M, Lannering B, Schüz J, Johansen C, Andersen TV, Röösli M, Kuehni CE, Grotzer M, Remke M, Puget S, Pajtler KW, Milde T, Witt O, Ryzhova M, Korshunov A, Orr BA, Ellison DW, Brugieres L, Lichter P, Nichols KE, Gajjar A, Wainwright BJ, Ayrault O, Korbel JO, Northcott PA, Pfister SM. Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature 2020; 580:396-401. [PMID: 32296180 PMCID: PMC7430762 DOI: 10.1038/s41586-020-2164-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.
Collapse
Affiliation(s)
- Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Antoine Forget
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Marija Kojic
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kayla V Hamilton
- Department of Oncology, Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilie Indersie
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility (W610), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jules Kerssemakers
- Omics IT and Data Management Core Facility (W610), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aksana Vasilyeva
- Cancer Center Administration, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruth G Tatevossian
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Joy Nakitandwe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Anne Bendel
- Department of Pediatric Hematology and Oncology, Children's Hospitals and Clinics of Minnesota, Minnesota, MN, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - John Crawford
- Department of Neurosciences, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital and Brain Tumour Research Programme, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Amy Smith
- Arnold Palmer Hospital Center for Children's Cancer, Orlando, FL, USA
| | - Christelle Dufour
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tone Eggen
- The Cancer Registry of Norway, Majorstuen, Oslo, Norway
| | - Finn Wesenberg
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Kristina Kjaerheim
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Christoffer Johansen
- Oncology Clinic, Finsen Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Tina V Andersen
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine University of Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine University of Bern, Bern, Switzerland
- Department of Paediatric Haematology and Oncology, University Children's Hospital, Bern, Switzerland
| | - Michael Grotzer
- University Children's Hospital of Zurich, Zurich, Switzerland
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker Hospital, Université de Paris, Paris, France
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, Burdenko Neurosurgical Institute, Moscow, Russia
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital, Heidelberg, Germany
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laurence Brugieres
- Gustave Roussy, Université Paris-Saclay, Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Peter Lichter
- Division of Molecular Genetics, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Kim E Nichols
- Department of Oncology, Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Olivier Ayrault
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
115
|
Malbari F, Lindsay H. Genetics of Common Pediatric Brain Tumors. Pediatr Neurol 2020; 104:3-12. [PMID: 31948735 DOI: 10.1016/j.pediatrneurol.2019.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
Central nervous system tumors are the most common solid tumors in pediatrics and represent the largest cause of childhood cancer-related mortality. Improvements have occurred in the management of these patients leading to better survival, but significant morbidity persists. With the era of next generation sequencing, considerable advances have occurred in the understanding of these tumors both biologically and clinically. This information has impacted diagnosis and management. Subgroups have been identified, improving risk stratification. Novel therapeutic approaches, specifically targeting the biology of these tumors, are being investigated to improve overall survival and decrease treatment-related morbidity. The intent of this review is to discuss the genetics of common pediatric brain tumors and the clinical implications. This review will include known genetic disorders associated with central nervous system tumors, neurofibromatosis, tuberous sclerosis, Li-Fraumeni syndrome, Gorlin syndrome, and Turcot syndrome, as well as somatic mutations of glioma, medulloblastoma, and ependymoma.
Collapse
Affiliation(s)
- Fatema Malbari
- Division of Pediatric Neurology and Developmental Neurosciences, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas.
| | - Holly Lindsay
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| |
Collapse
|
116
|
Bernstock JD, Alva E, Cohen JL, Lobbous M, Chagoya G, Elsayed GA, Orr BA, Rozzelle C, Rocque B, Blount J, Johnston JM, Li R, Fiveash JB, Dhall G, Reddy AT, Friedman GK. Treatment of pediatric high-grade central nervous system tumors with high-dose methotrexate in combination with multiagent chemotherapy: A single-institution experience. Pediatr Blood Cancer 2020; 67:e28119. [PMID: 31850678 DOI: 10.1002/pbc.28119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Effective treatment for pediatric embryonal brain tumors includes dose-intensive multiagent chemotherapy (DIMAC) followed by high-dose chemotherapy with stem cell rescue (HDCSCR). Use of repeated cycles of DIMAC including high-dose methotrexate (HDMTX) without HDCSCR has not been described. PROCEDURE We retrospectively reviewed the responses/toxicities in 13 patients (aged 2-155 months, median 22 months) with central nervous system (CNS) tumors (atypical teratoid rhabdoid tumors, CNS embryonal tumors not otherwise specified, pineoblastoma, embryonal tumor with multilayered rosettes, and CNS sarcoma) treated over a 12-year period with repeated cycles of HDMTX followed by etoposide, cisplatin, cyclophosphamide, and vincristine. RESULTS Six patients (46.2%) had disseminated disease at presentation and five (38.5%) had gross total resection. A total of 64 courses of therapy were administered with a median of five courses per patient. Eight patients (61.5%) received radiation therapy (one at relapse). By completion of therapy, 11 patients (84.6%) achieved a response (six complete, five partial). Six of the 13 patients (46.2%) remain alive with a median follow-up of 48 months (6-146). Acute toxicities included fever/neutropenia (70.3%), bacteremia (15.6%), and grade 3 mucositis (18.8%). Long-term complications included learning disability, seizure disorder, and brain necrosis, without treatment-related deaths. CONCLUSIONS DIMAC with HDMTX without HDCSCR may be an effective treatment option for selected patients with embryonal or high-grade CNS tumors.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, Brigham and Women's, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Alva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua L Cohen
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mina Lobbous
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Galal A Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brent A Orr
- Pathology Department, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Curtis Rozzelle
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey Blount
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rong Li
- Department of Pathology, Children's of Alabama, Birmingham, Alabama
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Girish Dhall
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alyssa T Reddy
- Department of Neurology, University of California at San Francisco, San Francisco, California
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
117
|
Transcriptional profiling of medulloblastoma with extensive nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent prognostic marker. Acta Neuropathol 2020; 139:583-596. [PMID: 31781912 DOI: 10.1007/s00401-019-02102-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Medulloblastoma with extensive nodularity (MBEN) is one of the few central nervous system (CNS) tumor entities occurring in infants which is traditionally associated with good to excellent prognosis. Some MBEN, however, have been reported with an unfavorable clinical course. We performed an integrated DNA/RNA-based molecular analysis of a multi-institutional MBEN cohort (n = 41) to identify molecular events which might be responsible for variability in patients' clinical outcomes. RNA sequencing analysis of this MBEN cohort disclosed two clear transcriptome clusters (TCL) of these CNS tumors: "TCL1 MBEN" and "TCL2 MBEN" which were associated with various gene expression signatures, mutational landscapes and, importantly, prognosis. Thus, the clinically unfavorable "TCL1 MBEN" subset revealed transcriptome signatures composed of cancer-associated signaling pathways and disclosed a high frequency of clinically relevant germline PTCH1/SUFU alterations. In contrast, gene expression profiles of tumors from the clinically favorable "TCL2 MBEN" subgroup were associated with activation of various neurometabolic and neurotransmission signaling pathways, and germline SHH-pathway gene mutations were extremely rare in this transcriptome cluster. "TCL2 MBEN" also revealed strong and ubiquitous expression of VSNL1 (visinin-like protein 1) both at the mRNA and protein level, which was correlated with a favorable clinical course. Thus, combining mutational and epigenetic profiling with transcriptome analysis including VSNL1 immunohistochemistry, MBEN patients could be stratified into clinical risk groups of potential value for subsequent treatment planning.
Collapse
|
118
|
Sait SF, Karajannis MA. Time to advance methylation profiling to the forefront of primary diagnostics for childhood brain tumours. THE LANCET. CHILD & ADOLESCENT HEALTH 2020; 4:93-95. [PMID: 31786090 DOI: 10.1016/s2352-4642(19)30395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Sameer F Sait
- Pediatric Neuro-Oncology Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthias A Karajannis
- Pediatric Neuro-Oncology Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
119
|
Liu APY, Gudenas B, Lin T, Orr BA, Klimo P, Kumar R, Bouffet E, Gururangan S, Crawford JR, Kellie SJ, Chintagumpala M, Fisher MJ, Bowers DC, Hassall T, Indelicato DJ, Onar-Thomas A, Ellison DW, Boop FA, Merchant TE, Robinson GW, Northcott PA, Gajjar A. Risk-adapted therapy and biological heterogeneity in pineoblastoma: integrated clinico-pathological analysis from the prospective, multi-center SJMB03 and SJYC07 trials. Acta Neuropathol 2020; 139:259-271. [PMID: 31802236 PMCID: PMC7065912 DOI: 10.1007/s00401-019-02106-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
Pineoblastoma is a rare embryonal tumor of childhood that is conventionally treated with high-dose craniospinal irradiation (CSI). Multi-dimensional molecular evaluation of pineoblastoma and associated intertumoral heterogeneity is lacking. Herein, we report outcomes and molecular features of children with pineoblastoma from two multi-center, risk-adapted trials (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. The clinical cohort consisted of 58 patients with histologically diagnosed pineoblastoma (SJMB03 = 30, SJYC07 = 12, non-protocol = 16, including 12 managed with SJMB03-like therapy). The SJMB03 protocol comprised risk-adapted CSI (average-risk = 23.4 Gy, high-risk = 36 Gy) with radiation boost to the primary site and adjuvant chemotherapy. The SJYC07 protocol consisted of induction chemotherapy, consolidation with focal radiation (intermediate-risk) or chemotherapy (high-risk), and metronomic maintenance therapy. The molecular cohort comprised 43 pineal parenchymal tumors profiled by DNA methylation array (n = 43), whole-exome sequencing (n = 26), and RNA-sequencing (n = 16). Respective 5-year progression-free survival rates for patients with average-risk or high-risk disease on SJMB03 or SJMB03-like therapy were 100% and 56.5 ± 10.3% (P = 0.007); respective 2-year progression-free survival rates for those with intermediate-risk or high-risk disease on SJYC07 were 14.3 ± 13.2% and 0% (P = 0.375). Of patients with average-risk disease treated with SJMB03/SJMB03-like therapy, 17/18 survived without progression. DNA-methylation analysis revealed four clinically relevant pineoblastoma subgroups: PB-A, PB-B, PB-B-like, and PB-FOXR2. Pineoblastoma subgroups differed in age at diagnosis, propensity for metastasis, cytogenetics, and clinical outcomes. Alterations in the miRNA-processing pathway genes DICER1, DROSHA, and DGCR8 were recurrent and mutually exclusive in PB-B and PB-B-like subgroups; PB-FOXR2 samples universally overexpressed the FOXR2 proto-oncogene. Our findings suggest superior outcome amongst older children with average-risk pineoblastoma treated with reduced-dose CSI. The identification of biologically and clinically distinct pineoblastoma subgroups warrants consideration of future molecularly-driven treatment protocols for this rare pediatric brain tumor entity.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA.
| | - Brian Gudenas
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Tong Lin
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric Bouffet
- Division of Hematology-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sridharan Gururangan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - John R Crawford
- University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Stewart J Kellie
- Children's Cancer Centre, The Children's Hospital at Westmead and University of Sydney, Sydney, Australia
| | - Murali Chintagumpala
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Fisher
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tim Hassall
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick A Boop
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| |
Collapse
|
120
|
Walker DA, Meijer L, Coyle B, Halsey C. Leptomeningeal malignancy of childhood: sharing learning between childhood leukaemia and brain tumour trials. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:242-250. [PMID: 31958415 DOI: 10.1016/s2352-4642(19)30333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Leptomeningeal malignancy complicates childhood cancers, including leukaemias, brain tumours, and solid tumours. In leukaemia, such malignancy is thought to invade leptomeninges via the vascular route. In brain tumours, dissemination from the primary tumour, before or after surgery, via CSF pathways is assumed; however, evidence exists to support the vascular route of dissemination. Success in treating leptomeningeal malignancy represents a rate-limiting step to cure, which has been successfully overcome in leukaemia with intensified systemic therapy combined with intra-CSF therapy, which replaced cranial radiotherapy for many patients. This de-escalated CNS-directed therapy is still associated with some neurotoxicity. The balanced benefit justifies exploration of ways to further de-escalate CNS-directed therapy. For primary brain tumours, standard therapy is craniospinal radiotherapy, but attendant risk of acute and delayed brain injury and endocrine deficiencies compounds post-radiation impairment of spinal growth. Alternative ways of treating leptomeninges by intensifying drug therapy delivered to CSF are being investigated-preliminary evidence suggests improved outcomes. This Review seeks to describe methods of intra-CSF drug delivery and drugs in use, and consider how the technique could be modified and additional drugs might be selected for this route of administration.
Collapse
Affiliation(s)
- David A Walker
- Children's Brain Tumour Research Centre, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK.
| | - Lisethe Meijer
- Department of Paediatric Neuro-Oncology, Prinses Maxima Center for Paediatric Oncology, Bilthoven, Netherlands
| | - Beth Coyle
- Children's Brain Tumour Research Centre, University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
121
|
Van Ommeren R, Garzia L, Holgado BL, Ramaswamy V, Taylor MD. The molecular biology of medulloblastoma metastasis. Brain Pathol 2020; 30:691-702. [PMID: 31883407 DOI: 10.1111/bpa.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common primary malignant brain tumor of childhood and a significant contributor to pediatric morbidity and death. While metastatic dissemination is the predominant cause of morbidity and mortality for patients with this disease, most research efforts and clinical trials to date have focused on the primary tumor; this is due mostly to the paucity of metastatic tumor samples and lack of robust mouse models of MB dissemination. Most current insights into the molecular drivers of metastasis have been derived from comparative molecular studies of metastatic and non-metastatic primary tumors. However, small studies on matched primary and metastatic tissues and recently developed mouse models of dissemination have begun to uncover the molecular biology of MB metastasis more directly. With respect to anatomical routes of dissemination, a hematogenous route for MB metastasis has recently been demonstrated, opening new avenues of investigation. The tumor micro-environment of the primary and metastatic niches has also been increasingly scrutinized in recent years, and further investigation of these tumor compartments is likely to result in a better understanding of the molecular mediators of MB colonization and growth in metastatic compartments.
Collapse
Affiliation(s)
- Randy Van Ommeren
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Livia Garzia
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.,Senior Author
| |
Collapse
|
122
|
Panetta JC, Roberts JK, Huang J, Lin T, Daryani VM, Harstead KE, Patel YT, Onar-Thomas A, Campagne O, Ward DA, Broniscer A, Robinson G, Gajjar A, Stewart CF. Pharmacokinetic basis for dosing high-dose methotrexate in infants and young children with malignant brain tumours. Br J Clin Pharmacol 2020; 86:362-371. [PMID: 31657864 DOI: 10.1111/bcp.14160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023] Open
Abstract
AIMS No population pharmacokinetic studies of high-dose methotrexate (HDMTX) have been conducted in infants with brain tumours, which are a vulnerable population. The aim of this study was to evaluate HDMTX disposition in these children to provide a rational basis for MTX dosing. METHODS Patients received 4 monthly courses of HDMTX (5 g/m2 or 2.5 g/m2 for infants aged ≤31 days) as a 24-h infusion. Serial samples were analysed for MTX by an enzyme immunoassay method. Pharmacokinetic parameters were estimated using nonlinear mixed effects population modelling. Demographics, concomitant medications and genetic polymorphisms were considered as pharmacokinetic covariates while MTX exposure and patient age were considered as covariates for Grade 3 and 4 toxicities. RESULTS The population pharmacokinetics of HDMTX were estimated in 178 patients (age range 0.02-4.7 years) in 648 courses. The population clearance and volume were 90 mL/min/m2 and 14.4 L/m2 , respectively. Significant covariates on body surface area adjusted MTX clearance included estimated glomerular filtration rate and co-treatment with dexamethasone or vancomycin. No significant association was observed between MTX toxicity and MTX exposure, patient age, leucovorin dosage or duration. MTX clearance in infants ≤31 days at enrolment was 44% lower than in older infants, but their incidence of toxicity was not higher since they also received a lower MTX dosage. CONCLUSIONS By aggressively following institutional clinical guidelines, HDMTX-related toxicities were low, and using covariates from the population pharmacokinetic model enabled the calculation of a rational dosage for this patient population for future clinical trials.
Collapse
Affiliation(s)
- John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica K Roberts
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vinay M Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - K Elaine Harstead
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yogesh T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deborah A Ward
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alberto Broniscer
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
123
|
Stripay JL, Merchant TE, Roussel MF, Tinkle CL. Preclinical Models of Craniospinal Irradiation for Medulloblastoma. Cancers (Basel) 2020; 12:cancers12010133. [PMID: 31948065 PMCID: PMC7016884 DOI: 10.3390/cancers12010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is an embryonal tumor that shows a predilection for distant metastatic spread and leptomeningeal seeding. For most patients, optimal management of medulloblastoma includes maximum safe resection followed by adjuvant craniospinal irradiation (CSI) and chemotherapy. Although CSI is crucial in treating medulloblastoma, the realization that medulloblastoma is a heterogeneous disease comprising four distinct molecular subgroups (wingless [WNT], sonic hedgehog [SHH], Group 3 [G3], and Group 4 [G4]) with distinct clinical characteristics and prognoses has refocused efforts to better define the optimal role of CSI within and across disease subgroups. The ability to deliver clinically relevant CSI to preclinical models of medulloblastoma offers the potential to study radiation dose and volume effects on tumor control and toxicity in these subgroups and to identify subgroup-specific combination adjuvant therapies. Recent efforts have employed commercial image-guided small animal irradiation systems as well as custom approaches to deliver accurate and reproducible fractionated CSI in various preclinical models of medulloblastoma. Here, we provide an overview of the current clinical indications for, and technical aspects of, irradiation of pediatric medulloblastoma. We then review the current literature on preclinical modeling of and treatment interventions for medulloblastoma and conclude with a summary of challenges in the field of preclinical modeling of CSI for the treatment of leptomeningeal seeding tumors.
Collapse
Affiliation(s)
- Jennifer L. Stripay
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Thomas E. Merchant
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Christopher L. Tinkle
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Correspondence: ; Tel.: +1-(901)-595-8735; Fax: +1-(901)-595-3113
| |
Collapse
|
124
|
Hidalgo ET, Snuderl M, Orillac C, Kvint S, Serrano J, Wu P, Karajannis MA, Gardner SL. Subgroup-specific outcomes of children with malignant childhood brain tumors treated with an irradiation-sparing protocol. Childs Nerv Syst 2020; 36:133-144. [PMID: 31375903 DOI: 10.1007/s00381-019-04305-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Molecular subgroups of pediatric brain tumors associated with divergent biological, clinical, and prognostic features have been identified. However, data regarding the impact of subgroup affiliation on the outcome of children with malignant brain tumors treated with radiation-sparing protocol is limited. We report long-term clinical outcomes and the molecular subgroups of malignant brain tumors in young children whose first-line treatment was high-dose chemotherapy without irradiation. METHODS Tumor subclassification was performed using the Illumina HumanMethylation450 BeadChip (450k) genome-wide methylation array profiling platform. Clinical information was obtained from chart review. RESULTS Methylation array profiling yielded information on molecular subgroups in 22 children. Median age at surgery was 26 months (range 1-119 months). Among medulloblastomas (MB), all 6 children in the infant sonic hedgehog (SHH) subgroup were long-term survivors, whereas all 4 children in subgroup 3 MB died. There was one long-term survivor in subgroup 4 MB. One out of five children with ependymoma was a long-term survivor (RELPOS). Both children with primitive neuroectodermal tumors died. One child with ATRT TYR and one child with choroid plexus carcinoma were long-term survivors. CONCLUSIONS The efficacy of high-dose chemotherapy radiation-sparing treatment appears to be confined to favorable molecular subgroups of pediatric brain tumors, such as infant SHH MB. Identification of molecular subgroups that benefit from radiation-sparing therapy will aid in the design of prospective, "precision medicine"-driven clinical trials.
Collapse
Affiliation(s)
- Eveline Teresa Hidalgo
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Hassenfeld Children's Hospital, NYU Langone Health, New York, USA.
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, USA
| | - Cordelia Orillac
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Hassenfeld Children's Hospital, NYU Langone Health, New York, USA
| | - Svetlana Kvint
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Hassenfeld Children's Hospital, NYU Langone Health, New York, USA
| | | | - Peter Wu
- Department of Pathology, NYU Langone Health, New York, USA
| | - Matthias A Karajannis
- Pediatric Neuro-Oncology, Department of Pediatrics, Hassenfeld Children's Hospital, NYU Langone Health, New York, USA
- Pediatric Neuro-Oncology Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Sharon L Gardner
- Pediatric Neuro-Oncology, Department of Pediatrics, Hassenfeld Children's Hospital, NYU Langone Health, New York, USA
| |
Collapse
|
125
|
Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nat Rev Cancer 2020; 20:42-56. [PMID: 31819232 PMCID: PMC9113832 DOI: 10.1038/s41568-019-0223-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Medulloblastoma, a malignant brain tumour primarily diagnosed during childhood, has recently been the focus of intensive molecular profiling efforts, profoundly advancing our understanding of biologically and clinically heterogeneous disease subgroups. Genomic, epigenomic, transcriptomic and proteomic landscapes have now been mapped for an unprecedented number of bulk samples from patients with medulloblastoma and, more recently, for single medulloblastoma cells. These efforts have provided pivotal new insights into the diverse molecular mechanisms presumed to drive tumour initiation, maintenance and recurrence across individual subgroups and subtypes. Translational opportunities stemming from this knowledge are continuing to evolve, providing a framework for improved diagnostic and therapeutic interventions. In this Review, we summarize recent advances derived from this continued molecular characterization of medulloblastoma and contextualize this progress towards the deployment of more effective, molecularly informed treatments for affected patients.
Collapse
Affiliation(s)
- Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
126
|
Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource. Acta Neuropathol 2020; 140:209-225. [PMID: 32519082 PMCID: PMC7360541 DOI: 10.1007/s00401-020-02171-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022]
Abstract
Pediatric brain tumors are the leading cause of cancer-related death in children. Patient-derived orthotopic xenografts (PDOX) of childhood brain tumors have recently emerged as a biologically faithful vehicle for testing novel and more effective therapies. Herein, we provide the histopathological and molecular analysis of 37 novel PDOX models generated from pediatric brain tumor patients treated at St. Jude Children's Research Hospital. Using a combination of histopathology, whole-genome and whole-exome sequencing, RNA-sequencing, and DNA methylation arrays, we demonstrate the overall fidelity and inter-tumoral molecular heterogeneity of pediatric brain tumor PDOX models. These models represent frequent as well as rare childhood brain tumor entities, including medulloblastoma, ependymoma, atypical teratoid rhabdoid tumor, and embryonal tumor with multi-layer rosettes. PDOX models will be valuable platforms for evaluating novel therapies and conducting pre-clinical trials to accelerate progress in the treatment of brain tumors in children. All described PDOX models and associated datasets can be explored using an interactive web-based portal and will be made freely available to the research community upon request.
Collapse
|
127
|
Kumar R, Liu APY, Northcott PA. Medulloblastoma genomics in the modern molecular era. Brain Pathol 2019; 30:679-690. [PMID: 31799776 DOI: 10.1111/bpa.12804] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022] Open
Abstract
Medulloblastoma (MB) represents a spectrum of biologically and clinically distinct entities. Initially described histopathologically as a small, round blue cell tumor arising in the cerebellum, MB has emerged as a paradigm for molecular classification in cancer. Recent advances in genomic, transcriptomic and epigenomic profiling of MB have further refined molecular classification and complemented conventional histopathological diagnosis. Herein, we review the main clinical and molecular features of the four consensus subgroups of MB (WNT, SHH, Group 3 and Group 4). We also highlight hereditary predisposition syndromes associated with increased risk of MB. Finally, we explore advances in the classification of the consensus molecular groups while also presenting cutting-edge frontiers in identifying intratumoral heterogeneity and cellular origins of MB.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN.,St. Jude Graduate School of Biomedical Sciences, Memphis, TN
| | - Anthony P Y Liu
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN.,Department of Oncology, Division of Neurooncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Paul A Northcott
- Department of Developmental Neurobiology, Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
128
|
Campagne O, Zhong B, Nair S, Lin T, Huang J, Onar-Thomas A, Robinson G, Gajjar A, Stewart CF. Exposure-Toxicity Association of Cyclophosphamide and Its Metabolites in Infants and Young Children with Primary Brain Tumors: Implications for Dosing. Clin Cancer Res 2019; 26:1563-1573. [PMID: 31796512 DOI: 10.1158/1078-0432.ccr-19-2685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize the population pharmacokinetics of cyclophosphamide, active 4-hydroxy-cyclophosphamide (4OH-CTX), and inactive carboxyethylphosphoramide mustard (CEPM), and their associations with hematologic toxicities in infants and young children with brain tumors. To use this information to provide cyclophosphamide dosing recommendations in this population. PATIENTS AND METHODS Patients received four cycles of a 1-hour infusion of 1.5 g/m2 cyclophosphamide. Serial samples were collected to measure cyclophosphamide, 4OH-CTX, and CEPM plasma concentrations. Population pharmacokinetic modeling was performed to identify the patient characteristics influencing drug disposition. Associations between drug exposures and metrics reflecting drug-induced neutropenia, erythropenia, and thrombocytopenia were investigated. A Bayesian approach was developed to predict 4OH-CTX exposure using only cyclophosphamide and CEPM plasma concentrations. RESULTS Data from 171 patients (0.07-4.9 years) were adequately fitted by a two-compartment (cyclophosphamide) and one-compartment model (metabolites). Young infants (<6 months) exhibited higher mean 4OH-CTX exposure than did young children (138.4 vs. 107.2 μmol/L·h, P < 0.0001). No genotypes exhibited clinically significant influence on drug exposures. Worse toxicity metrics were significantly associated with higher 4OH-CTX exposures. Dosing simulations suggested decreased cyclophosphamide dosage to 1.2 g/m2 for young infants versus 1.5 g/m2 for children to attain similar 4OH-CTX exposure. Bayesian-modeled 4OH-CTX exposure predictions were precise (mean absolute prediction error 14.8% ± 4.2%) and had low bias (mean prediction error 4.9% ± 5.1%). CONCLUSIONS A 4OH-CTX exposure-toxicity association was established, and a decreased cyclophosphamide dosage for young infants was suggested to reduce toxicity in this population. Bayesian modeling to predict 4OH-CTX exposure may reduce clinical processing-related costs and provide insights into further exposure-response associations.
Collapse
Affiliation(s)
- Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bo Zhong
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sreenath Nair
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giles Robinson
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
129
|
Grewal AS, Li Y, Fisher MJ, Minturn J, Paltin I, Belasco J, Phillips P, Kang T, Lustig RA, Hill-Kayser C. Tumor bed proton irradiation in young children with localized medulloblastoma. Pediatr Blood Cancer 2019; 66:e27972. [PMID: 31512390 DOI: 10.1002/pbc.27972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Radiotherapy is often deferred in very young children with medulloblastoma, in favor of more intense chemotherapy and stem cell rescue; however, posterior fossa radiation has been shown to improve overall survival (OS) and event-free survival compared with adjuvant chemotherapy alone. This study was performed to assess the OS, recurrence-free survival (RFS), patterns of failure, and clinical toxicity for children aged five and under who received focal proton radiation to the tumor bed alone. PROCEDURE From 2010 to 2017, 14 patients with newly diagnosed medulloblastoma at one institution received tumor bed irradiation following surgery and chemotherapy. The median age of the patients was 40 months (range, 10.9-62.9 months). RESULTS With a median follow-up of 54 months, four patients relapsed: three within the central nervous system (CNS) outside of the posterior fossa, and one within the tumor bed after subtotal resection. All relapses occurred within 28 months after the completion of radiation therapy. Five-year OS and RFS for this cohort of patients were 84% (95% CI, 48%-96%) and 70% (95% CI, 38%-88%), respectively. One patient experienced significant tumor regrowth soon after completion of radiation, autopsy showed viable tumor and necrosis near and within the brainstem, with relation to radiation unknown; however, no other acute clinical toxicities greater than grade 2 were observed in this group of patients. In the nine patients with available performance status follow-up, no significant changes in Lansky performance status were observed. CONCLUSIONS Five-year OS and RFS following tumor bed irradiation in young children with medulloblastoma appear to be improved compared with other studies that forego the use of radiation therapy in this patient population. This approach should be further investigated in young children with medulloblastoma.
Collapse
Affiliation(s)
- Amardeep S Grewal
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Fisher
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jane Minturn
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Iris Paltin
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jean Belasco
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peter Phillips
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tammy Kang
- Department of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Hill-Kayser
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
130
|
Lafay-Cousin L, Bouffet E, Strother D, Rudneva V, Hawkins C, Eberhart C, Horbinski C, Heier L, Souweidane M, Williams-Hughes C, Onar-Thomas A, Billups CA, Fouladi M, Northcott P, Robinson G, Gajjar A. Phase II Study of Nonmetastatic Desmoplastic Medulloblastoma in Children Younger Than 4 Years of Age: A Report of the Children's Oncology Group (ACNS1221). J Clin Oncol 2019; 38:223-231. [PMID: 31774708 DOI: 10.1200/jco.19.00845] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Nodular desmoplastic medulloblastoma (ND) and medulloblastoma with extensive nodularity (MBEN) have been associated with a more favorable outcome in younger children. However, treatment-related neurotoxicity remains a significant concern in this vulnerable group of patients. PATIENTS AND METHODS ACNS1221 was a prospective single-arm trial of conventional chemotherapy for nonmetastatic ND and MBEN based on a modified HIT SKK 2000 regimen excluding intraventricular methotrexate, aiming to achieve similar outcome (2-year progression-free survival [PFS] ≥ 90%) with reduced treatment-related neurotoxicity. Secondary objectives included feasibility of timely central pathology review and evaluation of tumor molecular profile. RESULTS Twenty-five eligible patients (15 males and 10 females; median age, 18.7 months) were enrolled. Eighteen patients had ND and 7 had MBEN histology. Three patients had residual disease at baseline. The study closed early because of a higher than expected relapse rate. Twelve patients experienced relapse-local (n= 6), distant (n = 3), and combined (n = 3)-at a median of 9.8 months from diagnosis (range, 8.9-13.7 months), and 2 patients died of disease. Two-year PFS and overall survival rates were 52% (95% CI, 32.4% to 71.6%) and 92% (95% CI, 80.8% to 100.0%) respectively. Patients older than 12 months of age (P = .036) and ND histology (P = .005) were associated with worse PFS. No patients with MBEN histology experienced relapse. All tumor samples clustered within the sonic hedgehog (SHH) group. Methylation analysis delineated 2 subgroups, SHH-I and SHH-II, which were associated with 2-year PFS rates of 30.0% (95% CI, 1.6% to 58.4%) and 66.7% (95% CI, 44.0% to 89.4%), respectively (P = .099). CONCLUSION The proposed modified regimen of conventional systemic chemotherapy without serial intraventricular methotrexate injection failed to achieve the targeted 2-year PFS of 90%. With this cohort, we prospectively confirmed the existence of two SHH subgroups and observed a trend toward worse outcome for SHH-I patients.
Collapse
Affiliation(s)
| | - Eric Bouffet
- Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | - Linda Heier
- New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY
| | | | | | | | | | - Maryam Fouladi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | - Amar Gajjar
- St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
131
|
Phelan R, Eissa H, Becktell K, Bhatt N, Kudek M, Nuechterlein B, Pommert L, Tanaka R, Baker KS. Upfront Therapies and Downstream Effects: Navigating Late Effects in Childhood Cancer Survivors in the Current Era. Curr Oncol Rep 2019; 21:104. [PMID: 31768799 DOI: 10.1007/s11912-019-0861-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW As survival rates of those diagnosed with childhood cancer improve over time, the number of long-term survivors continues to grow. Advances have not only been made in the upfront treatment of childhood cancer, but also in the identification and treatment of late complications that may arise as a result of the chemotherapy, radiotherapy, or surgical interventions required to provide a cure. RECENT FINDINGS As new therapies emerge that are often more targeted to cancerous cells while sparing healthy tissues, the hope is that cure can be achieved without the same long-term side effects for survivors. However, much is unknown regarding how these novel interventions will impact patients in the years to come. It is critical that we continue to follow patients treated with new modalities in order to identify and treat the long-term complications that may arise in future childhood cancer survivors.
Collapse
Affiliation(s)
- Rachel Phelan
- Children's Hospital of Wisconsin/Medical College of Wisconsin, 8701 Watertown Plank Rd, MFRC 3018, Milwaukee, WI, 53122, USA.
| | - Hesham Eissa
- The University of Colorado, School of Medicine, Blood and Marrow Transplant and Cellular Therapeutics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, Box B115, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kerri Becktell
- Children's Hospital of Wisconsin/Medical College of Wisconsin, 8701 Watertown Plank Rd, MFRC 3018, Milwaukee, WI, 53122, USA
| | - Neel Bhatt
- Seattle Children's Hospital/University of Washington, 1100 Fairview Ave N, D5-390, Seattle, WA, 98109, USA
| | - Matthew Kudek
- Children's Hospital of Wisconsin/Medical College of Wisconsin, 8701 Watertown Plank Rd, MFRC 3018, Milwaukee, WI, 53122, USA
| | - Brandon Nuechterlein
- The University of Colorado, School of Medicine, Blood and Marrow Transplant and Cellular Therapeutics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, Box B115, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Lauren Pommert
- Children's Hospital of Wisconsin/Medical College of Wisconsin, 8701 Watertown Plank Rd, MFRC 3018, Milwaukee, WI, 53122, USA
| | - Ryuma Tanaka
- Children's Hospital of Wisconsin/Medical College of Wisconsin, 8701 Watertown Plank Rd, MFRC 3018, Milwaukee, WI, 53122, USA
| | - K Scott Baker
- Seattle Children's Hospital/University of Washington, 1100 Fairview Ave N, D5-390, Seattle, WA, 98109, USA
| |
Collapse
|
132
|
Yeo KK, Margol AS, Kennedy RJ, Hung L, Robison NJ, Dhall G, Asgharzadeh S. Prognostic significance of molecular subgroups of medulloblastoma in young children receiving irradiation-sparing regimens. J Neurooncol 2019; 145:375-383. [PMID: 31621042 PMCID: PMC7543681 DOI: 10.1007/s11060-019-03307-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Irradiation-avoiding strategies have been used with relative success in the treatment of infants and young children with medulloblastoma. While advances in cancer genomics have significantly improved our understanding of the tumor biology of medulloblastoma allowing for improved prognostication and risk-stratification, the molecular subgroup-specific outcomes of infants and young children with medulloblastoma treated with irradiation-avoiding strategies remains unknown. METHODS Molecular and clinical features of children with medulloblastoma treated with irradiation-avoiding strategies at Children's Hospital Los Angeles were analyzed. Molecular subgrouping of these patients was determined using a 31-gene TaqMan Low Density Array signature. Survival analyses were conducted based on 3 molecular subgroups (SHH, Group 3, and Group 4). RESULTS Twenty-eight patients with medulloblastoma received irradiation-sparing regimens and were included in this analysis. Patients were divided into SHH (n = 16), Group 3 (n = 3) and Group 4 subgroups (n = 9). Subgroup specific 5-year progression-free and overall survival was 81.2% (95% CI 52.5-93.5) and 93.7% (95% CI 63.2-99.1) for SHH, 0% and 0% for Group 3 and 0% and 44.4% (95% CI 13.6-71.9) for Group 4. CONCLUSION The majority of young children with SHH-subgroup medulloblastoma can be treated effectively with irradiation-sparing regimens. Our results support the use of chemotherapy-only strategies for upfront treatment of young children with SHH medulloblastoma, while demonstrating the urgent need for intensification/augmentation of treatment for patients with group 3/4 medulloblastoma.
Collapse
Affiliation(s)
- Kee Kiat Yeo
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Ashley S Margol
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA.
| | - Rebekah J Kennedy
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
| | - Long Hung
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
| | - Nathan J Robison
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
| | - Girish Dhall
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
- The Alabama Center for Childhood Cancer and Blood Disorders at Children's of Alabama, University of Alabama at Birmingham (UAB), Birmingham, USA
| | - Shahab Asgharzadeh
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS #54, Los Angeles, CA, 90027-6016, USA
| |
Collapse
|
133
|
Begemann M, Waszak SM, Robinson GW, Jäger N, Sharma T, Knopp C, Kraft F, Moser O, Mynarek M, Guerrini-Rousseau L, Brugieres L, Varlet P, Pietsch T, Bowers DC, Chintagumpala M, Sahm F, Korbel JO, Rutkowski S, Eggermann T, Gajjar A, Northcott P, Elbracht M, Pfister SM, Kontny U, Kurth I. Germline GPR161 Mutations Predispose to Pediatric Medulloblastoma. J Clin Oncol 2019; 38:43-50. [PMID: 31609649 PMCID: PMC6943973 DOI: 10.1200/jco.19.00577] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The identification of a heritable tumor predisposition often leads to changes in management and increased surveillance of individuals who are at risk; however, for many rare entities, our knowledge of heritable predisposition is incomplete. METHODS Families with childhood medulloblastoma, one of the most prevalent childhood malignant brain tumors, were investigated to identify predisposing germline mutations. Initial findings were extended to genomes and epigenomes of 1,044 medulloblastoma cases from international multicenter cohorts, including retrospective and prospective clinical studies and patient series. RESULTS We identified heterozygous germline mutations in the G protein-coupled receptor 161 (GPR161) gene in six patients with infant-onset medulloblastoma (median age, 1.5 years). GPR161 mutations were exclusively associated with the sonic hedgehog medulloblastoma (MBSHH) subgroup and accounted for 5% of infant MBSHH cases in our cohorts. Molecular tumor profiling revealed a loss of heterozygosity at GPR161 in all affected MBSHH tumors, atypical somatic copy number landscapes, and no additional somatic driver events. Analysis of 226 MBSHH tumors revealed somatic copy-neutral loss of heterozygosity of chromosome 1q as the hallmark characteristic of GPR161 deficiency and the primary mechanism for biallelic inactivation of GPR161 in affected MBSHH tumors. CONCLUSION Here, we describe a novel brain tumor predisposition syndrome that is caused by germline GPR161 mutations and characterized by MBSHH in infants. Additional studies are needed to identify a potential broader tumor spectrum associated with germline GPR161 mutations.
Collapse
Affiliation(s)
| | | | | | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany
| | | | | | | | - Martin Mynarek
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Felix Sahm
- German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Amar Gajjar
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany.,German Cancer Research Centre, Heidelberg, Germany.,University Hospital Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
134
|
Reddick SJ, Campagne O, Huang J, Onar-Thomas A, Broniscer A, Gajjar A, Stewart CF. Pharmacokinetics and safety of erlotinib and its metabolite OSI-420 in infants and children with primary brain tumors. Cancer Chemother Pharmacol 2019; 84:829-838. [PMID: 31392390 PMCID: PMC6773504 DOI: 10.1007/s00280-019-03921-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Erlotinib (Tarceva®), a potent small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase, has been evaluated to treat infants and children with primary brain tumors. The pharmacokinetics of erlotinib and its primary metabolite OSI-420 were characterized and exposure-safety associations were investigated. METHODS This analysis involved patients enrolled in two clinical studies and receiving oral erlotinib once daily as part of treatment. Single-dose and steady-state erlotinib and OSI-420 plasma concentrations were assayed using HPLC-MS/MS methods. Population pharmacokinetic modeling and univariate covariate analysis evaluating demographic, clinical and selected CYP3A5, CYP3A4, ABCB1, and ABCG2 genotypes were performed. Associations between erlotinib and OSI-420 pharmacokinetics, and with toxicities (diarrhea and skin rash) occurring post-dose were explored. RESULTS Data from 47 patients (0.7-19 years old) were collected and best fitted by one-compartment linear models. Erlotinib and OSI-420 apparent clearances (CL/F and CLm/Fm) were higher in patients < 5 years compared to older patients (mean CL/F: 6.8 vs 3.6 L/h/m2, and mean CLm/Fm: 79 vs 38 L/h/m2, p < 0.001), and were 1.62-fold and 1.73-fold higher in males compared to females (p < 0.01). Moreover, CL/F was 1.53-fold higher in wild-type patients than in patients heterozygous or homozygous mutant for ABCG2 rs55930652 (p < 0.05). Most of the toxicities reported were grade 1. No associations were found between drug pharmacokinetics and drug-induced toxicities. CONCLUSIONS Erlotinib therapy was well tolerated by pediatric patients with primary brain tumors. No dosing adjustments based on age or patient characteristics are recommended for this patient population.
Collapse
Affiliation(s)
- Samuel J Reddick
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Jie Huang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alberto Broniscer
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
135
|
Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: a review. J Neurosurg Pediatr 2019; 24:353-363. [PMID: 31574483 DOI: 10.3171/2019.5.peds18381] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma is the most common pediatric malignant brain tumor. Advances in molecular profiling have uncovered significant heterogeneity among medulloblastomas and led to the identification of four distinct subgroups (wingless [WNT], sonic hedgehog [SHH], group 3, and group 4) that represent distinct disease entities in both underlying biology and clinical characteristics. The rapidly expanding repertoire of tools to study developmental and cancer biology is providing a wealth of knowledge about these embryonal tumors and is continuously refining the understanding of this complex cancer. In this review, the history of discovery in medulloblastoma is discussed, setting a foundation to outline the current state of understanding of the molecular underpinnings of this disease, with a focus on genomic events that define the aforementioned subgroups and evolving areas of focus, such as the cell of origin of medulloblastoma and medulloblastoma subtypes. With these recent discoveries in mind, the current state of medulloblastoma treatment and clinical trials is reviewed, including a novel risk stratification system that accounts for the molecular biomarkers of patients with a high risk for refractory disease. Lastly, critical areas of focus for future basic science and clinical research on this disease are discussed, such as the complexities of medulloblastoma metastases and recurrence as well as the priorities and strategies to implement in future clinical trials.
Collapse
Affiliation(s)
- Kyle Juraschka
- 1Division of Neurosurgery
- 2The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children; and
- Departments of3Laboratory Medicine and Pathobiology and
- 4Surgery, University of Toronto, Ontario, Canada
| | - Michael D Taylor
- 1Division of Neurosurgery
- 2The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children; and
- Departments of3Laboratory Medicine and Pathobiology and
- 4Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
136
|
Pathania AS, Ren X, Mahdi MY, Shackleford GM, Erdreich-Epstein A. GRK2 promotes growth of medulloblastoma cells and protects them from chemotherapy-induced apoptosis. Sci Rep 2019; 9:13902. [PMID: 31554835 PMCID: PMC6761358 DOI: 10.1038/s41598-019-50157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptor kinase 2 (GRK2; ADRBK1, BARK1) is most known as a regulator of G-protein coupled receptors. However, GRK2 also has other functions. Medulloblastomas are the most common malignant brain cancers in children. GRK2 has not been implicated in medulloblastoma biology. Here we report that GRK2 knockdown slowed cell growth, diminished proliferation, and enhanced cisplatin- and etoposide-induced apoptosis in medulloblastoma cell lines UW228-2 and Daoy. Reciprocally, GRK2 overexpression attenuated apoptosis induced by these chemotherapy drugs. Cisplatin and etoposide increased phosphorylation of AKT (S473) and GRK2 knockdown mitigated this increase. Cisplatin and etoposide attenuated ERK phosphorylation, but GRK2 knockdown did not alter this effect. Wildtype GRK2 reversed the increase in cisplatin- and etoposide-induced apoptosis caused by GRK2 knockdown. GRK2-K220R (kinase dead) and GRK2-S670A (unphosphorylated, constitutively active) conferred protection from cisplatin that was similar to wildtype GRK2, suggesting that this protection may be mediated though a kinase-independent activity of GRK2. These data demonstrate that GRK2 contributes to proliferation and survival of these medulloblastoma cell lines and to their protection from cisplatin- and etoposide-induced apoptosis.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiuhai Ren
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Min Y Mahdi
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Gregory M Shackleford
- Department of Radiology, The Saban Research Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Anat Erdreich-Epstein
- Department of Pediatrics, Division of Hematology, Oncology and Blood and Marrow Transplantation, The Saban Research Institute at Children's Hospital Los Angeles and Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
- Department of Pathology, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
137
|
Roy S, Agnihotri S, El Hallani S, Ernst WL, Wald AI, Santana dos Santos L, Hamilton RL, Horbinski CM, Wadhwani NR, Born DE, Pollack IF, Nikiforov YE, Nikiforova MN. Clinical Utility of GlioSeq Next-Generation Sequencing Test in Pediatric and Young Adult Patients With Brain Tumors. J Neuropathol Exp Neurol 2019; 78:694-702. [PMID: 31298284 PMCID: PMC10895411 DOI: 10.1093/jnen/nlz055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain tumors are the leading cause of death in children. Establishing an accurate diagnosis and therapy is critical for patient management. This study evaluated the clinical utility of GlioSeq, a next-generation sequencing (NGS) assay, for the diagnosis and management of pediatric and young adult patients with brain tumors. Between May 2015 and March 2017, 142 consecutive brain tumors were tested using GlioSeq v1 and subset using GlioSeq v2. Out of 142 samples, 63% were resection specimens and 37% were small stereotactic biopsies. GlioSeq sequencing was successful in 100% and 98.6% of the cases for the detection of mutations and copy number changes, and gene fusions, respectively. Average turnaround time was 8.7 days. Clinically significant genetic alterations were detected in 95%, 66.6%, and 66.1% of high-grade gliomas, medulloblastomas, and low-grade gliomas, respectively. GlioSeq enabled molecular-based stratification in 92 (65%) cases by specific molecular subtype assignment (70, 76.1%), substantiating a neuropathologic diagnosis (18, 19.6%), and diagnostic recategorization (4, 4.3%). Fifty-seven percent of the cases harbored therapeutically actionable findings. GlioSeq NGS analysis offers rapid detection of a wide range of genetic alterations across a spectrum of pediatric brain tumors using formalin-fixed, paraffin-embedded specimens and facilitates integrated molecular-morphologic classification and personalized management of pediatric brain tumors.
Collapse
Affiliation(s)
- Somak Roy
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sameer Agnihotri
- Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Soufiane El Hallani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta
| | - Wayne L Ernst
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Lucas Santana dos Santos
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ronald L Hamilton
- Division of Neuropathology, Department of Pathology, University of Pittsburgh Medical Center, Presbyterian Hospital, Pittsburgh, Pennsylvania
| | - Craig M Horbinski
- Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois
| | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Lurie Children’s Hospital, Northwestern University, Chicago, Illinois
| | - Donald E Born
- Department of Pathology, Neuropathology, Stanford University School of Medicine, California
| | - Ian F Pollack
- Department of Neurological Surgery, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yuri E Nikiforov
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marina N Nikiforova
- Division of Molecular & Genomic Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
138
|
Jones DTW, Banito A, Grünewald TGP, Haber M, Jäger N, Kool M, Milde T, Molenaar JJ, Nabbi A, Pugh TJ, Schleiermacher G, Smith MA, Westermann F, Pfister SM. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer 2019; 19:420-438. [PMID: 31300807 DOI: 10.1038/s41568-019-0169-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
The spectrum of tumours arising in childhood is fundamentally different from that seen in adults, and they are known to be divergent from adult malignancies in terms of cellular origins, epidemiology, genetic complexity, driver mutations and underlying mutational processes. Despite the immense knowledge generated through sequencing efforts and functional characterization of identified (epi-)genetic alterations over the past decade, the clinical implications of this knowledge have so far been limited. Novel preclinical platforms such as the European Innovative Therapies for Children with Cancer-Paediatric Preclinical Proof-of-Concept Platform and the US-based Pediatric Preclinical Testing Consortium are being developed to try to change this by aiming to recapitulate the extensive heterogeneity of paediatric tumours and thereby, hopefully, improve the ability to predict clinical benefit. Numerous studies have also been established worldwide to provide patients with access to real-time molecular profiling and the possibility of more precise mechanism-of-action-based treatments. In addition to tumour-intrinsic findings and mechanisms, ongoing studies are investigating features such as the immune microenvironment of paediatric tumours in comparison with adult cancers - currently of very timely clinical relevance. However, there is an ongoing need for rigorous preclinical biomarker and target validation to feed into the next generation of molecularly stratified clinical trials. This Review aims to provide a comprehensive state-of-the-art overview of the molecular landscape of paediatric solid tumours, including their underlying genomic alterations and interactions with the microenvironment, complemented with our current understanding of potential therapeutic vulnerabilities and how these can be preclinically tested using more accurate predictive methods. Finally, we provide an outlook on the challenges and opportunities associated with translating this overwhelming scientific progress into real clinical benefit.
Collapse
Affiliation(s)
- David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Banito
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Soft Tissue Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW, Australia
- School of Women's & Children's Health, UNSW Australia, Randwick, NSW, Australia
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan J Molenaar
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gudrun Schleiermacher
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Research Center, Institut Curie, Paris, France
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, USA
| | - Frank Westermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
139
|
Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Ann Oncol 2019; 30:1265-1278. [PMID: 31124566 PMCID: PMC6683853 DOI: 10.1093/annonc/mdz164] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the update of the 4th edition of the WHO Classification of Central Nervous System (CNS) Tumors published in 2016, particular molecular characteristics are part of the definition of a subset of these neoplasms. This combined 'histo-molecular' approach allows for a much more precise diagnosis of especially diffuse gliomas and embryonal CNS tumors. This review provides an update of the most important diagnostic and prognostic markers for state-of-the-art diagnosis of primary CNS tumors. Defining molecular markers for diffuse gliomas are IDH1/IDH2 mutations, 1p/19q codeletion and mutations in histone H3 genes. Medulloblastomas, the most frequent embryonal CNS tumors, are divided into four molecularly defined groups according to the WHO 2016 Classification: wingless/integrated (WNT) signaling pathway activated, sonic hedgehog (SHH) signaling pathway activated and tumor protein p53 gene (TP53)-mutant, SHH-activated and TP53-wildtype, and non-WNT/non-SHH-activated. Molecular characteristics are also important for the diagnosis of several other CNS tumors, such as RELA fusion-positive subtype of ependymoma, atypical teratoid rhabdoid tumor (AT/RT), embryonal tumor with multilayered rosettes, and solitary fibrous tumor/hemangiopericytoma. Immunohistochemistry is a helpful alternative for further molecular characterization of several of these tumors. Additionally, genome-wide methylation profiling is a very promising new tool in CNS tumor diagnostics. Much progress has thus been made by translating the most relevant molecular knowledge into a more precise clinical diagnosis of CNS tumors. Hopefully, this will enable more specific and more effective therapeutic approaches for the patients suffering from these tumors.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Brain/pathology
- Brain Neoplasms/diagnosis
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/mortality
- DNA Methylation
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Glioma/diagnosis
- Glioma/drug therapy
- Glioma/genetics
- Glioma/mortality
- Humans
- Immunohistochemistry
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasms, Germ Cell and Embryonal/diagnosis
- Neoplasms, Germ Cell and Embryonal/drug therapy
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/mortality
- Prognosis
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- B W Kristensen
- Department of Pathology, Odense University Hospital, Odense; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | | | - J K Petersen
- Department of Pathology, Odense University Hospital, Odense; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - P Wesseling
- Department of Pathology, University Medical Center Utrecht, Utrecht; Princess Máxima Center for Pediatric Oncology, Utrecht; Department of Pathology, Amsterdam University Medical Centers/VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
140
|
Abstract
INTRODUCTION Children diagnosed with medulloblastoma (MB) who are refractory to upfront therapy or experience recurrence have very poor prognoses. Although phase I and phase II trials exist, these treatments bear significant treatment-related morbidity and mortality. METHODS A retrospective review of children diagnosed with a recurrence of MB from 2002 to 2015 at McMaster University was undertaken. RESULTS Recurrent disease in 10 patients involved leptomeningeal dissemination, with 3 experiencing local recurrence. In three recurrent patients the disease significantly progressed, and the children were palliated. The remaining 10 children underwent some form of salvage therapy, including surgical re-resection, radiation, and chemotherapy, either in isolation or in varying combinations. Of the 13 children experiencing treatment-refractory or recurrent disease, 4 are currently alive with a median follow-up of 38.5 months (75.5 months). Of the eight patients with molecular subgrouping data, none of the Wnt MB experienced recurrence. CONCLUSION Recurrent MB carried a poor prognosis with a 5-year overall survival (OS) of 18.2% despite the administration of salvage therapy. The upfront therapy received, available treatment, and tolerability of the proposed salvage therapy resulted in significant heterogeneity in the treatment of our recurrent cohort.
Collapse
|
141
|
Bouffet E. Management of high-risk medulloblastoma. Neurochirurgie 2019; 67:61-68. [PMID: 31229532 DOI: 10.1016/j.neuchi.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022]
Abstract
Medulloblastoma is the most common malignant brain tumors in children. Current management combines surgery, radiotherapy, and chemotherapy. Current treatment of medulloblastoma is based on a clinical risk-stratification system that takes into account age, extent of resection and metastatic status. High-risk medulloblastoma patients are defined by the presence of metastatic disease and/or an incomplete resection with a residual amount of tumour>1.5 cm2. This review describes the evolution in the management of high-risk medulloblastoma patients during recent 4 decades and recent changes in the definition of high-risk patients as a result of major advances in the understanding of the molecular heterogeneity of medulloblastomas.
Collapse
Affiliation(s)
- E Bouffet
- Paediatric Neuro-Oncology Program, University of Toronto, Hospital for Sick Children, 555 University Avenue, M5G 1X8 Toronto, Ontario, Canada.
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW Medulloblastoma is no more a unique disease. Clinical and biologic classification used so far are challenged by molecular classification(s). Following the consensus article that described four molecular groups of medulloblastoma in 2012, several articles in 2017 provided more relevant classifications that may impact on further clinical trial design. RECENT FINDINGS Though wingless (WNT) and sonic hedgehog (SHH) are defined by the activation of their respective pathways, the age and type of activation define various subgroups with specific features and outcome. Groups 3 and 4 remain ill defined. The whole population of medulloblastoma may be divided in 12 subgroups: WNTαβ, SHHαβγδ, group 3αβγ and group 4αβγ. The paediatric population may be divided in seven subgroups: WNT, SHH of infants and children, and low-risk and high-risk groups 3 and 4. SHH of infants may be divided as iSHH-I vs. iSHH-II that have different prognosis. Moreover, specific drivers of groups 3 and 4 were reported. SUMMARY These findings have and will have direct implications on the conception of clinical trials. Low-risk groups will benefit from less toxic therapies, and high-risk groups will benefit from targeted therapies.
Collapse
|
143
|
Korshunov A, Sahm F, Okonechnikov K, Ryzhova M, Stichel D, Schrimpf D, Casalini B, Sievers P, Meyer J, Zheludkova O, Golanov A, Lichter P, Jones DTW, Pfister SM, Kool M, von Deimling A. Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) disclose similar epigenetic signatures but different transcriptional profiles. Acta Neuropathol 2019; 137:1003-1015. [PMID: 30826918 DOI: 10.1007/s00401-019-01981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) were outlined in the current WHO classification of tumors of the nervous system as two distinct histological MB variants. However, they are often considered as cognate SHH MB entities, and it is a reason why some clinical MB trials do not separate the patients with DNMB or MBEN histology. In the current study, we performed an integrated DNA/RNA-based molecular analysis of 83 DNMB and 36 MBEN to assess the etiopathogenetic relationship between these SHH MB variants. Methylation profiling revealed "infant" and "children" SHH MB clusters but neither DNMB nor MBEN composed separate epigenetic cohorts, and their profiles were intermixed within the "infant" cluster. In contrast, RNA-based transcriptional profiling disclosed that expression signatures of all MBEN were clustered separately from most of DNMB and a set of differentially expressed genes was identified. MBEN transcriptomes were enriched with genes associated with synaptic transmission, neuronal differentiation and metabolism, whereas DNMB profiling signatures included sets of genes involved in phototransduction and NOTCH signaling pathways. Thus, DNMB and MBEN are distinct tumor entities within the SHH MB family whose biology is determined by different transcriptional programs. Therefore, we recommend a transcriptome analysis as an optimal molecular tool to discriminate between DNMB and MBEN, which may be of benefit for patients' risk stratification in clinical trials. Molecular events identified in DNMB by RNA sequencing could be considered in the future as potent molecular targets for novel therapeutic interventions in treatment-resistant cases.
Collapse
Affiliation(s)
- Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Belen Casalini
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Meyer
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olga Zheludkova
- Department of Neuro-Oncology, Russian Scientific Center of Radiology, Moscow, Russia
| | - Andrey Golanov
- Department of Neuroradiology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Peter Lichter
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David T W Jones
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group (B360), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children'S Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
144
|
|
145
|
Bernstock JD, Cohen JL, Singh S, Schlappi CW, Fiveash JB, Johnston JM, Fequiere P, Orr BA, Li R, Friedman GK. Treatment-induced remission of medulloblastoma using a chemotherapeutic regimen devoid of vincristine in a child with Charcot-Marie-Tooth disease. ACTA ACUST UNITED AC 2019; 26:e266-e269. [PMID: 31043836 DOI: 10.3747/co.26.4491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Charcot-Marie-Tooth (cmt) disease is the most common form of inherited neuropathy. Core features include peripheral neuropathy and secondary axonal degeneration, with a noted distal predominance of limb-muscle wasting, weakness, and sensory loss. Given the significant prevalence of cmt, superimposed neoplastic disease can be encountered within this patient population. Malignancies that are treated with vincristine (a microtubule-targeting agent), even at low doses as part of standard treatment, pose a significant challenge for patients with cmt. Here, we present the case of a child with cmt who was successfully treated for medulloblastoma without vincristine, a standard drug used for treatment of that disease, to avoid the risk of severe debilitating neuropathy. This report is the first of a patient successfully treated for medulloblastoma without vincristine.
Collapse
Affiliation(s)
- J D Bernstock
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - J L Cohen
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - S Singh
- Department of Radiology, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - C W Schlappi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - J B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - J M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - P Fequiere
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - B A Orr
- Pathology Department, St. Jude Children's Research Hospital, Memphis, TN, U.S.A
| | - R Li
- Department of Pathology, Children's of Alabama, Birmingham, AL, U.S.A
| | - G K Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
146
|
Treisman DM, Li Y, Pierce BR, Li C, Chervenak AP, Tomasek GJ, Lozano G, Zheng X, Kool M, Zhu Y. Sox2 + cells in Sonic Hedgehog-subtype medulloblastoma resist p53-mediated cell-cycle arrest response and drive therapy-induced recurrence. Neurooncol Adv 2019; 1:vdz027. [PMID: 31763624 PMCID: PMC6860004 DOI: 10.1093/noajnl/vdz027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High-intensity therapy effectively treats most TP53 wild-type (TP53-WT) Sonic Hedgehog-subgroup medulloblastomas (SHH-MBs), but often cause long-term deleterious neurotoxicities in children. Recent clinical trials investigating reduction/de-escalation of therapy for TP53-WT SHH-MBs caused poor overall survival. Here, we investigated whether reduced levels of p53-pathway activation by low-intensity therapy potentially contribute to diminished therapeutic efficacy. METHODS Using mouse SHH-MB models with different p53 activities, we investigated therapeutic efficacy by activating p53-mediated cell-cycle arrest versus p53-mediated apoptosis on radiation-induced recurrence. RESULTS Upon radiation treatment, p53WT-mediated apoptosis was sufficient to eliminate all SHH-MB cells, including Sox2+ cells. The same treatment eliminated most Sox2- bulk tumor cells in SHH-MBs harboring p53 R172P, an apoptosis-defective allele with cell-cycle arrest activity, via inducing robust neuronal differentiation. Rare quiescent Sox2+ cells survived radiation-enhanced p53R172P activation and entered a proliferative state, regenerating tumors. Transcriptomes of Sox2+ cells resembled quiescent Nestin-expressing progenitors in the developing cerebellum, expressing Olig2 known to suppress p53 and p21 expression. Importantly, high SOX2 expression is associated with poor survival of all four SHH-MB subgroups, independent of TP53 mutational status. CONCLUSIONS Quiescent Sox2+ cells are efficiently eliminated by p53-mediated apoptosis, but not cell-cycle arrest and differentiation. Their survival contributes to tumor recurrence due to insufficient p53-pathway activation.
Collapse
Affiliation(s)
- Daniel M Treisman
- Cellular and Molecular Biology Graduate Program, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Gilbert Family Neurofibromatosis Institute, Washington, DC
- Center for Cancer and Immunology Research, Washington, DC
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| | - Yinghua Li
- Gilbert Family Neurofibromatosis Institute, Washington, DC
- Center for Cancer and Immunology Research, Washington, DC
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| | - Brianna R Pierce
- Gilbert Family Neurofibromatosis Institute, Washington, DC
- Center for Cancer and Immunology Research, Washington, DC
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| | - Chaoyang Li
- Gilbert Family Neurofibromatosis Institute, Washington, DC
- Center for Cancer and Immunology Research, Washington, DC
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| | - Andrew P Chervenak
- Cellular and Molecular Biology Graduate Program, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Gerald J Tomasek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Guillermina Lozano
- Department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, The GW School of Medicine and Health Sciences, The GW Cancer Center, Washington, DC
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yuan Zhu
- Cellular and Molecular Biology Graduate Program, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Gilbert Family Neurofibromatosis Institute, Washington, DC
- Center for Cancer and Immunology Research, Washington, DC
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| |
Collapse
|
147
|
Menyhárt O, Győrffy B. Principles of tumorigenesis and emerging molecular drivers of SHH-activated medulloblastomas. Ann Clin Transl Neurol 2019; 6:990-1005. [PMID: 31139698 PMCID: PMC6529984 DOI: 10.1002/acn3.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
SHH-activated medulloblastomas (SHH-MB) account for 25-30% of all medulloblastomas (MB) and occur with a bimodal age distribution, encompassing many infant and adult, but fewer childhood cases. Different age groups are characterized by distinct survival outcomes and age-specific alterations of regulatory pathways. Here, we review SHH-specific genetic aberrations and signaling pathways. Over 95% of SHH-MBs contain at least one driver event - the activating mutations frequently affect sonic hedgehog signaling (PTCH1, SMO, SUFU), genome maintenance (TP53), and chromatin modulation (KMT2D, KMT2C, HAT complexes), while genes responsible for transcriptional regulation (MYCN) are recurrently amplified. SHH-MBs have the highest prevalence of damaging germline mutations among all MBs. TP53-mutant MBs are enriched among older children and have the worst prognosis among all SHH-MBs. Numerous genetic aberrations, including mutations of TERT, DDX3X, and the PI3K/AKT/mTOR pathway are almost exclusive to adult patients. We elaborate on the newest development within the evolution of molecular subclassification, and compare proposed risk categories across emerging classification systems. We discuss discoveries based on preclinical models and elaborate on the applicability of potential new therapies, including BET bromodomain inhibitors, statins, inhibitors of SMO, AURK, PLK, cMET, targeting stem-like cells, and emerging immunotherapeutic strategies. An enormous amount of data on the genetic background of SHH-MB have accumulated, nevertheless, subgroup affiliation does not provide reliable prediction about response to therapy. Emerging subtypes within SHH-MB offer more layered risk stratifications. Rational clinical trial designs with the incorporation of available molecular knowledge are inevitable. Improved collaboration across the scientific community will be imperative for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics Semmelweis University H-1094 Budapest Hungary.,MTA TTK Lendület Cancer Biomarker Research Group Institute of Enzymology Hungarian Academy of Sciences Magyar tudósok körútja 2 Budapest Hungary
| |
Collapse
|
148
|
Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019; 363:1170-1175. [PMID: 30872516 PMCID: PMC7757338 DOI: 10.1126/science.aaw3535] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed a major increase in our understanding of the genetic underpinnings of childhood cancer. Genomic sequencing studies have highlighted key differences between pediatric and adult cancers. Whereas many adult cancers are characterized by a high number of somatic mutations, pediatric cancers typically have few somatic mutations but a higher prevalence of germline alterations in cancer predisposition genes. Also noteworthy is the remarkable heterogeneity in the types of genetic alterations that likely drive the growth of pediatric cancers, including copy number alterations, gene fusions, enhancer hijacking events, and chromoplexy. Because most studies have genetically profiled pediatric cancers only at diagnosis, the mechanisms underlying tumor progression, therapy resistance, and metastasis remain poorly understood. We discuss evidence that points to a need for more integrative approaches aimed at identifying driver events in pediatric cancers at both diagnosis and relapse. We also provide an overview of key aspects of germline predisposition for cancer in this age group.
Collapse
Affiliation(s)
- E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, CA 94158, USA.
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
149
|
Radiotherapy Advances in Paediatric Medulloblastoma Treatment. Clin Oncol (R Coll Radiol) 2019; 31:171-181. [DOI: 10.1016/j.clon.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
150
|
Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 2019; 23:261-273. [PMID: 30835699 PMCID: PMC6823600 DOI: 10.3171/2018.10.peds18377] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Brain tumors are the most common solid tumors in children, and, unfortunately, many subtypes continue to have a suboptimal long-term outcome. During the last several years, however, remarkable advances in our understanding of the molecular underpinnings of these tumors have occurred as a result of high-resolution genomic, epigenetic, and transcriptomic profiling, which have provided insights for improved tumor categorization and molecularly directed therapies. While tumors such as medulloblastomas have been historically grouped into standard- and high-risk categories, it is now recognized that these tumors encompass four or more molecular subsets with distinct clinical and molecular characteristics. Likewise, high-grade glioma, which for decades was considered a single high-risk entity, is now known to comprise multiple subsets of tumors that differ in terms of patient age, tumor location, and prognosis. The situation is even more complex for ependymoma, for which at least nine subsets of tumors have been described. Conversely, the majority of pilocytic astrocytomas appear to result from genetic changes that alter a single, therapeutically targetable molecular pathway. Accordingly, the present era is one in which treatment is evolving from the historical standard of radiation and conventional chemotherapy to a more nuanced approach in which these modalities are applied in a risk-adapted framework and molecularly targeted therapies are implemented to augment or, in some cases, replace conventional therapy. Herein, the authors review advances in the categorization and treatment of several of the more common pediatric brain tumors and discuss current and future directions in tumor management that hold significant promise for patients with these challenging tumors.
Collapse
|