101
|
|
102
|
Haider N, Fatima S, Taha M, Rizwanullah M, Firdous J, Ahmad R, Mazhar F, Khan MA. Nanomedicines in Diagnosis and Treatment of Cancer: An Update. Curr Pharm Des 2020; 26:1216-1231. [DOI: 10.2174/1381612826666200318170716] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
:
Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery
of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated
or conjugated to nanosystems and accessed to the tumor environment through the passive targeting
approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation
of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system.
Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with
the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy.
Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine
is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as
molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate
systems.
Collapse
Affiliation(s)
- Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Sana Fatima
- Department of Ilmul Saidla, National Institute of Unani Medicine, Bengaluru-560091, India
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jamia Firdous
- Department of Pharmacy, Institute of Bio-Medical Education and Research, Mangalayatan University, Aligarh, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY 11101, United States
| | - Faizan Mazhar
- Department of Bio-medical and Clinical Science, University of Milan, Italy
| | - Mohammad A. Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
103
|
Wang W, Fliedner FP, Hansen AE, Eliasen R, Melander F, Kjaer A, Andresen TL, Jensen AI, Henriksen JR. Preclinical evaluation of cationic DOTA-triarginine-lipid conjugates for theranostic liquid brachytherapy. Nanotheranostics 2020; 4:142-155. [PMID: 32483520 PMCID: PMC7256013 DOI: 10.7150/ntno.44562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid brachytherapy is an emerging technology for internal radiation therapy where liquids containing radionuclides are administered directly into solid tumors. These technologies are less invasive than conventional brachytherapy, and can potentially improve the dose coverage and homogeneity of the radioactivity distribution within the tumor. For this purpose, we have developed a novel cationic micelle system for delivery of a range of radionuclides. The system is applicable for emitters of alpha, beta or photon radiation, and enables dose-mapping via theranostic nuclear imaging. Methods: The cationic micelles were developed as linear surfactants comprising the chelator DOTA, a triarginine sequence and a palmitoyl or stearoyl fatty acid chain. The critical micelle concentration of the surfactants was determined, and the micelles were radiolabelled with 64Cu or 177Lu in high radiochemical purity (>95%). The tumor retention and biodistribution of the 64Cu-radiolabeled surfactants, administered as micelles or formulated in liposomes, were investigated in vivo by PET/CT in a tumor bearing mouse model. Results: The interaction of the micelles with anionic lipid membranes was demonstrated to be favourable, using a liposome partition assay. In vivo, the surfactants formulated both as cationic micelles and liposomes displayed the best intratumoral retention, with micelles providing more homogeneous activity distribution. Conclusion: A cationic, surfactant-based drug delivery system was developed and demonstrated promise as a vehicle for liquid brachytherapy when formulated as micelles or in liposomes. The system enables accurate dosimetry due to the flexible radiochemistry of DOTA.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Frederikke P Fliedner
- Rigshospitalet and University of Copenhagen, Dept. of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, 2100 Copenhagen, Denmark
| | - Anders E Hansen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Rigshospitalet and University of Copenhagen, Dept. of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, 2100 Copenhagen, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Rasmus Eliasen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Fredrik Melander
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Andreas Kjaer
- Rigshospitalet and University of Copenhagen, Dept. of Clinical Physiology, Nuclear Medicine & PET, Cluster for Molecular Imaging, 2100 Copenhagen, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Andreas I Jensen
- The Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, DK, 4000 Roskilde, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet Building 423, DK 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
104
|
Datta P, Ray S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J Labelled Comp Radiopharm 2020; 63:333-355. [PMID: 32220029 DOI: 10.1002/jlcr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Application of nanotechnology principles in drug delivery has created opportunities for treatment of several diseases. Nanotechnology offers the advantage of overcoming the adverse biopharmaceutics or pharmacokinetic properties of drug molecules, to be determined by the transport properties of the particles themselves. Through the manipulation of size, shape, charge, and type of nanoparticle delivery system, variety of distribution profiles may be obtained. However, there still exists greater need to derive and standardize definitive structure property relationships for the distribution profiles of the delivery system. When applied to radiopharmaceuticals, the delivery systems assume greater significance. For the safety and efficacy of both diagnostics and therapeutic radiopharmaceuticals, selective localization in target tissue is even more important. At the same time, the synthesis and fabrication reactions of radiolabelled nanoparticles need to be completed in much shorter time. Moreover, the extensive understanding of the several interesting optical and magnetic properties of materials in nanoscale provides for achieving multiple objectives in nuclear medicine. This review discusses the various nanoparticle systems, which are applied for radionuclides and analyses the important bottlenecks that are required to be overcome for their more widespread clinical adaptation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | | |
Collapse
|
105
|
Carvalho SG, Araujo VHS, Dos Santos AM, Duarte JL, Silvestre ALP, Fonseca-Santos B, Villanova JCO, Gremião MPD, Chorilli M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 2020; 580:119214. [PMID: 32165220 DOI: 10.1016/j.ijpharm.2020.119214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
To ensure success in the development and manufacturing of nanomedicines requires forces of an interdisciplinary team that combines medicine, engineering, chemistry, biology, material and pharmaceutical areas. Numerous researches in nanotechnology applied to human health are available in the literature. Althought, the lack of nanotechnology-based pharmaceuticals products for use exclusively in veterinary pharmacotherapy creates a potential area for the development of innovative products, as these animal health studies are still scarce when compared to studies in human pharmacotherapy. Nano-dosage forms can ensure safer and more effective pharmacotherapy for animals and can more be safer for the consumers of livestock products, once they can offer higher selectivity and smaller toxicity associated with lower doses of the drugs. In addition, the development and production of nanomedicines may consolidate the presence of pharmaceutical laboratories in the global market and can generate greater profit in a competitive business environment. To contribute to this scenario, this article provides a review of the main nanocarriers used in nanomedicines for veterinary use, with emphasis on liposomes, nanoemulsions, micelles, lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, metallic nanoparticles and dendrimers, and the state of the art of application of these nanocarriers in drug delivery systems to animal use. Finnaly, the major challenges involved in research, scale-up studies, large-scale manufacture, analytical methods for quality assessment, and regulatory aspects of nanomedicines were discussed.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, SP, Brazil
| | - Janaina Cecília Oliveira Villanova
- Laboratory of Pharmaceutical Production, Departament of Pharmacy and Nutrition - Federal University of Espirito Santo (UFES), 29500-000 Alegre, ES, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| |
Collapse
|
106
|
Chen H, Luan X, Paholak HJ, Burnett JP, Stevers NO, Sansanaphongpricha K, He M, Chang AE, Li Q, Sun D. Depleting tumor-associated Tregs via nanoparticle-mediated hyperthermia to enhance anti-CTLA-4 immunotherapy. Nanomedicine (Lond) 2020; 15:77-92. [PMID: 31868112 PMCID: PMC7132783 DOI: 10.2217/nnm-2019-0190] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Aim: We aim to demonstrate that a local nanoparticle-mediated hyperthermia can effectively eliminate tumor-associated Tregs and thereby boost checkpoint blockade-based immunotherapy. Materials & methods: Photothermal therapy (PTT), mediated with systemically administered stealthy iron-oxide nanoparticles, was applied to treat BALB/c mice bearing 4T1 murine breast tumors. Flow cytometry was applied to evaluate both Treg and CD8+ T-cell population. Tumor growth following combination therapy of both PTT and anti-CTLA-4 was further evaluated. Results: Our data reveal that tumor-associated Tregs can be preferentially depleted via iron-oxide nanoparticles-mediated PTT. When combining PTT with anti-CTLA-4 immunotherapy, we demonstrate a significant inhibition of syngeneic 4T1 tumor growth. Conclusion: This study offers a novel strategy to overcome Treg-mediated immunosuppression and thereby to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Luan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hayley J Paholak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph P Burnett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas O Stevers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kanokwan Sansanaphongpricha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Current address: National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alfred E Chang
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiao Li
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
107
|
Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics 2020; 10:462-483. [PMID: 31903132 PMCID: PMC6929974 DOI: 10.7150/thno.37593] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
Drug delivery for tumor theranostics involves the extensive use of the enhanced permeability and retention (EPR) effect. Previously, various types of nanomedicines have been demonstrated to accumulate in solid tumors via the EPR effect. However, EPR is a highly variable phenomenon because of tumor heterogeneity, resulting in low drug delivery efficacy in clinical trials. Because ultrasonication using micro/nanobubbles as contrast agents can disrupt blood vessels and enhance the specific delivery of drugs, it is an effective approach to improve the EPR effect for the passive targeting of tumors. In this review, the basic thermal effect, acoustic streaming, and cavitation mechanisms of ultrasound, which are characteristics that can be utilized to enhance the EPR effect, are briefly introduced. Second, micro/nanobubble-enhanced ultrasound imaging is discussed to understand the validity and variability of the EPR effect. Third, because the tumor microenvironment is complicated owing to elevated interstitial fluid pressure and the deregulated extracellular matrix components, which may be unfavorable for the EPR effect, few new trends in smart bubble drug delivery systems, which may improve the accuracy of EPR-mediated passive drug targeting, are summarized. Finally, the challenging and major concerns that should be considered in the next generation of micro/nanobubble-contrast-enhanced ultrasound theranostics for EPR-mediated passive drug targeting are also discussed.
Collapse
Affiliation(s)
- Lei Duan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Li Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Juan Jin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Dong Liu
- West Anhui University, Lu'an, P.R. China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, P. R. China
| | - Ke Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qinxin Wang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuanbin Yue
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
108
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
109
|
Thomas OS, Weber W. Overcoming Physiological Barriers to Nanoparticle Delivery-Are We There Yet? Front Bioeng Biotechnol 2019; 7:415. [PMID: 31921819 PMCID: PMC6928054 DOI: 10.3389/fbioe.2019.00415] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
The exploitation of nanosized materials for the delivery of therapeutic agents is already a clinical reality and still holds unrealized potential for the treatment of a variety of diseases. This review discusses physiological barriers a nanocarrier must overcome in order to reach its target, with an emphasis on cancer nanomedicine. Stages of delivery include residence in the blood stream, passive accumulation by virtue of the enhanced permeability and retention effect, diffusion within the tumor lesion, cellular uptake, and arrival at the site of action. We also briefly outline strategies for engineering nanoparticles to more efficiently overcome these challenges: Increasing circulation half-life by shielding with hydrophilic polymers, such as PEG, the limitations of PEG and potential alternatives, targeting and controlled activation approaches. Future developments in these areas will allow us to harness the full potential of nanomedicine.
Collapse
Affiliation(s)
- Oliver S. Thomas
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
110
|
Beckford Vera DR, Fontaine SD, VanBrocklin HF, Hearn BR, Reid R, Ashley GW, Santi DV. PET Imaging of the EPR Effect in Tumor Xenografts Using Small 15 nm Diameter Polyethylene Glycols Labeled with Zirconium-89. Mol Cancer Ther 2019; 19:673-679. [PMID: 31744896 DOI: 10.1158/1535-7163.mct-19-0709] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
Abstract
The goal was to develop and characterize a companion diagnostic for the releasable PEG40kDa∼SN-38 oncology drug, PLX038, that would identify tumors susceptible to high accumulation of PLX038. PEG conjugates of the zirconium ligand desferroxamine B (DFB) of similar size and charge to PLX038 were prepared that contained one or four DFB, as well as one that contained three SN-38 moieties and one DFB. Uptake and associated kinetic parameters of the 89Zr-labeled nanocarriers were determined in tumor and normal tissues in mice using μPET/CT imaging. The data were fit to physiologically based pharmacokinetic models to simulate the mass-time profiles of distribution of conjugates in the tissues of interest. The time-activity curves for normal tissues showed high levels at the earliest time of measurement due to vascularization, followed by a monophasic loss. In tumors, levels were initially lower than in normal tissues but increased to 9% to 14% of injected dose over several days. The efflux half-life in tumors was very long, approximately 400 hours, and tumor levels remained at about 10% injected dose 9 days after injection. Compared with diagnostic liposomes, the PEG nanocarriers have a longer serum half-life, are retained in tumors at higher levels, remain there longer, and afford higher tumor exposure. The small PEG40kDa nanocarriers studied here show properties for passive targeting of tumors that are superior than most nanoparticles and might be effective probes to identify tumors susceptible to similar size therapeutic nanocarriers such as PLX038.
Collapse
Affiliation(s)
- Denis R Beckford Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
111
|
Mattheolabakis G, Mikelis CM. Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg? Front Oncol 2019; 9:1227. [PMID: 31799190 PMCID: PMC6863425 DOI: 10.3389/fonc.2019.01227] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-induced angiogenesis has been a significant focus of anti-cancer therapies for several decades. The immature and "leaky" tumor vasculature leads to significant cancer cell intravasation, increasing the metastatic potential, while the disoriented and hypo-perfused tumor vessels hamper the anti-tumor efficacy of immune cells and prevent the efficient diffusion of chemotherapeutic drugs. Therefore, tumor vascular normalization has emerged as a new treatment goal, aiming to provide a mature tumor vasculature, with higher perfusion, decreased cancer cell extravasation, and higher efficacy for anti-cancer therapies. Here we propose an overview of the nanodelivery approaches that target tumor vasculature, aiming to achieve vascular normalization. At the same time, abnormal vascular architecture and leaky tumor vessels have been the cornerstone for nanodelivery approaches through the enhanced permeability and retention (EPR) effect. Vascular normalization presents new opportunities and requirements for efficient nanoparticle delivery against the tumor cells and overall improved anti-cancer therapies.
Collapse
Affiliation(s)
- George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States
| |
Collapse
|
112
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
113
|
Juhl K, Christensen A, Rubek N, Karnov KKS, von Buchwald C, Kjaer A. Improved surgical resection of metastatic pancreatic cancer using uPAR targeted in vivo fluorescent guidance: comparison with traditional white light surgery. Oncotarget 2019; 10:6308-6316. [PMID: 31695839 PMCID: PMC6824874 DOI: 10.18632/oncotarget.27220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers. The five-year survival rates have been reported as 3%. Radical surgical tumor resection is critical for improved outcome and the low survival rate for pancreatic cancer is due to lack of other effective treatments and here optical guided surgery could be a solution for better surgical outcome. In the present study, we targeted the urokinase plasminogen activator receptor (uPAR) with a peptide conjugated with the fluophore ICG (ICG-Glu-Glu-AE105) for optical imaging. In the first part of the study we aimed to validate ICG-Glu-Glu-AE105 for resection of the primary tumor and metastases in an orthotopic human xenograft pancreatic cancer model. In the second part of the study we aimed to investigate if fluorescent-guided imaging could locate additional metastases following conventional removal of metastasis under normal white light surgery. Our study showed that ICG-Glu-Glu-AE105 was an excellent probe for intraoperative optical imaging with a mean tumor-to-background ratio (TBR) for the primary tumor of 3.5 and a TBR for the metastases of 3.4. Further, a benefit using intraoperative fluorescent guidance yielded identification of an additional 14% metastases compared to using normal white light surgery. In 4 of 8 mice there were identified additional metastases with uPAR optical imaging compared to white light. In conclusion, the uPAR-targeted optical probe ICG-Glu-Glu-AE105 enables intraoperative optical cancer imaging, including robotic surgery, and may be a benefit during intended radical resection of disseminated pancreas cancer by finding more metastasis than with traditional white light surgery.
Collapse
Affiliation(s)
- Karina Juhl
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niclas Rubek
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Kim Schmidt Karnov
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Kirstine Kim Schmidt Karnov sadly passed away before publishing of this article. We will miss her and our thoughts are with her family
| | - Christian von Buchwald
- Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
114
|
Dhaliwal A, Zheng G. Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics 2019; 9:8091-8108. [PMID: 31754383 PMCID: PMC6857058 DOI: 10.7150/thno.37204] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
The enhanced permeability and retention (EPR) effect has underlain the predominant nanomedicine design philosophy for the past three decades. However, growing evidence suggests that it is over-represented in preclinical models, and agents designed solely using its principle of passive accumulation can only be applied to a narrow subset of clinical tumors. For this reason, strategies that can improve upon the EPR effect to facilitate nanomedicine delivery to otherwise non-responsive tumors are required for broad clinical translation. EPR-adaptive nanomedicine delivery comprises a class of chemical and physical techniques that modify tumor accessibility in an effort to increase agent delivery and therapeutic effect. In the present review, we overview the primary benefits and limitations of radiation, ultrasound, hyperthermia, and photodynamic therapy as physical strategies for EPR-adaptive delivery to EPR-insensitive tumor phenotypes, and we reflect upon changes in the preclinical research pathway that should be implemented in order to optimally validate and develop these delivery strategies.
Collapse
Affiliation(s)
- Alexander Dhaliwal
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- MD/PhD Program, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|
115
|
Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery. Theranostics 2019; 9:8018-8025. [PMID: 31754378 PMCID: PMC6857052 DOI: 10.7150/thno.38587] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Numerous nano drug delivery systems have been developed for preclinical cancer research in the past 15 years with the hope for a fundamental change in oncology. The robust nanotherapeutic research has yielded early-stage clinical products as exemplified by the FDA-approved nano formulations (Abraxane® for paclitaxel and Onyvide® for irinotecan) for the treatment of solid tumors, including pancreatic ductal adenocarcinoma (PDAC). It is generally believed that enhanced permeability and retention (EPR) plays a key role in nanocarriers' accumulation in preclinical tumor models and is a clinically relevant phenomenon in certain cancer types. However, use of EPR effect as an across-the-board explanation for nanoparticle tumor access is likely over-simplified, particularly in the stroma rich solid tumors such as PDAC. Recently, ample evidences including our own data showed that it is possible to use transcytosis as a major mechanism for PDAC drug delivery. In this mini-review, we summarize the key studies that discuss how transcytosis can be employed to enhance EPR effect in PDAC, and potentially, other cancer malignancies. We also mentioned other vasculature engineering approaches that work beyond the classic EPR effect.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
116
|
Huang J, Guo P, Moses MA. Rationally Designed Antibody Drug Conjugates Targeting the Breast Cancer-Associated Endothelium. ACS Biomater Sci Eng 2019; 6:2563-2569. [PMID: 33463296 DOI: 10.1021/acsbiomaterials.9b01060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The promise of antiangiogenic therapy for the treatment of breast cancer has been limited by the inability to selectively disrupt the established tumor vasculature. Here, we report the development of rationally designed antibody drug conjugates (ADCs) that can selectively recognize and attack breast tumor-associated endothelial cells (BTECs), while sparing normal endothelial cells (NECs). We first performed a quantitative and unbiased screening of a panel of cancer-related antigens on human BTECs and identified CD105 as the optimal ADC target on these cells. We then used clinically approved ADC linkers and cytotoxic drugs to engineer two CD105-targeted ADCs: CD105-DM1 and CD105-MMAE and evaluated their in vitro efficacy in human BTECs and NECs. We found that both CD105-DM1 and CD105-MMAE exhibited highly potent and selective cytotoxicity against BTECs with IC50 values of 3.2 and 3.7 nM, respectively, significantly lower than their IC50 values on NECs (8-13 fold). Our proof-of-principle study suggests that CD105-targeted ADCs are promising antiangiogenic agents that have the potential to be used to inhibit the established tumor vasculature of breast tumors in a safe and precise manner.
Collapse
Affiliation(s)
- Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
117
|
Abstract
The poor pharmacokinetic parameters and low solubility of many anticancer therapeutics have warranted the use of drug-delivery systems such as liposomes. Overcoming some drawbacks of the conventional liposomes, targeted liposomal delivery by longer circulation time by addition of poly(ethylene glycol) to the liposomal surface and further adding specific ligands to achieve ligand selective retention and uptake has been introduced. PEGylated liposomes are the only second-generation liposomal formulations in clinical use and are now being challenged with the allergenic response they pose even in the treatment of naive patients. This article will review the challenges and hindrances in the use of long circulating liposomes and explore the opportunities to overcome this issue.
Collapse
|
118
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
119
|
Zhou P, Wu S, Hegazy M, Li H, Xu X, Lu H, Huang X. Engineered borate ester conjugated protein-polymer nanoconjugates for pH-responsive drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109914. [PMID: 31500030 DOI: 10.1016/j.msec.2019.109914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022]
Abstract
To improve the clinical efficiency of cytotoxic anticancer drugs e.g. doxorubicin (DOX), reduce the severe off-target side effects, and allow the more biocompatible and biodegradable drug penetration into tumor cells, our research efforts developed a new DOX-conjugated protein polymer nanoconjugates (PPNCs) prodrugs delivery system. Briefly, DOX was conjugated to bovine serum albumin (BSA) and the complex was treated with lactobionic acid (LA) as well as folic acid (FA) to enhance drug endocytosis and targeting selectivity. Such functionalized BSA could be conjugated with a designed phenylboronic acid functionalized poly(N-isopropylacrylamide) (PNIPAAm) via forming a pH-sensitive borate ester bond to give the functionalized PPNCs prodrugs. The potential of the PPNCs prodrugs on tumor cells therapy was systematically evaluated in dose/time-dependent effects. In vitro results showed a rapid accumulation of the prodrugs into the MDA-MB-231 tumor cell during the first 30 min and reached maximum at 24 h. Moreover, the cell-killing effect was observed quickly after 4 h incubation with an IC50 of 0.5 mg/mL (≈4 μM/L). In general, given the efficient pH-dependent DOX release of these constructed nanoconjugates, it is anticipated to contribute a potential delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Pei Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Wu
- The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China; INSERM UMR-S 1165/Université Paris Diderot, IUH, Hôpital Saint-Louis, Paris 75010, France
| | - Mohammad Hegazy
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hong Li
- INSERM U1234/University, Faculty of Medicine and Pharmacy, Rouen, France
| | - Xueju Xu
- The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - He Lu
- INSERM UMR-S 1165/Université Paris Diderot, IUH, Hôpital Saint-Louis, Paris 75010, France
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
120
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
121
|
Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18:273-294. [PMID: 30542076 DOI: 10.1038/s41573-018-0005-0] [Citation(s) in RCA: 529] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
122
|
Caster JM, Callaghan C, Seyedin SN, Henderson K, Sun B, Wang AZ. Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Adv Drug Deliv Rev 2019; 144:3-15. [PMID: 31330165 PMCID: PMC11849717 DOI: 10.1016/j.addr.2019.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy is one of the fastest growing and most promising fields in clinical oncology. T-cell checkpoint inhibitors are revolutionizing the management of advanced cancers including non-small cell lung cancer and melanoma. Unfortunately, many common cancers are not responsive to these drugs and resistance remains problematic. A growing number of novel cancer immunotherapies have been discovered but their clinical translation has been limited by shortcomings of conventional drug delivery. Immune signaling is tightly-regulated and often requires simultaneous or near-simultaneous activation of multiple signals in specific subpopulations of immune cells. Nucleic acid therapies, which require intact intracellular delivery, are among the most promising approaches to modulate the tumor microenvironment to a pro-immunogenic phenotype. Advanced nanomedicines can be precisely engineered to overcome many of these limitations and appear well-poised to enable the clinical translation of promising cancer immunotherapies.
Collapse
Affiliation(s)
- Joseph M Caster
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Cameron Callaghan
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kelly Henderson
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bo Sun
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, Lineberger Comprehensive Cancer Center, Department of Radiation Oncology, University of North Carolina at Chapel Hill, USA
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, Lineberger Comprehensive Cancer Center, Department of Radiation Oncology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
123
|
Xia Y, Xu C, Zhang X, Ning P, Wang Z, Tian J, Chen X. Liposome-based probes for molecular imaging: from basic research to the bedside. NANOSCALE 2019; 11:5822-5838. [PMID: 30888379 DOI: 10.1039/c9nr00207c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Molecular imaging is very important in disease diagnosis and prognosis. Liposomes are excellent carriers for different types of molecular imaging probes. In this work, we summarize current developments in liposome-based probes used for molecular imaging and their applications in image-guided drug delivery and tumour surgery, including computed tomography (CT), ultrasound imaging (USI), magnetic resonance imaging (MRI), positron emission tomography (PET), fluorescence imaging (FLI) and photoacoustic imaging (PAI). We also summarized liposome-based multimodal imaging probes and new targeting strategies for liposomes. This work will offer guidance for the design of liposome-based imaging probes for future clinical applications.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | | | | | |
Collapse
|
124
|
Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019; 143:134-160. [PMID: 31170428 PMCID: PMC6866902 DOI: 10.1016/j.addr.2019.05.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The integration of nuclear imaging with nanomedicine is a powerful tool for efficient development and clinical translation of liposomal drug delivery systems. Furthermore, it may allow highly efficient imaging-guided personalised treatments. In this article, we critically review methods available for radiolabelling liposomes. We discuss the influence that the radiolabelling methods can have on their biodistribution and highlight the often-overlooked possibility of misinterpretation of results due to decomposition in vivo. We stress the need for knowing the biodistribution/pharmacokinetics of both the radiolabelled liposomal components and free radionuclides in order to confidently evaluate the images, as they often share excretion pathways with intact liposomes (e.g. phospholipids, metallic radionuclides) and even show significant tumour uptake by themselves (e.g. some radionuclides). Finally, we describe preclinical and clinical studies using radiolabelled liposomes and discuss their impact in supporting liposomal drug development and clinical translation in several diseases, including personalised nanomedicine approaches.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Peter J Gawne
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand Campus, London WC2R 2LS, United Kingdom.
| |
Collapse
|
125
|
Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor for Enhanced Cancer Chemotherapy and Radiotherapy. NANO LETTERS 2019; 19:805-815. [PMID: 30592897 DOI: 10.1021/acs.nanolett.8b03905] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amplification of intracellular oxidative stress has been found to be an effective strategy to induce cancer cell death. To this end, we prepare a unique type of ultrasmall gallic acid-ferrous (GA-Fe(II)) nanocomplexes as the catalyst of Fenton reaction to enable persistent conversion of H2O2 to highly cytotoxic hydroxyl radicals (•OH). Then, both GA-Fe(II) and l-buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, are coencapsulated within a stealth liposomal nanocarrier. Interestingly, the obtained BSO/GA-Fe(II)@liposome is able to efficiently amplify intracellular oxidative stress via increasing •OH generation and reducing GSH biosynthesis. After chelating with 99mTc4+ radioisotope, such BSO/GA-Fe(II)@liposome could be tracked under in vivo single-photon-emission-computed-tomography (SPECT) imaging, which illustrates the time-dependent tumor homing of such liposomal nanoparticles after intravenous injection. With GA-Fe(II)-mediated •OH production and BSO-mediated GSH depletion, treatment with such BSO/GA-Fe(II)@liposome would lead to dramatically enhanced intratumoral oxidative stresses, which then result in remarkably improved therapeutic efficacies of concurrently applied chemotherapy or radiotherapy. This work thus presents the concise fabrication of biocompatible BSO/GA-Fe(II)@liposome as an effective adjuvant nanomedicine to promote clinically used conventional cancer chemotherapy and radiotherapy, by greatly amplifying the intratumoral oxidative stress.
Collapse
Affiliation(s)
- Ziliang Dong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Yu Chao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Yu Hao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Muchao Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Fei Gong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Xiao Han
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Rui Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Liang Cheng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , P.R. China
| |
Collapse
|
126
|
Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10:113-132. [DOI: 10.4155/tde-2018-0062] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The emergence of nanomedicine as an innovative and promising alternative technology shows many advantages over conventional cancer therapies and provides new opportunities for early detection, improved treatment, and diagnosis of cancer. Despite the cancer nanomedicines’ capability of delivering chemotherapeutic agents while providing lower systemic toxicity, it is paramount to consider the cancer complexity and dynamics for bridging the translational bench-to-bedside gap. It is important to conduct appropriate investigations for exploiting the tumor microenvironment, and achieving a more comprehensive understanding of the fundamental biological processes in cancer and their roles in modulating nanoparticle–protein interactions, blood circulation, and tumor penetration. This review provides an overview of the current cancer nanomedicines, the major challenges, and the future opportunities in this research area.
Collapse
|
127
|
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1252-1276. [PMID: 30813007 DOI: 10.1016/j.msec.2019.01.066] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/02/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
In tumorous tissues, the absence of vasculature supportive tissues intimates the formation of leaky vessels and pores (100 nm to 2 μm in diameter) and the poor lymphatic system offers great opportunity to treat cancer and the phenomenon is known as Enhanced permeability and retention (EPR) effect. The trends in treating cancer by making use of EPR effect is increasing day by day and generate multitudes of possibility to design novel anticancer therapeutics. This review aimed to present various factors affecting the EPR effect along with important things to know about EPR effect such as tumor perfusion, lymphatic function, interstitial penetration, vascular permeability, nanoparticle retention etc. This manuscript expounds the current advances and cross-talks the developments made in the of EPR effect-based therapeutics in cancer therapy along with a transactional view of its current clinical and industrial aspects.
Collapse
Affiliation(s)
- Dnyaneshwar Kalyane
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
128
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
129
|
He K, Li J, Shen Y, Yu Y. pH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement. J Mater Chem B 2019; 7:6840-6854. [PMID: 31609370 DOI: 10.1039/c9tb01654f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Theranostic platforms that combine therapeutic and imaging modalities have received increasing interest.
Collapse
Affiliation(s)
- Kewu He
- Department of Radiology
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| | - Jiajia Li
- Central Laboratory
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| | - Yuxian Shen
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- China
| | - Yongqiang Yu
- Department of Radiology
- The First Affiliated Hospital of Anhui Medical University
- Hefei
- China
| |
Collapse
|
130
|
Zhu XJ, Li RF, Xu L, Yin H, Chen L, Yuan Y, Zhong W, Lin J. A Novel Self-Assembled Mitochondria-Targeting Protein Nanoparticle Acting as Theranostic Platform for Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803428. [PMID: 30450734 DOI: 10.1002/smll.201803428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Indexed: 06/09/2023]
Abstract
Self-assembled protein nanoparticles have attracted much attention in biomedicine because of their biocompatibility and biodegradability. Protein nanoparticles have become widely utilized as diagnostic or therapeutic agents for various cancers. However, there are no reports that protein nanoparticles can specifically target mitochondria. This targeting is desirable, since mitochondria are critical in the development of cancer cells. In this study, the discovery of a novel self-assembled metal protein nanoparticle, designated GST-MT-3, is reported, which targets the mitochondria of cancer cells within 30 min in vitro and rapidly accumulates in tumors within 1 h in vivo. The nanoparticles chelate cobalt ions [GST-MT-3(Co2+ )], which induces reactive oxygen species (ROS) production and reduces the mitochondrial membrane potential. These effects lead to antitumor activity in vivo. GST-MT-3(Co2+ ) with covalently conjugated paclitaxel synergistically suppress tumors and prolong survival. Importantly, the effective dosage of paclitaxel is 50-fold lower than that utilized in standard chemotherapy (0.2 vs 10 mg kg-1 ). To the best of the authors' knowledge, GST-MT-3 is the first reported protein nanoparticle that targets mitochondria. It has the potential to be an excellent platform for combination therapies.
Collapse
Affiliation(s)
- Xin-Jie Zhu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Ri-Fei Li
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Liang Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Hui Yin
- Department of Radiology, Clinical College of 307th Hospital of PLA, Anhui Medical University, 307 Hospital, PLA, Beijing, 100071, China
| | - Long Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Ye Yuan
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Zhong
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking University, Beijing, 100871, China
| |
Collapse
|
131
|
Lee SSY, Bindokas VP, Kron SJ. Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Mol Cancer Ther 2019; 18:213-226. [PMID: 30322947 PMCID: PMC6318001 DOI: 10.1158/1535-7163.mct-18-0554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Macromolecular cancer drugs such as therapeutic antibodies and nanoparticles are well known to display slow extravasation and incomplete penetration into tumors, potentially protecting cancer cells from therapeutic effects. Conventional assays to track macromolecular drug delivery are poorly matched to the heterogeneous tumor microenvironment, but recent progress on optical tissue clearing and three-dimensional (3D) tumor imaging offers a path to quantitative assays with cellular resolution. Here, we apply transparent tissue tomography (T3) as a tool to track perfusion and delivery in the tumor and to evaluate target binding and vascular permeability. Using T3, we mapped anti-programmed cell death protein-ligand 1 (PD-L1) antibody distribution in whole mouse tumors. By measuring 3D penetration distances of the antibody drug out from the blood vessel boundaries into the tumor parenchyma, we determined spatial pharmacokinetics of anti-PD-L1 antibody drugs in mouse tumors. With multiplex imaging of tumor components, we determined the distinct distribution of anti-PD-L1 antibody drug in the tumor microenvironment with different PD-L1 expression patterns. T3 imaging revealed CD31+ capillaries are more permeable to anti-PD-L1 antibody transport compared with the blood vessels composed of endothelium supported by vascular fibroblasts and smooth muscle cells. T3 analysis also confirmed that isotype IgG antibody penetrates more deeply into tumor parenchyma than anti-Her2 or anti-EGFR antibody, which were restrained by binding to their respective antigens on tumor cells. Thus, T3 offers simple and rapid access to 3D, quantitative maps of macromolecular drug distribution in the tumor microenvironment, offering a new tool for development of macromolecular cancer therapeutics.
Collapse
Affiliation(s)
- Steve Seung-Young Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Vytautas P Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
132
|
Børresen B, Henriksen JR, Clergeaud G, Jørgensen JS, Melander F, Elema DR, Szebeni J, Engelholm SA, Kristensen AT, Kjær A, Andresen TL, Hansen AE. Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics. ACS NANO 2018; 12:11386-11398. [PMID: 30372038 DOI: 10.1021/acsnano.8b06266] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The enhanced permeability and retention (EPR) effect increases tumor accumulation of liposomal chemotherapy and should, in theory, increase anticancer effects and lower toxicity. Unfortunately, liposomal chemotherapy has generally not met the expected potential, perhaps because the EPR effect is not ubiquitous. PET imaging using radiolabeled liposomes can identify cancers positive for the EPR effect. In the current study, we show in clinical canine cancer patients that repeated imaging with radiolabeled liposomes (64Cu-liposome) induces the accelerated blood clearance (ABC) phenomenon. This was observed even with very long intervals between PEGylated liposome injections, which contradict previous reporting in experimental animal models. The induction of ABC may be devastating for the theranostic use of liposomal imaging, as this could vaccinate patients against therapeutic efficacy. To investigate and solve this important problem, an additional study part was designed in which rats were subjected to repeated liposomal administrations, including stealth 64Cu-liposome PET imaging and Caelyx chemotherapy. Most importantly, it was found that, by increasing the lipid dose at the first injection or by supplying a small predose before the second 64Cu-liposome injection, ABC could be prevented. Importantly, signs of liposome tracer breakdown with subsequent renal excretion were observed. These findings highlight the importance of the ABC phenomenon for liposomal predictive imaging in a clinically relevant setting and show that carefully planned application is central to avoid potential detrimental effects on patient benefit.
Collapse
Affiliation(s)
- Betina Børresen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , 1870 Frederiksberg C , Denmark
| | - Jonas R Henriksen
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Gael Clergeaud
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Jennifer S Jørgensen
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Fredrik Melander
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Dennis R Elema
- DTU Nutech, Center for Nuclear Technologies , Technical University of Denmark , 4000 Roskilde , Denmark
| | - Janos Szebeni
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1085 , Hungary
| | - Svend Aage Engelholm
- Department of Radiotherapy , Copenhagen University Hospital , 2100 Copenhagen Ø , Denmark
| | - Annemarie T Kristensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , 1870 Frederiksberg C , Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark and Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , 2200 Copenhagen N , Denmark
| | - Thomas L Andresen
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Anders E Hansen
- DTU Nanotech, Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark and Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , 2200 Copenhagen N , Denmark
| |
Collapse
|
133
|
Engudar G, Schaarup-Jensen H, Fliedner FP, Hansen AE, Kempen P, Jølck RI, Kjæer A, Andresen TL, Clausen MH, Jensen AI, Henriksen JR. Remote loading of liposomes with a 124I-radioiodinated compound and their in vivo evaluation by PET/CT in a murine tumor model. Am J Cancer Res 2018; 8:5828-5841. [PMID: 30613265 PMCID: PMC6299439 DOI: 10.7150/thno.26706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
Long circulating liposomes entrapping iodinated and radioiodinated compounds offer a highly versatile theranostic platform. Here we report a new methodology for efficient and high-yield loading of such compounds into liposomes, enabling CT/SPECT/PET imaging and 131I-radiotherapy. Methods: The CT contrast agent diatrizoate was synthetically functionalized with a primary amine, which enabled its remote loading into PEGylated liposomes by either an ammonium sulfate- or a citrate-based pH transmembrane gradient. Further, the amino-diatrizoate was radiolabeled with either 124I (t1/2 = 4.18 days) for PET or 125I (t1/2 = 59.5 days) for SPECT, through an aromatic Finkelstein reaction. Results: Quantitative loading efficiencies (>99%) were achieved at optimized conditions. The 124I-labeled compound was remote-loaded into liposomes, with an overall radiolabeling efficiency of 77 ± 1%, and imaged in vivo in a CT26 murine colon cancer tumor model by PET/CT. A prolonged blood circulation half-life of 19.5 h was observed for the radiolabeled liposomes, whereas injections of the free compound were rapidly cleared. Lower accumulation was observed in the spleen, liver, kidney and tumor than what is usually seen for long-circulating liposomes. Conclusion: The lower accumulation was interpreted as release of the tracer from the liposomes within these organs after accumulation. These results may guide the design of systems for controlled release of remote loadable drugs from liposomes.
Collapse
|
134
|
Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2018; 107:251-285. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in the field of nanotechnology applications in nuclear medicine offer the promise of better diagnostic and therapeutic options. In recent years, increasing efforts have been focused on developing nanoconstructs that can be used as core platforms for attaching medical radionuclides with different strategies for the purposes of molecular imaging and targeted drug delivery. This review article presents an introduction to some commonly used nanomaterials with zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures, describes the various methods applied to radiolabeling of nanomaterials, and provides illustrative examples of application of the nanoscale radionuclides or radiolabeled nanocarriers in nuclear nanomedicine. Especially, the passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy was reviewed and summarized. The accurate and early diagnosis of cancer can lead to increased survival rates for different types of this disease. Although, the conventional single-modality diagnostic methods such as positron emission tomography/single photon emission computed tomography or MRI used for such purposes are powerful means; most of these are limited by sensitivity or resolution. By integrating complementary signal reporters into a single nanoparticulate contrast agent, multimodal molecular imaging can be performed as scalable images with high sensitivity, resolution, and specificity. The advent of radiolabeled nanocarriers or radioisotope-loaded nanomaterials with magnetic, plasmonic, or fluorescent properties has stimulated growing interest in the developing multimodality imaging probes. These new developments in nuclear nanomedicine are expected to introduce a paradigm shift in multimodal molecular imaging and thereby opening up an era of new diagnostic medical imaging agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 251-285, 2019.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Esmaeil Moassesi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
135
|
Adjei IM, Temples MN, Brown SB, Sharma B. Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics 2018; 10:E205. [PMID: 30366428 PMCID: PMC6320768 DOI: 10.3390/pharmaceutics10040205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Bone metastases are common complications of solid tumors, particularly those of the prostate, breast, and lungs. Bone metastases can lead to painful and devastating skeletal-related events (SREs), such as pathological fractures and nerve compressions. Despite advances in treatment for cancers in general, options for bone metastases remain inadequate and generally palliative. Anticancer drugs (chemotherapy and radiopharmaceuticals) do not achieve therapeutic concentrations in the bone and are associated with dose-limiting side effects to healthy tissues. Nanomedicines, with their tunable characteristics, have the potential to improve drug targeting to bone metastases while decreasing side effects for their effective treatment. In this review, we present the current state of the art for nanomedicines to treat bone metastases. We also discuss new treatment modalities enhanced by nanomedicine and their effects on SREs and disease progression.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Madison N Temples
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
136
|
Shim G, Kim D, Lee S, Chang RS, Byun J, Oh YK. Staphylococcus aureus-mimetic control of antibody orientation on nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:267-277. [PMID: 30368001 DOI: 10.1016/j.nano.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
We designed a bacterio-mimetic nanoparticle that can noncovalently control the orientation of attached antibodies. Liposomes with Fc-binding peptide (FcBP), formulated using FcBP-conjugated PEGylated lipid, were used as model nanoparticles. Compared with control nanoparticles surface-modified with antibody covalently attached via maleimide functional groups (Mal-NPs), FcBP-capped nanoparticles (FcBP-NPs) exhibited greater binding affinity to the target protein. Human epidermal growth factor receptor 2 (HER2)-specific antibody-modified FcBP-NPs (HER2/FcBP-NPs) showed 5.3-fold higher binding affinity to HER2 than isotype IgG antibody-modified NPs, and 2.6-fold higher affinity compared with anti-HER2 antibody-conjugated Mal-NPs. Cellular uptake of HER2/FcBP-NPs in HER2-positive cells was significantly higher than that of other formulations. The biodistribution of HER2/FcBP-NPs was higher than that of antibody-conjugated NPs in HER2-positive tumor tissues, but not in HER2-negative tumors. Our findings suggest the potential of bacteriomimetic nanoparticles for controlling the orientation of antibody attachment. These nanoparticles may have diverse applications in nanomedicine, including drug delivery, molecular imaging, and diagnosis.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangbin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rae Sung Chang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
137
|
Abstract
Nanotechnology-based imaging is expected to bring breakthroughs in cancer diagnosis by improving imaging sensitivity and specificity while reducing toxicity. Here, we developed an innovative nanosystem for positron emission tomography (PET) imaging based on a self-assembling amphiphilic dendrimer. This dendrimer assembled spontaneously into uniform supramolecular nanomicelles with abundant PET reporting units on the surface. By harnessing both dendrimeric multivalence and the “enhanced permeation and retention” (EPR) effect, this dendrimer nanosystem effectively accumulated in tumors, leading to exceedingly sensitive and specific imaging of various tumors, especially those that are otherwise undetectable using the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). This study illustrates the power of nanotechnology based on self-assembling dendrimers to provide an effective platform for bioimaging and related biomedical applications. Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the “enhanced permeation and retention” (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity. Here, we report an original nanosystem for positron emission tomography (PET) imaging based on an amphiphilic dendrimer, which bears multiple PET reporting units at the terminals. This dendrimer is able to self-assemble into small and uniform nanomicelles, which accumulate in tumors for effective PET imaging. Benefiting from the combined dendrimeric multivalence and EPR-mediated passive tumor targeting, this nanosystem demonstrates superior imaging sensitivity and specificity, with up to 14-fold increased PET signal ratios compared with the clinical gold reference 2-fluorodeoxyglucose ([18F]FDG). Most importantly, this dendrimer system can detect imaging-refractory low–glucose-uptake tumors that are otherwise undetectable using [18F]FDG. In addition, it is endowed with an excellent safety profile and favorable pharmacokinetics for PET imaging. Consequently, this dendrimer nanosystem constitutes an effective and promising approach for cancer imaging. Our study also demonstrates that nanotechnology based on self-assembling dendrimers provides a fresh perspective for biomedical imaging and cancer diagnosis.
Collapse
|
138
|
Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 2018; 102:9449-9470. [DOI: 10.1007/s00253-018-9352-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
|
139
|
Jones SK, Douglas K, Shields AF, Merkel OM. Correlating quantitative tumor accumulation and gene knockdown using SPECT/CT and bioluminescence imaging within an orthotopic ovarian cancer model. Biomaterials 2018; 178:183-192. [PMID: 29935386 PMCID: PMC6056733 DOI: 10.1016/j.biomaterials.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
Using an orthotopic model of ovarian cancer, we studied the delivery of siRNA in nanoparticles of tri-block copolymers consisting of hyperbranched polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hyPEI-g-PCL-b-PEG) with and without a folic acid targeting ligand. A SKOV-3/LUC FRα overexpressing cell line was employed to mimic the clinical manifestations of ovarian cancer. Both targeted and non-targeted micelleplexes were able to effectively deliver siRNA to the primary tumor and its metastases, as measured by gamma scintillation counting and confocal microscopy. Stability of the micelleplexes was demonstrated with a serum albumin binding study. Regarding biodistribution, intravenous (I.V.) administration showed a slight advantage of FRα targeted over non-targeted micelleplex accumulation within the tumor. However, both formulations displayed significant liver uptake. On the other hand, intraperitoneally (I.P.) injected mice showed a modest 6% of the injected dose per gram (ID/g) uptake within the primary and most interestingly also in the metastatic lesions which subsequently resulted in a 62% knockdown of firefly luciferase expression in the tumor after a single injection. While this is, to the best of our knowledge, the first paper that correlates quantitative tumor accumulation in an orthotopic tumor model with in vivo gene silencing, these data demonstrate that PEI-g-PCL-b-PEG-Fol conjugates are a promising option for gene knockdown in ovarian cancer.
Collapse
Affiliation(s)
- Steven K Jones
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirk Douglas
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, Wayne State University School of Pharmacy and Health Sciences, Detroit, MI, USA; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
140
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
141
|
A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 2018; 3:16. [PMID: 29942660 PMCID: PMC6013461 DOI: 10.1038/s41392-018-0019-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Drug resistance, accounting for therapeutic failure in the clinic, remains a major challenge to effectively manage cancer. Cyclosporin A (CsA) can reverse multidrug resistance (MDR), especially resistance to epidermal growth factor receptor tyrosine kinase inhibitors. However, the application of both drugs in cancer therapies is hampered by their poor aqueous solubility and low bioavailability due to oral administration. CsA augments the potency of gefitinib (Gef) in both Gef-sensitive and Gef-resistant cell lines. Here, we show that the simultaneous encapsulation of CsA and Gef within polyethylene glycol-block-poly(D, L-lactic acid) (PEG-PLA) produced a stable and systemically injectable nanomedicine, which exhibited a sub-50-nm diameter and spherical structures. Impressively, the co-delivery of therapeutics via single nanoparticles (NPs) outperformed the oral administration of the free drug combination at suppressing tumor growth. Furthermore, in vivo results indicated that CsA formulated in NPs sensitized Gef-resistant cells and Gef-resistant tumors to Gef treatment by inactivating the STAT3/Bcl-2 signaling pathway. Collectively, our nanomedicine approach not only provides an alternative administration route for the drugs of choice but also effectively reverses MDR, facilitating the development of effective therapeutic modalities for cancer. Injection of nanoparticles containing the anticancer drug gefitinib and the immunosuppressant cyclosporin A reverses drug-resistant cancer growth in mice. The development of multidrug resistance is the main reason why many forms of chemotherapy fail. Cyclosporin A, a drug used to prevent immune rejection after organ transplantation, has previously been shown to enhance the potency of gefitinib. Hangxiang Wang and colleagues at Zhejiang University, Hangzhou, China, have successfully combined cyclosporin A and gefitinib, two poorly water-soluble and slowly absorbed drugs, into stable injectable nanoparticles that delay the growth of gefitinib resistant human lung cancer cells as well as the growth of drug resistant tumors in mice. Importantly, this novel co-formulation was more effective than oral co-administration of the two drugs. Further investigation into this drug delivery route could yield much needed alternative treatments for patients with multidrug-resistant cancers.
Collapse
|
142
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
143
|
Kim HJ, Yi Y, Kim A, Miyata K. Small Delivery Vehicles of siRNA for Enhanced Cancer Targeting. Biomacromolecules 2018; 19:2377-2390. [PMID: 29864287 DOI: 10.1021/acs.biomac.8b00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNA) drugs have been considered to treat various diseases in major organs. However, siRNA drugs developed for cancer therapy are hindered from proceeding to the clinic. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic siRNA delivery to solid tumors. Most of these delivery vehicles do not generate small particle sizes and pharmacokinetics required for accumulation in target cancer cells compared with clinically tested anticancer drug-loaded polymeric micelles. This review describes the significance of small, long-circulating vehicles for efficient delivery of siRNA to cancer tissues via the enhanced permeability and retention (EPR) effect. We summarize recent biological evidence that supports the size effect of delivery vehicles in tumor microenvironments and introduce promising strategies for the construction of small vehicles with sizes of 10-50 nm. We then discuss the feasibility of these delivery vehicles with respect to translation to clinical trials.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yu Yi
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for Nanosciecne and Technology , No. 11 Beiyitiao , Zhongguancun, Beijing 100190 , China
| | - Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8573 , Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
144
|
Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A 2018; 115:6590-6595. [PMID: 29891702 DOI: 10.1073/pnas.1806153115] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With suppressed photon scattering and diminished autofluorescence, in vivo fluorescence imaging in the 1,500- to 1,700-nm range of the near-IR (NIR) spectrum (NIR-IIb window) can afford high clarity and deep tissue penetration. However, there has been a lack of NIR-IIb fluorescent probes with sufficient brightness and aqueous stability. Here, we present a bright fluorescent probe emitting at ∼1,600 nm based on core/shell lead sulfide/cadmium sulfide (CdS) quantum dots (CSQDs) synthesized in organic phase. The CdS shell plays a critical role of protecting the lead sulfide (PbS) core from oxidation and retaining its bright fluorescence through the process of amphiphilic polymer coating and transferring to water needed for imparting aqueous stability and compatibility. The resulting CSQDs with a branched PEG outer layer exhibited a long blood circulation half-life of 7 hours and enabled through-skin, real-time imaging of blood flows in mouse vasculatures at an unprecedented 60 frames per second (fps) speed by detecting ∼1,600-nm fluorescence under 808-nm excitation. It also allowed through-skin in vivo confocal 3D imaging of tumor vasculatures in mice with an imaging depth of ∼1.2 mm. The PEG-CSQDs accumulated in tumor effectively through the enhanced permeation and retention effect, affording a high tumor-to-normal tissue ratio up to ∼32 owing to the bright ∼1,600-nm emission and nearly zero autofluorescence background resulting from a large ∼800-nm Stoke's shift. The aqueous-compatible CSQDs are excreted through the biliary pathway without causing obvious toxicity effects, suggesting a useful class of ∼1,600-nm emitting probes for biomedical research.
Collapse
|
145
|
Sulheim E, Kim J, van Wamel A, Kim E, Snipstad S, Vidic I, Grimstad IH, Widerøe M, Torp SH, Lundgren S, Waxman DJ, de Lange Davies C. Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. J Control Release 2018; 279:292-305. [PMID: 29684498 PMCID: PMC5972071 DOI: 10.1016/j.jconrel.2018.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Preclinical research has demonstrated that nanoparticles and macromolecules can accumulate in solid tumors due to the enhanced permeability and retention effect. However, drug loaded nanoparticles often fail to show increased efficacy in clinical trials. A better understanding of how tumor heterogeneity affects nanoparticle accumulation could help elucidate this discrepancy and help in patient selection for nanomedicine therapy. Here we studied five human tumor models with varying morphology and evaluated the accumulation of 100 nm polystyrene nanoparticles. Each tumor model was characterized in vivo using micro-computed tomography, contrast-enhanced ultrasound and diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging. Ex vivo, the tumors were sectioned for both fluorescence microscopy and histology. Nanoparticle uptake and distribution in the tumors were generally heterogeneous. Density of functional blood vessels measured by fluorescence microscopy correlated significantly (p = 0.0056) with nanoparticle accumulation and interestingly, inflow of microbubbles measured with ultrasound also showed a moderate but significant (p = 0.041) correlation with nanoparticle accumulation indicating that both amount of vessels and vessel morphology and perfusion predict nanoparticle accumulation. This indicates that blood vessel characterization using contrast-enhanced ultrasound imaging or other methods could be valuable for patient stratification for treatment with nanomedicines.
Collapse
Affiliation(s)
- Einar Sulheim
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway.
| | - Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Annemieke van Wamel
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Igor Vidic
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingeborg Hovde Grimstad
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Sverre H Torp
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Trondheim, Norway; Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
| | - Steinar Lundgren
- Department of Oncology, St. Olav's University Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU, Trondheim, Norway
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Catharina de Lange Davies
- Department of Physics, Faculty of Natural Sciences, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
146
|
Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9:1410. [PMID: 29650952 PMCID: PMC5897557 DOI: 10.1038/s41467-018-03705-y] [Citation(s) in RCA: 1370] [Impact Index Per Article: 195.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted delivery approaches for cancer therapeutics have shown a steep rise over the past few decades. However, compared to the plethora of successful pre-clinical studies, only 15 passively targeted nanocarriers (NCs) have been approved for clinical use and none of the actively targeted NCs have advanced past clinical trials. Herein, we review the principles behind targeted delivery approaches to determine potential reasons for their limited clinical translation and success. We propose criteria and considerations that must be taken into account for the development of novel actively targeted NCs. We also highlight the possible directions for the development of successful tumor targeting strategies. Targeted delivery strategies based on nanocarriers have immense potential to change cancer care but current strategies have been shown only limited translation in the clinic. Here, the authors survey the challenge, progress and opportunities towards targeted delivery of cancer therapeutics.
Collapse
|
147
|
Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev 2018; 38:1837-1873. [PMID: 29635825 DOI: 10.1002/med.21498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Newly developed protein drugs that target tumor-associated antigens are often modified in order to increase their therapeutic effect, tumor exposure, and safety profile. During the development of protein drugs, molecular imaging is increasingly used to provide additional information on their in vivo behavior. As a result, there are increasing numbers of studies that demonstrate the effect of protein modification on whole body distribution and tumor uptake of protein drugs. However, much still remains unclear about how to interpret obtained biodistribution data correctly. Consequently, there is a need for more insight in the correct way of interpreting preclinical and clinical imaging data. Summarizing the knowledge gained to date may facilitate this interpretation. This review therefore provides an overview of specific protein properties and modifications that can affect biodistribution and tumor uptake of anticancer antibodies, antibody fragments, and nonimmunoglobulin scaffolds. Protein properties that are discussed in this review are molecular size, target interaction, FcRn binding, and charge. Protein modifications that are discussed are radiolabeling, fluorescent labeling drug conjugation, glycosylation, humanization, albumin binding, and polyethylene glycolation.
Collapse
Affiliation(s)
- Frank-Jan Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,PharmacoTherapy, Epidemiology & Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
148
|
Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS NANO 2018; 12:2106-2121. [PMID: 29462554 PMCID: PMC5878691 DOI: 10.1021/acsnano.7b07252] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The importance of medical imaging in the diagnosis and monitoring of cancer cannot be overstated. As personalized cancer treatments are gaining popularity, a need for more advanced imaging techniques has grown significantly. Nanoparticles are uniquely suited to fill this void, not only as imaging contrast agents but also as companion diagnostics. This review provides an overview of many ways nanoparticle imaging agents have contributed to cancer imaging, both preclinically and in the clinic, as well as charting future directions in companion diagnostics. We conclude that, while nanoparticle-based imaging agents are not without considerable scientific and developmental challenges, they enable enhanced imaging in nearly every modality, hold potential as in vivo companion diagnostics, and offer precise cancer treatment and maximize intervention efficacy.
Collapse
Affiliation(s)
- Emily B. Ehlerding
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Piotr Grodzinski
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Radiology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Christina H. Liu
- Office of Cancer Nanotechnology Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
149
|
Lee H, Gaddy D, Ventura M, Bernards N, de Souza R, Kirpotin D, Wickham T, Fitzgerald J, Zheng J, Hendriks BS. Companion Diagnostic 64Cu-Liposome Positron Emission Tomography Enables Characterization of Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines. Theranostics 2018; 8:2300-2312. [PMID: 29721081 PMCID: PMC5928891 DOI: 10.7150/thno.21670] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/25/2018] [Indexed: 11/16/2022] Open
Abstract
Deposition of liposomal drugs into solid tumors is a potentially rate-limiting step for drug delivery and has substantial variability that may influence probability of response. Tumor deposition is a shared mechanism for liposomal therapeutics such that a single companion diagnostic agent may have utility in predicting response to multiple nanomedicines. Methods: We describe the development, characterization and preclinical proof-of-concept of the positron emission tomography (PET) agent, MM-DX-929, a drug-free untargeted 100 nm PEGylated liposome stably entrapping a chelated complex of 4-DEAP-ATSC and 64Cu (copper-64). MM-DX-929 is designed to mimic the biodistribution of similarly sized therapeutic agents and enable quantification of deposition in solid tumors. Results: MM-DX-929 demonstrated sufficient in vitro and in vivo stability with PET images accurately reflecting the disposition of liposome nanoparticles over the time scale of imaging. MM-DX-929 is also representative of the tumor deposition and intratumoral distribution of three different liposomal drugs, including targeted liposomes and those with different degrees of PEGylation. Furthermore, stratification using a single pre-treatment MM-DX-929 PET assessment of tumor deposition demonstrated that tumors with high MM-DX-929 deposition predicted significantly greater anti-tumor activity after multi-cycle treatments with different liposomal drugs. In contrast, MM-DX-929 tumor deposition was not prognostic in untreated tumor-bearing xenografts, nor predictive in animals treated with small molecule chemotherapeutics. Conclusions: These data illustrate the potential of MM-DX-929 PET as a companion diagnostic strategy to prospectively select patients likely to respond to liposomal drugs or nanomedicines of similar molecular size.
Collapse
|
150
|
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.
Collapse
Affiliation(s)
- Lisa Belfiore
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Centre for Advanced Imaging (CAI), Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, CG, The Netherlands
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|