101
|
Choo ZN, Lipner SR. Mendelian Randomization Analysis Supports Causal Effect of Type II Diabetes Mellitus on Onychomycosis. Skin Appendage Disord 2024; 10:220-223. [PMID: 38835708 PMCID: PMC11147514 DOI: 10.1159/000535921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 06/06/2024] Open
Abstract
Introduction Onychomycosis is common among adults with diabetes mellitus (DM). We used two-sample Mendelian randomization to estimate the causal effect of genetic risk for DM on onychomycosis and tinea skin infections in the All of Us Research Program. Methods Onychomycosis and tinea corporis, pedis, manus, and cruris cases were identified using electronic health record data, and genetic instrument variables and summary statistics were collected from a type II DM (T2DM) genome-wide association study (GWAS) meta-analysis. Results Inverse variance weighted regression showed positive effect of T2DM genetic risk on onychomycosis (beta = 0.135, p = 1.86E-2), and weighted median regression produced a comparable estimate of effect size (beta = 0.148). There was no significant effect of T2DM on skin dermatophytosis. Conclusions Our results suggest that T2DM has a positive causal effect on onychomycosis but not tinea skin infection risk. As onychomycosis may impair occupational function and increase risk for secondary soft tissue infections, patients with diabetes should be screened for onychomycosis and counseled on mitigating infection risk.
Collapse
|
102
|
Geng J, Li L, Liu T, Yan B, Peng L. Management and Nursing Approaches to Low Back Pain: Investigating the Causal Association with Lifestyle-Related Risk Factors. Pain Manag Nurs 2024; 25:300-307. [PMID: 38341339 DOI: 10.1016/j.pmn.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Notwithstanding a plethora of observational studies, the causal implications of obesity, encompassing both body mass index (BMI) and waist circumference (WC), as well as type 2 diabetes (T2D), and lifestyle factors, in relation to the vulnerability to low back pain (LBP), remain enigmatic. AIMS This study was designed to investigate the related causal associations DESIGN: A two-sample Mendelian randomization (MR) analysis. SETTINGS By utilizing genetic variants associated with pertinent factors gleaned from genome-wide association studies (GWASs), We extracted independent genetic variants about exposures such as BMI, WC, T2D, smoking, alcohol consumption, and coffee intake from published GWASs, ensuring their genome-wide significance. PARTICIPANTS/SUBJECTS The GWASs were selected from the most up-to-date and largest publicly accessible databases. METHODS The summary data concerning LBP emanated from a GWAS of European cases and controls, which was based on the esteemed MRC-IEU (Medical Research Council Integrative Epidemiology Unit) consortium. RESULTS Heightened body mass index and waist circumference exhibited odds ratios of 1.003 (95% confidence interval [CI] = 1.002-1.004, p < 0.001) and 1.003 (95% CI = 1.002-1.004, p < 0.001) for LBP, respectively, per each standard deviation (SD) increase. As for smoking initiation and every SD increase in the frequency of alcohol intake, the odds ratios were 1.002 (95% CI = 1.001-1.003, p = 0.003) and 1.002 (95% CI = 1.000-1.003, p = 0.011), respectively, for LBP. Conversely, an increased log odds ratio for T2D, and prevalence of coffee intake, divulged no discernible causal effects on the risk of LBP. CONCLUSION This study provides suggestive evidence to support the causal involvement of obesity, smoking, and the frequency of alcohol intake in the development of LBP, which suggests that implementing measures to mitigate these risk factors may aid in preventing LBP.
Collapse
Affiliation(s)
- Jiaojiao Geng
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Jiangsu, China.
| | - Le Li
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Jiangsu, China
| | - Tingting Liu
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Jiangsu, China
| | - Bin Yan
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Jiangsu, China
| | - Lili Peng
- Department of Rehabilitation Medicine, Yancheng NO.1 People's Hospital, Jiangsu, China
| |
Collapse
|
103
|
Jin T, Huang W, Pang Q, Cao Z, Xing D, Guo S, Zhang T. Genetically identified mediators associated with increased risk of stroke and cardiovascular disease in individuals with autism spectrum disorder. J Psychiatr Res 2024; 174:172-180. [PMID: 38640796 DOI: 10.1016/j.jpsychires.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Growing evidence suggested that individuals with autism spectrum disorder (ASD) associated with stroke and cardiovascular disease (CVD). However, the causal association between ASD and the risk of stroke and CVD remains unclear. To validate this, we performed two-sample Mendelian randomization (MR) and two-step mediation MR analyses, using relevant genetic variants sourced from the largest genome-wide association studies (GWASs). Two-sample MR evidence indicated causal relationships between ASD and any stroke (OR = 1.1184, 95% CI: 1.0302-1.2142, P < 0.01), ischemic stroke (IS) (OR = 1.1157, 95% CI: 1.0237-1.2160, P = 0.01), large-artery atherosclerotic stroke (LAS) (OR = 1.2902, 95% CI: 1.0395-1.6013, P = 0.02), atrial fibrillation (AF) (OR = 1.0820, 95% CI: 1.0019-1.1684, P = 0.04), and heart failure (HF) (OR = 1.1018, 95% CI: 1.0007-1.2132, P = 0.05). Additionally, two-step mediation MR suggested that type 2 diabetes mellitus (T2DM) partially mediated this effect (OR = 1.14, 95%CI: 1.02-1.28, P = 0.03). The mediated proportion were 10.96% (95% CI: 0.58%-12.10%) for any stroke, 11.77% (95% CI: 10.58%-12.97%) for IS, 10.62% (95% CI: 8.04%-13.20%) for LAS, and 7.57% (95% CI: 6.79%-8.36%) for HF. However, no mediated effect was observed between ASD and AF risk. These findings have implications for the development of prevention strategies and interventions for stroke and CVD in patients with ASD.
Collapse
Affiliation(s)
- Tianyu Jin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China; Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Huang
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qiongyi Pang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Zheng Cao
- Department of Medicine and Health, University of Sydney, Sydney, Australia
| | - Dalin Xing
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tong Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|
104
|
Adewuyi EO, Porter T, O'Brien EK, Olaniru O, Verdile G, Laws SM. Genome-wide cross-disease analyses highlight causality and shared biological pathways of type 2 diabetes with gastrointestinal disorders. Commun Biol 2024; 7:643. [PMID: 38802514 PMCID: PMC11130317 DOI: 10.1038/s42003-024-06333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Studies suggest links between diabetes and gastrointestinal (GI) traits; however, their underlying biological mechanisms remain unclear. Here, we comprehensively assess the genetic relationship between type 2 diabetes (T2D) and GI disorders. Our study demonstrates a significant positive global genetic correlation of T2D with peptic ulcer disease (PUD), irritable bowel syndrome (IBS), gastritis-duodenitis, gastroesophageal reflux disease (GERD), and diverticular disease, but not inflammatory bowel disease (IBD). We identify several positive local genetic correlations (negative for T2D - IBD) contributing to T2D's relationship with GI disorders. Univariable and multivariable Mendelian randomisation analyses suggest causal effects of T2D on PUD and gastritis-duodenitis and bidirectionally with GERD. Gene-based analyses reveal a gene-level genetic overlap between T2D and GI disorders and identify several shared genes reaching genome-wide significance. Pathway-based study implicates leptin (T2D - IBD), thyroid, interferon, and notch signalling (T2D - IBS), abnormal circulating calcium (T2D - PUD), cardiovascular, viral, proinflammatory and (auto)immune-mediated mechanisms in T2D and GI disorders. These findings support a risk-increasing genetic overlap between T2D and GI disorders (except IBD), implicate shared biological pathways with putative causality for certain T2D - GI pairs, and identify targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O Adewuyi
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
| | - Eleanor K O'Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
| | - Oladapo Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia.
| |
Collapse
|
105
|
Forrest IS, Duffy Á, Park JK, Vy HMT, Pasquale LR, Nadkarni GN, Cho JH, Do R. Genome-first evaluation with exome sequence and clinical data uncovers underdiagnosed genetic disorders in a large healthcare system. Cell Rep Med 2024; 5:101518. [PMID: 38642551 PMCID: PMC11148562 DOI: 10.1016/j.xcrm.2024.101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/01/2023] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a corresponding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations (15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%] undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic findings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiagnosed carriers are discovered to have disease. These results highlight the potential of population-based genomic screening.
Collapse
Affiliation(s)
- Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua K Park
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ha My T Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Eye and Vision Research Institute, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Data-driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
106
|
Zhu Y, Zhu F, Guo X, Huang S, Yang Y, Zhang Q. Appendicular lean mass and the risk of stroke and Alzheimer's disease: a mendelian randomization study. BMC Geriatr 2024; 24:438. [PMID: 38762444 PMCID: PMC11102192 DOI: 10.1186/s12877-024-05039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Appendicular lean mass (ALM) is a good predictive biomarker for sarcopenia. And previous studies have reported the association between ALM and stroke or Alzheimer's disease (AD), however, the causal relationship is still unclear, The purpose of this study was to evaluate whether genetically predicted ALM is causally associated with the risk of stroke and AD by performing Mendelian randomization (MR) analyses. METHODS A two-sample MR study was designed. Genetic variants associated with the ALM were obtained from a large genome-wide association study (GWAS) and utilized as instrumental variables (IVs). Summary-level data for stroke and AD were generated from the corresponding GWASs. We used random-effect inverse-variance weighted (IVW) as the main method for estimating causal effects, complemented by several sensitivity analyses, including the weighted median, MR-Egger, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods. Multivariable analysis was further conducted to adjust for confounding factors, including body mass index (BMI), type 2 diabetes mellitus (T2DM), low density lipoprotein-C (LDL-C), and atrial fibrillation (AF). RESULTS The present MR study indicated significant inverse associations of genetically predicted ALM with any ischemic stroke ([AIS], odds ratio [OR], 0.93; 95% confidence interval [CI], 0.89-0.97; P = 0.002) and AD (OR, 090; 95% CI 0.85-0.96; P = 0.001). Regarding the subtypes of AIS, genetically predicted ALM was related to the risk of large artery stroke ([LAS], OR, 0.86; 95% CI 0.77-0.95; P = 0.005) and small vessel stroke ([SVS], OR, 0.80; 95% CI 0.73-0.89; P < 0.001). Regarding multivariable MR analysis, ALM retained the stable effect on AIS when adjusting for BMI, LDL-C, and AF, while a suggestive association was observed after adjusting for T2DM. And the estimated effect of ALM on LAS was significant after adjustment for BMI and AF, while a suggestive association was found after adjusting for T2DM and LDL-C. Besides, the estimated effects of ALM were still significant on SVS and AD after adjustment for BMI, T2DM, LDL-C, and AF. CONCLUSIONS The two-sample MR analysis indicated that genetically predicted ALM was negatively related to AIS and AD. And the subgroup analysis of AIS revealed a negative causal effect of genetically predicted ALM on LAS or SVS. Future studies are required to further investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Yueli Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
107
|
Huang YJ, Chen CH, Yang HC. AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes. Nat Commun 2024; 15:4230. [PMID: 38762475 PMCID: PMC11102564 DOI: 10.1038/s41467-024-48618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particularly eXtreme Gradient Boosting (XGBoost), we devise robust risk assessment models for T2D. Drawing upon comprehensive genetic and medical imaging datasets from 68,911 individuals in the Taiwan Biobank, our models integrate Polygenic Risk Scores (PRS), Multi-image Risk Scores (MRS), and demographic variables, such as age, sex, and T2D family history. Here, we show that our model achieves an Area Under the Receiver Operating Curve (AUC) of 0.94, effectively identifying high-risk T2D subgroups. A streamlined model featuring eight key variables also maintains a high AUC of 0.939. This high accuracy for T2D risk assessment promises to catalyze early detection and preventive strategies. Moreover, we introduce an accessible online risk assessment tool for T2D, facilitating broader applicability and dissemination of our findings.
Collapse
Affiliation(s)
- Yi-Jia Huang
- Institute of Public Health, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chou Yang
- Institute of Public Health, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
108
|
Zhang W, Sun J, Yu H, Shi M, Hu H, Yuan H. Causal relationship between type 2 diabetes mellitus and aortic dissection: insights from two-sample Mendelian randomization and mediation analysis. Front Endocrinol (Lausanne) 2024; 15:1405517. [PMID: 38803481 PMCID: PMC11128602 DOI: 10.3389/fendo.2024.1405517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Some evidence suggests a reduced prevalence of type 2 diabetes mellitus (T2DM) in patients with aortic dissection (AD), a catastrophic cardiovascular illness, compared to general population. However, the conclusions were inconsistent, and the causal relationship between T2DM and AD remains unclear. Methods In this study, we aimed to explore the causal relationship between T2DM and AD using bidirectional Mendelian randomization (MR) analysis. Mediation MR analysis was conducted to explore and quantify the possible mediation effects of 1400 metabolites in T2DM and AD. Results The results of 26 datasets showed no causal relationship between T2DM and AD (P>0.05). Only one dataset (ebi-a-GCST90006934) showed that T2DM was a protective factor for AD (I9-AORTDIS) (OR=0.815, 95%CI: 0.692-0.960, P=0.014), and did not show horizontal pleiotropy (P=0.808) and heterogeneity (P=0.525). Vanillic acid glycine plays a mediator in the causal relationship between T2DM and AD. The mediator effect for vanillic acid glycine levels was -0.023 (95%CI: -0.066-0.021). Conclusion From the perspective of MR analysis, there might not be a causal relationship between T2DM and AD, and T2DM might not be a protective factor for AD. If a causal relationship does exist between T2DM and AD, with T2DM serving as a protective factor, vanillic acid glycine may act as a mediator and enhance such a protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Yuan
- Department of Cardiovascular, First People’s Hospital of LinPing District, Hangzhou, China
| |
Collapse
|
109
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
110
|
Zheng Z, Liu S, Sidorenko J, Wang Y, Lin T, Yengo L, Turley P, Ani A, Wang R, Nolte IM, Snieder H, Yang J, Wray NR, Goddard ME, Visscher PM, Zeng J. Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries. Nat Genet 2024; 56:767-777. [PMID: 38689000 PMCID: PMC11096109 DOI: 10.1038/s41588-024-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/05/2024] [Indexed: 05/02/2024]
Abstract
We develop a method, SBayesRC, that integrates genome-wide association study (GWAS) summary statistics with functional genomic annotations to improve polygenic prediction of complex traits. Our method is scalable to whole-genome variant analysis and refines signals from functional annotations by allowing them to affect both causal variant probability and causal effect distribution. We analyze 50 complex traits and diseases using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and up to 34% in cross-ancestry prediction compared to the baseline method SBayesR, which does not use annotations, and outperforms other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and PRS-CSx. Investigation of factors affecting prediction accuracy identifies a significant interaction between SNP density and annotation information, suggesting whole-genome sequence variants with annotations may further improve prediction. Functional partitioning analysis highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from nonsynonymous SNPs.
Collapse
Affiliation(s)
- Zhili Zheng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Shouye Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ying Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick Turley
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
- Department of Economics, University of Southern California, Los Angeles, CA, USA
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rujia Wang
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, Victoria, Australia
- Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources, Bundoora, Victoria, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
111
|
Christiansen C, Potier L, Martin TC, Villicaña S, Castillo-Fernandez JE, Mangino M, Menni C, Tsai PC, Campbell PJ, Mullin S, Ordoñana JR, Monteagudo O, Sachdev PS, Mather KA, Trollor JN, Pietilainen KH, Ollikainen M, Dalgård C, Kyvik K, Christensen K, van Dongen J, Willemsen G, Boomsma DI, Magnusson PKE, Pedersen NL, Wilson SG, Grundberg E, Spector TD, Bell JT. Enhanced resolution profiling in twins reveals differential methylation signatures of type 2 diabetes with links to its complications. EBioMedicine 2024; 103:105096. [PMID: 38574408 PMCID: PMC11004697 DOI: 10.1016/j.ebiom.2024.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING Funding acknowledgements for each cohort can be found in the Supplementary Note.
Collapse
Affiliation(s)
| | - Louis Potier
- APHP, Paris Cité University, INSERM, Paris, France
| | | | | | | | | | | | - Pei-Chien Tsai
- King's College London, UK; Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | | | | | | - Kirsi H Pietilainen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; HealthyWeightHub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Miina Ollikainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Finland
| | | | | | | | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | | | | | - Scott G Wilson
- King's College London, UK; Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
112
|
Zhu S, Ding Z. Acute pancreatitis and metabolic syndrome: genetic correlations and causal associations. Endocrine 2024; 84:380-387. [PMID: 37922090 DOI: 10.1007/s12020-023-03584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND Although there is a definite correlation between the Metabolic Syndrome (MetS) and Acute Pancreatitis (AP), cause is yet unknown. The current work combined linkage disequilibrium score (LDSC) regression and Mendelian randomization (MR) approaches to fill this important information gap. METHODS In this study, we harnessed the power of publicly available gene-wide association databases (GWAS) to explore the intricate relationship between MetS and its components with AP. The cornerstone of our analysis was the Inverse-Variance Weighted (IVW) method, serving as our primary analytical tool. In addition to IVW, we complemented our investigation with several other robust MR methods, including MR-Egger, Weighted Median, Maximum Likelihood, and MR-PRESSO. By employing this diverse set of analytical approaches, we sought to ensure the comprehensiveness and robustness of our findings. RESULT LDSC regression indicated a genetic correlation between MetS and AP. Univariate MR results indicated a genetic association between MetS (OR = 1.084; 95% CI, 1.005-1.170; P = 0.037), BMI (OR = 1.459; 95% CI, 1.325-1.606; P = 1.46E-14), WHR (OR = 1.189; 95% CI, 1.068-1.323; P = 1.56 E-03), TG (OR = 1.110; 95% CI, 1.001-1.231; P = 0.047), and FI (OR = 1.798; 95% CI, 1.245-2.595; P = 1.74E-03) were able to significantly increase the risk of AP. The results of multivariate MR analysis revealed that these causality associations still existed. CONCLUSION Our investigation has yielded compelling evidence that substantiates the presence of both a genetic correlation and a causal relationship between MetS and AP.
Collapse
Affiliation(s)
- ShuangJing Zhu
- Department of Hepatobiliary Surgery, Chaohu Hospital of Anhui Medical University, Hefei, 238001, China
| | - Zhen Ding
- Department of Hepatobiliary Surgery, Chaohu Hospital of Anhui Medical University, Hefei, 238001, China.
| |
Collapse
|
113
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
114
|
Elashi AA, Toor SM, Umlai UKI, Al-Sarraj YA, Taheri S, Suhre K, Abou-Samra AB, Albagha OME. Genome-wide association study and trans-ethnic meta-analysis identify novel susceptibility loci for type 2 diabetes mellitus. BMC Med Genomics 2024; 17:115. [PMID: 38685053 PMCID: PMC11059680 DOI: 10.1186/s12920-024-01855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar. METHODS Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and without body mass index (BMI) adjustment. RESULTS We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally concurred with those from European populations. We identified a locus specific to our cohort located between the APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the multi-ancestry panel compared to the European panel. CONCLUSION Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and identifies genes that may be explored further for their involvement in T2D pathogenesis.
Collapse
Affiliation(s)
- Asma A Elashi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, P.O. Box 34110, Qatar
| | - Salman M Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, P.O. Box 34110, Qatar
| | - Umm-Kulthum Ismail Umlai
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, P.O. Box 34110, Qatar
| | - Yasser A Al-Sarraj
- Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, P.O. Box 5825, Qatar
| | - Shahrad Taheri
- Qatar Metabolic Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, P.O. Box 24144, Qatar
- Department of Biophysics and Physiology, Weill Cornell Medicine, 510065, New York, USA
| | | | - Omar M E Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, P.O. Box 34110, Qatar.
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, Edinburgh, UK.
| |
Collapse
|
115
|
Liu L, Zhang Q, Chang J, Yang K. Causal Association Between Diabetes, Body Mass Index and Lichen Sclerosus: A Bidirectional Two-Sample Mendelian Randomization Analysis. Clin Cosmet Investig Dermatol 2024; 17:931-940. [PMID: 38689755 PMCID: PMC11060172 DOI: 10.2147/ccid.s450399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Background Previous observational studies have found that lichen sclerosus (LS) is associated with metabolic statuses, such as diabetes mellitus (DM) and body mass index (BMI). However, there are also some studies showing that LS is not related to DM and BMI. The mechanism behind observational results is still unclear. Therefore, the causality of this relationship remains unknown. In this study, a bidirectional two-sample Mendelian randomization (MR) was conducted to investigate the correlation between DM, BMI, and LS. Methods The instrumental variables related to DM (including type 1 and type 2 diabetes), and BMI were identified from genome-wide association studies (GWAS) and a GWAS meta-analysis. The GWAS data for LS was from obtained the eighth edition of the FinnGen biological database released in 2022. Inverse variance weighted (IVW), weighted median, and MR-Egger methods were used to conduct a bidirectional two-sample MR analysis. Thereafter, the heterogeneity and horizontal pleiotropy were examined to determine whether the results were affected by a single-nucleotide polymorphism (SNP). Results We found a lack of evidence for the causal association of DM, and BMI on LS in inverse variance weighted (type 1 diabetes, OR=0.97, 95% CI=0.91-1.04, p=0.429; type 2 diabetes, OR=0.91, 95% CI=0.82-1.00, p=0.0511; BMI, OR=0.92, 95% CI=0.73-1.15, p=0.4554). In the other direction, the results also showed that LS had no significant causal effect on DM and BMI. Conclusion This MR analysis demonstrated no significant causal relationship between DM and BMI with LS in both directions, which contradicts previous observational studies reporting a positive association. Potential confounding factors may contribute to previously observed associations, and further research is necessary.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Qiuli Zhang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Kun Yang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
116
|
Ke TM, Lophatananon A, Muir KR. Strengthening the Evidence for a Causal Link between Type 2 Diabetes Mellitus and Pancreatic Cancer: Insights from Two-Sample and Multivariable Mendelian Randomization. Int J Mol Sci 2024; 25:4615. [PMID: 38731833 PMCID: PMC11082974 DOI: 10.3390/ijms25094615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
This two-sample Mendelian randomization (MR) study was conducted to investigate the causal associations between type 2 diabetes mellitus (T2DM) and the risk of pancreatic cancer (PaCa), as this causal relationship remains inconclusive in existing MR studies. The selection of instrumental variables for T2DM was based on two genome-wide association study (GWAS) meta-analyses from European cohorts. Summary-level data for PaCa were extracted from the FinnGen and UK Biobank databases. Inverse variance weighted (IVW) and four other robust methods were employed in our MR analysis. Various sensitivity analyses and multivariable MR approaches were also performed to enhance the robustness of our findings. In the IVW and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analyses, the odds ratios (ORs) for each 1-unit increase in genetically predicted log odds of T2DM were approximately 1.13 for PaCa. The sensitivity tests and multivariable MR supported the causal link between T2DM and PaCa without pleiotropic effects. Therefore, our analyses suggest a causal relationship between T2DM and PaCa, shedding light on the potential pathophysiological mechanisms of T2DM's impact on PaCa. This finding underscores the importance of T2DM prevention as a strategy to reduce the risk of PaCa.
Collapse
Affiliation(s)
| | | | - Kenneth R. Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (T.-M.K.); (A.L.)
| |
Collapse
|
117
|
Zhang L, Liu S, Yue G, Niu H, Hu M, Zheng Y, Tang J. The causality between Type 2 diabetes and breast cancer: a bidirectional two-sample Mendelian randomization study. Future Oncol 2024; 20:1267-1274. [PMID: 38639577 PMCID: PMC11318721 DOI: 10.2217/fon-2023-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Objective: Observational studies showed that Type 2 diabetes increased the risk of breast cancer, and vice versa. However, it is uncertain whether the link is causal or just due to confounding factors. Using bidirectional Mendelian randomization analysis, we assessed the bidirectional causal relationship from a genetic level. Methods: Large genome-wide association studies yielded summary-level data for Type 2 diabetes and breast cancer. Results: Genetically predicted Type 2 diabetes presented no statistically significant association with overall breast cancer or its subtypes. Similarly, genetically predicted overall breast cancer or its subtypes had no causal effect on Type 2 diabetes. Sensitivity analyses yielded similar results. Conclusion: Our bidirectional Mendelian randomization studies revealed no causal links between Type 2 diabetes and breast cancer.
Collapse
Affiliation(s)
- Lihan Zhang
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Shuochuan Liu
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guangxing Yue
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hong Niu
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Mengjin Hu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuling Zheng
- The First Affiliated Hospital of Henan University of CM, Zhengzhou, 450008, China
| | - Jingwen Tang
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
118
|
Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic ovary syndrome. Nat Rev Dis Primers 2024; 10:27. [PMID: 38637590 DOI: 10.1038/s41572-024-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Despite affecting ~11-13% of women globally, polycystic ovary syndrome (PCOS) is a substantially understudied condition. PCOS, possibly extending to men's health, imposes a considerable health and economic burden worldwide. Diagnosis in adults follows the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome, requiring two out of three criteria - clinical or biochemical hyperandrogenism, ovulatory dysfunction, and/or specific ovarian morphological characteristics or elevated anti-Müllerian hormone. However, diagnosing adolescents omits ovarian morphology and anti-Müllerian hormone considerations. PCOS, marked by insulin resistance and hyperandrogenism, strongly contributes to early-onset type 2 diabetes, with increased odds for cardiovascular diseases. Reproduction-related implications include irregular menstrual cycles, anovulatory infertility, heightened risks of pregnancy complications and endometrial cancer. Beyond physiological manifestations, PCOS is associated with anxiety, depression, eating disorders, psychosexual dysfunction and negative body image, collectively contributing to diminished health-related quality of life in patients. Despite its high prevalence persisting into menopause, diagnosing PCOS often involves extended timelines and multiple health-care visits. Treatment remains ad hoc owing to limited understanding of underlying mechanisms, highlighting the need for research delineating the aetiology and pathophysiology of the syndrome. Identifying factors contributing to PCOS will pave the way for personalized medicine approaches. Additionally, exploring novel biomarkers, refining diagnostic criteria and advancing treatment modalities will be crucial in enhancing the precision and efficacy of interventions that will positively impact the lives of patients.
Collapse
Affiliation(s)
| | - Helena Teede
- Monash Centre for Health Research and Implementation, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Richard Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Science, Penn State College of Medicine, Hershey, PA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joop Laven
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, Netherlands
| | - Kathleen Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
119
|
Tieu S, Koivusalo S, Lahti J, Engberg E, Laivuori H, Huvinen E. Genetic risk of type 2 diabetes modifies the association between lifestyle and glycemic health at 5 years postpartum among high-risk women. BMJ Open Diabetes Res Care 2024; 12:e003942. [PMID: 38631819 PMCID: PMC11029483 DOI: 10.1136/bmjdrc-2023-003942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Lifestyle interventions are effective in preventing type 2 diabetes, but genetic background may influence the individual response. In the Finnish gestational diabetes prevention study, RADIEL, lifestyle intervention during pregnancy and first postpartum year was effective in preventing gestational diabetes (GDM) and postpartum glycemic abnormalities only among women at highest genetic risk of type 2 diabetes. This study aimed to assess whether still 5 years postpartum the genetic risk modifies the association between lifestyle and glycemic health. RESEARCH DESIGN AND METHODS The RADIEL study (randomized controlled trial) aimed to prevent GDM with a lifestyle intervention among high-risk women (body mass index ≥30 kg/m2 and/or prior GDM). The follow-up study 5 years postpartum included anthropometric measurements, laboratory assessments, device-measured physical activity (PA), and questionnaires. A Healthy Lifestyle Score (HLS) indicated adherence to lifestyle goals (PA, diet, smoking) and a polygenic risk score (PRS) based on 50 type 2 diabetes risk alleles depicted the genetic risk. RESULTS Altogether 314 women provided genetic and glycemic data 5 years postpartum. The PRS for type 2 diabetes was not associated with glycemic abnormalities, nor was HLS in the total study sample. There was, however, an interaction between HLS and type 2 diabetes PRS on glycemic abnormalities (p=0.03). When assessing the association between HLS and glycemic abnormalities in PRS tertiles, HLS was associated with reduced risk of glycemic abnormalities only among women at the highest genetic risk (p=0.008). CONCLUSIONS These results extend our previous findings from pregnancy and first postpartum year demonstrating that still at 5 years postpartum, healthy lifestyle is associated with a lower risk of prediabetes/diabetes only among women at the highest genetic risk of type 2 diabetes.
Collapse
Affiliation(s)
- Sim Tieu
- Helsinki University Central Hospital, Helsinki, Finland
| | | | - Jari Lahti
- Department of Psychology, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Tampere University, Tampere, Finland
| | - Emilia Huvinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
120
|
Huang T, An Z, Huang Z, Gao W, Hao B, Xu J. Serum albumin and cardiovascular disease: a Mendelian randomization study. BMC Cardiovasc Disord 2024; 24:196. [PMID: 38580915 PMCID: PMC10996126 DOI: 10.1186/s12872-024-03873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND An increasing body of evidence suggests that serum albumin levels play a role in cardiovascular diseases. However, the specific causal relationship between serum albumin levels and cardiovascular disease remains partially unknown. METHODS Mendelian randomization (MR) was employed in this study to examine potential causal relationships between instrumental variables and cardiovascular diseases. Specifically, we utilized genetic variants of serum albumin levels within the reference range as our instrumental variables. To acquire data on genetic associations with cardiovascular diseases, we sourced information from renowned genome-wide association studies such as UK BioBank, EMBL-EBI, and FinnGen. Notably, our study leveraged summary statistics from large cohorts that have been previously described. RESULTS We explored the association between serum albumin levels and various conditions, including heart failure (HF), venous thromboembolism (VTE), stroke, atrial fibrillation (AF), coronary artery disease (CAD), type 2 diabetes (T2DM), and pulmonary heart disease (PHD). Genetically predicted serum albumin levels were associated with PHD (odds ratio = 0.737, 95% CI = 0.622 - 0.874, P < 0.001), AF (odds ratio = 0.922, 95% CI = 0.870 - 0.977, P = 0.006), VTE (odds ratio = 0.993, 95% CI = 0.991 - 0.995, P < 0.001), and Stroke (odds ratio = 0.997, 95% CI = 0.995 - 0.999, P = 0.002). However, genetically predicted serum albumin level traits were not associated with HF, CAD and T2DM. CONCLUSION Our study demonstrates a significant association between serum albumin levels and cardiovascular disease, underscoring the crucial role of low serum albumin as a predictive factor in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Taoke Huang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Emergency Medicine, The 969th Hospital of the Joint Logistics Support Force of PLA, Hohhot, 010051, China
| | - Zhifeng An
- Department of Emergency Medicine, The 969th Hospital of the Joint Logistics Support Force of PLA, Hohhot, 010051, China
| | - Ziru Huang
- School of Medicine, Nantong University, Nantong, 226000, China
| | - Weiyang Gao
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Benchuan Hao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Juan Xu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311202, China.
| |
Collapse
|
121
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
122
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
123
|
Cai N, Luo W, Ding L, Chen L, Huang Y. Obesity-related indicators and tuberculosis: A Mendelian randomization study. PLoS One 2024; 19:e0297905. [PMID: 38557966 PMCID: PMC10984409 DOI: 10.1371/journal.pone.0297905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Obesity is a strong risk factor for many diseases, with controversy regarding the cause(s) of tuberculosis (TB) reflected by contradictory findings. Therefore, a larger sample population is required to determine the relationship between obesity and TB, which may further inform treatment. METHODS Obesity-related indicators and TB mutation data were obtained from a genome-wide association study database, while representative instrumental variables (IVs) were obtained by screening and merging. Causal relationships between exposure factors and outcomes were determined using two-sample Mendelian randomization (MR) analysis. Three tests were used to determine the representativeness and stability of the IVs, supported by sensitivity analysis. RESULTS Initially, 191 single nucleotide polymorphisms were designated as IVs by screening, followed by two-sample MR analysis, which revealed the causal relationship between waist circumference [odds ratio (OR): 2.13 (95% confidence interval (CI): 1.19-3.80); p = 0.011] and TB. Sensitivity analysis verified the credibility of the IVs, none of which were heterogeneous or horizontally pleiotropic. CONCLUSION The present study determined the causal effect between waist circumference and TB by two-sample MR analysis and found both to be likely to be potential risk factors.
Collapse
Affiliation(s)
- Nuannuan Cai
- Pulmonary and Critical Care Medicine, Hainan Provincial People’s Hospital, Haikou, Hainan, China
| | - Weiyan Luo
- Pulmonary and Critical Care Medicine, Hainan Provincial People’s Hospital, Haikou, Hainan, China
| | - Lili Ding
- Pulmonary and Critical Care Medicine, Hainan Provincial People’s Hospital, Haikou, Hainan, China
| | - Lijin Chen
- Pulmonary and Critical Care Medicine, Hainan Provincial People’s Hospital, Haikou, Hainan, China
| | - Yuanjiang Huang
- Infectious and Tropical Disease Dept (Tuberculosis), The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| |
Collapse
|
124
|
Song M, Kwak SH, Kim J. Risk prediction and interaction analysis using polygenic risk score of type 2 diabetes in a Korean population. Sci Rep 2024; 14:6790. [PMID: 38514700 PMCID: PMC10957984 DOI: 10.1038/s41598-024-55945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Joint modelling of genetic and environmental risk factors can provide important information to predict the risk of type 2 diabetes (T2D). Therefore, to predict the genetic risk of T2D, we constructed a polygenic risk score (PRS) using genotype data of one Korean cohort, KARE (745 cases and 2549 controls), and the genome-wide association study summary statistics of Biobank Japan. We evaluated the performance of PRS in an independent Korean cohort, HEXA (5684 cases and 35,703 controls). Individuals with T2D had a significantly higher mean PRS than controls (0.492 vs. - 0.078, p ≈ 0 ). PRS predicted the risk of T2D with an AUC of 0.658 (95% CI 0.651-0.666). We also evaluated interaction between PRS and waist circumference (WC) in the HEXA cohort. PRS exhibited a significant sub-multiplicative interaction with WC (ORinteraction 0.991, 95% CI 0.987-0.995, pinteraction = 4.93 × 10-6) in T2D. The effect of WC on T2D decreased as PRS increased. The sex-specific analyses produced similar interaction results, revealing a decreased WC effect on T2D as the PRS increased. In conclusion, the risk of WC for T2D may differ depending on PRS and those with a high PRS might develop T2D with a lower WC threshold. Our findings are expected to improve risk prediction for T2D and facilitate the identification of individuals at an increased risk of T2D.
Collapse
Affiliation(s)
- Minsun Song
- Department of Statistics & Research Institute of Natural Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Jihyun Kim
- Department of Statistics, Sookmyung Women's University, Seoul, 04310, Korea
| |
Collapse
|
125
|
Kang Q, Ren J, Cong J, Yu W. Diabetes mellitus and idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med 2024; 24:142. [PMID: 38504175 PMCID: PMC10953180 DOI: 10.1186/s12890-024-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis (IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis. METHODS We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms (SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity analyses were visualized using forest, scatter, leave-one-out, and funnel plots. RESULTS Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021-1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% CI = 0.796-1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 95% CI = 1.011-1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790-1.288, P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings. CONCLUSION Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients with T1D should undergo lung imaging for early detection of IPF.
Collapse
Affiliation(s)
- Quou Kang
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jing Ren
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Jinpeng Cong
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wencheng Yu
- Department of Pulmonary and Critical Care Medicine, The affiliated hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
126
|
Zhang Y, Ren E, Zhang C, Wang Y, Chen X, Li L. The protective role of oily fish intake against type 2 diabetes: insights from a genetic correlation and Mendelian randomization study. Front Nutr 2024; 11:1288886. [PMID: 38567249 PMCID: PMC10986736 DOI: 10.3389/fnut.2024.1288886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background and aims Previous research has underscored the association between oily fish intake and type 2 diabetes (T2DM), yet the causality remains elusive. Methods A bidirectional univariable Mendelian Randomization (MR) analysis was employed to evaluate the causal effects of oily fish and non-oily fish intake on T2DM. Replication analysis and meta-analysis were conducted to ensure robust results. Multivariable MR analysis was utilized to assess confounders, and further mediation MR analysis discerned mediating effects. Linkage Disequilibrium Score (LDSC) analysis was undertaken to compute genetic correlations. Inverse variance weighted (IVW) was the primary method, complemented by a series of sensitivity analyses. Results The LDSC analysis unveiled a significant genetic correlation between oily fish intake and T2DM (Genetic correlation: -0.102, p = 4.43 × 10-4). For each standard deviation (SD) increase in genetically predicted oily fish intake, the risk of T2DM was reduced by 38.6% (OR = 0.614, 95% CI 0.504 ~ 0.748, p = 1.24 × 10-6, False Discovery Rate (FDR) = 3.72 × 10-6). The meta-analysis across three data sources highlighted a persistent causal association (OR = 0.728, 95% CI 0.593 ~ 0.895, p = 0.003). No other causal effects were identified (all p > 0.5, FDR > 0.5). The main outcomes remained consistent in most sensitivity analyses. Both MVMR and mediation MR analyses emphasized the mediating roles of triglycerides (TG), body mass index (BMI), and 25-hydroxyvitamin D (25OHD) levels. Conclusion To encapsulate, there's an inverse association between oily fish intake and T2DM risk, suggesting potential benefits of oily fish intake in T2DM prevention.
Collapse
Affiliation(s)
- Youqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Entong Ren
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Southern Theater General Hospital, Guangzhou, Guangdong, China
| | - Chunlong Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohe Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Lin Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
127
|
Kim NY, Lee H, Kim S, Kim YJ, Lee H, Lee J, Kwak SH, Lee S. The clinical relevance of a polygenic risk score for type 2 diabetes mellitus in the Korean population. Sci Rep 2024; 14:5749. [PMID: 38459065 PMCID: PMC10923897 DOI: 10.1038/s41598-024-55313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
The clinical utility of a type 2 diabetes mellitus (T2DM) polygenic risk score (PRS) in the East Asian population remains underexplored. We aimed to examine the potential prognostic value of a T2DM PRS and assess its viability as a clinical instrument. We first established a T2DM PRS for 5490 Korean individuals using East Asian Biobank data (269,487 samples). Subsequently, we assessed the predictive capability of this T2DM PRS in a prospective longitudinal study with baseline data and data from seven additional follow-ups. Our analysis showed that the T2DM PRS could predict the transition of glucose tolerance stages from normal glucose tolerance to prediabetes and from prediabetes to T2DM. Moreover, T2DM patients in the top-decile PRS group were more likely to be treated with insulin (hazard ratio = 1.69, p value = 2.31E-02) than were those in the remaining PRS groups. T2DM PRS values were significantly high in the severe diabetes subgroup, characterized by insulin resistance and β -cell dysfunction (p value = 0.0012). The prediction models with the T2DM PRS had significantly greater Harrel's C-indices than did corresponding models without it. By utilizing prospective longitudinal study data and extensive clinical risk factor information, our analysis provides valuable insights into the multifaceted clinical utility of the T2DM PRS.
Collapse
Affiliation(s)
- Na Yeon Kim
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Haekyung Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Hyunsuk Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Junhyeong Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
128
|
Hu R, Liu C, Li D. A Mendelian randomization analysis identifies causal association between sarcopenia and gastroesophageal reflux disease. Aging (Albany NY) 2024; 16:4723-4735. [PMID: 38446595 PMCID: PMC10968686 DOI: 10.18632/aging.205627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
The incidence of gastroesophageal reflux disease (GERD) is increasing with the advancement of world population aging, affecting the population health worldwide. Recently, there were several researches to suggest the association between GERD and sarcopenia, but evidence supporting the causal effect was absent. The purpose of this study is to determine the causal relationship between GERD and sarcopenia through a Mendelian randomization (MR) study. We conducted an MR analysis by using summary-level data of genome-wide association studies (GWASs) in the European population. The inverse variance weighted (IVW) method was used as the primary analytical method for evaluating causality. In addition, four other MR methods were performed to supplement the IVW results. We also used the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and the multivariable Mendelian randomization (MVMR) to validate the robustness of our results. IVW analysis revealed a causally positive correlation between low hand grip strength (OR = 1.2358, 95% C.I.: 1.0521-1.4514, P = 0.0099), decreased walking pace (OR = 0.1181, 95% C.I.: 0.0838-0.1666, P = 4×10-34), and decreased appendicular lean mass (ALM) (OR = 0.8612, 95% C.I.: 0.8263-0.8975, P = 1×10-12) and GERD. MR-PRESSO and MVMR analysis confirmed the association evidence. In conclusion, this MR analysis supported the causal association between sarcopenia-related traits and GERD.
Collapse
Affiliation(s)
- Renwang Hu
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Gastrointestinal Surgery, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Can Liu
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Dan Li
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Gastrointestinal Surgery, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
129
|
Hu M, Li B, Yang T, Yang Y, Yin C. Effect of Household Income on Cardiovascular Diseases, Cardiovascular Biomarkers, and Socioeconomic Factors. Clin Ther 2024; 46:239-245. [PMID: 38350757 DOI: 10.1016/j.clinthera.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE To examine whether household income is causally related to cardiovascular diseases and investigate the potential reasons. METHODS Using 2-sample Mendelian randomization analyses, we obtained summary statistics from genome-wide association studies of household income and a range of cardiovascular diseases, biomarkers, and socioeconomic factors. FINDINGS Higher household income was causally associated with lower risks of coronary heart disease (odd ratio [OR] = 0.63; 95% CI: 0.49-0.79; P = 0.0001), myocardial infarction (OR = 0.64; 95% CI: 0.50-0.82; P = 0.0003), and hypertension (OR = 0.71; 95% CI: 0.58-0.88; P = 0.0015). With increasing household income, the cardiovascular biomarkers including triglycerides, C-reactive protein, body mass index, fasting glucose were decreased whereas telomere length and high-density lipoprotein cholesterol were increased. Besides, individuals with higher household income were less likely to smoke (β = -0.34; 95% CI: -0.47 to -0.21; P = 1.91×10-07), intake salt (β = -0.14; 95% CI: -0.21 to -0.07; P = 0.0001), or be exposed to air pollution (β = -0.10; 95% CI: -0.15 to -0.06; P = 8.81×10-06) or depression state (β = -0.03; 95% CI: -0.04 to -0.02; P = 5.16×10-07). They were more likely to take physical activity (β = 0.06; 95% CI: 0.02 to 010; P = 0.0016) and have long years of schooling (β = 0.70; 95% CI: 0.62 to 0.78; P = 5.32×10-67). IMPLICATIONS Higher household income is causally associated with better socioeconomic factors and improved cardiovascular biomarkers, which translates into a reduced prevalence of cardiovascular diseases. Policies to improve income equality may result in a reduced burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengjin Hu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Boyu Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunlin Yin
- Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
130
|
Pravednikova AE, Nikitich A, Witkowicz A, Karabon L, Flouris AD, Vliora M, Nintou E, Dinas PC, Szulińska M, Bogdański P, Metsios GS, Kerchev VV, Yepiskoposyan L, Bylino OV, Larina SN, Shulgin B, Shidlovskii YV. Genotypes of the UCP1 gene polymorphisms and cardiometabolic diseases: A multifactorial study of association with disease probability. Biochimie 2024; 218:162-173. [PMID: 37863280 DOI: 10.1016/j.biochi.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Cardiometabolic diseases (CMDs) are complex disorders with a heterogenous phenotype, which are caused by multiple factors including genetic factors. Single nucleotide polymorphisms (SNPs) rs45539933 (p.Ala64Thr), rs10011540 (c.-112A>C), rs3811791 (c.-1766A>G), and rs1800592 (c.-3826A>G) in the UCP1 gene have been analyzed for association with CMDs in many studies providing controversial results. However, previous studies only considered individual UCP1 SNPs and did not evaluate them in an integrated manner, which is a more powerful approach to uncover genetic component of complex diseases. This study aimed to investigate associations between UCP1 genotype combinations and CMDs or CMD risk factors in the context of non-genetic factors. We performed multiple logistic regression analysis and proposed new methodology of testing different combinations of SNP genotypes. We found that probability of CMDs increased in presence of the three-SNP combination of genotypes with minor alleles of c.-3826A>G and p.Ala64Thr and wild allele of c.-112A>C, with increasing age, body mass index (BMI), body fat percentage (BF%) and may differ between sexes and between countries. The combination of genotypes with c.-3826A>G minor allele and wild homozygotes of c.-112A>C and p.Ala64Thr was associated with increased probability of diabetes. While combination of genotypes with minor alleles of all three SNPs reduced the CMD probability. The present results suggest that age, BMI, sex, and UCP1 three-SNP combinations of genotypes significantly contribute to CMD probability. Varying of c.-112A>C alleles in the genotype combination with minor alleles of c.-3826A>G and p.Ala64Thr markedly changes CMD probability.
Collapse
Affiliation(s)
- Anna E Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Antonina Nikitich
- Center for Mathematical Modeling in Drug Development, Institute of Biodesign and Complex Systems Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Agata Witkowicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Maria Vliora
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Eleni Nintou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - George S Metsios
- School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - Victor V Kerchev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Oleg V Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana N Larina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Shulgin
- Center for Mathematical Modeling in Drug Development, Institute of Biodesign and Complex Systems Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Department of Mathematics, Mechanics and Mathematical Modeling, Institute of Computer Science and Mathematical Modeling, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
131
|
Hu M, Yang T, Yang Y. Causal Associations of Education Level With Cardiovascular Diseases, Cardiovascular Biomarkers, and Socioeconomic Factors. Am J Cardiol 2024; 213:76-85. [PMID: 38199144 DOI: 10.1016/j.amjcard.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 01/12/2024]
Abstract
An inverse association of education level with cardiovascular diseases has been documented in observational studies, yet the causality and potential mechanisms remain to be determined. To systematically investigate the causal associations of education level with cardiovascular diseases, cardiovascular biomarkers, and socioeconomic factors, a 2-sample Mendelian randomization was performed. The results revealed that higher genetically determined education level was associated with lower risks of type 2 diabetes mellitus (odds ratio [OR] 0.54, 95% confidence interval [CI] 0.47 to 0.61, p = 3.04 × 10-23), peripheral artery disease (OR 0.62, 95% CI 0.51 to 0.76, p = 2.14 × 10-06), hypertension (OR 0.62, 95% CI 0.56 to 0.70, p = 4.22 × 10-16), coronary heart disease (OR 0.62, 95% CI 0.56 to 0.69, p = 3.50 × 10-19), myocardial infarction (OR 0.62, 95% CI 0.55 to 0.69, p = 2.58 × 10-16), ischemic stroke (OR 0.67, 95% CI 0.62 to 0.74, p = 6.00 × 10-19), deep vein thrombosis (OR 0.69, 95% CI 0.55 to 0.87, p = 0.0017), atrial fibrillation (OR 0.70, 95% CI 0.57 to 0.86, p = 0.0007), cardiac death (OR 0.71, 95% CI 0.60 to 0.86, p = 0.0003), heart failure (OR 0.72, 95% CI 0.65 to 0.79, p = 6.37 × 10-12), transient ischemic attack (OR 0.76, 95% CI 0.64 to 0.90, p = 0.0010), and venous thromboembolism (OR 0.79, 95% CI 0.67 to 0.92, p = 0.0028). Systolic blood pressure, diastolic blood pressure, C-reactive protein, body mass index, waist circumference, and triglycerides were decreased, whereas telomere length was increased. Subjects with higher education were less likely to smoke, intake salt, or be exposed to air pollution and depression state. They were more likely to take physical activity and possess more household income. In conclusion, higher education may causally decrease cardiovascular diseases through socioeconomic factors and cardiovascular biomarkers. Reducing education inequality is important in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengjin Hu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
132
|
Guan J, Liu T, Chen H, Yang K. Association of type 2 Diabetes Mellitus and bone mineral density: a two-sample Mendelian randomization study. BMC Musculoskelet Disord 2024; 25:130. [PMID: 38347501 PMCID: PMC10860277 DOI: 10.1186/s12891-024-07195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Observational studies have suggested that type 2 Diabetes Mellitus (DM2) is a potentially modifiable risk factor for lower BMD, but the causal relationship is unclear. This study aimed to examine whether the association of DM2 with lower BMD levels was causal by using Mendelian randomization (MR) analyses. METHODS We collected genome-wide association study data for DM2 and BMD of total body and different skeletal sites from the IEU database. Subsequently, we performed a two-sample Mendelian randomization analysis using the Two Sample MR package. RESULTS We identified a positive association between DM2 risk (61,714 DM2 cases and 596,424 controls) and total BMD, and other skeletal sites BMD, such as femoral neck BMD, ultra-distal forearm BMD and heel BMD. However, non-significant trends were observed for the effects of DM2 on lumbar-spine BMD. CONCLUSION In two-sample MR analyses, there was positive causal relationship between DM2 and BMD in both overall samples. In summary, while observational analyses consistently indicate a strong association between DM2 and low BMD, our MR analysis introduces a nuanced perspective. Contrary to the robust association observed in observational studies, our MR analysis suggests a significant link between DM2 and elevated BMD.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Tao Liu
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Hao Chen
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Kaitan Yang
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China.
| |
Collapse
|
133
|
Zhang M, Wang J, Wang W, Yang G, Peng J. Predicting cell-type specific disease genes of diabetes with the biological network. Comput Biol Med 2024; 169:107849. [PMID: 38101116 DOI: 10.1016/j.compbiomed.2023.107849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Type 2 diabetes (T2D) is a chronic condition that can lead to significant harm, such as heart disease, kidney disease, nerve damage, and blindness. Although T2D-related genes have been identified through Genome-wide association studies (GWAS) and various computational methods, the biological mechanism of T2D at the cell type level remains unclear. Exploring cell type-specific genes related to T2D is essential to understand the cellular mechanisms underlying the disease. To address this issue, we introduce DiGCellNet (predicting Disease Genes with Cell type specificity based on biological Networks), a model that integrates graph convolutional network (GCN) and multi-task learning (MTL) to predict T2D-associated cell type-specific genes based on the biological network. Our work represents the first attempt to predict cell type-specific disease genes using GCN and MTL. We evaluate our approach by predicting genes specific to four cell types and demonstrate that the proposed DiGCellNet outperforms other models that combine node embeddings with traditional machine learning algorithms. Moreover, DiGCellNet successfully identifies CALM1 as a gene specific to beta cell type in T2D cases, and this association is confirmed using an independent dataset. The code is available at https://github.com/23AIBox/23AIBox-DiGCellNet.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710072, China; The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi'an, 710072, China
| | - Jingru Wang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710072, China; The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi'an, 710072, China
| | - Wei Wang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710072, China; The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi'an, 710072, China
| | - Guang Yang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710072, China; The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi'an, 710072, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China; Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710072, China; The National Engineering Laboratory for Integrated Aerospace-Ground-Ocean Big Data Application Technology, Xi'an, 710072, China; School of Computer Science, Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518000, China.
| |
Collapse
|
134
|
Mersha TB. From Mendel to multi-omics: shifting paradigms. Eur J Hum Genet 2024; 32:139-142. [PMID: 37468578 PMCID: PMC10853174 DOI: 10.1038/s41431-023-01420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Tesfaye B Mersha
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
135
|
Xu T, Xia Q, Zhang L, Yang X, Fu W. Type 2 diabetes and fasting glycemic traits are causal factors of frozen shoulder: a 2-sample Mendelian randomization analysis. J Shoulder Elbow Surg 2024; 33:399-408. [PMID: 37748531 DOI: 10.1016/j.jse.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The causal relationship between type 2 diabetes (T2D) and frozen shoulder is unclear. This study aims to explore the genetic causal association between T2D and glycemic traits (fasting glucose [FG], fasting insulin [FI], glycated hemoglobin [HbA1c], and 2-hour postprandial glucose [2hGlu]) on frozen shoulder. METHODS Using 2-sample Mendelian randomization (MR), we analyzed nonconfounded estimates of the effects of T2D and glycemic traits on frozen shoulder. Single-nucleotide polymorphisms (SNPs) strongly associated (P < 5 × 10-8) with exposures from genome-wide association studies (GWAS) were identified. We employed fixed effect mode inverse variance weighting (IVW-FE), random effect mode IVW (IVW-MRE), MR-Egger, and weighted median to assess the association of exposures and outcome. Sensitivity analysis was conducted to test for heterogeneity and multidirectionality bias in MR. RESULTS We found a significant genetic causal correlation between T2D (IVW-MRE P = .007, odds ratio [OR] 1.093, 95% confidence interval [CI] 1.03-1.16), FG (IVW-FE P < .001, OR 1.455, 95% CI 1.173-1.806), and frozen shoulder, but no evidence for causal correlation between FI, HbA1c, and 2hGlu and frozen shoulder. Although there was certain heterogeneity, sensitivity analysis reveals no deviation from the MR assumptions. CONCLUSION This study supports a genetic causal relationship between T2D and FG and frozen shoulder.
Collapse
Affiliation(s)
- Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University West China School of Nursing, Chengdu, Sichuan, China
| | - Lei Zhang
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaolong Yang
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
136
|
Liu Y, Tang G, Li J. Causations between obesity, diabetes, lifestyle factors and the risk of low back pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:525-532. [PMID: 38123704 DOI: 10.1007/s00586-023-08069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Despite numerous observational studies, the causal relationship between obesity-measured by body mass index (BMI) and waist circumference (WC)-as well as type 2 diabetes (T2D), lifestyle habits, and susceptibility to low back pain (LBP) remains obscure. METHODS This investigation employed two-sample Mendelian randomization (MR) analysis to explore causality, using genetic variants linked to relevant factors from genome-wide association studies (GWASs). Specifically, we selected independent genetic variants related to BMI, WC, T2D, smoking, alcohol consumption, and coffee intake from established GWASs, all of which demonstrated genome-wide significance. The comparative data for LBP were derived from a GWAS involving European subjects, under the auspices of the renowned MRC-IEU (Medical Research Council Integrative Epidemiology Unit) consortium. RESULTS Elevated BMI and WC were associated with odds ratios of 1.002 (95% confidence interval [CI] = 1.001-1.004, p < 0.001) and 1.003 (95% CI = 1.002-1.004, p < 0.001) for LBP per standard deviation (SD) increase, respectively. Regarding smoking initiation and coffee consumption, the odds ratios stood at 1.002 (95% CI = 1.001-1.004, p = 0.001) and 1.004 (95% CI = 1.001-1.008, p = 0.034) for LBP, respectively. However, an augmented log odds ratio for T2D and each SD rise in alcohol consumption frequency revealed no significant causal impact on LBP risk. CONCLUSION Our findings indicate a potential causal link between obesity, smoking, and coffee intake in the genesis of LBP, suggesting that mitigating these factors could contribute to LBP prevention.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Gang Tang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Jinyu Li
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
137
|
Guo W, Li BL, Zhao JY, Li XM, Wang LF. Causal associations between modifiable risk factors and intervertebral disc degeneration. Spine J 2024; 24:195-209. [PMID: 37939919 DOI: 10.1016/j.spinee.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common degenerative condition, which is thought to be a major cause of lower back pain (LBP). However, the etiology and pathophysiology of IVDD are not yet completely clear. PURPOSE To examine potential causal effects of modifiable risk factors on IVDD. STUDY DESIGN Bidirectional Mendelian randomization (MR) study. PATIENT SAMPLE Genome-wide association studies (GWAS) with sample sizes between 54,358 and 766,345 participants. OUTCOME MEASURES Outcomes included (1) modifiable risk factors associated with IVDD use in the forward MR; and (2) modifiable risk factors that were determined to have a causal association with IVDD in the reverse MR, including smoking, alcohol intake, standing height, education level, household income, sleeplessness, hypertension, hip osteoarthritis, HDL, triglycerides, apolipoprotein A-I, type 2 diabetes, fasting glucose, HbA1c, BMI and obesity trait. METHODS We obtained genetic variants associated with 33 exposure factors from genome-wide association studies. Summary statistics for IVDD were obtained from the FinnGen consortium. The risk factors of IVDD were analyzed by inverse variance weighting method, MR-Egger method, weighted median method, MR-PRESSO method and multivariate MR Method. Reverse Mendelian randomization analysis was performed on risk factors found to be caustically associated with IVDD in the forward Mendelian randomization analysis. The heterogeneity of instrumental variables was quantified using Cochran's Q statistic. RESULTS Genetic predisposition to smoking (OR=1.221, 95% CI: 1.068-1.396), alcohol intake (OR=1.208, 95% CI: 1.056-1.328) and standing height (OR=1.149, 95% CI: 1.072-1.231) were associated with increased risk of IVDD. In addition, education level (OR=0.573, 95%CI: 0.502-0.654)and household income (OR=0.614, 95%CI: 0.445-0.847) had a protective effect on IVDD. Sleeplessness (OR=1.799, 95%CI: 1.162-2.783), hypertension (OR=2.113, 95%CI: 1.132-3.944) and type 2 diabetes (OR=1.069, 95%CI: 1.024-1.115) are three important risk factors causally associated with the IVDD. In addition, we demonstrated that increased levels of triglycerides (OR=1.080, 95%CI:1.013-1.151), fasting glucose (OR=1.189, 95%CI:1.007-1.405), and HbA1c (OR=1.308, 95%CI:1.017-1.683) could significantly increase the odds of IVDD. Hip osteoarthritis, HDL, apolipoprotein A-I, BMI and obesity trait factors showed bidirectional causal associations with IVDD, therefore we considered the causal associations between these risk factors and IVDD to be uncertain. CONCLUSIONS This MR study provides evidence of complex causal associations between modifiable risk factors and IVDD. It is noteworthy that metabolic disturbances appear to have a more significant effect on IVDD than biomechanical alterations, as individuals with type 2 diabetes, elevated triglycerides, fasting glucose, and elevated HbA1c are at higher risk for IVDD, and the causal association of obesity-related characteristics with IVDD incidence is unclear. These findings provide new insights into potential therapeutic and prevention strategies. Further research is needed to clarify the mechanisms of these risk factors on IVDD.
Collapse
Affiliation(s)
- Wei Guo
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, 31 Huanghe Road, Cangzhou, P.R. China, 061001; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, 31 Huanghe Road, Cangzhou, P.R. China, 061001; The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, P.R. China, 050035
| | - Bao-Li Li
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, P.R. China, 050035
| | - Jian-Yong Zhao
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, 31 Huanghe Road, Cangzhou, P.R. China, 061001; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, 31 Huanghe Road, Cangzhou, P.R. China, 061001
| | - Xiao-Ming Li
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, 31 Huanghe Road, Cangzhou, P.R. China, 061001; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, 31 Huanghe Road, Cangzhou, P.R. China, 061001
| | - Lin-Feng Wang
- The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, P.R. China, 050035.
| |
Collapse
|
138
|
Liu X, Liu X, Huang N, Yang Z, Zhang Z, Zhuang Z, Jin M, Li N, Huang T. Women's reproductive risk and genetic predisposition in type 2 diabetes: A prospective cohort study. Diabetes Res Clin Pract 2024; 208:111121. [PMID: 38295999 DOI: 10.1016/j.diabres.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE To assess synergistic effects of reproductive factors and gene-reproductive interaction on type 2 diabetes (T2D) risk, also the extent to which the genetic risk of T2D can be affected by reproductive risk. METHODS 84,254 women with genetic data and reproductive factors were enrolled between 2006 and 2010 in the UK Biobank. The reproductive risk score (RRS) was conducted based on 17 reproductive items, and genetic risk score (GRS) was based on 149 genetic variants. RESULTS There were 2300 (2.8 %) T2D cases during an average follow-up of 4.49 years. We found a significant increase in T2D risk across RRS categories (Ptrend < 0.001). Compared with low reproductive risk, high-mediate (adjusted hazard ratio [aHR] 1.38, 95 % CI 1.20-1.58) and high (aHR 1.84, 95 % CI 1.54-2.19) reproductive risk could increase the risk of T2D. We further observed a significant additive interaction between reproductive risk and genetic predisposition. In the situation of high genetic predisposition, women with low reproductive risk had lower risk of T2D than those with high reproductive risk (aHR 0.47, 95 % CI 0.30-0.76), with an absolute risk reduction of 2.98 %. CONCLUSIONS Our novo developed RRS identified high reproductive risk is associated with elevated risk of women's T2D, which can be magnified by gene-reproductive interaction.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Xiaowen Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Ninghao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| | - Zeping Yang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Ziyi Zhang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Zhenhuang Zhuang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| | - Ming Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China
| | - Nan Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing 100191, China.
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing 100191, China; Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, China
| |
Collapse
|
139
|
Shah AM, Myhre PL, Arthur V, Dorbala P, Rasheed H, Buckley LF, Claggett B, Liu G, Ma J, Nguyen NQ, Matsushita K, Ndumele C, Tin A, Hveem K, Jonasson C, Dalen H, Boerwinkle E, Hoogeveen RC, Ballantyne C, Coresh J, Omland T, Yu B. Large scale plasma proteomics identifies novel proteins and protein networks associated with heart failure development. Nat Commun 2024; 15:528. [PMID: 38225249 PMCID: PMC10789789 DOI: 10.1038/s41467-023-44680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.
Collapse
Affiliation(s)
- Amil M Shah
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peder L Myhre
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Victoria Arthur
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pranav Dorbala
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Humaira Rasheed
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian Claggett
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Guning Liu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Jianzhong Ma
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Ngoc Quynh Nguyen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chiadi Ndumele
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adrienne Tin
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Jonasson
- Department of Public Health and Nursing, HUNT Research Center, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Cardiology, St Olavs University Hospital, Trondheim, Norway
- Department of Internal Medicine, Levanger Hospital, Levanger, Norway
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Ron C Hoogeveen
- Division of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Josef Coresh
- Departments of Medicine and Population Health, NYU Langone Health, New York, NY, USA
| | - Torbjørn Omland
- Akershus University Hospital and K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| |
Collapse
|
140
|
Breeze CE, Haugen E, Gutierrez-Arcelus M, Yao X, Teschendorff A, Beck S, Dunham I, Stamatoyannopoulos J, Franceschini N, Machiela MJ, Berndt SI. FORGEdb: a tool for identifying candidate functional variants and uncovering target genes and mechanisms for complex diseases. Genome Biol 2024; 25:3. [PMID: 38167104 PMCID: PMC10763681 DOI: 10.1186/s13059-023-03126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb ( https://forgedb.cancer.gov/ ; https://forge2.altiusinstitute.org/files/forgedb.html ; and https://doi.org/10.5281/zenodo.10067458 ), a standalone and web-based tool that integrates multiple datasets, delivering information on associated regulatory elements, transcription factor binding sites, and target genes for over 37 million variants. FORGEdb scores provide researchers with a quantitative assessment of the relative importance of each variant for targeted functional experiments.
Collapse
Affiliation(s)
- Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Altius Institute for Biomedical Sciences, 2211 Elliott Avenue 98121, Seattle, USA.
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, 2211 Elliott Avenue 98121, Seattle, USA
| | - María Gutierrez-Arcelus
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaozheng Yao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew Teschendorff
- CAS Key Lab of Computational Biology, Shanghai Institute for Biological Sciences, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
141
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Vitale E, Triggiani V. Chronic Stress as a Risk Factor for Type 2 Diabetes: Endocrine, Metabolic, and Immune Implications. Endocr Metab Immune Disord Drug Targets 2024; 24:321-332. [PMID: 37534489 DOI: 10.2174/1871530323666230803095118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Chronic stress is a condition of pressure on the brain and whole body, which in the long term may lead to a frank disease status, even including type 2 diabetes (T2D). Stress activates the hypothalamus-pituitary-adrenal axis with release of glucocorticoids (GCs) and catecholamines, as well as activation of the inflammatory pathway of the immune system, which alters glucose and lipid metabolism, ultimately leading to beta-cell destruction, insulin resistance and T2D onset. Alteration of the glucose and lipid metabolism accounts for insulin resistance and T2D outcome. Furthermore, stress-related subversion of the intestinal microbiota leads to an imbalance of the gut-brain-immune axis, as evidenced by the stress-related depression often associated with T2D. A condition of generalized inflammation and subversion of the intestinal microbiota represents another facet of stress-induced disease. In fact, chronic stress acts on the gut-brain axis with multiorgan consequences, as evidenced by the association between depression and T2D. Oxidative stress with the production of reactive oxygen species and cytokine-mediated inflammation represents the main hallmarks of chronic stress. ROS production and pro-inflammatory cytokines represent the main hallmarks of stress-related disorders, and therefore, the use of natural antioxidant and anti-inflammatory substances (nutraceuticals) may offer an alternative therapeutic approach to combat stress-related T2D. Single or combined administration of nutraceuticals would be very beneficial in targeting the neuro-endocrine-immune axis, thus, regulating major pathways involved in T2D onset. However, more clinical trials are needed to establish the effectiveness of nutraceutical treatment, dosage, time of administration and the most favorable combinations of compounds. Therefore, in view of their antioxidant and anti-inflammatory properties, the use of natural products or nutraceuticals for the treatment of stress-related diseases, even including T2D, will be discussed. Several evidences suggest that chronic stress represents one of the main factors responsible for the outcome of T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| | - Elsa Vitale
- Department of Mental Health, University of Bari Aldo Moro, Local Health Authority Bari, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, University of Bari, "Aldo Moro", Bari, Italy
| |
Collapse
|
142
|
Jin T, Wang M, Zeng Z, He W, Zhang L, Mai Y, Cen H. Causal associations of plasma omega-3 polyunsaturated fatty acids with sarcopenia-related traits: a two-sample Mendelian randomization study. Eur J Clin Nutr 2024; 78:19-26. [PMID: 37653236 DOI: 10.1038/s41430-023-01339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To evaluate the causal effect of plasma omega-3 polyunsaturated fatty acids (PUFAs) on sarcopenia-related traits (lean mass, grip strength and walking pace) utilizing two-sample Mendelian randomization (MR) approach. METHODS Based on genome-wide association study (GWAS) summary statistics, we performed two-sample MR applying the inverse variance weighted (IVW) as the primary method, supplemented with four additional sensitivity analyses. Furthermore, multivariable MR (MVMR) was applied to assess these associations independent of alcohol drinking, type 2 diabetes (T2D), triglycerides (TG), estimated glomerular filtration rate (eGFR) and C-reactive protein (CRP). RESULTS In univariable MR, the IVW analysis suggested no significant causal effect of genetically determined plasma omega-3 PUFAs on fat-free mass (right leg: β = 0.01, 95% CI = -0.02 to 0.05, P = 0.375; left leg: β = 0.01, 95% CI = -0.02 to 0.04, P = 0.446; right arm: β = 0.01, 95% CI = -0.02 to 0.05, P = 0.376; left arm: β = 0.01, 95% CI = -0.02 to 0.04, P = 0.384; trunk:β = 0.02, 95% CI = -0.02 to 0.06, P = 0.283; whole: β = 0.01, 95% CI = -0.03 to 0.04, P = 0.631), grip strength (right hand: β = -0.01, 95% CI = -0.03 to 0.01, P = 0.387; left hand: β = -0.01, 95% CI = -0.02 to 0.01, P = 0.553) and walking pace (β = 0.00, 95% CI = -0.01 to 0.02, P = 0.575), and sensitive analysis generated similar non-significant results. Furthermore, the MVMR revealed no independent causal association. CONCLUSIONS Genetically determined plasma omega-3 PUFAs have no causal effect on sarcopenia-related traits.
Collapse
Affiliation(s)
- Ting Jin
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Mengqiao Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Zeng
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Wenming He
- Institute of Geriatrics, The First Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Lina Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| | - Yifeng Mai
- Institute of Geriatrics, The First Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China.
| | - Han Cen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
143
|
Franz M, Papiol S, Simon MS, Barton BB, Glockner C, Spellmann I, Riedel M, Heilbronner U, Zill P, Schulze TG, Musil R. Association of clinical parameters and polygenic risk scores for body mass index, schizophrenia, and diabetes with antipsychotic-induced weight gain. J Psychiatr Res 2024; 169:184-190. [PMID: 38042056 DOI: 10.1016/j.jpsychires.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Antipsychotic-induced weight gain (AIWG) is a common adverse event in schizophrenia. Genome-wide association studies (GWAS) and polygenic risk scores (PRS) for other diseases or traits are recent approaches to disentangling the genetic architecture of AIWG. 200 patients with schizophrenia treated monotherapeutically with antipsychotics were included in this study. A multiple linear regression analysis with ten-fold crossvalidation was performed to predict the percentage weight change after five weeks of treatment. Independent variables were sex, age, body mass index (BMI) at baseline, medication-associated risk, and PRSs (BMI, schizophrenia, diabetes, and metabolic syndrome). An explorative GWAS analysis was performed on the same subjects and traits. PRSs for BMI (β = 3.78; p = 0.0041), schizophrenia (β = 5.38; p = 0.021) and diabetes type 2 (β = 13.4; p = 0.046) were significantly associated with AIWG. Other significant factors were sex, baseline BMI and medication. Compared to the model without genetic factors, the addition of PRSs for BMI, schizophrenia, and diabetes type 2 increased the goodness of fit by 6.5 %. The GWAS identified the association of three variants (rs10668573, rs10249381 and rs1988834) with AIWG at a genome-wide level of p < 1 · 10-6. Using PRS for schizophrenia, BMI, and diabetes type 2 increased the explained variation of predicted weight gain, compared to a model without PRSs. For more precise results, PRSs derived from other traits (ideally AIWG) should be investigated. Potential risk variants identified in our GWAS need to be further investigated and replicated in independent samples.
Collapse
Affiliation(s)
- Maria Franz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany
| | - Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany.
| | - Barbara B Barton
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Catherine Glockner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Ilja Spellmann
- Zentrum für Seelische Gesundheit, Klinikum Stuttgart, Stuttgart, 70174, Germany
| | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, 80336, Germany; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| |
Collapse
|
144
|
Xu Z, Shi Y, Wei C, Li T, Wen J, Du W, Yu Y, Zhu T. Causal relationship between glycemic traits and bone mineral density in different age groups and skeletal sites: a Mendelian randomization analysis. J Bone Miner Metab 2024; 42:90-98. [PMID: 38157037 DOI: 10.1007/s00774-023-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Previous research has confirmed that patients with type 2 diabetes mellitus tend to have higher bone mineral density (BMD), but it is unknown whether this pattern holds true for individuals without diabetes. This Mendelian randomization (MR) study aims to investigate the potential causal relationship between various glycemic trait (including fasting glucose, fasting insulin, 2-h postprandial glucose, and glycated hemoglobin) and BMD in non-diabetic individuals. The investigation focuses on different age groups (15-30, 30-45, 45-60, and 60 + years) and various skeletal sites (forearm, lumbar spine, and hip). MATERIALS AND METHODS We utilized genome-wide association study data from large population-based cohorts to identify robust instrumental variables for each glycemic traits parameter. Our primary analysis employed the inverse-variance weighted method, with sensitivity analyses conducted using MR-Egger, weighted median, MR-PRESSO, and multivariable MR methods to assess the robustness and potential horizontal pleiotropy of the study results. RESULTS Fasting insulin showed a negative modulating relationship on both lumbar spine and forearm. However, these associations were only nominally significant. No significant causal association was observed between blood glucose traits and BMD across the different age groups. The direction of fasting insulin's causal effects on BMD showed inconsistency between genders, with potentially decreased BMD in women with high fasting insulin levels and an increasing trend in BMD in men. CONCLUSIONS In the non-diabetic population, currently available evidence does not support a causal relationship between glycemic traits and BMD. However, further investigation is warranted considering the observed gender differences.
Collapse
Affiliation(s)
- Zhangmeng Xu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yushan Shi
- Department of Medical Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Changhong Wei
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China
| | - Tao Li
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Jiang Wen
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Wanli Du
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Yaming Yu
- Department-2 of Neck Shoulder Back and Leg Pain, Department of Preventive Treatment, Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China.
- Department of preventive treatment, Sichuan Province Orthopaedic Hospital, No. 132 West 1st Section, 1st Ring Road in Chengdu, Chengdu, Sichuan, China.
| | - Tianmin Zhu
- Department of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, Sichuan, China.
| |
Collapse
|
145
|
Dallali H, Boukhalfa W, Kheriji N, Fassatoui M, Jmel H, Hechmi M, Gouiza I, Gharbi M, Kammoun W, Mrad M, Taoueb M, Krir A, Trabelsi H, Bahlous A, Jamoussi H, Messaoud O, Abid A, Kefi R. The first exome wide association study in Tunisia: identification of candidate loci and pathways with biological relevance for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1293124. [PMID: 38192426 PMCID: PMC10773763 DOI: 10.3389/fendo.2023.1293124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is a multifactorial disease involving genetic and environmental components. Several genome-wide association studies (GWAS) have been conducted to decipher potential genetic aberrations promoting the onset of this metabolic disorder. These GWAS have identified over 400 associated variants, mostly in the intronic or intergenic regions. Recently, a growing number of exome genotyping or exome sequencing experiments have identified coding variants associated with T2D. Such studies were mainly conducted in European populations, and the few candidate-gene replication studies in North African populations revealed inconsistent results. In the present study, we aimed to discover the coding genetic etiology of T2D in the Tunisian population. Methods We carried out a pilot Exome Wide Association Study (EWAS) on 50 Tunisian individuals. Single variant analysis was performed as implemented in PLINK on potentially deleterious coding variants. Subsequently, we applied gene-based and gene-set analyses using MAGMA software to identify genes and pathways associated with T2D. Potential signals were further replicated in an existing large in-silico dataset, involving up to 177116 European individuals. Results Our analysis revealed, for the first time, promising associations between T2D and variations in MYORG gene, implicated in the skeletal muscle fiber development. Gene-set analysis identified two candidate pathways having nominal associations with T2D in our study samples, namely the positive regulation of neuron apoptotic process and the regulation of mucus secretion. These two pathways are implicated in the neurogenerative alterations and in the inflammatory mechanisms of metabolic diseases. In addition, replication analysis revealed nominal associations of the regulation of beta-cell development and the regulation of peptidase activity pathways with T2D, both in the Tunisian subjects and in the European in-silico dataset. Conclusions The present study is the first EWAS to investigate the impact of single genetic variants and their aggregate effects on T2D risk in Africa. The promising disease markers, revealed by our pilot EWAS, will promote the understanding of the T2D pathophysiology in North Africa as well as the discovery of potential treatments.
Collapse
Affiliation(s)
- Hamza Dallali
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Fassatoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, University of Angers, Angers, France
| | - Mariem Gharbi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wafa Kammoun
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Mehdi Mrad
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Marouen Taoueb
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Asma Krir
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Hajer Trabelsi
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Afef Bahlous
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Henda Jamoussi
- Research Unit on Obesity, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Abdelmajid Abid
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Rym Kefi
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
146
|
Scholz SW, Moroz BE, Saez-Atienzar S, Chia R, Cahoon EK, Dalgard CL, Freedman DM, Pfeiffer RM. Association of cardiovascular disease management drugs with Lewy body dementia: a case-control study. Brain Commun 2023; 6:fcad346. [PMID: 38162907 PMCID: PMC10754316 DOI: 10.1093/braincomms/fcad346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Lewy body dementia is the second most common neurodegenerative dementia after Alzheimer's disease. Disease-modifying therapies for this disabling neuropsychiatric condition are critically needed. To identify drugs associated with the risk of developing Lewy body dementia, we performed a population-based case-control study of 148 170 US Medicare participants diagnosed with Lewy body dementia between 1 January 2008 and 31 December 2014 and of 1 253 043 frequency-matched controls. We estimated odds ratios and 95% confidence intervals for the association of Lewy body dementia risk with 1017 prescription drugs overall and separately for the three major racial groups (Black, Hispanic and White Americans). We identified significantly reduced Lewy body dementia risk associated with drugs used to treat cardiovascular diseases (anti-hypertensives: odds ratio = 0.72, 95% confidence interval = 0.70-0.74, P-value = 0; cholesterol-lowering agents: odds ratio = 0.85, 95% confidence interval = 0.83-0.87, P-value = 0; anti-diabetics: odds ratio = 0.83, 95% confidence interval = 0.62-0.72, P-value = 0). Notably, anti-diabetic medications were associated with a larger risk reduction among Black Lewy body dementia patients compared with other racial groups (Black: odds ratio = 0.67, 95% confidence interval = 0.62-0.72, P-value = 0; Hispanic: odds ratio = 0.86, 95% = 0.80-0.92, P-value = 5.16 × 10-5; White: odds ratio = 0.85, 95% confidence interval = 0.82-0.88, P-value = 0). To independently confirm the epidemiological findings, we looked for evidence of genetic overlap between Lewy body dementia and cardiovascular traits using whole-genome sequence data generated for 2591 Lewy body dementia patients and 4027 controls. Bivariate mixed modelling identified shared genetic risk between Lewy body dementia and low-density lipoprotein cholesterol levels, Type 2 diabetes and hypertension. By combining epidemiological and genomic data, we demonstrated that drugs treating cardiovascular diseases are associated with reduced Lewy body dementia risk, and these associations varied across racial groups. Future randomized clinical trials need to confirm our findings, but our data suggest that assiduous management of cardiovascular diseases may be beneficial in this understudied form of dementia.
Collapse
Affiliation(s)
- Sonja W Scholz
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Moroz
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Saez-Atienzar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elizabeth K Cahoon
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Daryl Michal Freedman
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
147
|
Sun S, Aboelenain M, Ariad D, Haywood ME, Wageman CR, Duke M, Bag A, Viotti M, Katz-Jaffe M, McCoy RC, Schindler K, Xing J. Identifying risk variants for embryo aneuploidy using ultra-low coverage whole-genome sequencing from preimplantation genetic testing. Am J Hum Genet 2023; 110:2092-2102. [PMID: 38029743 PMCID: PMC10716496 DOI: 10.1016/j.ajhg.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Aneuploidy frequently arises during human meiosis and is the primary cause of early miscarriage and in vitro fertilization (IVF) failure. Individuals undergoing IVF exhibit significant variability in aneuploidy rates, although the exact genetic causes of the variability in aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing is a standard test for identifying and selecting IVF-derived euploid embryos. The wealth of embryo aneuploidy data and ultra-low coverage whole-genome sequencing (ulc-WGS) data from PGT-A have the potential to discover variants in parental genomes that are associated with aneuploidy risk in their embryos. Using ulc-WGS data from ∼10,000 PGT-A biopsies, we imputed genotype likelihoods of genetic variants in embryo genomes. We then used the imputed variants and embryo aneuploidy calls to perform a genome-wide association study of aneuploidy incidence. Finally, we carried out functional evaluation of the identified candidate gene in a mouse oocyte system. We identified one locus on chromosome 3 that is significantly associated with meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is involved in chromosome segregation during meiosis. Using mouse oocytes, we showed that CCDC66 regulates meiotic progression and chromosome segregation fidelity, especially in older mice. Our work extended the research utility of PGT-A ulc-WGS data by allowing robust association testing and improved the understanding of the genetic contribution to maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that has potential to be leveraged for similar association studies that use ulc-WGS data.
Collapse
Affiliation(s)
- Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mansour Aboelenain
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Marlena Duke
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Aishee Bag
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Manuel Viotti
- Zouves Foundation for Reproductive Medicine, Foster City, CA, USA; Kindlabs, Kindbody, New York, NY, USA
| | | | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
148
|
Penner-Goeke S, Bothe M, Rek N, Kreitmaier P, Pöhlchen D, Kühnel A, Glaser LV, Kaya E, Krontira AC, Röh S, Czamara D, Ködel M, Monteserin-Garcia J, Diener L, Wölfel B, Sauer S, Rummel C, Riesenberg S, Arloth-Knauer J, Ziller M, Labeur M, Meijsing S, Binder EB. High-throughput screening of glucocorticoid-induced enhancer activity reveals mechanisms of stress-related psychiatric disorders. Proc Natl Acad Sci U S A 2023; 120:e2305773120. [PMID: 38011552 DOI: 10.1073/pnas.2305773120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 11/29/2023] Open
Abstract
Exposure to stressful life events increases the risk for psychiatric disorders. Mechanistic insight into the genetic factors moderating the impact of stress can increase our understanding of disease processes. Here, we test 3,662 single nucleotide polymorphisms (SNPs) from preselected expression quantitative trait loci in massively parallel reporter assays to identify genetic variants that modulate the activity of regulatory elements sensitive to glucocorticoids, important mediators of the stress response. Of the tested SNP sequences, 547 were located in glucocorticoid-responsive regulatory elements of which 233 showed allele-dependent activity. Transcripts regulated by these functional variants were enriched for those differentially expressed in psychiatric disorders in the postmortem brain. Phenome-wide Mendelian randomization analysis in 4,439 phenotypes revealed potentially causal associations specifically in neurobehavioral traits, including major depression and other psychiatric disorders. Finally, a functional gene score derived from these variants was significantly associated with differences in the physiological stress response, suggesting that these variants may alter disease risk by moderating the individual set point of the stress response.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Melissa Bothe
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Nils Rek
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg 85764, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Ezgi Kaya
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Planegg 82152, Germany
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Jose Monteserin-Garcia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Laura Diener
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Christine Rummel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Stephan Riesenberg
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Janine Arloth-Knauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
- Department of Psychiatry, University of Muenster, Muenster 48149, Germany
| | - Marta Labeur
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Sebastiaan Meijsing
- Department of Computational Molecular Biology, Max Planck Institute of Molecular Genetics, Berlin 14195, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany
| |
Collapse
|
149
|
Zuo Z, Tong Y, Li M, Wang Z, Wang X, Guo X, Sun Y, Zhang Z. Effect of genetically determined BCAA levels on cardiovascular diseases and their risk factors: A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2023; 33:2406-2412. [PMID: 37788949 DOI: 10.1016/j.numecd.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND AIMS Observational studies have demonstrated that serum branched-chain amino acids (BCAAs) are associated with the risk of various cardiovascular diseases (CVDs) and their risk factors. However, the causal effect is unclear. The aim of this study was to investigate the effect of genetically determined BCAA levels on CVDs and their risk factors using Mendelian randomization (MR). METHODS AND RESULTS We performed univariable and multivariable MR analyses using summary-level data from multiple GWASs and the FinnGen consortium to investigate the association between BCAA levels and the risk of CVDs (myocardial infarction, ischemic stroke, and intracerebral hemorrhage) and their risk factors (atrial fibrillation, hypertension, heart failure, and valvular heart disease). We used the random-effects IVW approach as the primary statistical method and incorporated MR estimates from different data sources using the fixed-effects model. We found genetically determined total and individual BCAA levels and a high risk of hypertension. However, there is no evidence of a causal relationship between BCAA levels and 3 cardiovascular diseases and other their risk factors. The odds of hypertension increased per 1-SD increase in BCAA levels (OR = 1.02 95% CI: 1.01, 1.04; P = 0.005), valine (OR = 1.02 95% CI: 1.01, 1.03; P<0.0001), leucine (OR = 1.02 95% CI: 1.01, 1.04; P<0.01), and isoleucine (OR = 1.02 95% CI: 1.01, 1.03; P < 0.0001). This result was also significant in the multivariable MR. CONCLUSIONS This MR study suggests that total and individual BCAA levels could be associated with a high risk of hypertension.
Collapse
Affiliation(s)
- Zheng Zuo
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Tong
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Minghua Li
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhenggui Wang
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xishu Wang
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoxue Guo
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Sun
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhiguo Zhang
- Cardiovascular Medicine Department, Cardiology Center, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
150
|
Zhang N, Jia Z, Gu T, Zheng Y, Zhang Y, Song W, Chen Z, Li G, Tse G, Liu T. Associations between modifiable risk factors and frailty: a Mendelian randomisation study. J Epidemiol Community Health 2023; 77:782-790. [PMID: 37604674 DOI: 10.1136/jech-2023-220882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Early identification of modifiable risk factors is essential for the prevention of frailty. This study aimed to explore the causal relationships between a spectrum of genetically predicted risk factors and frailty. METHODS Univariable and multivariable Mendelian randomisation (MR) analyses were performed to explore the relationships between 22 potential risk factors and frailty, using summary genome-wide association statistics. Frailty was accessed by the frailty index. RESULTS Genetic liability to coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), ischaemic stroke, atrial fibrillation and regular smoking history, as well as genetically predicted 1-SD increase in body mass index, systolic blood pressure, diastolic blood pressure, low-density lipoprotein cholesterol, triglycerides, alcohol intake frequency and sleeplessness were significantly associated with increased risk of frailty (all p<0.001). In addition, there was a significant inverse association between genetically predicted college or university degree with risk of frailty (beta -0.474; 95% CI (-0.561 to -0.388); p<0.001), and a suggestive inverse association between high-density lipoprotein cholesterol level with risk of frailty (beta -0.032; 95% CI (-0.055 to -0.010); p=0.004). However, no significant causal associations were observed between coffee consumption, tea consumption, serum level of total testosterone, oestradiol, 25-hydroxyvitamin D, C reactive protein or moderate to vigorous physical activity level with frailty (all p>0.05). Results of the reverse directional MR suggested bidirectional causal associations between T2DM and CAD with frailty. CONCLUSIONS This study provided genetic evidence for the causal associations between several modifiable risk factors with lifetime frailty risk. A multidimensional approach targeting these factors may hold a promising prospect for prevention frailty.
Collapse
Affiliation(s)
- Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ziheng Jia
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yi Zheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yunpeng Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenhua Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Kent and Medway Medical School, University of Kent and Canterbury Christ Church University, Canterbury, Kent, UK
- School of Nursing and Health Studies, Hong Kong, Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|