101
|
Zhang H, Lin Y, Li S, Bi J, Zeng J, Mo C, Xu S, Jia B, Lu Y, Liu C, Liu Z. Effects of bacterial extracellular vesicles derived from oral and gastrointestinal pathogens on systemic diseases. Microbiol Res 2024; 285:127788. [PMID: 38833831 DOI: 10.1016/j.micres.2024.127788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Oral microbiota and gastrointestinal microbiota, the two largest microbiomes in the human body, are closely correlated and frequently interact through the oral-gut axis. Recent research has focused on the roles of these microbiomes in human health and diseases. Under normal conditions, probiotics and commensal bacteria can positively impact health. However, altered physiological states may induce dysbiosis, increasing the risk of pathogen colonization. Studies suggest that oral and gastrointestinal pathogens contribute not only to localized diseases at their respective colonized sites but also to the progression of systemic diseases. However, the mechanisms by which bacteria at these local sites are involved in systemic diseases remain elusive. In response to this gap, the focus has shifted to bacterial extracellular vesicles (BEVs), which act as mediators of communication between the microbiota and the host. Numerous studies have reported the targeted delivery of bacterial pathogenic substances from the oral cavity and the gastrointestinal tract to distant organs via BEVs. These pathogenic components subsequently elicit specific cellular responses in target organs, thereby mediating the progression of systemic diseases. This review aims to elucidate the extensive microbial communication via the oral-gut axis, summarize the types and biogenesis mechanisms of BEVs, and highlight the translocation pathways of oral and gastrointestinal BEVs in vivo, as well as the impacts of pathogens-derived BEVs on systemic diseases.
Collapse
Affiliation(s)
- Han Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
102
|
Li J, Li C, Tan C, Xu H, Han Y, Hu Y, Yang J, Tang Y, Lei C, Wang H. Inappropriate use of antibiotic enhances antibiotic resistance dissemination in ESBL-EC: Role of ydcz in outer membrane vesicles biogenesis and protein transport. Microbiol Res 2024; 285:127774. [PMID: 38833829 DOI: 10.1016/j.micres.2024.127774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Extended-spectrumβ-lactam producing Escherichia coli (ESBL-EC) readily colonizes live poultry and serves as a major source of contamination in retail chicken meat, posing significant threats to public health. This study aims to investigate the impact of inappropriate antibiotic use on the dissemination and exacerbation of antibiotic resistance in ESBL-EC and explore the underlying molecular mechanisms. Through experimental analysis, we propose a hypothesis that inappropriate antibiotic use may exacerbate resistance by affecting vesicle formation and protein secretion. Experimental results demonstrate that under the influence of amoxicillin, the concentration of proteins secreted in outer membrane vehicles (OMVs) by ESBL-EC significantly increases, along with a significant upregulation in the expression of the CTX-M-55-type Extended-spectrum beta-lactamase (CTX-M-55). Proteomic analysis and differential gene knockout experiments identified the key protein YdcZ, associated with OMVs formation and protein transportation in ESBL-EC under amoxicillin treatment. Further investigations reveal direct interactions between YdcZ and other proteins (YdiH and BssR). Upon ydcz gene knockout, a significant decrease in protein concentration within OMVs is observed, accompanied by a noticeable reduction in protection against sensitive bacteria. These findings suggest a critical role of YdcZ in regulating the process of protein transportation to OMVs in ESBL-EC under the influence of amoxicillin. In summary, our research uncovers the significant role of inappropriate antibiotic use in promoting the secretion of OMVs by ESBL-EC, aiding the survival of antibiotic-sensitive bacteria in the vicinity of infection sites. These findings provide new insights into the mechanisms underlying antibiotic-induced bacterial resistance dissemination and offer novel avenues for exploring prevention and control strategies against bacterial resistance propagation.
Collapse
Affiliation(s)
- Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Chang Tan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulian Hu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
103
|
Yan W, Cao Y, Yin Q, Li Y. Biomimetic Nucleic Acid Drug Delivery Systems for Relieving Tumor Immunosuppressive Microenvironment. Pharmaceutics 2024; 16:1028. [PMID: 39204373 PMCID: PMC11360391 DOI: 10.3390/pharmaceutics16081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy combats tumors by enhancing the body's immune surveillance and clearance of tumor cells. Various nucleic acid drugs can be used in immunotherapy, such as DNA expressing cytokines, mRNA tumor vaccines, small interfering RNAs (siRNA) knocking down immunosuppressive molecules, and oligonucleotides that can be used as immune adjuvants. Nucleic acid drugs, which are prone to nuclease degradation in the circulation and find it difficult to enter the target cells, typically necessitate developing appropriate vectors for effective in vivo delivery. Biomimetic drug delivery systems, derived from viruses, bacteria, and cells, can protect the cargos from degradation and clearance, and deliver them to the target cells to ensure safety. Moreover, they can activate the immune system through their endogenous activities and active components, thereby improving the efficacy of antitumor immunotherapeutic nucleic acid drugs. In this review, biomimetic nucleic acid delivery systems for relieving a tumor immunosuppressive microenvironment are introduced. Their immune activation mechanisms, including upregulating the proinflammatory cytokines, serving as tumor vaccines, inhibiting immune checkpoints, and modulating intratumoral immune cells, are elaborated. The advantages and disadvantages, as well as possible directions for their clinical translation, are summarized at last.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (W.Y.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
104
|
Cheung CT, Lancien U, Corvec S, Mengeaud V, Mias C, Véziers J, Khammari A, Dréno B. Pro-inflammatory activity of Cutibacterium acnes phylotype IA 1 and extracellular vesicles: An in vitro study. Exp Dermatol 2024; 33:e15150. [PMID: 39113601 PMCID: PMC11605500 DOI: 10.1111/exd.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 12/01/2024]
Abstract
Acne is a chronic inflammatory skin condition that involves Cutibacterium acnes (C. acnes), which is classified into six main phylotypes (IA1, IA2, IB, IC, II and III). Acne development is associated with loss of C. acnes phylotype diversity, characterised by overgrowth of phylotype IA1 relative to other phylotypes. It was also shown that purified extracellular vesicles (EVs) secreted by C. acnes can induce an acne-like inflammatory response in skin models. We aimed to determine if the inflammatory profile of EVs secreted by C. acnes phylotype IA1 from an inflammatory acne lesion was different from C. acnes phylotype IA1 from normal skin, thus playing a direct role in the severity of inflammation. EVs were produced in vitro after culture of two clinical strains of C. acnes phylotype IA1, T5 from normal human skin and A47 from an inflammatory acne lesion, and then incubated with either human immortalised keratinocytes, HaCaT cells, or skin explants obtained from abdominoplasty. Subsequently, quantitative PCR (qPCR) was performed for human β-defensin 2 (hBD2), cathelicidin (LL-37), interleukin (IL)-1β, IL-6, IL-8, IL-17α and IL-36γ, and ELISA for IL-6, IL-8 and IL-17α. We found that EVs produced in vitro by C. acnes derived from inflammatory acne lesions significantly increased the pro-inflammatory cytokines and anti-microbial peptides at both transcriptional and protein levels compared with EVs derived from normal human skin. We show for the first time that C. acnes EVs from inflammatory acne play a crucial role in acne-associated inflammation in vitro and that C. acnes phylotype IA1 collected from inflammatory acne lesion and normal skin produce different EVs and inflammatory profiles in vitro.
Collapse
Affiliation(s)
- Caroline T. Cheung
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
| | - Ugo Lancien
- Nantes University, CHU Nantes Chirurgie Plastique, Reconstructrice et Esthétique et Centre de traitement des Brûlés, Hôtel‐DieuNantesFrance
| | - Stéphane Corvec
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
- CHU Nantes Bacteriology DepartmentNantes UniversityNantesFrance
| | - Valérie Mengeaud
- Medical Direction, Laboratoires Dermatologiques Ducray, Les CauquillousLavaurFrance
| | - Céline Mias
- Pierre Fabre Dermo‐Cosmétique et Personal CareToulouseFrance
| | - Joëlle Véziers
- Nantes University, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeSNantesFrance
| | - Amir Khammari
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
- Department of DermatologyNantes University, CHU Nantes, INSERMNantesFrance
| | - Brigitte Dréno
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
| |
Collapse
|
105
|
Zhu Q, Wang S, Fu G, Guo F, Huang W, Zhang T, Dong H, Jin Z, Zhang D. Highly flexible cell membranes are the key to efficient production of lipophilic compounds. J Lipid Res 2024; 65:100597. [PMID: 39029799 PMCID: PMC11367113 DOI: 10.1016/j.jlr.2024.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Lipophilic compounds have a variety of positive effects on human physiological functions and exhibit good effects in the prevention and treatment of clinical diseases. This has led to significant interest in the technical applications of synthetic biology for the production of lipophilic compounds. However, the strict selective permeability of the cell membrane and the hydrophobic nature of lipophilic compounds pose significant challenges to their production. During fermentation, lipophilic compounds tend to accumulate within cell membrane compartments rather than being secreted extracellularly. The toxic effects of excessive lipophilic compound accumulation can threaten cell viability, while the limited space within the cell membrane restricts further increases in production yield. Consequently, to achieve efficient production of lipophilic compounds, research is increasingly focused on constructing robust and multifunctional microbial cell factories. Utilizing membrane engineering techniques to construct highly flexible cell membranes is considered an effective strategy to break through the upper limit of lipophilic compound production. Currently, there are two main approaches to cell membrane modification: constructing artificial storage compartments for lipophilic compounds and engineering the cell membrane structure to facilitate product outflow. This review summarizes recent cell membrane engineering strategies applied in microbial cell factories for the production of liposoluble compounds, discussing the challenges and future prospects. These strategies enhance membrane flexibility and effectively promote the production of liposoluble compounds.
Collapse
Affiliation(s)
- Qiyao Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Sijia Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Gang Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| | - Fengming Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tengyue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
106
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
107
|
Rocha Minarini LAD. Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens. CURRENT TOPICS IN MEMBRANES 2024; 94:225-246. [PMID: 39370208 DOI: 10.1016/bs.ctm.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.
Collapse
Affiliation(s)
- Luciene Andrade da Rocha Minarini
- Laboratório Multidisciplinar em Saúde e Meio Ambiente, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, SP, Brazil.
| |
Collapse
|
108
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
109
|
Cui L, Yang R, Huo D, Li L, Qu X, Wang J, Wang X, Liu H, Chen H, Wang X. Streptococcus pneumoniae extracellular vesicles aggravate alveolar epithelial barrier disruption via autophagic degradation of OCLN (occludin). Autophagy 2024; 20:1577-1596. [PMID: 38497494 PMCID: PMC11210924 DOI: 10.1080/15548627.2024.2330043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) represents a major human bacterial pathogen leading to high morbidity and mortality in children and the elderly. Recent research emphasizes the role of extracellular vesicles (EVs) in bacterial pathogenicity. However, the contribution of S. pneumoniae EVs (pEVs) to host-microbe interactions has remained unclear. Here, we observed that S. pneumoniae infections in mice led to severe lung injuries and alveolar epithelial barrier (AEB) dysfunction. Infections of S. pneumoniae reduced the protein expression of tight junction protein OCLN (occludin) and activated macroautophagy/autophagy in lung tissues of mice and A549 cells. Mechanically, S. pneumoniae induced autophagosomal degradation of OCLN leading to AEB impairment in the A549 monolayer. S. pneumoniae released the pEVs that could be internalized by alveolar epithelial cells. Through proteomics, we profiled the cargo proteins inside pEVs and found that these pEVs contained many virulence factors, among which we identified a eukaryotic-like serine-threonine kinase protein StkP. The internalized StkP could induce the phosphorylation of BECN1 (beclin 1) at Ser93 and Ser96 sites, initiating autophagy and resulting in autophagy-dependent OCLN degradation and AEB dysfunction. Finally, the deletion of stkP in S. pneumoniae completely protected infected mice from death, significantly alleviated OCLN degradation in vivo, and largely abolished the AEB disruption caused by pEVs in vitro. Overall, our results suggested that pEVs played a crucial role in the spread of S. pneumoniae virulence factors. The cargo protein StkP in pEVs could communicate with host target proteins and even hijack the BECN1 autophagy initiation pathway, contributing to AEB disruption and bacterial pathogenicity.Abbreviations: AEB: alveolarepithelial barrier; AECs: alveolar epithelial cells; ATG16L1: autophagy related 16 like 1; ATP:adenosine 5'-triphosphate; BafA1: bafilomycin A1; BBB: blood-brain barrier; CFU: colony-forming unit; co-IP: co-immunoprecipitation; CQ:chloroquine; CTRL: control; DiO: 3,3'-dioctadecylox-acarbocyanineperchlorate; DOX: doxycycline; DTT: dithiothreitol; ECIS: electricalcell-substrate impedance sensing; eGFP: enhanced green fluorescentprotein; ermR: erythromycin-resistance expression cassette; Ery: erythromycin; eSTKs: eukaryotic-like serine-threoninekinases; EVs: extracellular vesicles; HA: hemagglutinin; H&E: hematoxylin and eosin; HsLC3B: human LC3B; hpi: hours post-infection; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC/MS: liquid chromatography-mass spectrometry; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MVs: membranevesicles; NC:negative control; NETs:neutrophil extracellular traps; OD: optical density; OMVs: outer membrane vesicles; PBS: phosphate-buffered saline; pEVs: S.pneumoniaeextracellular vesicles; protK: proteinase K; Rapa: rapamycin; RNAi: RNA interference; S.aureus: Staphylococcusaureus; SNF:supernatant fluid; sgRNA: single guide RNA; S.pneumoniae: Streptococcuspneumoniae; S.suis: Streptococcussuis; TEER: trans-epithelium electrical resistance; moi: multiplicity ofinfection; TEM:transmission electron microscope; TJproteins: tight junction proteins; TJP1/ZO-1: tight junction protein1; TSA: tryptic soy agar; WB: western blot; WT: wild-type.
Collapse
Affiliation(s)
- Luqing Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jundan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
110
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
111
|
Xie S, Iberi V, Boissy Y, Tansky CS, Huggins T, Ramji N, Biesbrock AR. Stannous fluoride forms aggregates between outer and inner membranes leading to membrane rupture of Porphyromonas gingivalis and Prevotella pallens. FRONTIERS IN ORAL HEALTH 2024; 5:1427008. [PMID: 38989256 PMCID: PMC11233731 DOI: 10.3389/froh.2024.1427008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Stannous has been shown to bind to free lipopolysaccharides, thus preventing them from binding to TLR receptors. This study was undertaken to determine the histomorphological mechanism of stannous binding to anaerobic bacteria. Methods Two bacteria associated with gingivitis and advanced periodontal disease, Porphyromonas gingivalis (P. gingivalis) and Prevotella pallens (P. pallens), were cultured in 25-1,000 μM of stannous fluoride and stannous chloride for 48 h. The growth rate was estimated using absorbance OD600. Bacterial cells were then fixed and processed for transmission electron microscopy (TEM) analysis. Results Stannous fluoride inhibited proliferation of both P. gingivalis and P. pallens in a dose-dependent manner. There was a statistically significant suppression of the growth curve starting at 100 μM for P. pallens (P = 0.050) and 200 μM for P. gingivalis (P = 0.039). TEM analysis revealed a thick layer of polysaccharides (19.8 nm) in P. gingivalis. The outer and inner membranes were clearly visible with low electron densities in both bacteria. Stannous diffused into bacterial membranes and formed precipitates in the areas spanning outer and inner membranes and below inner membranes. Precipitates varied in size ranging from 46.4 to 84.5 nm in length, and 18.4 to 35.9 nm in width. The membranes were disintegrated in the region where stannous formed precipitates. Cytosolic contents were leaked out, and in several cases, small vesicles were formed. Stannous precipitates were more abundant in numbers and larger in size in bacteria treated with high concentrations (100-300 μM) than in low concentrations (25-50 μM) of stannous fluoride. Furthermore, most of the bacteria were disintegrated in the groups treated with 100-300 μM stannous fluoride. At low concentrations (25 μM), stannous fluoride formed complexes primarily around outer membranes, to which lipopolysaccharides are anchored. Stannous chloride results showed similar trends, but it was less potent than stannous fluoride. Conclusion Stannous fluoride can penetrate bacteria, bind to the constituents of the membrane and form precipitates between outer and inner membranes and beneath inner membranes. These large precipitates damaged the integrity of membranes and allowed cytosolic contents to be leaked out. Stannous complexes formed at the outer membranes, even at low concentrations (25 μM).
Collapse
Affiliation(s)
- Sancai Xie
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Vighter Iberi
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Ying Boissy
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Cheryl S Tansky
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Tom Huggins
- Discovery & Innovation Platforms, The Procter & Gamble Company, Mason, OH, United States
| | - Niranjan Ramji
- Global Oral Care R&D, The Procter & Gamble Company, Mason, OH, United States
| | - Aaron R Biesbrock
- Global Oral Care R&D, The Procter & Gamble Company, Mason, OH, United States
| |
Collapse
|
112
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
113
|
Espejo C, Ezenwa VO. Extracellular vesicles: an emerging tool for wild immunology. DISCOVERY IMMUNOLOGY 2024; 3:kyae011. [PMID: 39005930 PMCID: PMC11244269 DOI: 10.1093/discim/kyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
The immune system is crucial for defending organisms against pathogens and maintaining health. Traditionally, research in immunology has relied on laboratory animals to understand how the immune system works. However, there is increasing recognition that wild animals, due to their greater genetic diversity, lifespan, and environmental exposures, have much to contribute to basic and translational immunology. Unfortunately, logistical challenges associated with collecting and storing samples from wildlife, and the lack of commercially available species-specific reagents have hindered the advancement of immunological research on wild species. Extracellular vesicles (EVs) are cell-derived nanoparticles present in all body fluids and tissues of organisms spanning from bacteria to mammals. Human and lab animal studies indicate that EVs are involved in a range of immunological processes, and recent work shows that EVs may play similar roles in diverse wildlife species. Thus, EVs can expand the toolbox available for wild immunology research, helping to overcome some of the challenges associated with this work. In this paper, we explore the potential application of EVs to wild immunology. First, we review current understanding of EV biology across diverse organisms. Next, we discuss key insights into the immune system gained from research on EVs in human and laboratory animal models and highlight emerging evidence from wild species. Finally, we identify research themes in wild immunology that can immediately benefit from the study of EVs and describe practical considerations for using EVs in wildlife research.
Collapse
Affiliation(s)
- Camila Espejo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
114
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
115
|
Shen H, Zheng R, Du M, Christiani DC. Environmental pollutants exposure-derived extracellular vesicles: crucial players in respiratory disorders. Thorax 2024; 79:680-691. [PMID: 38631896 DOI: 10.1136/thorax-2023-221302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Individual exposure to environmental pollutants, as one of the most influential drivers of respiratory disorders, has received considerable attention due to its preventability and controllability. Considering that the extracellular vesicle (EV) was an emerging intercellular communication medium, recent studies have highlighted the crucial role of environmental pollutants derived EVs (EPE-EVs) in respiratory disorders. METHODS PubMed and Web of Science were searched from January 2018 to December 2023 for publications with key words of environmental pollutants, respiratory disorders and EVs. RESULTS Environmental pollutants could disrupt airway intercellular communication by indirectly stimulating airway barrier cells to secrete endogenous EVs, or directly transmitting exogenous EVs, mainly by biological pollutants. Mechanistically, EPE-EVs transferred specific contents to modulate biological functions of recipient cells, to induce respiratory inflammation and impair tissue and immune function, which consequently contributed to the development of respiratory diseases, such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, pulmonary hypertension, lung cancer and infectious lung diseases. Clinically, EVs could emerged as promising biomarkers and biological agents for respiratory diseases attributed by their specificity, convenience, sensibility and stability. CONCLUSIONS Further studies of EPE-EVs are helpful to understand the aetiology and pathology of respiratory diseases, and facilitate the precision respiratory medicine in risk screening, early diagnosis, clinical management and biotherapy.
Collapse
Affiliation(s)
- Haoran Shen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C Christiani
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
116
|
René CA, Parks RJ. Bioengineering extracellular vesicle cargo for optimal therapeutic efficiency. Mol Ther Methods Clin Dev 2024; 32:101259. [PMID: 38770107 PMCID: PMC11103572 DOI: 10.1016/j.omtm.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Charlotte A. René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
117
|
Rothenberger CM, Yu M, Kim HM, Cheung YW, Chang YW, Davey ME. An outer membrane vesicle specific lipoprotein promotes Porphyromonas gingivalis aggregation on red blood cells. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100249. [PMID: 38974668 PMCID: PMC11225709 DOI: 10.1016/j.crmicr.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Porphyromonas gingivalis uses a variety of mechanisms to actively interact with and promote the hydrolysis of red blood cells (RBCs) to obtain iron in the form of heme. In this study, we investigated the function of lipoprotein PG1881 which was previously shown to be up-regulated during subsurface growth and selectively enriched on outer membrane vesicles (OMVs). Our results show that wildtype strain W83 formed large aggregates encompassing RBCs whereas the PG1881 deletion mutant remained predominately as individual cells. Using a PG1881 antibody, immunofluorescence revealed that the wildtype strain's aggregation to RBCs involves an extracellular matrix enriched with PG1881. Our findings discover that RBCs elicit cell aggregation and matrix formation by P. gingivalis and that this process is promoted by an OMV-specific lipoprotein. We propose this strategy is advantageous for nutrient acquisition as well as dissemination from the oral cavity and survival of this periodontal pathogen.
Collapse
Affiliation(s)
- Christina M. Rothenberger
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Microbiology, University of Florida College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Manda Yu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Hey-Min Kim
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ellen Davey
- Department of Microbiology, ADA Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
118
|
Braga RE, Najar FZ, Murphy CL, Patrauchan MA. Carbonic anhydrases in bacterial pathogens. Enzymes 2024; 55:313-342. [PMID: 39222996 DOI: 10.1016/bs.enz.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.
Collapse
Affiliation(s)
- Reygan E Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Fares Z Najar
- Bioinformatics Core, Oklahoma State University, Stillwater, OK, United States
| | - Chelsea L Murphy
- Bioinformatics Core, Oklahoma State University, Stillwater, OK, United States
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
119
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
120
|
Rojas A, Regev-Rudzki N. Biogenesis of extracellular vesicles from the pathogen perspective: Transkingdom strategies for delivering messages. Curr Opin Cell Biol 2024; 88:102366. [PMID: 38705049 DOI: 10.1016/j.ceb.2024.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
EVs are nanoparticles enclosing proteins, nucleic acids and lipids released by cells and are essential for their metabolism and useful for intercellular communication. The importance of EVs has been highlighted by their use as biomarkers or as vaccine antigens. The release of vesicles is exploited by a wide range of organisms: from unicellular bacteria or protozoa to multicellular prokaryotes like fungi, helminths and arthropods. The mechanisms elucidated to date in each biological group are presented, as well as a discussion of interesting directions for future EV studies.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San José, 11501-2060, Costa Rica; Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, 11501-2060, Costa Rica.
| | - Neta Regev-Rudzki
- Department of Biochemical Sciences, Weizmann Institute of Sciences, Rehovot, Israel
| |
Collapse
|
121
|
Dhital S, Deo P, Stuart I, Huang C, Zavan L, Han ML, Kaparakis-Liaskos M, Ramm G, Schittenhelm RB, Howden B, Naderer T. Characterization of outer membrane vesicles released by clinical isolates of Neisseria gonorrhoeae. Proteomics 2024; 24:e2300087. [PMID: 38059892 DOI: 10.1002/pmic.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The sexually transmitted pathogen Neisseria gonorrhoeae releases membrane vesicles including outer membrane vesicles (OMVs) during infections. OMVs traffic outer membrane molecules, such as the porin PorB and lipo-oligosaccharide (LOS), into host innate immune cells, eliciting programmed cell death pathways, and inflammation. Little is known, however, about the proteome and LOS content of OMVs released by clinical strains isolated from different infection sites, and whether these vesicles similarly activate immune responses. Here, we characterized OMVs from four N. gonorrhoeae isolates and determined their size, abundance, proteome, LOS content, and activation of inflammatory responses in macrophages. The overall proteome of the OMVs was conserved between the four different isolates, which included major outer membrane and periplasm proteins. Despite this, we observed differences in the rate of OMV biogenesis and the relative abundance of membrane proteins and LOS. Consequently, OMVs from clinical isolates induced varying rates of macrophage cell death and the secretion of interleukin-1 family members, such as IL-1α and IL-1β. Overall, these findings demonstrate that clinical isolates of N. gonorrhoeae utilize membrane vesicles to release proteins and lipids, which affects innate immune responses.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
122
|
Puca V, Marinacci B, Pellegrini B, Campanile F, Santagati M, Grande R. Biofilm and bacterial membrane vesicles: recent advances. Expert Opin Ther Pat 2024; 34:475-491. [PMID: 38578180 DOI: 10.1080/13543776.2024.2338101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis. AREAS COVERED In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases. The articles available in literature mainly describe a positive correlation between bacterial MVs and biofilms formation. The research on Espacenet and Google Patent databases underlines the available patents related to the application of both biofilm MVs and planktonic MVs in inhibiting biofilm formation. EXPERT OPINION This review covers and analyzes recent advances in the study of the relationship between bacterial vesicles and biofilm. The huge number of papers discussing the role of MVs confirms the interest aimed at developing new applications in the medical field. The study of the MVs composition and biogenesis may contribute to the identification of components which could be (i) the target for the development of new drugs inhibiting the biofilm establishment; (ii) candidates for the development of vaccines; (iii) biomarkers for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
123
|
Wang L, Zeng Q, Hu J, Bao Z, Wang M. Proteome analysis of outer membrane vesicles from Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease. J Invertebr Pathol 2024; 204:108082. [PMID: 38447863 DOI: 10.1016/j.jip.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A specific strain of Vibrio parahaemolyticus (VpAHPND) causes acute hepatopancreatic necrosis disease (AHPND), leading to significant losses in shrimp aquaculture. Outer membrane vesicles (OMVs) are naturally secreted by Gram-negative bacteria, and their significant roles in host-pathogen interactions and pathogenicity have been recognized. In the present study, OMVs were isolated from VpAHPND by differential-ultracentrifugation and used for proteomics analysis. In the Nano-HPLC-MS/MS analysis, totally 645 proteins were determined, including virulence factors, immunogenic proteins, outer membrane protein, bacterial secretory proteins, ribosomal proteins, protease, and iron regulation proteins. Furthermore, GO and KEGG annotations indicated that proteins identified in VpAHPND-OMVs are involved in metabolism, regulation of multiple biological processes, genetic information processes, immunity and more. Meanwhile, toxin proteins PirAvp and PirBvp, associated with VpAHPND pathogenicity, were also identified in the proteome of VpAHPND-OMVs. Our objective is to identify the protein composition of OMVs released by VpAHPND, analyzing the potential for cytotoxicity and immunomodulatory activity of these granule hosts. This study is crucial for understanding the roles played by bacterial-derived vesicles in the disease process, given that these vesicles carry relevant activities inherent to the bacteria that produce them.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
124
|
Johnston EL, Guy-Von Stieglitz S, Zavan L, Cross J, Greening DW, Hill AF, Kaparakis-Liaskos M. The effect of altered pH growth conditions on the production, composition, and proteomes of Helicobacter pylori outer membrane vesicles. Proteomics 2024; 24:e2300269. [PMID: 37991474 DOI: 10.1002/pmic.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H. pylori OMVs is unknown. In this study, we examined the production, composition, and proteome of H. pylori OMVs produced during acidic and neutral pH growth conditions. H. pylori growth in acidic conditions reduced the quantity and size of OMVs produced. Additionally, OMVs produced during acidic growth conditions had increased protein, DNA, and RNA cargo compared to OMVs produced during neutral conditions. Proteomic analysis comparing the proteomes of OMVs to their parent bacteria demonstrated significant differences in the enrichment of beta-lactamases and outer membrane proteins between bacteria and OMVs, supporting that differing growth conditions impacts OMV composition. We also identified differences in the enrichment of proteins between OMVs produced during different pH growth conditions. Overall, our findings reveal that growth of H. pylori at different pH levels is a factor that alters OMV proteomes, which may affect their subsequent functions.
Collapse
Affiliation(s)
- Ella L Johnston
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Sebastian Guy-Von Stieglitz
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Lauren Zavan
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - David W Greening
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Bundoora, Australia
| |
Collapse
|
125
|
Jiang B, Huang J. Influences of bacterial extracellular vesicles on macrophage immune functions. Front Cell Infect Microbiol 2024; 14:1411196. [PMID: 38873097 PMCID: PMC11169721 DOI: 10.3389/fcimb.2024.1411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Bacterial extracellular vesicles (EVs) are crucial mediators of information transfer between bacteria and host cells. Macrophages, as key effector cells in the innate immune system, have garnered widespread attention for their interactions with bacterial EVs. Increasing evidence indicates that bacterial EVs can be internalized by macrophages through multiple pathways, thereby influencing their immune functions. These functions include inflammatory responses, antimicrobial activity, antigen presentation, and programmed cell death. Therefore, this review summarizes current research on the interactions between bacterial EVs and macrophages. This will aid in the deeper understanding of immune modulation mediated by pathogenic microorganisms and provide a basis for developing novel antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
126
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
127
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
128
|
Hu Q, Wang Y, Wang C, Yan X. Comparative Proteome Profiling of Extracellular Vesicles from Three Growth Phases of Haematococcus pluvialis under High Light and Sodium Acetate Stresses. Int J Mol Sci 2024; 25:5421. [PMID: 38791459 PMCID: PMC11121785 DOI: 10.3390/ijms25105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.
Collapse
Affiliation(s)
- Qunju Hu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Yuanyuan Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Chaogang Wang
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yan
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| |
Collapse
|
129
|
Salgueiro VC, Passemar C, Vázquez-Iniesta L, Lerma L, Floto A, Prados-Rosales R. Extracellular vesicles in mycobacteria: new findings in biogenesis, host-pathogen interactions, and diagnostics. mBio 2024; 15:e0255223. [PMID: 38567992 PMCID: PMC11077946 DOI: 10.1128/mbio.02552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Since the discovery of extracellular vesicles (EVs) in mycobacterial species 15 years back, we have learned that this phenomenon is conserved in the Mycobacterium genus and has critical roles in bacterial physiology and host-pathogen interactions. Mycobacterium tuberculosis (Mtb), the tuberculosis (TB) causative agent, produces EVs both in vitro and in vivo including a diverse set of biomolecules with demonstrated immunomodulatory effects. Moreover, Mtb EVs (MEVs) have been shown to possess vaccine properties and carry biomarkers with diagnostic capacity. Although information on MEV biogenesis relative to other bacterial species is scarce, recent studies have shed light on how MEVs originate and are released to the extracellular space. In this minireview, we discuss past and new information about the vesiculogenesis phenomenon in Mtb, including biogenesis, MEV cargo, aspects in the context of host-pathogen interactions, and applications that could help to develop effective tools to tackle the disease.
Collapse
Affiliation(s)
- Vivian C. Salgueiro
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Charlotte Passemar
- Cambridge Center for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | - Lucía Vázquez-Iniesta
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Lerma
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrés Floto
- Cambridge Center for Lung Infection, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health, and Microbiology. School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
130
|
Rossi CC, Ahmad F, Giambiagi-deMarval M. Staphylococcus haemolyticus: An updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol Res 2024; 282:127652. [PMID: 38432015 DOI: 10.1016/j.micres.2024.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Staphylococcus haemolyticus, a key species of the Staphylococcus genus, holds significant importance in healthcare-associated infections, due to its notable resistance to antimicrobials, like methicillin, and proficient biofilms-forming capabilities. This coagulase-negative bacterium poses a substantial challenge in the battle against nosocomial infections. Recent research has shed light on Staph. haemolyticus genomic plasticity, unveiling genetic elements responsible for antibiotic resistance and their widespread dissemination within the genus. This review presents an updated and comprehensive overview of the clinical significance and prevalence of Staph. haemolyticus, underscores its zoonotic potential and relevance in the one health framework, explores crucial virulence factors, and examines genetics features contributing to its success in causing emergent and challenging infections. Additionally, we scrutinize ongoing studies aimed at controlling spread and alternative approaches for combating it.
Collapse
Affiliation(s)
- Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil.
| | - Faizan Ahmad
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, MG, Brazil
| | | |
Collapse
|
131
|
Jiang B, Lai Y, Xiao W, Zhong T, Liu F, Gong J, Huang J. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog 2024; 20:e1012143. [PMID: 38696356 PMCID: PMC11065233 DOI: 10.1371/journal.ppat.1012143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
With the escalating global antimicrobial resistance crisis, there is an urgent need for innovative strategies against drug-resistant microbes. Accumulating evidence indicates microbial extracellular vesicles (EVs) contribute to antimicrobial resistance. Therefore, comprehensively elucidating the roles and mechanisms of microbial EVs in conferring resistance could provide new perspectives and avenues for novel antimicrobial approaches. In this review, we systematically examine current research on antimicrobial resistance involving bacterial, fungal, and parasitic EVs, delineating the mechanisms whereby microbial EVs promote resistance. Finally, we discuss the application of bacterial EVs in antimicrobial therapy.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenhao Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fengping Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjie Gong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
132
|
Xu H, Tan C, Li C, Li J, Han Y, Tang Y, Lei C, Wang H. ESBL-Escherichia coli extracellular vesicles mediate bacterial resistance to β-lactam and mediate horizontal transfer of bla CTX-M-55. Int J Antimicrob Agents 2024; 63:107145. [PMID: 38494146 DOI: 10.1016/j.ijantimicag.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Extracellular vesicles (EVs) have become the focus of research as an emerging method of horizontal gene transfer. In recent years, studies on the association between EVs and the spread of bacterial resistance have emerged, but there is a lack of research on the role of EVs secreted by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in the spread of β-lactam resistance. Therefore, the aim of this study was to investigate the role of EVs in the transmission of β-lactam resistance. METHODS In this study, the role of EVs in the transmission of β-lactam resistance in E. coli was evaluated by the EVs-mediated bacterial resistance to β-lactam antibiotics test and the EVs-mediated blaCTX-M-55 transfer experiments using EVs secreted by ESBL-E. coli. RESULTS The results showed that ESBL-EVs were protective against β-lactam antibiotic-susceptible bacteria, and this protective effect was dependent on the integrity of the EVs and showed dose- and time-dependent effects. At the same time, ESBL-EVs can also mediate the horizontal transmission of blaCTX-M-55, and EVs-mediated gene transfer is selective, preferring to transfer in more closely related species. CONCLUSIONS In this study, we demonstrated the important role of EVs in the transmission of β-lactam resistance in chicken ESBL-E. coli, and evaluated the risk of EVs-mediated horizontal gene transfer, which provided a theoretical basis for elucidating the mechanism of EVs-mediated resistance transmission.
Collapse
Affiliation(s)
- Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chang Tan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China; Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China.
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610022, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610022, China.
| |
Collapse
|
133
|
Carrera Páez LC, Olivier M, Gambino AS, Poklepovich T, Aguilar AP, Quiroga MP, Centrón D. Sporadic clone Escherichia coli ST615 as a vector and reservoir for dissemination of crucial antimicrobial resistance genes. Front Cell Infect Microbiol 2024; 14:1368622. [PMID: 38741889 PMCID: PMC11089171 DOI: 10.3389/fcimb.2024.1368622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.
Collapse
Affiliation(s)
- Laura Camila Carrera Páez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Anahí Samanta Gambino
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Tomás Poklepovich
- Plataforma de Genómica y Bioinformática, Instituto Nacional de Enfermedades Infecciosas - La Administración Nacional de Laboratorios e Institutos de Salud (INEI-ANLIS) “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Andrea Pamela Aguilar
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
134
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|
135
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
136
|
Yokoyama F, Kling A, Dittrich PS. Capturing of extracellular vesicles derived from single cells of Escherichia coli. LAB ON A CHIP 2024; 24:2049-2057. [PMID: 38426311 PMCID: PMC10964742 DOI: 10.1039/d3lc00707c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Bacteria secrete extracellular vesicles (EVs), also referred to as bacterial membrane vesicles, which carry, among other compounds, lipids, nucleic acids and virulence factors. Recent studies highlight the role of EVs in the emergence of antibiotic resistance, e.g. as carrier and absorbent particles of the drug to protect the cells, or as a pathway to disseminate resistance elements. In this study, we are interested in characterizing the secretion of EVs at the single bacterial level to ultimately understand how cells respond to antibiotic treatment. We introduce a microfluidic device that enables culture of single bacterial cells and capture of EVs secreted from these individuals. The device incorporates parallel, narrow winding channels to trap single rod-shaped E. coli cells at their entrances. The daughter cells are immediately removed by continuous flow on the open side of the trap, so that the trap contains always only a single cell. Cells grew in these traps over 24 h with a doubling time of 25 minutes. Under antibiotic treatment, the doubling time did not change, but we observed small changes in the cell length of the trapped cells (decrease from 4.0 μm to 3.6 μm for 0 and 250 ng mL-1 polymyxin B, respectively), and cells stopped growing within hours, depending on the drug concentration. Compared to bulk culture, the results indicate a higher susceptibility of on-chip-cultured cells (250 ng mL-1vs. >500 ng mL-1 in bulk), which may be caused, among other reasons, by the space limitation in the cell trap and shear forces. During the culture, EVs secreted by the trapped cells entered the winding channel. We developed a procedure to selectively coat these channels with poly-L-lysine resulting in a positively charged surface, which enabled electrostatic capture of negatively charged EVs. Subsequently, the immobilized EVs were stained with a lipophilic dye and detected by fluorescence microscopy. Our findings confirm large variations of EV secretion among individual bacteria and indicate a relative high rate of EV secretion under antibiotic treatment. The proposed method can be extended to the detection of other secreted substances of interest and may facilitate the elucidation of unknown heterogeneities in bacteria.
Collapse
Affiliation(s)
- Fumiaki Yokoyama
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
- The University of Tokyo, Department of Physics, Tokyo 113-0033, Japan
| | - André Kling
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| |
Collapse
|
137
|
Meyer KJ, Nodwell JR. Streptomyces extracellular vesicles are a broad and permissive antimicrobial packaging and delivery system. J Bacteriol 2024; 206:e0032523. [PMID: 38353531 PMCID: PMC10955852 DOI: 10.1128/jb.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Streptomyces are the primary source of bioactive specialized metabolites used in research and medicine, including many antimicrobials. These are presumed to be secreted and function as freely soluble compounds. However, increasing evidence suggests that extracellular vesicles are an alternative secretion system. We assessed environmental and lab-adapted Streptomyces (sporulating filamentous actinomycetes) and found frequent production of antimicrobial vesicles. The molecular cargo included actinomycins, anthracyclines, candicidin, and actinorhodin, reflecting both diverse chemical properties and diverse antibacterial and antifungal activity. The levels of packaged antimicrobials correlated with the level of inhibitory activity of the vesicles, and a strain knocked out for the production of anthracyclines produced vesicles that lacked antimicrobial activity. We demonstrated that antimicrobial containing vesicles achieve direct delivery of the cargo to other microbes. Notably, this delivery via membrane fusion occurred to a broad range of microbes, including pathogenic bacteria and yeast. Vesicle encapsulation offers a broad and permissive packaging and delivery system for antimicrobial specialized metabolites, with important implications for ecology and translation.IMPORTANCEExtracellular vesicle encapsulation changes our picture of how antimicrobial metabolites function in the environment and provides an alternative translational approach for the delivery of antimicrobials. We find many Streptomyces strains are capable of releasing antimicrobial vesicles, and at least four distinct classes of compounds can be packaged, suggesting this is widespread in nature. This is a striking departure from the primary paradigm of the secretion and action of specialized metabolites as soluble compounds. Importantly, the vesicles deliver antimicrobial metabolites directly to other microbes via membrane fusion, including pathogenic bacteria and yeast. This suggests future applications in which lipid-encapsulated natural product antibiotics and antifungals could be used to solve some of the most pressing problems in drug resistance.
Collapse
Affiliation(s)
- Kirsten J. Meyer
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justin R. Nodwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
138
|
Wang S, Xia K, Zhu X, Liu Y, Sun L, Zhu Q. Separation of high-purity plasma extracellular vesicles for investigating proteomic signatures in diabetic retinopathy. J Chromatogr A 2024; 1718:464700. [PMID: 38354507 DOI: 10.1016/j.chroma.2024.464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) play a multifaceted role in intercellular communication and hold significant promise as bio-functional indicators for clinical diagnosis. Although plasma samples represent one of the most critical sources of circulating EVs, the existing technical challenges associated with plasma-EV isolation have restricted their application in disease diagnosis and biomarker discovery. In this study, we introduce a two-step purification method utilizing ultracentrifugation (UC) to isolate crude extracellular vesicle (EV) samples, followed by a phospholipid affinity-based technique for the selective isolation of small EVs, ensuring a high level of purity for downstream proteomic analysis. Our research demonstrates that the UC & TiO2-coated magnetic bead (TiMB) purification system significantly improves the purity of EVs when compared to conventional UC or TiMB along. We further revealed that proteomic alterations in plasma EVs effectively reflect key gene ontology components associated with diabetic retinopathy (DR) pathogenesis, including the VEGF-activated neuropilin pathway, positive regulation of angiogenesis, angiogenesis, cellular response to vascular endothelial growth factor stimulus, and immune response. By employing a comprehensive analytical approach, which incorporates both time-series analysis (cluster analysis) and differential analysis, we have identified three potential protein signatures including LGALS3, MYH10, and CPB2 that closely associated with the retinopathy process. These proteins exhibit promising diagnostic and severity-classification capabilities for DR disease. This adaptable EV isolation system can be regarded as an effective analytical tool for enhancing plasma-based liquid biopsies toward clinical applications.
Collapse
Affiliation(s)
- Siyao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kangfu Xia
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei China
| | - Xinxi Zhu
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuhan Liu
- Department of Laboratory Medicine, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lei Sun
- Department of Clinical Laboratory, Lu'an Hospital of Anhui Medical University, Lu'an People's Hospital of Anhui Province, Lu'an, 237005, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
139
|
Lee TH, Charchar P, Separovic F, Reid GE, Yarovsky I, Aguilar MI. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem Sci 2024; 15:3408-3427. [PMID: 38455013 PMCID: PMC10915831 DOI: 10.1039/d3sc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Patrick Charchar
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
- Department of Biochemistry and Pharmacology, University of Melbourne Parkville VIC 3010 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
140
|
Mansky J, Wang H, Wagner-Döbler I, Tomasch J. The effect of site-specific recombinases XerCD on the removal of over-replicated chromosomal DNA through outer membrane vesicles in bacteria. Microbiol Spectr 2024; 12:e0234323. [PMID: 38349173 PMCID: PMC10913375 DOI: 10.1128/spectrum.02343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Outer membrane vesicles (OMVs) are universally produced by Gram-negative bacteria and play important roles in symbiotic and pathogenic interactions. The DNA from the lumen of OMVs from the Alphaproteobacterium Dinoroseobacter shibae was previously shown to be enriched for the region around the terminus of replication ter and specifically for the recognition sequence dif of the two site-specific recombinases XerCD. These enzymes are highly conserved in bacteria and play an important role in the last phase of cell division. Here, we show that a similar enrichment of ter and dif is found in the DNA inside OMVs from Prochlorococcus marinus, Pseudomonas aeruginosa, Vibrio cholerae, and Escherichia coli. The deletion of xerC or xerD in E. coli reduced the enrichment peak directly at the dif sequence, while the enriched DNA region around ter became broader, demonstrating that either enzyme influences the DNA content inside the lumen of OMVs. We propose that the intra-vesicle DNA originated from over-replication repair and the XerCD enzymes might play a role in this process, providing them with a new function in addition to resolving chromosome dimers.IMPORTANCEImprecise termination of replication can lead to over-replicated parts of bacterial chromosomes that have to be excised and removed from the dividing cell. The underlying mechanism is poorly understood. Our data show that outer membrane vesicles (OMVs) from diverse Gram-negative bacteria are enriched for DNA around the terminus of replication ter and the site-specific XerCD recombinases influence this enrichment. Clearing the divisome from over-replicated parts of the bacterial chromosome might be a so far unrecognized and conserved function of OMVs.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science–Centre Algatech, Třeboň, Czech Republic
| |
Collapse
|
141
|
Pardue EJ, Sartorio MG, Jana B, Scott NE, Beatty WL, Ortiz-Marquez JC, Van Opijnen T, Hsu FF, Potter RF, Feldman MF. Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2321910121. [PMID: 38422018 PMCID: PMC10927553 DOI: 10.1073/pnas.2321910121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.
Collapse
Affiliation(s)
- Evan J. Pardue
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Mariana G. Sartorio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Biswanath Jana
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC3000, Australia
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| | | | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
142
|
Wang Z, Tian Y, Hao J, Liu Y, Tang J, Xu Z, Liu Y, Tang B, Huang X, Zhu N, Li Z, Hu L, Li L, Wang Y, Jiang G. Chiral Nanoclusters as Alternative Therapeutic Strategies to Confront the Health Threat from Antibiotic-Resistant Pathogens. ACS NANO 2024; 18:7253-7266. [PMID: 38380803 DOI: 10.1021/acsnano.3c13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.
Collapse
Affiliation(s)
- Zhe Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijin Tian
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghua Hao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Tang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Biao Tang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiu Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
143
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
144
|
Stein AM, Biller SJ. An ocean of diffusible information. Trends Genet 2024; 40:209-210. [PMID: 38310066 DOI: 10.1016/j.tig.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
In the ocean, free-living bacteria exist in a dilute world where direct physical interactions between cells are relatively rare. How then do they exchange genetic information via horizontal gene transfer (HGT)? Lücking et al. have explored the world of marine 'protected extracellular DNA' (peDNA), and find that extracellular vesicles (EVs) are likely to play an important role.
Collapse
Affiliation(s)
- Ashley M Stein
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA.
| |
Collapse
|
145
|
Orlovska I, Zubova G, Shatursky O, Kukharenko O, Podolich O, Gorid'ko T, Kosyakova H, Borisova T, Kozyrovska N. Extracellular membrane vesicles derived from Komagataeibacter oboediens exposed on the International Space Station fuse with artificial eukaryotic membranes in contrast to vesicles of reference bacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184290. [PMID: 38281706 DOI: 10.1016/j.bbamem.2024.184290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Membranous Extracellular Vesicles (EVs) of Gram-negative bacteria are a secretion and delivery system that can disseminate bacterial products and interact with hosts and the environment. EVs of nonpathogenic bacteria deliver their contents by endocytosis into eukaryotic cells, however, no evidence exists for a fusion delivery mechanism. Here, we describe the fusion of exposed to space/Mars-like stressors simulated on the International Space Station vesicles (E-EVs) from Komagataeibacter oboediens to different types of model planar membranes in comparison with the EVs of the ground-based reference strain. The most reliable fusion was achieved with PC:PE:ergosterol or sterol-free PC:PE bilayers. The relative permeability ratio (PK+/PCl-) estimated from the shift of zero current potential according to Goldman-Hodgkin-Katz equation consisted of 4.17 ± 0.48, which coincides with preferential cation selectivity of the EV endogenous channels. The increase in membrane potential from 50 mV to 100 mV induced the fusion of E-EVs with all tested lipid compositions. The fusion of model exosomes with planar bilayer lipid membranes was confirmed by separate step-like increases in its conductance. In contrast, the ground-based reference K. oboediens EVs never induced the fusion event. In our study, we show membrane lipidome perturbations and increased protein aggregation occurred in the exposed samples in the harsh environment when outer membranes of K. oboediens acquired the capability of both homo- and heterotypic fusion possibly by altered membrane fluidity and the pore-forming capability.
Collapse
Affiliation(s)
- I Orlovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str, 150, Kyiv 030143, Ukraine.
| | - G Zubova
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str, 150, Kyiv 030143, Ukraine.
| | - O Shatursky
- Palladin Institute of Biochemistry of NASU, Leontovycha str, Kyiv 01024, Ukraine.
| | - O Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str, 150, Kyiv 030143, Ukraine.
| | - O Podolich
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str, 150, Kyiv 030143, Ukraine.
| | - T Gorid'ko
- Palladin Institute of Biochemistry of NASU, Leontovycha str, Kyiv 01024, Ukraine.
| | - H Kosyakova
- Palladin Institute of Biochemistry of NASU, Leontovycha str, Kyiv 01024, Ukraine.
| | - T Borisova
- Palladin Institute of Biochemistry of NASU, Leontovycha str, Kyiv 01024, Ukraine.
| | - N Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str, 150, Kyiv 030143, Ukraine.
| |
Collapse
|
146
|
Guan X, Xing S, Liu Y. Engineered Cell Membrane-Camouflaged Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:413. [PMID: 38470744 DOI: 10.3390/nano14050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Recent strides in nanomaterials science have paved the way for the creation of reliable, effective, highly accurate, and user-friendly biomedical systems. Pioneering the integration of natural cell membranes into sophisticated nanocarrier architectures, cell membrane camouflage has emerged as a transformative approach for regulated drug delivery, offering the benefits of minimal immunogenicity coupled with active targeting capabilities. Nevertheless, the utility of nanomaterials with such camouflage is curtailed by challenges like suboptimal targeting precision and lackluster therapeutic efficacy. Tailored cell membrane engineering stands at the forefront of biomedicine, equipping nanoplatforms with the capacity to conduct more complex operations. This review commences with an examination of prevailing methodologies in cell membrane engineering, spotlighting strategies such as direct chemical modification, lipid insertion, membrane hybridization, metabolic glycan labeling, and genetic engineering. Following this, an evaluation of the unique attributes of various nanomaterials is presented, delivering an in-depth scrutiny of the substantial advancements and applications driven by cutting-edge engineered cell membrane camouflage. The discourse culminates by recapitulating the salient influence of engineered cell membrane camouflage within nanomaterial applications and prognosticates its seminal role in transformative healthcare technologies. It is envisaged that the insights offered herein will catalyze novel avenues for the innovation and refinement of engineered cell membrane camouflaged nanotechnologies.
Collapse
Affiliation(s)
- Xiyuan Guan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
147
|
Potapova A, Garvey W, Dahl P, Guo S, Chang Y, Schwechheimer C, Trebino MA, Floyd KA, Phinney BS, Liu J, Malvankar NS, Yildiz FH. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. mBio 2024; 15:e0330423. [PMID: 38206049 PMCID: PMC10865864 DOI: 10.1128/mbio.03304-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.
Collapse
Affiliation(s)
- Anna Potapova
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - William Garvey
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Peter Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California-Davis, Davis, California, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nikhil S. Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
148
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
149
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 988] [Impact Index Per Article: 988.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
150
|
Xiong Y, Lou P, Xu C, Han B, Liu J, Gao J. Emerging role of extracellular vesicles in veterinary practice: novel opportunities and potential challenges. Front Vet Sci 2024; 11:1335107. [PMID: 38332755 PMCID: PMC10850357 DOI: 10.3389/fvets.2024.1335107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Extracellular vesicles are nanoscale vesicles that transport signals between cells, mediating both physiological and pathological processes. EVs facilitate conserved intercellular communication. By transferring bioactive molecules between cells, EVs coordinate systemic responses, regulating homeostasis, immunity, and disease progression. Given their biological importance and involvement in pathogenesis, EVs show promise as biomarkers for veterinary diagnosis, and candidates for vaccine production, and treatment agents. Additionally, different treatment or engineering methods could be used to boost the capability of extracellular vesicles. Despite the emerging veterinary interest, EV research has been predominantly human-based. Critical knowledge gaps remain regarding isolation protocols, cargo loading mechanisms, in vivo biodistribution, and species-specific functions. Standardized methods for veterinary EV characterization and validation are lacking. Regulatory uncertainties impede veterinary clinical translation. Advances in fundamental EV biology and technology are needed to propel the veterinary field forward. This review introduces EVs from a veterinary perspective by introducing the latest studies, highlighting their potential while analyzing challenges to motivate expanded veterinary investigation and translation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|