101
|
Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009-2019). Obes Surg 2020; 31:317-326. [PMID: 33130944 DOI: 10.1007/s11695-020-05074-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.
Collapse
|
102
|
Härma MA, Adeshara K, Istomin N, Lehto M, Blaut M, Savolainen MJ, Hörkkö S, Groop PH, Koivukangas V, Hukkanen J. Gastrointestinal manifestations after Roux-en-Y gastric bypass surgery in individuals with and without type 2 diabetes. Surg Obes Relat Dis 2020; 17:585-594. [PMID: 33246847 DOI: 10.1016/j.soard.2020.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is an effective treatment for obesity, which improves cardiovascular health and reduces the risk of premature mortality. However, some reports have suggested that RYGB may predispose patients to adverse health outcomes, such as inflammatory bowel disease (IBD) and colorectal cancer. OBJECTIVES The present prospective study aimed to evaluate the impact of RYGB surgery on cardiovascular risk factors and gastrointestinal inflammation in individuals with and without type 2 diabetes (T2D). SETTING University hospital setting in Finland. METHODS Blood and fecal samples were collected at baseline and 6 months after surgery from 30 individuals, of which 16 had T2D and 14 were nondiabetics. There were also single study visits for 6 healthy reference patients. Changes in cardiovascular risk factors, serum cholesterol, and triglycerides were investigated before and after surgery. Fecal samples were analyzed for calprotectin, anti-Saccharomyces cerevisiae immunoglobulin A antibodies (ASCA), active lipopolysaccharide (LPS) concentration, short-chain fatty acids (SCFAs), intestinal alkaline phosphatase activity, and methylglyoxal-hydro-imidazolone (MG-H1) protein adducts formation. RESULTS After RYGB, weight decreased on average -21.6% (-27.2 ± 7.8 kg), excess weight loss averaged 51%, and there were improvements in cardiovascular risk factors. Fecal calprotectin levels (P < .001), active LPS concentration (P < .002), ASCA (P < .02), and MG-H1 (P < .02) values increased significantly, whereas fecal SCFAs, especially acetate (P < .002) and butyrate (P < .03) levels, were significantly lowered. CONCLUSION The intestinal homeostasis is altered after RYGB, with several fecal markers suggesting increased inflammation; however, clinical significance of the detected changes is currently uncertain. As chronic inflammation may predispose patients to adverse health effects, our findings may have relevance for the suggested association between RYGB and increased risks of incident IBD and colorectal cancer.
Collapse
Affiliation(s)
- Mari-Anne Härma
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Krishna Adeshara
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Natalie Istomin
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Nordlab, Oulu University Hospital, Oulu, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Nordlab, Oulu University Hospital, Oulu, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
103
|
Proffitt C, Bidkhori G, Moyes D, Shoaie S. Disease, Drugs and Dysbiosis: Understanding Microbial Signatures in Metabolic Disease and Medical Interventions. Microorganisms 2020; 8:microorganisms8091381. [PMID: 32916966 PMCID: PMC7565856 DOI: 10.3390/microorganisms8091381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of the potential role for the gut microbiota in health and disease, many studies have gone on to report its impact in various pathologies. These studies have fuelled interest in the microbiome as a potential new target for treating disease Here, we reviewed the key metabolic diseases, obesity, type 2 diabetes and atherosclerosis and the role of the microbiome in their pathogenesis. In particular, we will discuss disease associated microbial dysbiosis; the shift in the microbiome caused by medical interventions and the altered metabolite levels between diseases and interventions. The microbial dysbiosis seen was compared between diseases including Crohn’s disease and ulcerative colitis, non-alcoholic fatty liver disease, liver cirrhosis and neurodegenerative diseases, Alzheimer’s and Parkinson’s. This review highlights the commonalities and differences in dysbiosis of the gut between diseases, along with metabolite levels in metabolic disease vs. the levels reported after an intervention. We identify the need for further analysis using systems biology approaches and discuss the potential need for treatments to consider their impact on the microbiome.
Collapse
Affiliation(s)
- Ceri Proffitt
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
- Correspondence: (C.P.); (S.S.)
| | - Gholamreza Bidkhori
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
| | - David Moyes
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
| | - Saeed Shoaie
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
- Correspondence: (C.P.); (S.S.)
| |
Collapse
|
104
|
Pisanu S, Palmas V, Madau V, Casula E, Deledda A, Cusano R, Uva P, Vascellari S, Boi F, Loviselli A, Manzin A, Velluzzi F. Impact of a Moderately Hypocaloric Mediterranean Diet on the Gut Microbiota Composition of Italian Obese Patients. Nutrients 2020; 12:nu12092707. [PMID: 32899756 PMCID: PMC7551852 DOI: 10.3390/nu12092707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Although it is known that the gut microbiota (GM) can be modulated by diet, the efficacy of specific dietary interventions in determining its composition and diversity in obese patients remains to be ascertained. The present work aims to evaluate the impact of a moderately hypocaloric Mediterranean diet on the GM of obese and overweight patients (OB). The GM of 23 OB patients (F/M = 20/3) was compared before (T0) and after 3 months (T3) of nutritional intervention (NI). Fecal samples were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. At baseline, GM characterization confirmed typical obesity-associated dysbiosis. After 3 months of NI, patients presented a statistically significant reduction in body weight and fat mass, along with changes in the relative abundance of many microbial patterns. In fact, an increase in the abundance of several Bacteroidetes taxa (i.e., Sphingobacteriaceae, Sphingobacterium, Bacteroides spp., Prevotella stercorea) and a depletion of many Firmicutes taxa (i.e., Lachnospiraceae members, Ruminococcaceae and Ruminococcus, Veillonellaceae, Catenibacterium, Megamonas) were observed. In addition, the phylum Proteobacteria showed an increased abundance, while the genus Sutterella, within the same phylum, decreased after the intervention. Metabolic pathways, predicted by bioinformatic analyses, showed a decrease in membrane transport and cell motility after NI. The present study extends our knowledge of the GM profiles in OB, highlighting the potential benefit of moderate caloric restriction in counteracting the gut dysbiosis.
Collapse
Affiliation(s)
- Silvia Pisanu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Veronica Madau
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Emanuela Casula
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Andrea Deledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (F.B.); (F.V.)
| | - Roberto Cusano
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, 09010 Cagliari, Italy; (R.C.); (P.U.)
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, 09010 Cagliari, Italy; (R.C.); (P.U.)
| | - Sarah Vascellari
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Francesco Boi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (F.B.); (F.V.)
| | - Andrea Loviselli
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (F.B.); (F.V.)
- Correspondence: ; Tel.: +39-070-675-4268
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy; (S.P.); (V.P.); (V.M.); (E.C.); (S.V.); (A.M.)
| | - Fernanda Velluzzi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (F.B.); (F.V.)
| |
Collapse
|
105
|
Oduro-Donkor D, Turner MC, Farnaud S, Renshaw D, Kyrou I, Hanson P, Hattersley J, Weickert MO, Menon V, Randeva HS, Barber TM. Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Rev Endocrinol Metab 2020; 15:363-373. [PMID: 32840125 DOI: 10.1080/17446651.2020.1801412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bariatric surgery (primarily Laparoscopic Sleeve Gastrectomy [LSG] and Roux-en-Y Gastric Bypass [RYGB]) is an efficacious and durable therapeutic option for weight loss in obesity. The mechanisms that mediate weight loss following bariatric surgery remain incompletely understood. AREAS COVERED Pubmed search of published data on fecal microbiota, metabolic health, LSG, and RYGB. The fecal microbiome plays a key role in the establishment and maintenance of metabolic wellbeing, and may also contribute (through fecal dysbiosis) to metabolic dysfunction. LSG and RYGB both result in characteristic, procedure-specific changes to the fecal microbiota that may mediate at least some of the resultant weight-loss and metabolically beneficial effects, when applied to the management of obesity. EXPERT OPINION The human fecal microbiome, containing around 100 trillion microbes, evolved over millions of years and interacts symbiotically with its human host. Rodent-based studies have provided insights into the complexities of the gut-microbiome-brain axis. This includes the important role of the gut microbiome in the mediation of normal immunological development, inflammatory pathways, metabolic functioning, hypothalamic appetite regulation, and the absorption of essential nutrients as by-products of bacterial metabolism. Fecal transformation is likely to provide an important therapeutic target for future prevention and management of obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Dominic Oduro-Donkor
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Mark C Turner
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Sebastien Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
| | - Ioannis Kyrou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University , Birmingham, UK
| | - Petra Hanson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - John Hattersley
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Martin O Weickert
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Vinod Menon
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Harpal S Randeva
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- Aston Medical Research Institute, Aston Medical School, Aston University , Birmingham, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| | - Thomas M Barber
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry, UK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire , Coventry, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire , Coventry, UK
| |
Collapse
|
106
|
Yoon Y, Kim G, Noh MG, Park JH, Jang M, Fang S, Park H. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity. Exp Mol Med 2020; 52:1574-1586. [PMID: 32917958 PMCID: PMC8080655 DOI: 10.1038/s12276-020-00502-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
The gut microbiota has pivotal roles in metabolic homeostasis and modulation of the intestinal environment. Notably, the administration of Lactobacillus spp. ameliorates diet-induced obesity in humans and mice. However, the mechanisms through which Lactobacillus spp. control host metabolic homeostasis remain unclear. Accordingly, in this study, we evaluated the physiological roles of Lactobacillus fermentum in controlling metabolic homeostasis in diet-induced obesity. Our results demonstrated that L. fermentum-potentiated oxidative phosphorylation in adipose tissue, resulting in increased energy expenditure to protect against diet-induced obesity. Indeed, oral administration of L. fermentum LM1016 markedly ameliorated glucose clearance and fatty liver in high-fat diet-fed mice. Moreover, administration of L. fermentum LM1016 markedly decreased inflammation and increased oxidative phosphorylation in gonadal white adipose tissue, as demonstrated by transcriptome analysis. Finally, metabolome analysis showed that metabolites derived from L. fermentum LM1016-attenuated adipocyte differentiation and inflammation in 3T3-L1 preadipocytes. These pronounced metabolic improvements suggested that the application of L. fermentum LM1016 could have clinical applications for the treatment of metabolic syndromes, such as diet-induced obesity.
Collapse
Affiliation(s)
- Youngmin Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | | | - Mongjoo Jang
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam, Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS Project for Medical Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea.
- Genome and Company, Pangyo-ro 255, Bundang-gu, Seoungnam, Korea.
| |
Collapse
|
107
|
Mabey JG, Chaston JM, Castro DG, Adams TD, Hunt SC, Davidson LE. Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group. Surg Obes Relat Dis 2020; 16:1304-1311. [PMID: 32466962 PMCID: PMC7483956 DOI: 10.1016/j.soard.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Few studies have assessed differences in the gut microbiota composition after bariatric surgery in the long term or whether differences are correlated with remission of type 2 diabetes. OBJECTIVES This observational study assessed differences in the gut microbiota between individuals at up to 13 years after surgery and a comparison group of individuals with severe obesity. The relationship between type 2 diabetes remission and the gut microbiota was also assessed. SETTING University. METHODS Stool samples were collected from individuals completing bariatric surgery (surgery group; n = 16) and individuals with severe obesity that did not receive surgery (nonsurgery group; n = 19) as part of the 12-year follow-up in the Utah Obesity Study. Metabolic health data were collected at baseline and the follow-up examination. The gut microbiota was quantified by sequencing the V4 region of the 16 S rRNA gene. Significant differences in microbiota composition with surgery and other covariates were determined by Unifrac distance analysis and permutational multivariate analysis of variance. Significant differences in the relative abundance of individual bacterial taxa were assessed using analysis of composition of microbiomes software. RESULTS The surgery group had higher relative abundances of Verrucomicrobiaceae (5.7 ± 1.3% versus 1.1 ± .3%) and Streptococcaceae (6.3 ± 1.0% versus 3.2 ± .8%), but lower relative abundances of Bacteroidaceae (8.8 ± 1.8% versus 18.6 ± 2.3%) 10.6 years after surgery. In a small subset of 8 individuals, a higher relative abundance of Akkermansia muciniphila was correlated with type 2 diabetes remission. CONCLUSIONS Differences in the gut microbiota are evident a decade after bariatric surgery compared with individuals with severe obesity that did not undergo surgery. The observed long-term differences are consistent with previous findings.
Collapse
Affiliation(s)
- Jacob G Mabey
- Department of Exercise Sciences, Brigham Young University, Provo, Utah.
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah
| | - Daphne G Castro
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah
| | - Ted D Adams
- Intermountain Live Well Center, Salt Lake City, Utah
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Lance E Davidson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
108
|
Yoshino M, Kayser BD, Yoshino J, Stein RI, Reeds D, Eagon JC, Eckhouse SR, Watrous JD, Jain M, Knight R, Schechtman K, Patterson BW, Klein S. Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N Engl J Med 2020; 383:721-732. [PMID: 32813948 PMCID: PMC7456610 DOI: 10.1056/nejmoa2003697] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Some studies have suggested that in people with type 2 diabetes, Roux-en-Y gastric bypass has therapeutic effects on metabolic function that are independent of weight loss. METHODS We evaluated metabolic regulators of glucose homeostasis before and after matched (approximately 18%) weight loss induced by gastric bypass (surgery group) or diet alone (diet group) in 22 patients with obesity and diabetes. The primary outcome was the change in hepatic insulin sensitivity, assessed by infusion of insulin at low rates (stages 1 and 2 of a 3-stage hyperinsulinemic euglycemic pancreatic clamp). Secondary outcomes were changes in muscle insulin sensitivity, beta-cell function, and 24-hour plasma glucose and insulin profiles. RESULTS Weight loss was associated with increases in mean suppression of glucose production from baseline, by 7.04 μmol per kilogram of fat-free mass per minute (95% confidence interval [CI], 4.74 to 9.33) in the diet group and by 7.02 μmol per kilogram of fat-free mass per minute (95% CI, 3.21 to 10.84) in the surgery group during clamp stage 1, and by 5.39 (95% CI, 2.44 to 8.34) and 5.37 (95% CI, 2.41 to 8.33) μmol per kilogram of fat-free mass per minute in the two groups, respectively, during clamp stage 2; there were no significant differences between the groups. Weight loss was associated with increased insulin-stimulated glucose disposal, from 30.5±15.9 to 61.6±13.0 μmol per kilogram of fat-free mass per minute in the diet group and from 29.4±12.6 to 54.5±10.4 μmol per kilogram of fat-free mass per minute in the surgery group; there was no significant difference between the groups. Weight loss increased beta-cell function (insulin secretion relative to insulin sensitivity) by 1.83 units (95% CI, 1.22 to 2.44) in the diet group and by 1.11 units (95% CI, 0.08 to 2.15) in the surgery group, with no significant difference between the groups, and it decreased the areas under the curve for 24-hour plasma glucose and insulin levels in both groups, with no significant difference between the groups. No major complications occurred in either group. CONCLUSIONS In this study involving patients with obesity and type 2 diabetes, the metabolic benefits of gastric bypass surgery and diet were similar and were apparently related to weight loss itself, with no evident clinically important effects independent of weight loss. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT02207777.).
Collapse
Affiliation(s)
- Mihoko Yoshino
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Brandon D Kayser
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Jun Yoshino
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Richard I Stein
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Dominic Reeds
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - J Christopher Eagon
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Shaina R Eckhouse
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Jeramie D Watrous
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Mohit Jain
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Rob Knight
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Kenneth Schechtman
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Bruce W Patterson
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| | - Samuel Klein
- From the Center for Human Nutrition (M.Y., B.D.K., J.Y., R.I.S., D.R., K.S., B.W.P., S.K.) and the Department of Surgery (J.C.E., S.R.E.), Washington University School of Medicine, St. Louis; and the Departments of Medicine (J.D.W., M.J.), Pharmacology (J.D.W., M.J.), Pediatrics (R.K.), and Computer Science and Engineering (R.K.), University of California San Diego, San Diego
| |
Collapse
|
109
|
Kraeuter AK, Phillips R, Sarnyai Z. The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Front Psychiatry 2020; 11:799. [PMID: 32903683 PMCID: PMC7438757 DOI: 10.3389/fpsyt.2020.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is rapidly becoming the focus of interest as a possible factor involved in the pathophysiology of neuropsychiatric disorders. Recent understanding of the pathophysiology of schizophrenia emphasizes the role of systemic components, including immune/inflammatory and metabolic processes, which are influenced by and interacting with the gut microbiome. Here we systematically review the current literature on the gut microbiome in schizophrenia-spectrum disorders and in their animal models. We found that the gut microbiome is altered in psychosis compared to healthy controls. Furthermore, we identified potential factors related to psychosis, which may contribute to the gut microbiome alterations. However, further research is needed to establish the disease-specificity and potential causal relationships between changes of the microbiome and disease pathophysiology. This can open up the possibility of. manipulating the gut microbiome for improved symptom control and for the development of novel therapeutic approaches in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Riana Phillips
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
110
|
Cook J, Lehne C, Weiland A, Archid R, Ritze Y, Bauer K, Zipfel S, Penders J, Enck P, Mack I. Gut Microbiota, Probiotics and Psychological States and Behaviors after Bariatric Surgery-A Systematic Review of Their Interrelation. Nutrients 2020; 12:nu12082396. [PMID: 32785153 PMCID: PMC7468806 DOI: 10.3390/nu12082396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota plays an important role in health and disease, including brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota composition in humans and other vertebrates, whether probiotics influence postoperative health, and whether microbiota and psychological and behavioral factors interact. A search was conducted using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and probiotics after BS, and later screened for psychological and behavioral parameters. Studies were classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes were further assessed for whether they were specific to BS in humans through the comparison to sham operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific, whereas dissimilarity in overall microbial community structure, and increases in the abundance of the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery were observed in both human and other vertebrates studies and may be specific to BS in humans. Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS. The relationship between GI microbiota and psychological diseases in this context is unclear due to insufficient available data.
Collapse
Affiliation(s)
- Jessica Cook
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Christine Lehne
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Alisa Weiland
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Rami Archid
- Department of General, Visceral and Transplant Surgery, University Hospital, 72072 Tübingen, Germany;
| | - Yvonne Ritze
- Institute for Medical Psychology and Behavioral Neurobiology, University Hospital, 72072 Tübingen, Germany;
| | - Kerstin Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute(Caphri), Maastricht University Medical Centre, 6211 Maastricht, The Netherlands;
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
- Correspondence: ; Tel.: +49-7071-2985614; Fax: +49-7071-294382
| |
Collapse
|
111
|
Zhou LY, Deng MQ, Xiao XH. Potential contribution of the gut microbiota to hypoglycemia after gastric bypass surgery. Chin Med J (Engl) 2020; 133:1834-1843. [PMID: 32649508 PMCID: PMC7470015 DOI: 10.1097/cm9.0000000000000932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity has become a global health problem. Lifestyle modification and medical treatment only appear to yield short-term weight loss. Roux-en-Y gastric bypass (RYGB) is the most popular bariatric procedure, and it sustains weight reduction and results in the remission of obesity-associated comorbidities for obese individuals. However, patients who undergo this surgery may develop hypoglycemia. To date, the diagnosis is challenging and the prevalence of post-RYGB hypoglycemia (PRH) is unclear. RYGB alters the anatomy of the upper gastrointestinal tract and has a combined effect of caloric intake restriction and nutrient malabsorption. Nevertheless, the physiologic changes after RYGB are complex. Although hyperinsulinemia, incretin effects, dysfunction of β-cells and α-cells, and some other factors have been widely investigated and are reported to be possible mediators of PRH, the pathogenesis is still not completely understood. In light of the important role of the gut microbiome in metabolism, we hypothesized that the gut microbiome might also be a critical link between RYGB and hypoglycemia. In this review, we mainly highlight the current possible factors predisposing individuals to PRH, particularly related to the gut microbiota, which may yield significant insights into the intestinal regulation of glucose metabolic homeostasis and provide novel clues to improve the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Li-Yuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | |
Collapse
|
112
|
Morales-Marroquin E, Hanson B, Greathouse L, de la Cruz-Munoz N, Messiah SE. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes Rev 2020; 21:e13025. [PMID: 32249534 DOI: 10.1111/obr.13025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Substantial differences in the response of gut microbial composition to metabolic and bariatric surgery have been reported. Therefore, the goal of the present review is to evaluate if methodological differences could be driving this lack of consistency. A search was conducted using PUBMED, Web of Science, Science Direct and COCHRANE using the following inclusion criteria: human studies written in English with a baseline sampling point, using gut microbiota as an outcome and either Roux-n-Y gastric bypass or sleeve gastrectomy. Sixteen articles were selected (total 221 participants). Roux-n-Y gastric bypass caused more alterations in gut microbial composition in comparison with sleeve gastrectomy. Substantial variability was found in study designs, data collection and analyses across studies. Increases in several families and genera from the phylum Proteobacteria and Bacteroidetes, the family Streptococcaceae, the species Akkermansia muciniphila and Streptococcus salivarius and a decrease in the phylum Firmicutes and the family Bifidobacteriaceae were reported. There is a need for standardization not only of microbial analysis but also of study designs when analysing the effect of bariatric surgery on the human gut microbiome. In addition, outcomes from different surgical procedures should not be combined as they produce distinctive effects on gut microbial composition.
Collapse
Affiliation(s)
- Elisa Morales-Marroquin
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Blake Hanson
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| | - Leigh Greathouse
- Robbins College of Health and Human Services, Baylor University Waco, Texas, USA
| | | | - Sarah E Messiah
- School of Public Health, Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center, Texas, USA
| |
Collapse
|
113
|
Erawijantari PP, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Saito Y, Fukuda S, Yachida S, Yamada T. Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut 2020; 69:1404-1415. [PMID: 31953253 PMCID: PMC7398469 DOI: 10.1136/gutjnl-2019-319188] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recent evidence points to the gut microbiome's involvement in postoperative outcomes, including after gastrectomy. Here, we investigated the influence of gastrectomy for gastric cancer on the gut microbiome and metabolome, and how it related to postgastrectomy conditions. DESIGN We performed shotgun metagenomics sequencing and capillary electrophoresis time-of-flight mass spectrometry-based metabolomics analyses on faecal samples collected from participants with a history of gastrectomy for gastric cancer (n=50) and compared them with control participants (n=56). RESULTS The gut microbiota in the gastrectomy group showed higher species diversity and richness (p<0.05), together with greater abundance of aerobes, facultative anaerobes and oral microbes. Moreover, bile acids such as genotoxic deoxycholic acid and branched-chain amino acids were differentially abundant between the two groups (linear discriminant analysis (LDA) effect size (LEfSe): p<0.05, q<0.1, LDA>2.0), as were also Kyoto Encyclopedia of Genes and Genomes modules involved in nutrient transport and organic compounds biosynthesis (LEfSe: p<0.05, q<0.1, LDA>2.0). CONCLUSION Our results reveal alterations of gut microbiota after gastrectomy, suggesting its association with postoperative comorbidities. The multi-omic approach applied in this study could complement the follow-up of patients after gastrectomy.
Collapse
Affiliation(s)
- Pande Putu Erawijantari
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotsugu Shiroma
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takeshi Nakajima
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Tokyo, Japan
| | - Taku Sakamoto
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa, Japan,Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan .,Department of Cancer Genome Informatics, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
114
|
West KA, Kanu C, Maric T, McDonald JAK, Nicholson JK, Li JV, Johnson MR, Holmes E, Savvidou MD. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020; 69:1452-1459. [PMID: 31964751 PMCID: PMC7398482 DOI: 10.1136/gutjnl-2019-319620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.
Collapse
Affiliation(s)
- Kiana Ashley West
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Chidimma Kanu
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tanya Maric
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julie Anne Kathryn McDonald
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mark R Johnson
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Makrina D Savvidou
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
115
|
Chen M, Xiao D, Liu W, Song Y, Zou B, Li L, Li P, Cai Y, Liu D, Liao Q, Xie Z. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol 2020; 155:890-902. [PMID: 31712153 DOI: 10.1016/j.ijbiomac.2019.11.047] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Ganoderma lucidum polysaccharides (GLP), a kind of medicinal mushrooms, were widely used in southeastern countries with putative anti-diabetic effects. In order to unravel the underlying mechanism of its anti-diabetic effect, this study examines the effects of GLP on gut microbiota composition and functions in type 2 diabetes mellitus (T2DM) status. In this study, the effects of GLP on the gut microbiota and fecal metabolites in high-fat diet and streptozotocin-induced T2DM rats were examined by 16S rDNA sequencing and 1H NMR profiling. As a result, administration of GLP led to significant decreases in the levels of fasting blood glucose and insulin. Moreover, GLP treatment reduced the abundance of harmful bacteria, such as Aerococcus, Ruminococcus, Corynebactrium and Proteus, and increased the level of Blautia, Dehalobacterium, Parabacteroides and Bacteroides. The PICRUSt analysis indicated that GLP could restore the disturbed amino acids metabolism, carbohydrates metabolism, inflammatory substances metabolism and nucleic acid metabolism of gut bacterial community in T2DM rats and most metabolic changes observed by metabolomics analysis were consistent with these consequences. Taken collectively, GLP can restore the disordered gut microbiota of T2DM rats to a normal level and modify metabolites of the host to realize its antidiabetic effects.
Collapse
Affiliation(s)
- Mingyi Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China; Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wen Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yunfei Song
- Guilin Layn Natural Ingredients Corporation, Guilin, China
| | - Baorong Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Deliang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiongfeng Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China.
| |
Collapse
|
116
|
Xie M, An F, Zhao Y, Wu R, Wu J. Metagenomic analysis of bacterial community structure and functions during the fermentation of da-jiang, a Chinese traditional fermented food. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
117
|
Yu D, Shu XO, Howard EF, Long J, English WJ, Flynn CR. Fecal metagenomics and metabolomics reveal gut microbial changes after bariatric surgery. Surg Obes Relat Dis 2020; 16:1772-1782. [PMID: 32747219 DOI: 10.1016/j.soard.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Evidence from longitudinal patient studies regarding gut microbial changes after bariatric surgery is limited. OBJECTIVE To examine intraindividual changes in fecal microbiome and metabolites among patients undergoing Roux-en-Y gastric bypass or vertical sleeve gastrectomy. SETTING Observational study. METHODS Twenty patients were enrolled and provided stool samples before and 1 week, 1 month, and/or 3 months after surgery. Shallow shotgun metagenomics and untargeted fecal metabolomics were performed. Zero-inflated generalized additive models and linear mixed models were applied to identify fecal microbiome and metabolites changes, with adjustment for potential confounders and correction for multiple testing. RESULTS We enrolled 16 women and 4 men, including 16 white and 4 black participants (median age = 45 years; presurgery body mass index = 47.7 kg/m2). Ten patients had Roux-en-Y gastric bypass, 10 had vertical sleeve gastrectomy, and 14 patients provided postsurgery stool samples. Of 47 samples, median sequencing depth was 6.3 million reads and 1073 metabolites were identified. Microbiome alpha-diversity increased after surgery, especially at 3 months. Significant genus-level changes included increases in Odoribacter, Streptococcus, Anaerotruncus, Alistipes, Klebsiella, and Bifidobacterium, while decreases in Bacteroides, Coprocosccus, Dorea, and Faecalibacterium. Large increases in Streptococcus, Akkermansia, and Prevotella were observed at 3 months. Beta-diversity and fecal metabolites were also changed, including reduced caffeine metabolites, indoles, and butyrate. CONCLUSIONS Despite small sample size and missing repeated samples in some participants, our pilot study showed significant postsurgery changes in fecal microbiome and metabolites among bariatric surgery patients. Future large-scale, longitudinal studies are warranted to investigate gut microbial changes and their associations with metabolic outcomes after bariatric surgery.
Collapse
Affiliation(s)
- Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric F Howard
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wayne J English
- Division of General Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charles R Flynn
- Division of General Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
118
|
Chen G, Zhuang J, Cui Q, Jiang S, Tao W, Chen W, Yu S, Wu L, Yang W, Liu F, Yang J, Wang C, Jia S. Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obes Surg 2020; 30:2345-2361. [PMID: 32152837 DOI: 10.1007/s11695-020-04494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS To explore the intestinal microbiota composition affected by the two most widely used procedures of bariatric surgery, laparoscopic sleeve gastrectomy (LSG) and laparoscopic roux-en-Y gastric bypass (LRYGB), in Chinese obesity patients. METHODS Stool samples were collected from the obese patients before (n = 87) and with follow-up after the surgery (n = 53). After DNA extraction, 16S rDNA (V3 + V4 regions) sequencing was completed on Illumina HiSeq 2500 sequencing platform. The samples were analyzed base on four groups, pre-LSG (n = 54), pre-LRYGB (n = 33), post-LSG (n = 33), and post-LRYGB (n = 20). The linear mixed models were used to analyze the alteration of intestinal microbiota before and after the surgeries of LSG or LRYGB. Student's t test and χ2 test were used for analysis of independent groups; Metastats analysis was used to compare the relative abundance of bacteria, and Pearson correlation and Spearman correlation analysis were used to test the correlation between indicated groups. RESULTS 87 patients were included and 53 (60.92%) of them completed the follow-up (9.60 ± 3.92 months). Body mass index (BMI) decreased from 37.84 ± 6.16 kg/m2 to 26.22 ± 4.33 kg/m2 after LSG and from 45.75 ± 14.26 kg/m2 to 33.15 ± 10.99 kg/m2 after LRYGB. The relative abundance of 5 phyla and 42 genera were altered after the surgery in the cohort. Although no alteration of Firmicutes was observed at phylum level, 54.76% of the altered genera belong to phylum Firmicutes. Both LSG and LRYGB procedures increased the richness and evenness of intestinal microbiota in obese patients after the surgery. Particularly, 33 genera altered after LSG and 19 genera altered after LRYGB, in which 11 genera were common alterations in both procedures. CONCLUSION Both LSG and LRYGB altered the composition of intestinal microbiota in Chinese obesity patients, and particularly increased the richness and evenness of microbiota. Genera belonging to phylum Firmicutes were the most altered bacteria by bariatric surgery. The procedure of LSG resulted in much more pronounced alteration of the intestinal microbiota abundance than that observed in LRYGB. While different genera were altered after LSG and LRYGB procedures, 10 genera were the common altered genera in both procedures. Bacteria altered after LSG and LRYGB were functionally associated with BMI, and with relieving of the metabolic syndromes.
Collapse
Affiliation(s)
- Guolin Chen
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Jingshen Zhuang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Qianwen Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Shuwen Jiang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Weihua Tao
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Wanqun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan University, Guangzhou, China
| | - Shuqing Yu
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Lina Wu
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Wah Yang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China
| | - Fucheng Liu
- Department of Cardiology of the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingge Yang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| | - Cunchuan Wang
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Joint Institute of Metabolic Medicine between Jinan University and the University of Hong Kong, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Obesity and Metabolism, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
- Institute of Clinical Medicine, Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
119
|
Davies N, O’Sullivan JM, Plank LD, Murphy R. Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. Obes Surg 2020; 30:3536-3548. [DOI: 10.1007/s11695-020-04684-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
120
|
Lee CJ, Florea L, Sears CL, Maruthur N, Potter JJ, Schweitzer M, Magnuson T, Clark JM. Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized Trial. Obes Surg 2020; 29:3239-3245. [PMID: 31256356 DOI: 10.1007/s11695-019-03976-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut microbiota likely impact obesity and metabolic diseases. We evaluated the changes in gut microbiota after surgical versus medical weight loss in adults with diabetes and obesity. METHODS We performed 16S rRNA amplicon sequencing to identify the gut microbial composition at baseline and at 10% weight loss in adults with diabetes who were randomized to medical weight loss (MWL, n = 4), adjustable gastric banding (AGB, n = 4), or Roux-en-Y gastric bypass (RYGB, n = 4). RESULTS All participants were female, 75% reported black race with mean age of 51 years. At similar weight loss amount and glycemic improvement, the RYGB group had the most number of bacterial species (10 increased, 1 decreased) that significantly changed (p < 0.05) in relative abundance. Alpha-diversity at follow-up was significantly lower in AGB group compared to MWL and RYGB (observed species for AGB vs. MWL, p = 0.0093; AGB vs. RYGB, p = 0.0093). The relative abundance of Faecalibacterium prausnitzii increased in 3 participants after RYGB, 1 after AGB, and 1 after MWL. CONCLUSIONS At similar weight loss and glycemic improvement, the greatest alteration in gut microbiota occurred after RYGB with an increase in the potentially beneficial bacterium, F. prausnitzii. Gut microbial diversity tended to decrease after AGB and increase after RYGB and MWL. Future studies are needed to determine the impact and durability of gut microbial changes over time and their role in long-term metabolic improvement after bariatric surgery in adults with type 2 diabetes. CLINICAL TRIAL REGISTRATION NCTDK089557- ClinicalTrials.gov.
Collapse
Affiliation(s)
- Clare J Lee
- Divisions of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University, 1830 E. Monument St, Baltimore, MD, 21287, USA.
| | - Liliana Florea
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Center for Computational Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University, Baltimore, MD, USA.,Division of Infectious Diseases, The Johns Hopkins University Baltimore, Baltimore, MD, USA
| | - Nisa Maruthur
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James J Potter
- Division of Gastroenterology and Hepatology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Thomas Magnuson
- Department of Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Jeanne M Clark
- Division of General Internal Medicine, The Johns Hopkins University, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
121
|
Mukorako P, Lopez C, Baraboi ED, Roy MC, Plamondon J, Lemoine N, Biertho L, Varin TV, Marette A, Richard D. Alterations of Gut Microbiota After Biliopancreatic Diversion with Duodenal Switch in Wistar Rats. Obes Surg 2020; 29:2831-2842. [PMID: 31165976 DOI: 10.1007/s11695-019-03911-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The biliopancreatic diversion with duodenal switch (BPD/DS) represents the most effective surgical procedure for the treatment of severe obesity and associated type 2 diabetes. The mechanisms whereby BPD/DS exerts its positive metabolic effects have however yet to be fully delineated. The objective of this study was to distinguish the effects of the two components of BPD/DS, namely the sleeve gastrectomy (SG) and the DS derivation, on gut microbiota, and to appraise whether changes in microbial composition are linked with surgery-induced metabolic benefits. METHODS BPD/DS, DS, and SG were performed in Wistar rats fed a standard chow diet. Body weight and energy intake were measured daily during 8 weeks post-surgery, at which time glucagon-like peptide 1 (GLP-1), peptide tyrosine tyrosine (PYY), insulin, and glucose were measured. Fecal samples were collected prior to surgery and at 2 and 8 weeks post-surgery. Intraluminal contents of the alimentary, biliopancreatic, and common limbs (resulting from BPD/DS) were taken from the proximal portion of each limb. Fecal and small intestinal limb samples were analyzed by 16S ribosomal RNA gene sequencing. RESULTS BPD/DS and DS led to lower digestible energy intake (P = 0.0007 and P = 0.0002, respectively), reduced weight gain (P < 0.0001) and body fat mass (P < 0.0001), improved glucose metabolism, and increased GLP-1 (P = 0.0437, SHAM versus DS) and PYY levels (P < 0.0001). These effects were associated with major alterations of both the fecal and small intestinal microbiota, as revealed by significant decrease in bacterial richness and diversity at 2 (P < 0.0001, Chao1 index; P < 0.0001, Shannon index) and 8 weeks (P = 0.0159, SHAM versus DS, Chao1 index; P = 0.0219, SHAM versus DS, P = 0.0472, SHAM versus BPD/DS, Shannon index) post-surgery in BPD/DS and DS, and increased proportions of Bifidobacteriales (a 60% increase in both groups) but reduced Clostridiales (a 50% decrease and a 90% decrease respectively), which were mostly accounted at the genus level by higher relative abundance of Bifidobacterium in both the fecal and intestinal limb samples, as well as reduced abundance of Peptostreptococcaceae and Clostridiaceae in the small intestine. Those effects were not seen in SG rats. CONCLUSION The metabolic benefits following BPD/DS are seemingly due to the DS component of the surgery. Furthermore, BPD/DS causes marked alterations in fecal and small intestinal microbiota resulting in reduced bacterial diversity and richness. Our data further suggest that increased abundance of Bifidobacterium and reduced level of two Clostridiales species in the gut microbiota might contribute to the positive metabolic outcomes of BPD/DS.
Collapse
Affiliation(s)
- Paulette Mukorako
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Carlos Lopez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Elena-Dana Baraboi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Marie-Claude Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Julie Plamondon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Natacha Lemoine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Laurent Biertho
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Thibault V Varin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada
| | - Denis Richard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville 2725 chemin Sainte- Foy, Québec, G1V 4G5, Canada.
| |
Collapse
|
122
|
Wade KH, Hall LJ. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Res 2020; 4:199. [PMID: 32462081 PMCID: PMC7217228 DOI: 10.12688/wellcomeopenres.15628.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Evidence supports associations between human gut microbiome variation and multiple health outcomes and diseases. Despite compelling results from in vivo and in vitro models, few findings have been translated into an understanding of modifiable causal relationships. Furthermore, epidemiological studies have been unconvincing in their ability to offer causal evidence due to their observational nature, where confounding by lifestyle and behavioural factors, reverse causation and bias are important limitations. Whilst randomized controlled trials have made steps towards understanding the causal role played by the gut microbiome in disease, they are expensive and time-consuming. This evidence that has not been translated between model systems impedes opportunities for harnessing the gut microbiome for improving population health. Therefore, there is a need for alternative approaches to interrogate causality in the context of gut microbiome research. The integration of human genetics within population health sciences have proved successful in facilitating improved causal inference (e.g., with Mendelian randomization [MR] studies) and characterising inherited disease susceptibility. MR is an established method that employs human genetic variation as natural "proxies" for clinically relevant (and ideally modifiable) traits to improve causality in observational associations between those traits and health outcomes. Here, we focus and discuss the utility of MR within the context of human gut microbiome research, review studies that have used this method and consider the strengths, limitations and challenges facing this research. Specifically, we highlight the requirements for careful examination and interpretation of derived causal estimates and host (i.e., human) genetic effects themselves, triangulation across multiple study designs and inter-disciplinary collaborations. Meeting these requirements will help support or challenge causality of the role played by the gut microbiome on human health to develop new, targeted therapies to alleviate disease symptoms to ultimately improve lives and promote good health.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN, UK
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
123
|
Microbial Adaptation Due to Gastric Bypass Surgery: The Nutritional Impact. Nutrients 2020; 12:nu12041199. [PMID: 32344612 PMCID: PMC7230554 DOI: 10.3390/nu12041199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery leads to sustained weight loss and the resolution of obesity-related comorbidities. Recent studies have suggested that changes in gut microbiota are associated with the weight loss induced by bariatric surgery. Several studies have observed major changes in the microbial composition following gastric bypass surgery. However, there are inconsistencies between the reported alterations in microbial compositions in different studies. Furthermore, it is well established that diet is an important factor shaping the composition and function of intestinal microbiota. However, most studies on gastric bypass have not assessed the impact of dietary intake on the microbiome composition in general, let alone the impact of restrictive diets prior to bariatric surgery, which are recommended for reducing liver fat content and size. Thus, the relative impact of bariatric surgery on weight loss and gut microbiota remains unclear. Therefore, this review aims to provide a deeper understanding of the current knowledge of the changes in intestinal microbiota induced by bariatric surgery considering pre-surgical nutritional changes.
Collapse
|
124
|
Orlistat-Induced Gut Microbiota Modification in Obese Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9818349. [PMID: 32328145 PMCID: PMC7168719 DOI: 10.1155/2020/9818349] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022]
Abstract
Introduction Accumulating evidence has indicated that alterations of gut microbiota have been involved in various metabolic diseases. Orlistat, a reversible inhibitor of pancreatic and gastric lipase, has beneficial effects on weight loss and metabolism. However, the effect of orlistat on the composition of gut microbiota remains unclear. Objective We aimed to explore the effect of orlistat on gut microbiota in high-fat diet (HFD) fed C57BL/6J obese mice. Methods C57BL/6J mice were randomly divided into three groups: control (NCD), HFD, and HFD + orlistat (ORL). Mice in the NCD group were fed chow diet, while the other groups were fed HFD for 6 months, and orlistat was added in the final 3 months in the HFD + ORL group. After sacrifice, body weight and metabolic parameters were assessed, and the gut microbial composition was analyzed by 16S rRNA gene sequencing. Results Orlistat treatment exerted beneficial effects on body weight, plasma cholesterol, and glucose tolerance. Meanwhile, orlistat treatment modified the gut microbiota, presenting as reduced total microbial abundance and obvious upregulated bacteria. Moreover, the upregulated bacteria correlated with several metabolic pathways. Conclusions Orlistat may exert beneficial effects on body weight and glucose tolerance through modifying the composition of gut microbiota.
Collapse
|
125
|
Abstract
PURPOSE OF REVIEW Enteric hyperoxaluria is commonly observed in malabsorptive conditions including Roux en Y gastric bypass (RYGB) and inflammatory bowel diseases (IBD). Its incidence is increasing secondary to an increased prevalence of both disorders. In this review, we summarize the evidence linking the gut microbiota to the risk of enteric hyperoxaluria. RECENT FINDINGS In enteric hyperoxaluria, fat malabsorption leads to increased binding of calcium to free fatty acids resulting in more soluble oxalate in the intestinal lumen. Bile acids and free fatty acids in the lumen also cause increased gut permeability allowing more passive absorption of oxalate. In recent years, there is more interest in the role of the gut microbiota in modulating urinary oxalate excretion in enteric hyperoxaluria, stemming from our knowledge that microbiota in the intestines can degrade oxalate. Oxalobacter formigenes reduced urinary oxalate in animal models of RYGB. The contribution of other oxalate-degrading organisms and the microbiota community to the pathophysiology of enteric hyperoxaluria are also currently under investigation. SUMMARY Gut microbiota might play a role in modulating the risk of enteric hyperoxaluria through oxalate degradation and bile acid metabolism. O. formigenes is a promising therapeutic target in this population; however, further studies in humans are needed to test its effectiveness.
Collapse
|
126
|
Wade KH, Hall LJ. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Res 2020; 4:199. [PMID: 32462081 PMCID: PMC7217228 DOI: 10.12688/wellcomeopenres.15628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 03/29/2024] Open
Abstract
Evidence supports associations between human gut microbiome variation and multiple health outcomes and diseases. Despite compelling results from in vivo and in vitro models, few findings have been translated into an understanding of modifiable causal relationships. Furthermore, epidemiological studies have been unconvincing in their ability to offer causal evidence due to their observational nature, where confounding by lifestyle and behavioural factors, reverse causation and bias are important limitations. Whilst randomized controlled trials have made steps towards understanding the causal role played by the gut microbiome in disease, they are expensive and time-consuming. This evidence that has not been translated between model systems impedes opportunities for harnessing the gut microbiome for improving population health. Therefore, there is a need for alternative approaches to interrogate causality in the context of gut microbiome research. The integration of human genetics within population health sciences have proved successful in facilitating improved causal inference (e.g., with Mendelian randomization [MR] studies) and characterising inherited disease susceptibility. MR is an established method that employs human genetic variation as natural "proxies" for clinically relevant (and ideally modifiable) traits to improve causality in observational associations between those traits and health outcomes. Here, we focus and discuss the utility of MR within the context of human gut microbiome research, review studies that have used this method and consider the strengths, limitations and challenges facing this research. Specifically, we highlight the requirements for careful examination and interpretation of derived causal estimates and host (i.e., human) genetic effects themselves, triangulation across multiple study designs and inter-disciplinary collaborations. Meeting these requirements will help support or challenge causality of the role played by the gut microbiome on human health to develop new, targeted therapies to alleviate disease symptoms to ultimately improve lives and promote good health.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN, UK
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
127
|
Koo H, McFarland BC, Hakim JA, Crossman DK, Crowley MR, Rodriguez JM, Benveniste EN, Morrow CD. An individualized mosaic of maternal microbial strains is transmitted to the infant gut microbial community. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192200. [PMID: 32431894 PMCID: PMC7211887 DOI: 10.1098/rsos.192200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 06/01/2023]
Abstract
To understand the origins of the infant gut microbial community, we have used a published metagenomic dataset of the faecal microbiome of mothers and their related infants at early (4, 7 and 21 days) and late times (6-15 months) following birth. Using strain-tracking analysis, individual-specific patterns of microbial strain sharing were found between mothers and infants following vaginal birth. Overall, three mother-infant pairs showed only related strains, while 12 infants of mother-infant pairs contained a mosaic of maternal-related and unrelated microbes. Analysis of a second dataset from nine women taken at different times of pregnancy revealed individual-specific faecal microbial strain variation that occurred in seven women. To model transmission in the absence of environmental microbes, we analysed the microbial strain transmission to F1 progenies of human faecal transplanted gnotobiotic mice bred with gnotobiotic males. Strain-tracking analysis of five different dams and their F1 progeny revealed both related and unrelated microbial strains in the mother's faeces. The results of our analysis demonstrate that multiple strains of maternal microbes, some that are not abundant in the maternal faecal community, can be transmitted during birth to establish a diverse infant gut microbial community.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joseph A. Hakim
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Martin Rodriguez
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Etty N. Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
128
|
Wang C, Zhang H, Liu H, Zhang H, Bao Y, Di J, Hu C. The genus Sutterella is a potential contributor to glucose metabolism improvement after Roux-en-Y gastric bypass surgery in T2D. Diabetes Res Clin Pract 2020; 162:108116. [PMID: 32194221 DOI: 10.1016/j.diabres.2020.108116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alterations in gut microbiota have been associated with improvements in blood glucose due to bariatric surgery. OBJECTIVES Our aim is to identify specific gut microbiota that contribute to the remission of T2D after RYGB and SG. METHODS Rats fed a high-fat diet (HFD) were administered a low dose of streptozotocin as T2D models; next, their caecum content was collected 8 weeks after RYGB and SG. We also used case-control of gut microbial profiles of T2D patients and healthy people by collecting the mucosal-luminal interface from the ascending colon. Samples were profiled by 16S rRNA gene sequencing. RESULTS RYGB and SG reduced weight and improved glucose and insulin tolerance. Principal coordinate analysis showed that SG and, especially, RYGB cause changes in the composition of gut microbiota. We found that family Alcaligenaceae (genus Sutterella) was significantly decreased in the ascending colon of patients with T2D and increased after RYGB surgery in the caecum of T2D rats as shown by a linear discriminant analysis effect size (LEfSe) analysis, with no significant changes after SG. This result might benefit the improvement of glycometabolism. CONCLUSIONS RYGB can significantly reduce weight, improve glycometabolism and change the composition of the gut microbiota. Sutterella may have beneficial effects on glycometabolism in T2D patients after RYGB.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bariatric and Metabolic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Haijun Liu
- Department of General Surgery, Shanghai Fengxian Central Hospital, Affiliated to Southern Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Bariatric and Metabolic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jianzhong Di
- Department of Bariatric and Metabolic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
129
|
Farin W, Oñate FP, Plassais J, Bonny C, Beglinger C, Woelnerhanssen B, Nocca D, Magoules F, Le Chatelier E, Pons N, Cervino ACL, Ehrlich SD. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis 2020; 16:852-862. [PMID: 32360114 DOI: 10.1016/j.soard.2020.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bariatric surgery is an effective therapeutic procedure for morbidly obese patients. The 2 most common interventions are sleeve gastrectomy (SG) and laparoscopic Roux-en-Y gastric bypass (LRYGB). OBJECTIVES The aim of this study was to compare microbiome long-term microbiome after SG and LRYGB surgery in obese patients. SETTING University Hospital, France; University Hospital, United States; and University Hospital, Switzerland. METHODS Eighty-nine and 108 patients who underwent SG and LRYGB, respectively, were recruited. Stools were collected before and 6 months after surgery. Microbial DNA was analyzed with shotgun metagenomic sequencing (SOLiD 5500 xl Wildfire). MSPminer, a novel innovative tool to characterize new in silico biological entities, was used to identify 715 Metagenomic Species Pan-genome. One hundred forty-eight functional modules were analyzed using GOmixer and KEGG database. RESULTS Both interventions resulted in a similar increase of Shannon's diversity index and gene richness of gut microbiota, in parallel with weight loss, but the changes of microbial composition were different. LRYGB led to higher relative abundance of aero-tolerant bacteria, such as Escherichia coli and buccal species, such as Streptococcus and Veillonella spp. In contrast, anaerobes, such as Clostridium, were more abundant after SG, suggesting better conservation of anaerobic conditions in the gut. Enrichment of Akkermansia muciniphila was also observed after both surgeries. Function-level changes included higher potential for bacterial use of supplements, such as vitamin B12, B1, and iron upon LRYGB. CONCLUSION Microbiota changes after bariatric surgery depend on the nature of the intervention. LRYGB induces greater taxonomic and functional changes in gut microbiota than SG. Possible long-term health consequences of these alterations remain to be established.
Collapse
Affiliation(s)
| | - Florian Plaza Oñate
- Data Science, Enterome, Paris, France; Université Paris-Saclay, Jouy en Josas, France
| | | | | | - Christoph Beglinger
- Department of Biomedicine, University of Basel and Department of Research, St. Claraspital, Basel, Switzerland
| | - Bettina Woelnerhanssen
- Department of Biomedicine, University of Basel and Department of Research, St. Claraspital, Basel, Switzerland
| | - David Nocca
- Digestive Surgery, Saint-Eloi University Hospital of Montpellier, Montpellier, France
| | | | | | | | | | - S Dusko Ehrlich
- Université Paris-Saclay, Jouy en Josas, France; Centre for Host Microbiome Interaction, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
130
|
Hernandez-Baixauli J, Quesada-Vázquez S, Mariné-Casadó R, Gil Cardoso K, Caimari A, Del Bas JM, Escoté X, Baselga-Escudero L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020; 12:E806. [PMID: 32197513 PMCID: PMC7146483 DOI: 10.3390/nu12030806] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The metabolic syndrome is a multifactorial disease developed due to accumulation and chronification of several risk factors associated with disrupted metabolism. The early detection of the biomarkers by NMR spectroscopy could be helpful to prevent multifactorial diseases. The exposure of each risk factor can be detected by traditional molecular markers but the current biomarkers have not been enough precise to detect the primary stages of disease. Thus, there is a need to obtain novel molecular markers of pre-disease stages. A promising source of new molecular markers are metabolomics standing out the research of biomarkers in NMR approaches. An increasing number of nutritionists integrate metabolomics into their study design, making nutrimetabolomics one of the most promising avenues for improving personalized nutrition. This review highlight the major five risk factors associated with metabolic syndrome and related diseases including carbohydrate dysfunction, dyslipidemia, oxidative stress, inflammation, and gut microbiota dysbiosis. Together, it is proposed a profile of metabolites of each risk factor obtained from NMR approaches to target them using personalized nutrition, which will improve the quality of life for these patients.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Katherine Gil Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| |
Collapse
|
131
|
Ilhan ZE, DiBaise JK, Dautel SE, Isern NG, Kim YM, Hoyt DW, Schepmoes AA, Brewer HM, Weitz KK, Metz TO, Crowell MD, Kang DW, Rittmann BE, Krajmalnik-Brown R. Temporospatial shifts in the human gut microbiome and metabolome after gastric bypass surgery. NPJ Biofilms Microbiomes 2020; 6:12. [PMID: 32170068 PMCID: PMC7070067 DOI: 10.1038/s41522-020-0122-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Although the etiology of obesity is not well-understood, genetic, environmental, and microbiome elements are recognized as contributors to this rising pandemic. It is well documented that Roux-en-Y gastric bypass (RYGB) surgery drastically alters the fecal microbiome, but data are sparse on temporal and spatial microbiome and metabolome changes, especially in human populations. We characterized the structure and function (through metabolites) of the microbial communities in the gut lumen and structure of microbial communities on mucosal surfaces in nine morbidly obese individuals before, 6 months, and 12 months after RYGB surgery. Moreover, using a comprehensive multi-omic approach, we compared this longitudinal cohort to a previously studied cross-sectional cohort (n = 24). In addition to the expected weight reduction and improvement in obesity-related comorbidities after RYGB surgery, we observed that the impact of surgery was much greater on fecal communities in comparison to mucosal ones. The changes in the fecal microbiome were linked to increased concentrations of branched-chain fatty acids and an overall decrease in secondary bile acid concentrations. The microbiome and metabolome data sets for this longitudinal cohort strengthen our understanding of the persistent impact of RYGB on the gut microbiome and its metabolism. Our findings highlight the importance of changes in mucosal and fecal microbiomes after RYGB surgery. The spatial modifications in the microbiome after RYGB surgery corresponded to persistent changes in fecal fermentation and bile acid metabolism, both of which are associated with improved metabolic outcomes.
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
| | - John K DiBaise
- Mayo Clinic, Division of Gastroenterology, Scottsdale, AZ, USA
| | - Sydney E Dautel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy G Isern
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David W Hoyt
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Brewer
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Dae-Wook Kang
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
- Department of Civil & Environmental Engineering, The University of Toledo, Toledo, OH, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
132
|
Cӑtoi AF, Vodnar DC, Corina A, Nikolic D, Citarrella R, Pérez-Martínez P, Rizzo M. Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Curr Pharm Des 2020; 25:2038-2050. [PMID: 31298152 DOI: 10.2174/1381612825666190708190437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is an urgent need for a better understanding and management of obesity and obesity- associated diseases. It is known that obesity is associated with structural and functional changes in the microbiome. METHODS The purpose of this review is to present current evidence from animal and human studies, demonstrating the effects and the potential efficacy of microbiota modulation in improving obesity and associated metabolic dysfunctions. RESULTS This review discusses possible mechanisms linking gut microbiota dysbiosis and obesity, since there is a dual interaction between the two of them. Furthermore, comments on bariatric surgery, as a favourable model to understand the underlying metabolic and inflammatory effects, as well as its association with changes in the composition of the gut microbiota, are included. Also, a possible impact of anti-obesity drugs and the novel antidiabetic drugs on the gut microbiota has been briefly discussed. CONCLUSION More research is needed to better understand here discussed the association between microbiota modulation and obesity. It is expected that research in this field, in the following years, will lead to a personalized therapeutic approach considering the patient's microbiome, and also give rise to the discovery of new drugs and/or the combination therapies for the management of obesity and obesity-related co-morbidities.
Collapse
Affiliation(s)
- Adriana Florinela Cӑtoi
- Pathophysiology Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Andreea Corina
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Dragana Nikolic
- PROMISE Department, University of Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | | |
Collapse
|
133
|
Rajilic-Stojanovic M, Figueiredo C, Smet A, Hansen R, Kupcinskas J, Rokkas T, Andersen L, Machado JC, Ianiro G, Gasbarrini A, Leja M, Gisbert JP, Hold GL. Systematic review: gastric microbiota in health and disease. Aliment Pharmacol Ther 2020; 51:582-602. [PMID: 32056247 DOI: 10.1111/apt.15650] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori is the most infamous constituent of the gastric microbiota and its presence is the strongest risk factor for gastric cancer and other gastroduodenal diseases. Although historically the healthy stomach was considered a sterile organ, we now know it is colonised with a complex microbiota. However, its role in health and disease is not well understood. AIM To systematically explore the literature on the gastric microbiota in health and disease as well as the gut microbiota after bariatric surgery. METHODS A systematic search of online bibliographic databases MEDLINE/EMBASE was performed between 1966 and February 2019 with screening in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomised controlled trials, cohort studies and observational studies were included if they reported next-generation sequencing derived microbiota analysis on gastric aspirate/tissue or stool samples (bariatric surgical outcomes). RESULTS Sixty-five papers were eligible for inclusion. With the exception of H pylori-induced conditions, overarching gastric microbiota signatures of health or disease could not be determined. Gastric carcinogenesis induces a progressively altered microbiota with an enrichment of oral and intestinal taxa as well as significant changes in host gastric mucin expression. Proton pump inhibitors usage increases gastric microbiota richness. Bariatric surgery is associated with an increase in potentially pathogenic proteobacterial species in patient stool samples. CONCLUSION While H pylori remains the single most important risk factor for gastric disease, its capacity to shape the collective gastric microbiota remains to be fully elucidated. Further studies are needed to explore the intricate host/microbial and microbial/microbial interplay.
Collapse
|
134
|
Ejtahed HS, Angoorani P, Soroush AR, Hasani-Ranjbar S, Siadat SD, Larijani B. Gut microbiota-derived metabolites in obesity: a systematic review. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:65-76. [PMID: 32775123 PMCID: PMC7392910 DOI: 10.12938/bmfh.2019-026] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that gut microbiota-derived metabolites affect many biological processes of the host, including appetite control and weight management. Dysbiosis of the
gut microbiome in obesity influences the metabolism and excretion of gut microbiota byproducts and consequently affects the physiology of the host. Since identification of the gut
microbiota-host co-metabolites is essential for clarifying the interactions between the intestinal flora and the host, we conducted this systematic review to summarize all human
studies that characterized the gut microbiota-related metabolites in overweight and obese individuals. A comprehensive search of the PubMed, Web of Science, and Scopus databases
yielded 2,137 articles documented up to July 2018. After screening abstracts and full texts, 12 articles that used different biosamples and methodologies of metabolic profiling and
fecal microbiota analysis were included. Amino acids and byproducts of amino acids, lipids and lipid-like metabolites, bile acids derivatives, and other metabolites derived from
degradation of carnitine, choline, polyphenols, and purines are among the gut microbiota-derived metabolites which showed alterations in obesity. These metabolites play an
important role in metabolic complications of obesity, including insulin resistance, hyperglycemia, and dyslipidemia. The results of this study could be useful in development of
therapeutic strategies with the aim of modulating gut microbiota and consequently the metabolic profile in obesity.
Collapse
Affiliation(s)
- Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Ahmad-Reza Soroush
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Floor, Shariati Hospital, North Kargar Ave, 1411413137, Tehran, Iran
| | - Seyed-Davar Siadat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
135
|
Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients 2020; 12:nu12020278. [PMID: 31973130 PMCID: PMC7071117 DOI: 10.3390/nu12020278] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota composition is influenced by environmental factors and has been shown to impact body metabolism. Objective: To assess the gut microbiota profile before and after Roux-en-Y gastric bypass (RYGB) and the correlation with food intake and postoperative type 2 diabetes remission (T2Dr). Design: Gut microbiota profile from obese diabetic women was evaluated before (n = 25) and 3 (n = 20) and 12 months (n = 14) after RYGB, using MiSeq Illumina-based V4 bacterial 16S rRNA gene profiling. Data on food intake (7-day record) and T2Dr (American Diabetes Association (ADA) criteria) were recorded. Results: Preoperatively, the abundance of five bacteria genera differed between patients with (57%) and without T2Dr (p < 0.050). Preoperative gut bacteria genus signature was able to predict the T2Dr status with 0.94 accuracy ROC curve (receiver operating characteristic curve). Postoperatively (vs. preoperative), the relative abundance of some gut bacteria genera changed, the gut microbial richness increased, and the Firmicutes to Bacteroidetes ratio (rFB) decreased (p < 0.05) regardless of T2Dr. Richness levels was correlated with dietary profile pre and postoperatively, mainly displaying positive and inverse correlations with fiber and lipid intakes, respectively (p < 0.05). Conclusions: Gut microbiota profile was influenced by RYGB and correlated with diet and T2Dr preoperatively, suggesting the possibility to assess its composition to predict postoperative T2Dr.
Collapse
|
136
|
Ciobârcă D, Cătoi AF, Copăescu C, Miere D, Crișan G. Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients 2020; 12:E235. [PMID: 31963247 PMCID: PMC7019602 DOI: 10.3390/nu12010235] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with reduced gut microbial diversity and a high rate of micronutrient deficiency. Bariatric surgery, the therapy of choice for severe obesity, produces sustained weight loss and improvements in obesity-related comorbidities. Also, it significantly alters the gut microbiota (GM) composition and function, which might have an important impact on the micronutrient status as GM is able to synthesize certain vitamins, such as riboflavin, folate, B12, or vitamin K2. However, recent data have reported that GM is not fully restored after bariatric surgery; therefore, manipulation of GM through probiotics represents a promising therapeutic approach in bariatric patients. In this review, we discuss the latest evidence concerning the relationship between obesity, GM and micronutrients, the impact of bariatric surgery on GM in relation with micronutrients equilibrium, and the importance of the probiotics' supplementation in obese patients submitted to surgical treatment.
Collapse
Affiliation(s)
- Daniela Ciobârcă
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Adriana Florinela Cătoi
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-4 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Cătălin Copăescu
- General Surgery Department, Ponderas Hospital, 85A Nicolae G. Caramfil Street, 014142 Bucharest, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
137
|
The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines 2020; 8:biomedicines8010008. [PMID: 31936158 PMCID: PMC7168169 DOI: 10.3390/biomedicines8010008] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease that affects over 9% of the United States population and is closely linked to obesity. While obesity was once thought to stem from a sedentary lifestyle and diets high in fat, recent evidence supports the idea that there is more complexity pertinent to the issue. The human gut microbiome has recently been the focus in terms of influencing disease onset. Evidence has shown that the microbiome may be more closely related to T2DM than what was originally thought. High fat diets typically result in poor microbiome heath, which then shifts the gut into a state of dysbiosis. Dysbiosis can then lead to metabolic deregulation, including increased insulin resistance and inflammation, two key factors in the development of T2DM. The purpose of this review is to discuss how microbiome relates to T2DM onset, especially considering obesity, insulin resistance, and inflammation.
Collapse
|
138
|
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51:102590. [PMID: 31901868 PMCID: PMC6948163 DOI: 10.1016/j.ebiom.2019.11.051] [Citation(s) in RCA: 1056] [Impact Index Per Article: 211.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.
Collapse
Affiliation(s)
- Manoj Gurung
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Zhipeng Li
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Hannah You
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Richard Rodrigues
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Donald B Jump
- Colleges of Public Health, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA.
| | - Natalia Shulzhenko
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA.
| |
Collapse
|
139
|
Diener C, Reyes-Escogido MDL, Jimenez-Ceja LM, Matus M, Gomez-Navarro CM, Chu ND, Zhong V, Tejero ME, Alm E, Resendis-Antonio O, Guardado-Mendoza R. Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Front Endocrinol (Lausanne) 2020; 11:602326. [PMID: 33488518 PMCID: PMC7821428 DOI: 10.3389/fendo.2020.602326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes (T2D) is a global epidemic that affects more than 8% of the world's population and is a leading cause of death in Mexico. Diet and lifestyle are known to contribute to the onset of T2D. However, the role of the gut microbiome in T2D progression remains uncertain. Associations between microbiome composition and diabetes are confounded by medication use, diet, and obesity. Here we present data on a treatment-naive cohort of 405 Mexican individuals across varying stages of T2D severity. Associations between gut bacteria and more than 200 clinical variables revealed a defined set of bacterial genera that were consistent biomarkers of T2D prevalence and risk. Specifically, gradual increases in blood glucose levels, beta cell dysfunction, and the accumulation of measured T2D risk factors were correlated with the relative abundances of four bacterial genera. In a cohort of 25 individuals, T2D treatment-predominantly metformin-reliably returned the microbiome to the normoglycemic community state. Deep clinical characterization allowed us to broadly control for confounding variables, indicating that these microbiome patterns were independent of common T2D comorbidities, like obesity or cardiovascular disease. Our work provides the first solid evidence for a direct link between the gut microbiome and T2D in a critically high-risk population. In particular, we show that increased T2D risk is reflected in gradual changes in the gut microbiome. Whether or not these T2D-associated changes in the gut contribute to the etiology of T2D or its comorbidities remains to be seen.
Collapse
Affiliation(s)
- Christian Diener
- Computational Genomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Gibbons Lab, Institute for Systems Biology, Seattle, WA, United States
| | | | - Lilia M. Jimenez-Ceja
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Mexico
| | - Mariana Matus
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Claudia M. Gomez-Navarro
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Mexico
| | - Nathaniel D. Chu
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vivian Zhong
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - M. Elizabeth Tejero
- Computational Genomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Eric Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Osbaldo Resendis-Antonio
- Computational Genomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Human Systems Biology Laboratory, Coordinación de la Investigación Científica—Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Rodolfo Guardado-Mendoza,
| | - Rodolfo Guardado-Mendoza
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Mexico
- Research Department, Hospital Regional de Alta Especialidad del Bajío, León, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Rodolfo Guardado-Mendoza,
| |
Collapse
|
140
|
Chen L, Reynolds C, David R, Peace Brewer A. Development of an Index Score for Intestinal Inflammation-Associated Dysbiosis Using Real-World Stool Test Results. Dig Dis Sci 2020; 65:1111-1124. [PMID: 31529411 PMCID: PMC7069909 DOI: 10.1007/s10620-019-05828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gut microbiota play an important role in human health. However, the application of gut microbiome in regular clinical practice is limited by interindividual variations and complexity of test results. HYPOTHESIS It is possible to address interindividual variation by using large data-based exploratory-pattern analysis. METHODS The current study was conducted using a large data set (n = 173,221) of nonselective incoming patients' test results from a stool test. The data set included assays for the detection of 24 selected commensal microorganisms and multiple biomarkers in feces. Patients were grouped based on their levels of inflammation biomarkers such as calprotectin, eosinophil protein X, and IgA. Group mean values of biomarkers and commensal microbes were used in an exploratory-pattern analysis for association from which an index score for intestinal inflammation-associated dysbiosis (IAD) was developed. The IAD score was evaluated in one questionnaire-based study (n = 7263) and one prospective case series study (n = 122) with patients of inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and celiac disease. RESULTS We identified a microbial profile strongly associated with fecal inflammation biomarkers. Developed on the pattern of the microbial profile, the IAD score demonstrated a strong association with fecal inflammation biomarkers and was significantly different between patients with IBD and those with IBS or celiac disease. CONCLUSION Using real-world data, we have developed a method to predict gut dysbiosis associated with different GI disease conditions. It may help clinicians simplify the process of interpreting gut microbial status and provide gut health assessment and treatment evaluation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Clinical Evidence Development, Genova Diagnostics, Inc, 63 Zillicoa Street, Asheville, NC 28801 USA
| | - Courtney Reynolds
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Robert David
- Department of Clinical Laboratory, Genova Diagnostics, Inc, 3425 Corporate Way, Duluth, GA 30096 USA
| | - Amy Peace Brewer
- Department of Clinical Laboratory, Genova Diagnostics, Inc, 63 Zillicoa Street, Asheville, NC 28801 USA
| |
Collapse
|
141
|
Abstract
Preclinical evidence strongly suggests a role for the gut microbiome in modulating the host central nervous system function and behavior. Several communication channels have been identified that enable microbial signals to reach the brain and that enable the brain to influence gut microbial composition and function. In rodent models, endocrine, neural, and inflammatory signals generated by gut microbes can alter brain structure and function, while autonomic nervous system activity can affect the microbiome by modulating the intestinal environment and by directly regulating microbial behavior. The amount of information that reaches the brain is dynamically regulated by the blood-brain barrier and the intestinal barrier. In humans, associations between gut microbial composition and function and several brain disorders have been reported, and fecal microbial transplants from patient populations into gnotobiotic mice have resulted in the reproduction of homologous features in the recipient mice. However, in contrast to preclinical findings, there is little information about a causal role of the gut microbiome in modulating human central nervous system function and behavior. Longitudinal studies in large patient populations with therapeutic interventions are required to demonstrate such causality, which will provide the basis for future clinical trials. © 2020 American Physiological Society. Compr Physiol 10:57-72, 2020.
Collapse
Affiliation(s)
- Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Clair R Martin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, and UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
142
|
Wade KH, Hall LJ. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open Res 2019; 4:199. [PMID: 32462081 PMCID: PMC7217228 DOI: 10.12688/wellcomeopenres.15628.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 03/29/2024] Open
Abstract
Evidence supports associations between human gut microbiome variation and multiple health outcomes and diseases. Despite compelling results from in vivo and in vitro models, few findings have been translated into an understanding of modifiable causal relationships. Furthermore, epidemiological studies have been unconvincing in their ability to offer causal evidence due to their observational nature, where confounding by lifestyle and behavioural factors, reverse causation and bias are important limitations. Whilst randomized controlled trials have made steps towards understanding the causal role played by the gut microbiome in disease, they are expensive and time-consuming. This evidence that has not been translated between model systems impedes opportunities for harnessing the gut microbiome for improving population health. Therefore, there is a need for alternative approaches to interrogate causality in the context of gut microbiome research. The integration of human genetics within population health sciences have proved successful in facilitating improved causal inference (e.g., with Mendelian randomization [MR] studies) and characterising inherited disease susceptibility. MR is an established method that employs human genetic variation as natural "proxies" for clinically relevant (and ideally modifiable) traits to improve causality in observational associations between those traits and health outcomes. Here, we focus and discuss the utility of MR within the context of human gut microbiome research, review studies that have used this method and consider the strengths, limitations and challenges facing this research. Specifically, we highlight the requirements for careful examination and interpretation of derived causal estimates and host (i.e., human) genetic effects themselves, triangulation across multiple study designs and inter-disciplinary collaborations. Meeting these requirements will help support or challenge causality of the role played by the gut microbiome on human health to develop new, targeted therapies to alleviate disease symptoms to ultimately improve lives and promote good health.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN, UK
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
143
|
Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 2019; 8:48479. [PMID: 31793875 PMCID: PMC6937151 DOI: 10.7554/elife.48479] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensory cells in the intestinal epithelium that sense and transduce nutrient information. Consumption of dietary fat contributes to metabolic disorders, but EEC adaptations to high fat feeding were unknown. Here, we established a new experimental system to directly investigate EEC activity in vivo using a zebrafish reporter of EEC calcium signaling. Our results reveal that high fat feeding alters EEC morphology and converts them into a nutrient insensitive state that is coupled to endoplasmic reticulum (ER) stress. We called this novel adaptation 'EEC silencing'. Gnotobiotic studies revealed that germ-free zebrafish are resistant to high fat diet induced EEC silencing. High fat feeding altered gut microbiota composition including enrichment of Acinetobacter bacteria, and we identified an Acinetobacter strain sufficient to induce EEC silencing. These results establish a new mechanism by which dietary fat and gut microbiota modulate EEC nutrient sensing and signaling.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| |
Collapse
|
144
|
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019; 132:104580. [PMID: 31454547 PMCID: PMC6834913 DOI: 10.1016/j.nbd.2019.104580] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the development of cognitive impairment. In this review, we present evidence from clinical and preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead to cognitive impairment through induction of endothelial dysfunction and disruption of the blood brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and bariatric surgery in circumventing the impacts of obesity on cognitive function.
Collapse
Affiliation(s)
- Joy Jones Buie
- WISSDOM Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Luke S Watson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Crystal J Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
145
|
The gut microbiota: a new perspective on the toxicity of malachite green (MG). Appl Microbiol Biotechnol 2019; 103:9723-9737. [PMID: 31728586 DOI: 10.1007/s00253-019-10214-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Gut microbiome critically contributes to host health status. Thus, investigating the relationship between the gut microbiome and toxic chemicals is a hot topic in toxicology research. Exposure to malachite green (MG) has been linked to various health disorders. Thus, exploring the gut microbiota changes in response to MG would provide a new perspective on the toxicity effects of this chemical substance. MG exposure resulted in the significantly lower alpha diversity (Mann-Whitney U test, z = - 6.83, p = 0.00) but higher beta diversity (Mann-Whitney U test, z = - 1.98, p = 0.04) of gut microbiota, and significantly decreased ecosystem stability (alpha and beta variability; Mann-Whitney U test, all p < 0.05) of gut microbial communities. Gut bacterial networks showed that the interactions became more complex and stronger after MG exposure, which could decrease the stability of the network. Changes in gut microbiota composition were mainly reflected in the enrichment of opportunistic bacteria (i.e., Aeromonas and Vibrio) and the depression of fermentative bacteria (i.e., Bacteroides and Paludibacter). MG exposure leads to a significantly increased gut permeability (lipopolysaccharide-binding protein; Mann-Whitney U test, z = - 6.92, p = 0.00), which could reduce the host selective pressures on particular bacterial species (such as members in Aeromonas and Vibrio). This result was further supported by the weakened importance of a deterministic microbial assembly after MG exposure. All these findings indicated that MG exposed fishes might have more possibilities to be infected, as demonstrated by the enrichment of opportunistic pathogenic bacteria, high-level immune responses, and increased gut permeability. These findings greatly improve our understanding of the toxicity effects of MG.
Collapse
|
146
|
Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019; 11:nu11112690. [PMID: 31703257 PMCID: PMC6893459 DOI: 10.3390/nu11112690] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, obesity is one of the most prevalent human health problems. Research from the last 30 years has clarified the role of the imbalance between energy intake and expenditure, unhealthy lifestyle, and genetic variability in the development of obesity. More recently, the composition and metabolic functions of gut microbiota have been proposed as being able to affect obesity development. Here, we will report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity. There is evidence for the association between gut bacteria and obesity both in infancy and in adults. There are several genetic, metabolic, and inflammatory pathophysiological mechanisms involved in the interplay between gut microbes and obesity. Microbial changes in the human gut can be considered a factor involved in obesity development in humans. The modulation of the bacterial strains in the digestive tract can help to reshape the metabolic profile in the human obese host as suggested by several data from animal and human studies. Thus, a deep revision of the evidence pertaining to the use probiotics, prebiotics, and antibiotics in obese patients is conceivable
Collapse
|
147
|
Medina DA, Li T, Thomson P, Artacho A, Pérez-Brocal V, Moya A. Cross-Regional View of Functional and Taxonomic Microbiota Composition in Obesity and Post-obesity Treatment Shows Country Specific Microbial Contribution. Front Microbiol 2019; 10:2346. [PMID: 31681211 PMCID: PMC6812679 DOI: 10.3389/fmicb.2019.02346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota has been shown to have an important influence on host health. The microbial composition of the human gut microbiota is modulated by diet and other lifestyle habits and it has been reported that microbial diversity is altered in obese people. Obesity is a worldwide health problem that negatively impacts the quality of life. Currently, the widespread treatment for obesity is bariatric surgery. Interestingly, gut microbiota has been shown to be a relevant factor in effective weight loss after bariatric surgery. Since that the human gut microbiota of normal subjects differs between geographic regions, it is possible that rearrangements of the gut microbiota in dysbiosis context are also region-specific. To better understand how gut microbiota contribute to obesity, this study compared the composition of the human gut microbiota of obese and lean people from six different regions and showed that the microbiota compositions in the context of obesity were specific to each studied geographic location. Furthermore, we analyzed the functional patterns using shotgun DNA metagenomic sequencing and compared the results with other obesity-related metagenomic studies, we observed that microbial contribution to functional pathways were country-specific. Nevertheless, our study showed that although microbial composition of obese patients was country-specific, the overall metabolic functions appeared to be the same between countries, indicating that different microbiota components contribute to similar metabolic outcomes to yield functional redundancy. Furthermore, we studied the microbiota functional changes of obese patients after bariatric surgery, by shotgun metagenomics sequencing and observed that changes in functional pathways were specific to the type of obesity treatment. In all, our study provides new insights into the differences and similarities of obese gut microbiota in relation to geographic location and obesity treatments.
Collapse
Affiliation(s)
- Daniel A. Medina
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Universidad San Sebastián, Puerto Montt, Chile
| | - Tianlu Li
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Pamela Thomson
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Artacho
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)-Salud Pública, Valencia, Spain
| | - Vicente Pérez-Brocal
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)-Salud Pública, Valencia, Spain
| | - Andrés Moya
- Genomics and Health Area, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO)-Salud Pública, Valencia, Spain
- Integrative Systems Biology Institute, University of Valencia, CSIC, Valencia, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBEResp), Madrid, Spain
| |
Collapse
|
148
|
Cameron SJS, Alexander JL, Bolt F, Burke A, Ashrafian H, Teare J, Marchesi JR, Kinross J, Li JV, Takáts Z. Evaluation of Direct from Sample Metabolomics of Human Feces Using Rapid Evaporative Ionization Mass Spectrometry. Anal Chem 2019; 91:13448-13457. [DOI: 10.1021/acs.analchem.9b02358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Simon J. S. Cameron
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - James L. Alexander
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Frances Bolt
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Adam Burke
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Julian Teare
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Julian R. Marchesi
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, U.K
| | - James Kinross
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Jia V. Li
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| | - Zoltán Takáts
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
149
|
Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol 2019; 61:S43-S50. [PMID: 32055753 PMCID: PMC7004837 DOI: 10.4111/icu.2020.61.s1.s43] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 01/14/2023] Open
Abstract
The human gastrointestinal microbiome contains commensal bacteria and other microbiota that have been gaining increasing attention in the context of cancer development and response to treatment. Microbiota play a role in the maintenance of host barrier surfaces that contribute to both local inflammation and other systemic metabolic functions. In the context of prostate cancer, the gastrointestinal microbiome may play a role through metabolism of estrogen, an increase of which has been linked to the induction of prostatic neoplasia. Specific microbiota such as Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectalie, and Mycoplasma genitalium have been associated with differing risks of prostate cancer development or extensiveness of prostate cancer disease. In this Review, we discuss gastrointestinal microbiota's effects on prostate cancer development, the ability of the microbiome to regulate chemotherapy for prostate cancer treatment, and the importance of using Next Generation Sequencing to further discern the microbiome's systemic influence on prostate cancer.
Collapse
Affiliation(s)
- Sybil Sha
- Dartmouth Medical School, Hanover, NH, USA
| | - Liqiang Ni
- University of Central Florida, Orlando, FL, USA
| | | | | | | |
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW In this review, we summarize what is currently described in terms of gut microbiota (GM) dysbiosis modification post-bariatric surgery (BS) and their link with BS-induced clinical improvement. We also discuss how the major inter-individual variability in terms of GM changes could impact the clinical improvements seen in patients. RECENT FINDINGS The persisting increase in severe obesity prevalence has led to the subsequent burst in BS number. Indeed, it is to date the best treatment option to induce major and sustainable weight loss and metabolic improvement in these patients. During obesity, the gut microbiota displays distinctive features such as low microbial gene richness and compositional and functional alterations (termed dysbiosis) which have been associated with low-grade inflammation, increased body weight and fat mass, as well as type-2 diabetes. Interestingly, GM changes post-BS is currently being proposed as one the many mechanism explaining BS beneficial clinical outcomes. BS enables partial rescue of GM dysbiosis observed during obesity. Some of the GM characteristics modified post-BS (composition in terms of bacteria and functions) are linked to BS beneficial outcomes such as weight loss or metabolic improvements. Nevertheless, the changes in GM post-BS display major variability from one patient to the other. As such, further large sample size studies associated with GM transfer studies in animals are still needed to completely decipher the role of GM in the clinical improvements observed post-surgery.
Collapse
Affiliation(s)
- Jean Debédat
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France.
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France.
| | - Judith Aron-Wisnewsky
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France.
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|