101
|
Rubalcaba JG, Jimeno B. Body temperature and activity patterns modulate glucocorticoid levels across lizard species: A macrophysiological approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1032083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Collapse
|
102
|
de Jong MJ, White CR, Wong BBM, Chapple DG. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard. J Exp Biol 2022; 225:281298. [PMID: 36354342 PMCID: PMC10112869 DOI: 10.1242/jeb.244352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
Environments, particularly developmental environments, can generate a considerable amount of phenotypic variation through phenotypic plasticity. Plasticity in response to incubation temperature is well characterised in egg-laying reptiles. However, traits do not always vary independently of one another, and studies encompassing a broad range of traits spanning multiple categories are relatively rare but crucial to better understand whole-organism responses to environmental change, particularly if covariation among traits may constrain plasticity. In this study, we investigated multivariate plasticity in response to incubation across three temperatures in the delicate skink, Lampropholis delicata, and whether this was affected by covariation among traits. At approximately 1 month of age, a suite of growth, locomotor performance, thermal physiology and behavioural traits were measured. Plasticity in the multivariate phenotype of delicate skinks was distinct for different incubation temperatures. Cool temperatures drove shifts in growth, locomotor performance and thermal physiology, while hot temperatures primarily caused changes in locomotor performance and behaviour. These differences are likely due to variation in thermal reaction norms, as there was little evidence that covariation among traits or phenotypic integration influenced plasticity, and there was no effect of incubation temperature on the direction or strength of covariation. While there were broad themes in terms of which trait categories were affected by different incubation treatments, traits appeared to be affected independently by developmental temperature. Comparing reaction norms of a greater range of traits and temperatures will enable better insight into these patterns among trait categories, as well as the impacts of environmental change.
Collapse
Affiliation(s)
- Madeleine J de Jong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| |
Collapse
|
103
|
Extreme escalation of heat failure rates in ectotherms with global warming. Nature 2022; 611:93-98. [DOI: 10.1038/s41586-022-05334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
|
104
|
Rainville V, Dupuch A, Pépino M, Magnan P. Intraspecific competition and temperature drive habitat-based resource polymorphism in brook charr, Salvelinus fontinalis. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
105
|
Guillén L, Pascacio-Villafán C, Osorio-Paz I, Ortega-Casas R, Enciso-Ortíz E, Altúzar-Molina A, Velázquez O, Aluja M. Coping with global warming: Adult thermal thresholds in four pestiferous Anastrepha species determined under experimental laboratory conditions and development/survival times of immatures and adults under natural field conditions. Front Physiol 2022; 13:991923. [PMID: 36304579 PMCID: PMC9593313 DOI: 10.3389/fphys.2022.991923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Climate change, particularly global warming, is disturbing biological processes in unexpected ways and forcing us to re-study/reanalyze the effects of varying temperatures, among them extreme ones, on insect functional traits such as lifespan and fecundity/fertility. Here we experimentally tested, under both laboratory and field conditions, the effects of an extreme range of temperatures (5, 10, 15, 20, 30, 40, and 45 °C, and the naturally varying conditions experienced in the field), on survivorship/lifespan, fecundity, and fertility of four pestiferous fruit fly species exhibiting contrasting life histories and belonging to two phylogenetic groups within the genus Anastrepha: A. ludens, A. obliqua, A. striata, and A. serpentina. In the field, we also measured the length of the entire life cycle (egg to adult), and in one species (A. ludens), the effect on the latter of the host plant (mango and grapefruit). Under laboratory conditions, none of the adults, independent of species, could survive a single day when exposed to a constant temperature of 45 °C, but A. striata and A. serpentina females/males survived at the highly contrasting temperatures of 5 and 40 °C at least 7 days. Maximum longevity was achieved in all species at 15 °C (375, 225, 175 and 160 days in A. ludens, A. serpentina, A. striata and A. obliqua females, respectively). Anastrepha ludens layed many eggs until late in life (368 days) at 15 °C, but none eclosed. Eclosion was only observed in all species at 20 and 30 °C. Under natural conditions, flies lived ca. 100 days less than in the laboratory at 15 °C, likely due to the physiological cost of dealing with the highly varying environmental patterns over 24 h (minimum and maximum temperatures and relative humidity of ca. 10–40 °C, and 22–100%, respectively). In the case of A. ludens, the immature’s developmental time was shorter in mango, but adult survival was longer than in grapefruit. We discuss our results considering the physiological processes regulating the traits measured and tie them to the increasing problem of global warming and its hidden effects on the physiology of insects, as well as the ecological and pest management implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martín Aluja
- *Correspondence: Larissa Guillén, ; Martín Aluja,
| |
Collapse
|
106
|
Gutiérrez‐Pesquera LM, Tejedo M, Camacho A, Enriquez‐Urzelai U, Katzenberger M, Choda M, Pintanel P, Nicieza AG. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis. Ecol Evol 2022; 12:e9349. [PMID: 36225839 PMCID: PMC9534760 DOI: 10.1002/ece3.9349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Critical thermal limits (CTmax and CTmin) decrease with elevation, with greater change in CTmin, and the risk to suffer heat and cold stress increasing at the gradient ends. A central prediction is that populations will adapt to the prevailing climatic conditions. Yet, reliable support for such expectation is scant because of the complexity of integrating phenotypic, molecular divergence and organism exposure. We examined intraspecific variation of CTmax and CTmin, neutral variation for 11 microsatellite loci, and micro- and macro-temperatures in larvae from 11 populations of the Galician common frog (Rana parvipalmata) across an elevational gradient, to assess (1) the existence of local adaptation through a PST-FST comparison, (2) the acclimation scope in both thermal limits, and (3) the vulnerability to suffer acute heat and cold thermal stress, measured at both macro- and microclimatic scales. Our study revealed significant microgeographic variation in CTmax and CTmin, and unexpected elevation gradients in pond temperatures. However, variation in CTmax and CTmin could not be attributed to selection because critical thermal limits were not correlated to elevation or temperatures. Differences in breeding phenology among populations resulted in exposure to higher and more variable temperatures at mid and high elevations. Accordingly, mid- and high-elevation populations had higher CTmax and CTmin plasticities than lowland populations, but not more extreme CTmax and CTmin. Thus, our results support the prediction that plasticity and phenological shifts may hinder local adaptation, promoting thermal niche conservatism. This may simply be a consequence of a coupled variation of reproductive timing with elevation (the "elevation-time axis" for temperature variation). Mid and high mountain populations of R. parvipalmata are more vulnerable to heat and cool impacts than lowland populations during the aquatic phase. All of this contradicts some of the existing predictions on adaptive thermal clines and vulnerability to climate change in elevational gradients.
Collapse
Affiliation(s)
| | - Miguel Tejedo
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
| | - Agustín Camacho
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
| | | | - Marco Katzenberger
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
- Laboratory of Bioinformatics and Evolutionary Biology, Department of GeneticsUniversidade Federal de PernambucoRecifePrince Edward IslandBrazil
| | - Magdalena Choda
- Department of Organisms and Systems BiologyUniversity of OviedoOviedoSpain
| | - Pol Pintanel
- Department of Evolutionary EcologyEstación Biológica de Doñana, CSICSevillaSpain
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Alfredo G. Nicieza
- Department of Organisms and Systems BiologyUniversity of OviedoOviedoSpain
- Biodiversity Research Institute (IMIB)University of Oviedo‐Principality of Asturias‐CSICMieresSpain
| |
Collapse
|
107
|
Valdez Ovallez FM, Gómez Alés R, Astudillo V, Córdoba M, Fava G, Acosta R, Blanco G, Villavicencio J, Acosta JC. Thermal biology and locomotor performance of the Andean lizard
Liolaemus fitzgeraldi
(Liolaemidae) in Argentina. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Franco M. Valdez Ovallez
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Juan Argentina
| | - Rodrigo Gómez Alés
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Juan Argentina
| | - Vanesa Astudillo
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Mariela Córdoba
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Gustavo Fava
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Rodrigo Acosta
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Graciela Blanco
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - José Villavicencio
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| | - Juan Carlos Acosta
- Gabinete de Diversidad y Biología de Vertebrados del Árido, Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de San Juan San Juan Argentina
| |
Collapse
|
108
|
Schuman IJ, Meier HS, Layden TJ, Fey SB. The relationship between thermal spatial variability and mean temperature alters movement and population dynamics. Ecosphere 2022. [DOI: 10.1002/ecs2.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | - Samuel B. Fey
- Department of Biology Reed College Portland Oregon USA
| |
Collapse
|
109
|
Zhou W, Wang M, Gao K, Gao H, Wei F, Nie Y. Behavioural thermoregulation by montane ungulates under climate warming. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Wenliang Zhou
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Center for Evolution and Conservation Biology Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Meng Wang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Kai Gao
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences Beijing Normal University Beijing China
| | - Hualei Gao
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- Center for Evolution and Conservation Biology Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
110
|
Absence of mitochondrial responses in muscles of zebrafish exposed to several heat waves. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111299. [PMID: 36031060 DOI: 10.1016/j.cbpa.2022.111299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
Heat waves are extreme thermal events whose frequency and intensity will increase with global warming. As metabolic responses to temperature are time-dependent, we explored the effects of an exposure to several heat waves on the mitochondrial metabolism of zebrafish Danio rerio. For this purpose, zebrafish were acclimated at 26 °C or 31 °C for 4 weeks and some fish acclimated at 26 °C underwent 2 types of heat waves: 2 periods of 5 days at 31 °C or 10 days at 31 °C. After this acclimation period, mitochondrial respiration of red muscle fibres was measured at 26 °C and 31 °C for each fish, with the phosphorylation (OXPHOS) and basal (LEAK) respirations obtained with activation of complex I, complex II or complexes I and II. The respiratory control ratio (RCR) and the mitochondrial aerobic scope (CAS) were also calculated at both temperatures after the activation of complexes I and II. Under our conditions, heat waves did not result in variations in any mitochondrial parameters, suggesting a high tolerance of zebrafish to environmental temperature fluctuations. However, an acute in vitro warming led to an increase in the LEAK respiration together with a higher temperature effect on complex II than complex I, inducing a decrease of mitochondrial efficiency to produce energy at high temperatures. Increased interindividual variability for some parameters at 26 °C or 31 °C also suggests that each individual has its own ability to cope with temperature fluctuations.
Collapse
|
111
|
Favourable climatic niche in low elevations outside the flood zone characterises the distribution pattern of venomous snakes in Bangladesh. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Snakes are sensitive to both environmental and climate gradients. To design conservation plans, a scientific understanding of snake habitats in light of environmental and climatic variables is an essential prerequisite. For venomous snakes, denoting favourable habitats should also be relevant for snakebite management. We have considered 18 spatial variables to portray the range of terrestrial venomous snake distribution in Bangladesh. Our results indicate that the distribution of 29 studied venomous snakes in this country is primarily driven by climatic and environmental variables. We found that especially low elevation and flood risk constrain the distribution of those terrestrial snakes, i.e. regular floods in central Bangladesh push venomous snakes towards the edges of the country. Moreover, none of these species occupies the whole of its anticipated climatically favourable area. Projections into the future indicated that 11 studied species, Amphiesma platyceps, Boiga siamensis, Chrysopelea ornata, Pseudoxenodon macrops, Rhabdophis himalayanus, Rhabdophis subminiatus, Bungarus lividus, Ophiophagus hannah, Daboia russelii, Ovophis monticola and Trimeresurus popeiorum will lose their entire climatically suitable area within the country. Therefore, we suggest establishing more protected areas in the hilly ecosystems in the eastern part and in the mangrove forests in the south-western corner of Bangladesh to mitigate future extinction risks, such as climate change, sea-level rise and increase in flood severity. Conserving village forests and croplands, which are subject to rapid change, will also need to be addressed equally, as these are inhabited by almost one-third of the studied species. The occurrence of the cobras and kraits in village forests and cropland dominant habitats demands more attention to minimise snakebite related mortality and morbidity.
Collapse
|
112
|
Lizards from warm and declining populations are born with extremely short telomeres. Proc Natl Acad Sci U S A 2022; 119:e2201371119. [PMID: 35939680 PMCID: PMC9388115 DOI: 10.1073/pnas.2201371119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aging is the price to pay for acquiring and processing energy through cellular activity and life history productivity. Climate warming can exacerbate the inherent pace of aging, as illustrated by a faster erosion of protective telomere DNA sequences. This biomarker integrates individual pace of life and parental effects through the germline, but whether intra- and intergenerational telomere dynamics underlies population trends remains an open question. Here, we investigated the covariation between life history, telomere length (TL), and extinction risk among three age classes in a cold-adapted ectotherm (Zootoca vivipara) facing warming-induced extirpations in its distribution limits. TL followed the same threshold relationships with population extinction risk at birth, maturity, and adulthood, suggesting intergenerational accumulation of accelerated aging rate in declining populations. In dwindling populations, most neonates inherited already short telomeres, suggesting they were born physiologically old and unlikely to reach recruitment. At adulthood, TL further explained females' reproductive performance, switching from an index of individual quality in stable populations to a biomarker of reproductive costs in those close to extirpation. We compiled these results to propose the aging loop hypothesis and conceptualize how climate-driven telomere shortening in ectotherms may accumulate across generations and generate tipping points before local extirpation.
Collapse
|
113
|
Youngblood JP, Cease AJ, Talal S, Copa F, Medina HE, Rojas JE, Trumper EV, Angilletta MJ, Harrison JF. Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arianne J. Cease
- School of Life Sciences Arizona State University Tempe AZ USA
- School of Sustainability Arizona State University Tempe AZ USA
| | - Stav Talal
- School of Life Sciences Arizona State University Tempe AZ USA
| | - Fernando Copa
- Universidad Autónoma Gabriel René Moreno Santa Cruz Bolivia
| | | | - Julio E. Rojas
- Departamento de Campañas Fitosanitarios Dirección de Protección Vegetal, SENAVE Paraguay
| | | | | | - Jon F. Harrison
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
114
|
Lopera D, Guo KC, Putman BJ, Swierk L. Keeping it cool to take the heat: tropical lizards have greater thermal tolerance in less disturbed habitats. Oecologia 2022; 199:819-829. [PMID: 35948691 DOI: 10.1007/s00442-022-05235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Global climate change has profound effects on species, especially those in habitats already altered by humans. Tropical ectotherms are predicted to be at high risk from global temperature increases, particularly those adapted to cooler temperatures at higher altitudes. We investigated how one such species, the water anole (Anolis aquaticus), is affected by temperature stress similar to that of a warming climate across a gradient of human-altered habitats at high elevation sites. We conducted a field survey on thermal traits and measured lizard critical thermal maxima across the sites. From the field survey, we found that (1) lizards from the least disturbed site and (2) operative temperature models of lizards placed in the least disturbed site had lower temperatures than those from sites with histories of human disturbance. Individuals from the least disturbed site also demonstrated greater tolerance to high temperatures than those from the more disturbed sites, in both their critical thermal maxima and the time spent at high temperatures prior to reaching critical thermal maxima. Our results demonstrate within-species variability in responses to high temperatures, depending on habitat type, and provide insight into how tropical reptiles may fare in a warming world.
Collapse
Affiliation(s)
- Diana Lopera
- Global Environmental Science, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Kimberly Chen Guo
- School of the Environment, Yale University, New Haven, CT, 06511, USA.,Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Breanna J Putman
- Department of Biology, California State University, San Bernardino, CA, 92407, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.,Department of Herpetology and Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | - Lindsey Swierk
- School of the Environment, Yale University, New Haven, CT, 06511, USA. .,Department of Biological Sciences, Environmental Studies Program, Binghamton University, State University of New York, Binghamton, NY, 13902, USA. .,Amazon Conservatory for Tropical Studies, Iquitos, Loreto, 16001, Perú.
| |
Collapse
|
115
|
Clifton IT, Refsnider JM. Temporal climatic variability predicts thermal tolerance in two sympatric lizard species. J Therm Biol 2022; 108:103291. [DOI: 10.1016/j.jtherbio.2022.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
116
|
Lara‐Reséndiz RA, Miles DB, Rosen PC, Sinervo B. Micro and macroclimatic constraints on the activity of a vulnerable tortoise: a mechanistic approach under a thermal niche view. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rafael A. Lara‐Reséndiz
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA) Córdoba Argentina
- Centro de Investigaciones Biológicas del Noroeste S. C. La Paz Baja California Sur México
| | - Donald B. Miles
- Department of Biological Sciences Ohio University Athens Ohio USA
| | - Philip C. Rosen
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology University of California California USA
| |
Collapse
|
117
|
Thompson ME, Halstead BJ, Donnelly MA. Riparian buffers provide refugia during secondary forest succession. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michelle E. Thompson
- Department of Biological Sciences Florida International University Miami Florida USA
| | - Brian J. Halstead
- U.S. Geological Survey Western Ecological Research Center Dixon California USA
| | - Maureen A. Donnelly
- Department of Biological Sciences Florida International University Miami Florida USA
| |
Collapse
|
118
|
Natchev N, Koynova T, Tachev K, Doichev D, Marinova P, Velkova V, Jablonski D. Temperature regulation in the Balkan spadefoot ( Pelobates balcanicus Karaman, 1928) at the beginning of nocturnal activity. PeerJ 2022; 10:e13647. [PMID: 35860047 PMCID: PMC9291013 DOI: 10.7717/peerj.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
On land, the amphibians interact with the environment in a complex way-even small changes in the physiological conditions may significantly impact the behaviour and vice versa. In ectothermic tetrapods, the transition from inactive to active phase may be related to important changes in their thermal status. We studied the thermal ecology of adult Balkan spadefoots (Pelobates balcanicus Karaman, 1928) in northeastern Bulgaria. These toads spend the daytime buried between 10 and 15 cm in sandy substrates, and emerge after sunset. On the substrate, their thermal energy exchange is defined by the absence of heat flow from the sun. Secondary heat sources, like stored heat and infrared radiation from the soil play an important role for the thermal balance of the active spadefoot toads. At the beginning of their daily activity, we measured substrate temperature (at a depth of 11-12 cm), toad's surface body temperature, and also provided thermal profiles of the animals and the substrate surface in their microhabitats. In animals which recently emerged from the substrate, the temperature was comparatively higher and was closer to that of the subsoil on the spot. After that, body temperature decreased rapidly and continued to change slowly, in correlation with air temperature. We detected a temperature gradient on the dorsal surface of the toads. On the basis of our measurements and additional data, we discuss the eventual role of air humidity and the effects of surface and skin water evaporation on the water balance and activity of the investigated toads.
Collapse
Affiliation(s)
- Nikolay Natchev
- Shumen University, Shumen, Bulgaria
- University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
119
|
Climate and body size have differential roles on melanism evolution across workers in a worldwide ant genus. Oecologia 2022; 199:579-587. [PMID: 35804249 DOI: 10.1007/s00442-022-05211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
One of the main aspects associated with the diversity in animal colour is the variation in melanization levels. In ectotherms, melanism can be advantageous in aiding thermoregulation through heat absorption. Darker bodies may also serve as a shield from harmful UV-B radiation. Melanism may also confer protection against parasites and predators through improving immunity responses and camouflage in regions with high precipitation, with complex and shaded vegetations and greater diversity of pathogens and parasites. We studied melanism evolution in the globally distributed ant genus Pheidole under the pressures of temperature, UV-B radiation and precipitation, while considering the effects of body size and nest habit, traits that are commonly overlooked. More importantly, we account for worker caste polymorphism, which is marked by distinct roles and behaviours. We revealed for the first time distinct evolutionary trajectories for each worker subcaste. As expected, major workers from species inhabiting locations with lower temperatures and higher precipitation tend to be more melanised. Curiously, we show a slight trend where minor workers of larger species also tend to have darker bodies when inhabiting regions with higher precipitation. Lastly, we did not find evidence for the effects of UV-B radiation and nest habit in the lightness variation of workers. Our paper explores the evolution of ant melanization considering a marked ant worker polymorphism and a wide range of ecological factors. We discuss our findings under the light of the Thermal Melanism Hypothesis, the Photoprotection Hypothesis and the Gloger's Rule.
Collapse
|
120
|
Gvoždík L. Thermoregulatory opportunity and competition act independently on life history traits in aquatic ectotherms. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
| |
Collapse
|
121
|
Yu Y, Chen M, Lu ZY, Liu Y, Li B, Gao ZX, Shen ZG. High-temperature stress will put the thermo-sensitive teleost yellow catfish (Tachysurus fulvidraco) in danger through reducing reproductivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113638. [PMID: 35597142 DOI: 10.1016/j.ecoenv.2022.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Recently, concerns for species that sex differentiation is influenced by temperature in the context of global warming have increased because disrupted operational sex ratios could threaten population maintenance. In contrast, little attention has been given to the reproductive ability of populations that experienced elevated temperatures. In this study, we demonstrated that high temperature (HT) would decrease population size via three different aspects of reproductive ability for the first time. We show that, in a thermo-sensitive teleost yellow catfish, a short period of HT (+3 °C) exposure during the critical period of sex differentiation leads to a different percentage of masculinization of XX genotypic females (1-23%) in wet-lab and natural water bodies. Combining the results of gonadal appearance, histology, sperm parameters, and fertilization rate, we found that XX pseudo-males induced by HT display significantly discounted fertility and reproductive performance compared to XY normal males. We demonstrate that the survival of the XY genotype is lower than XX genotype under environmental stress, including HT, hypoxia, and parasite infection, and the differential survival seems unrelated to male-biased sexual size dimorphism. The mathematical model predicts that the phenotypic female percent will be stabilized at 50% and the population will be sustainably maintained when masculinizing force is less than 0.5, while HT will put the population in danger when the masculinizing force exceeds 0.5. However, when we combine the real-world data of reproductive ability and mathematic model, our results suggest the population size decreases and the long-term survival of the studied species are threatened under the projected pace of increasing temperature. These findings will be useful for understanding the long-term effects of increasing temperature on sex ratio, reproduction and population maintenance in teleost.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zi-Yi Lu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Ya Liu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Bo Li
- Institute of Fisheries, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Ze-Xia Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
122
|
Stark G, Ma L, Zeng ZG, Du WG, Levy O. Rocks and Vegetation Cover Improve Body Condition of Desert Lizards During Both Summer and Winter. Integr Comp Biol 2022; 62:1031-1041. [PMID: 35776965 DOI: 10.1093/icb/icac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Microhabitats provide ecological and physiological benefits to animals, sheltering them from predation and extreme temperatures and offering an additional supply of water and food. However, most studies have assumed no energetic costs of searching for microhabitats or moving between them, or considered how the availability of microhabitats may affect the energy reserves of animals and how such effects may differ between seasons. To fill these gaps, we studied how the body condition of lizards is affected by microhabitat availability in the extreme environment of the Judean Desert. In particular, we quantified how vegetation and rock cover in the vicinity of these lizards affect their body condition during summer and winter. First, we used aerial imagery to map the vegetation/rock cover at two study sites. Next, we collected 68 adult lizards and examined how their body condition varies across seasons and availability of vegetation and rock cover. In addition, we examined how vegetation and rock cover may differ in their effective distance (i.e, the distance that best explains body condition of lizards). We found that lizards body condition was better if they were collected closer to a higher availability of vegetation or rocks. However, while close proximity (within 10 m) was the best predictor for the positive effect of rocks, a greater distance (up to 90 m) was the best predictor for the effect of the vegetation cover. Moreover, the positive effect of vegetation was 12-fold higher than the effect of rocks. Interestingly, although the lizards' body condition during winter was poorer than during summer, the positive effects of rock and vegetation cover remained constant between the seasons. This similarity of benefits across seasons suggests that shaded microhabitats have important additional ecological roles regardless of climate, and that they may provide thermoregulatory benefits in winter too. We also found a synergic effect of vegetation and rock cover on the lizards' body condition, suggesting that their roles are complementary rather than overlapping. Our research has revealed the importance of shade- and shelter-providing microhabitats in both summer and winter. We suggest that proximity to microhabitat diversity may contribute to better body condition in lizards; or, alternatively, facilitates competition and attracts lizards with better body condition. Comprehending the complex interactions between animals and different microhabitats is critical for developing better conservation plans, understanding the risks of climate change, and suggesting mitigation strategies.
Collapse
Affiliation(s)
- Gavin Stark
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
123
|
Woods HA, Legault G, Kingsolver JG, Pincebourde S, Shah AA, Larkin BG. Climate‐driven thermal opportunities and risks for leaf miners in aspen canopies. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Geoffrey Legault
- Department of Biology University of North Carolina Chapel Hill NC USA
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS ‐ Université de Tours, 37200 Tours France
| | - Alisha A. Shah
- Division of Biological Sciences University of Montana Missoula MT USA
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University Hickory Corners MI USA
| | - Beau G. Larkin
- MPG Operations, LLC, 1001 South Higgins Ave, Suite 3A Missoula MT USA
| |
Collapse
|
124
|
Mentesana L, Hau M. Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures? Horm Behav 2022; 142:105178. [PMID: 35561643 DOI: 10.1016/j.yhbeh.2022.105178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Climate change is threatening biodiversity world-wide. One of its most prominent manifestations are rising global temperatures and higher frequencies of heat waves. High environmental temperatures may be particularly challenging for endotherms, which expend considerable parts of their energy budget and water resources on thermoregulation. Thermoregulation involves phenotypic plasticity in behavioral and physiological traits. Information on causal mechanisms that support plastic thermoregulatory strategies is key to understand how environmental information is transmitted and whether they impose trade-offs or constraints that determine how endotherms cope with climate warming. In this review, we focus on glucocorticoids, metabolic hormones that orchestrate plastic responses to various environmental stimuli including temperature. To evaluate how they may mediate behavioral and physiological responses to high environmental temperatures, we 1) briefly review the major thermoregulatory strategies in birds; 2) summarize the functions of baseline and stress-induced glucocorticoid concentrations; 3) synthesize the current knowledge of the relationship between circulating glucocorticoids and high environmental temperatures in birds; 4) generate hypotheses for how glucocorticoids may support plastic thermoregulatory responses to high environmental temperatures that occur over different time-frames (i.e., acute, short- and longer-term); and 5) discuss open questions on how glucocorticoids, and their relationship with thermoregulation, may evolve. Throughout this review we highlight that our knowledge, particularly on free-living populations, is really limited and outline promising avenues for future research. As evolutionary endocrinologists we now need to step up and identify the costs, benefits, and evolution of glucocorticoid plasticity to elucidate how they may help birds cope with a warming world.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| |
Collapse
|
125
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
126
|
Kumar MS, Baisvar VS, Kushwaha B, Kumar R, Singh M, Mishra AK. Thermal stress induces expression of Nuclear protein and Parkin genes in endangered catfish, Clarias magur. Gene 2022; 825:146388. [PMID: 35288199 DOI: 10.1016/j.gene.2022.146388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Fluctuation in water temperature can create thermal stress, which may impact many aspects of fish life, such as survival, growth, reproduction, disease occurrence etc. The endangered catfish, Clarias magur, has been reported to survive at higher thermal stress, even though the exact mechanism is unknown. The genes coding for Nuclear protein 1 (Nupr1) and Parkin E3 ubiquitin protein ligase (Park2) have been reported to protect cells from stress-induced damage and death. In this study, we characterized both the genes and assessed their quantitative expression in C. magur. Structural features of both the genes were found similar to a related catfish, Ictalurus punctatus, and model fish zebrafish. The genes were fairly conserved in fishes as observed through phylogenetic analysis. The real time expression of the two stress-associated genes were also assessed in brain, kidney, liver and muscle tissues of C. magur exposed to warm (34 °C) and cold (15 °C) water. RT-PCR analysis revealed up-regulation in the relative expression levels of Nupr1 and Park2 genes at both temperatures with maximum positive fold change during stress to cold water, even though the posteriori Dunnett's test after ANOVA revealed that there were significant differences between the control and challenged groups. The study indicated that Nupr1 gene plays role in muscle tissue at both high and low thermal stress, but at high thermal stress in liver, while Park2 plays role in muscle, brain and kidney at low temperature and in liver at high temperature stress in C. magur. The study has generated first-hand information under warm- and cold water, which pave the way to understand the expression response of these genes to thermal vacillations and to establish evolutionary significance in catfishes and other species.
Collapse
Affiliation(s)
- Murali Sanjeev Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Vishwamitra Singh Baisvar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Basdeo Kushwaha
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Ravindra Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India.
| | - Mahender Singh
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| | - Akhilesh Kumar Mishra
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226 002, India
| |
Collapse
|
127
|
Bota‐Sierra CA, García‐Robledo C, Escobar F, Novelo‐Gutiérrez R, Londoño GA. Environment, taxonomy and morphology constrain insect thermal physiology along tropical mountains. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cornelio A. Bota‐Sierra
- Red de Biodiversidad y Sistemática, Instituto de Ecología (INECOL A.C.), Xalapa Mexico
- Grupo de Entomología Universidad de Antioquia (GEUA), Universidad de Antioquia, Medellin Colombia
| | - Carlos García‐Robledo
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut U.S.A
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología (INECOL A.C.), Xalapa Mexico
| | | | | |
Collapse
|
128
|
Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Van Meerbeek K, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Benito Alonso JL, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova‐Katny A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, Della Chiesa S, Dengler J, Deronde B, Descombes P, Di Cecco V, Di Musciano M, Dick J, Dimarco RD, Dolezal J, Dorrepaal E, Dušek J, Eisenhauer N, Eklundh L, Erickson TE, Erschbamer B, et alLembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Van Meerbeek K, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Benito Alonso JL, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova‐Katny A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, Della Chiesa S, Dengler J, Deronde B, Descombes P, Di Cecco V, Di Musciano M, Dick J, Dimarco RD, Dolezal J, Dorrepaal E, Dušek J, Eisenhauer N, Eklundh L, Erickson TE, Erschbamer B, Eugster W, Ewers RM, Exton DA, Fanin N, Fazlioglu F, Feigenwinter I, Fenu G, Ferlian O, Fernández Calzado MR, Fernández‐Pascual E, Finckh M, Higgens RF, Forte TGW, Freeman EC, Frei ER, Fuentes‐Lillo E, García RA, García MB, Géron C, Gharun M, Ghosn D, Gigauri K, Gobin A, Goded I, Goeckede M, Gottschall F, Goulding K, Govaert S, Graae BJ, Greenwood S, Greiser C, Grelle A, Guénard B, Guglielmin M, Guillemot J, Haase P, Haider S, Halbritter AH, Hamid M, Hammerle A, Hampe A, Haugum SV, Hederová L, Heinesch B, Helfter C, Hepenstrick D, Herberich M, Herbst M, Hermanutz L, Hik DS, Hoffrén R, Homeier J, Hörtnagl L, Høye TT, Hrbacek F, Hylander K, Iwata H, Jackowicz‐Korczynski MA, Jactel H, Järveoja J, Jastrzębowski S, Jentsch A, Jiménez JJ, Jónsdóttir IS, Jucker T, Jump AS, Juszczak R, Kanka R, Kašpar V, Kazakis G, Kelly J, Khuroo AA, Klemedtsson L, Klisz M, Kljun N, Knohl A, Kobler J, Kollár J, Kotowska MM, Kovács B, Kreyling J, Lamprecht A, Lang SI, Larson C, Larson K, Laska K, le Maire G, Leihy RI, Lens L, Liljebladh B, Lohila A, Lorite J, Loubet B, Lynn J, Macek M, Mackenzie R, Magliulo E, Maier R, Malfasi F, Máliš F, Man M, Manca G, Manco A, Manise T, Manolaki P, Marciniak F, Matula R, Mazzolari AC, Medinets S, Medinets V, Meeussen C, Merinero S, Mesquita RDCG, Meusburger K, Meysman FJR, Michaletz ST, Milbau A, Moiseev D, Moiseev P, Mondoni A, Monfries R, Montagnani L, Moriana‐Armendariz M, Morra di Cella U, Mörsdorf M, Mosedale JR, Muffler L, Muñoz‐Rojas M, Myers JA, Myers‐Smith IH, Nagy L, Nardino M, Naujokaitis‐Lewis I, Newling E, Nicklas L, Niedrist G, Niessner A, Nilsson MB, Normand S, Nosetto MD, Nouvellon Y, Nuñez MA, Ogaya R, Ogée J, Okello J, Olejnik J, Olesen JE, Opedal ØH, Orsenigo S, Palaj A, Pampuch T, Panov AV, Pärtel M, Pastor A, Pauchard A, Pauli H, Pavelka M, Pearse WD, Peichl M, Pellissier L, Penczykowski RM, Penuelas J, Petit Bon M, Petraglia A, Phartyal SS, Phoenix GK, Pio C, Pitacco A, Pitteloud C, Plichta R, Porro F, Portillo‐Estrada M, Poulenard J, Poyatos R, Prokushkin AS, Puchalka R, Pușcaș M, Radujković D, Randall K, Ratier Backes A, Remmele S, Remmers W, Renault D, Risch AC, Rixen C, Robinson SA, Robroek BJM, Rocha AV, Rossi C, Rossi G, Roupsard O, Rubtsov AV, Saccone P, Sagot C, Sallo Bravo J, Santos CC, Sarneel JM, Scharnweber T, Schmeddes J, Schmidt M, Scholten T, Schuchardt M, Schwartz N, Scott T, Seeber J, Segalin de Andrade AC, Seipel T, Semenchuk P, Senior RA, Serra‐Diaz JM, Sewerniak P, Shekhar A, Sidenko NV, Siebicke L, Siegwart Collier L, Simpson E, Siqueira DP, Sitková Z, Six J, Smiljanic M, Smith SW, Smith‐Tripp S, Somers B, Sørensen MV, Souza JJLL, Souza BI, Souza Dias A, Spasojevic MJ, Speed JDM, Spicher F, Stanisci A, Steinbauer K, Steinbrecher R, Steinwandter M, Stemkovski M, Stephan JG, Stiegler C, Stoll S, Svátek M, Svoboda M, Tagesson T, Tanentzap AJ, Tanneberger F, Theurillat J, Thomas HJD, Thomas AD, Tielbörger K, Tomaselli M, Treier UA, Trouillier M, Turtureanu PD, Tutton R, Tyystjärvi VA, Ueyama M, Ujházy K, Ujházyová M, Uogintas D, Urban AV, Urban J, Urbaniak M, Ursu T, Vaccari FP, Van de Vondel S, van den Brink L, Van Geel M, Vandvik V, Vangansbeke P, Varlagin A, Veen GF, Veenendaal E, Venn SE, Verbeeck H, Verbrugggen E, Verheijen FGA, Villar L, Vitale L, Vittoz P, Vives‐Ingla M, von Oppen J, Walz J, Wang R, Wang Y, Way RG, Wedegärtner REM, Weigel R, Wild J, Wilkinson M, Wilmking M, Wingate L, Winkler M, Wipf S, Wohlfahrt G, Xenakis G, Yang Y, Yu Z, Yu K, Zellweger F, Zhang J, Zhang Z, Zhao P, Ziemblińska K, Zimmermann R, Zong S, Zyryanov VI, Nijs I, Lenoir J. Global maps of soil temperature. GLOBAL CHANGE BIOLOGY 2022; 28:3110-3144. [PMID: 34967074 PMCID: PMC9303923 DOI: 10.1111/gcb.16060] [Show More Authors] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Collapse
Affiliation(s)
- Jonas J. Lembrechts
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Johan van den Hoogen
- Department of Environmental Systems ScienceInstitute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Juha Aalto
- Finnish Meteorological InstituteHelsinkiFinland
- Department of Geosciences and GeographyUniversity of HelsinkiFinland
| | - Michael B. Ashcroft
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Australian MuseumSydneyAustralia
| | - Pieter De Frenne
- Forest & Nature LabDepartment of EnvironmentGhent UniversityMelle‐GontrodeBelgium
| | | | - Martin Kopecký
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
| | - Miska Luoto
- Department of Geosciences and GeographyUniversity of HelsinkiFinland
| | - Ilya M. D. Maclean
- Environment and Sustainability InstituteUniversity of ExeterPenryn CampusPenrynUK
| | - Thomas W. Crowther
- Department of Environmental Systems ScienceInstitute of Integrative BiologyETH ZürichZürichSwitzerland
| | | | - Stef Haesen
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
| | - David H. Klinges
- School of Natural Resources and EnvironmentUniversity of FloridaGainesvilleFloridaUSA
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Pekka Niittynen
- Department of Geosciences and GeographyUniversity of HelsinkiFinland
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
| | | | - Peter Aartsma
- Department of Natural Sciences and Environmental HealthUniversity of South‐Eastern NorwayBøNorway
| | - Otar Abdalaze
- Alpine Ecosystems Research ProgramInstitute of EcologyIlia State UniversityTbilisiGeorgia
| | - Mehdi Abedi
- Department of Range ManagementFaculty of Natural Resources and Marine SciencesTarbiat Modares UniversityNoorIran
| | - Rien Aerts
- Department of Ecological ScienceVrije Universiteit AmsterdamThe Netherlands
| | - Negar Ahmadian
- Department of Range ManagementFaculty of Natural Resources and Marine SciencesTarbiat Modares UniversityNoorIran
| | | | | | - Jake M. Alexander
- Department of Environmental Systems ScienceInstitute of Integrative BiologyETH ZurichZürichSwitzerland
| | | | - Jan Altman
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
| | - Christof Ammann
- Department of Agroecology and EnvironmentAgroscope Research InstituteZürichSwitzerland
| | - Christian Andres
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | | | - Jonas Ardö
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Nicola Arriga
- European CommissionJoint Research Centre (JRC)IspraItaly
| | | | - Valeria Aschero
- Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina
- Instituto Argentino de NivologiáGlaciologiá y Ciencias Ambientales (IANIGLA)CONICETCCT‐MendozaMendozaArgentina
| | | | - Jakob Johann Assmann
- Center for Sustainable Landscapes Under Global ChangeDepartment of BiologyAarhus UniversityAarhus CDenmark
- Center for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - Maaike Y. Bader
- Ecological Plant GeographyFaculty of GeographyUniversity of MarburgMarburgGermany
| | - Khadijeh Bahalkeh
- Department of Range ManagementFaculty of Natural Resources and Marine SciencesTarbiat Modares UniversityNoorIran
| | - Peter Barančok
- Institute of Landscape Ecology Slovak Academy of SciencesBratislavaSlovakia
| | - Isabel C. Barrio
- Faculty of Environmental and Forest SciencesAgricultural University of IcelandReykjavíkIceland
| | - Agustina Barros
- Instituto Argentino de NivologiáGlaciologiá y Ciencias Ambientales (IANIGLA)CONICETCCT‐MendozaMendozaArgentina
| | - Matti Barthel
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Edmund W. Basham
- School of Natural Resources and EnvironmentUniversity of FloridaGainesvilleFloridaUSA
| | - Marijn Bauters
- Isotope Bioscience Laboratory ‐ ISOFYSGhent UniversityGentBelgium
| | - Manuele Bazzichetto
- Université de RennesCNRSEcoBio (Ecosystèmes, biodiversité, évolution) ‐ UMR 6553RennesFrance
| | - Luca Belelli Marchesini
- Department of Sustainable Agro‐ecosystems and Bioresources, Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly
| | | | | | | | - Bernd J. Berauer
- Institute of Landscape and Plant EcologyDepartment of Plant EcologyUniversity of HohenheimStuttgartGermany
- Disturbance EcologyBayCEERUniversity of BayreuthBayreuthGermany
| | - Jarle W. Bjerke
- Norwegian Institute for Nature ResearchFRAM ‐ High North Research Centre for Climate and the EnvironmentTromsøNorway
| | - Robert G. Björk
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Mats P. Björkman
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Katrin Björnsdóttir
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Benjamin Blonder
- Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Pascal Boeckx
- Isotope Bioscience Laboratory ‐ ISOFYSGhent UniversityGentBelgium
| | - Julia Boike
- Alfred Wegener Institute Helmholtz Center for Polar and Marine ResearchTelegrafenberg A45PotsdamGermany
- Geography DepartmentHumboldt‐Universität zu BerlinGermany
| | - Stef Bokhorst
- Department of Ecological ScienceVrije Universiteit AmsterdamThe Netherlands
| | - Bárbara N. S. Brum
- Pós‐Graduação em Ciências de Florestas TropicaisInstituto Nacional de Pesquisas da AmazôniaManausBrasil
| | - Josef Brůna
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Nina Buchmann
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Pauline Buysse
- UMR ECOSYS INRAEUinversité Paris SaclayAgroParisTechFrance
| | - José Luís Camargo
- Biological Dynamics of Forest Fragments ProjectBDFFPInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Otávio C. Campoe
- Department of Forest SciencesFederal University of LavrasLavrasBrazil
| | - Onur Candan
- Faculty of Arts and SciencesDepartment of Molecular Biology and GeneticsOrdu UniversityOrduTurkey
| | - Rafaella Canessa
- Ecological Plant GeographyFaculty of GeographyUniversity of MarburgMarburgGermany
- Plant Ecology GroupDepartment of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Nicoletta Cannone
- Department of Science and High TechnologyInsubria UniversityComoItaly
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Jofre Carnicer
- Department of Evolutionary Biology, Ecology and Environmental SciencesBiodiversity Research Institute (IRBio)University of BarcelonaBarcelonaSpain
- CREAFE08193 Bellaterra (Cerdanyola del Vallès)Spain
| | - Angélica Casanova‐Katny
- Laboratorio de Ecofisiología Vegetal y Cambio ClimáticoLaboratorio de Ecofisiología Vegetal y Cambio ClimáticoDepartamento de Ciencias Veterinarias y Salud PúblicaUniversidad Católica de TemucoCampus Luis Rivas del Canto and Núcleo de Estudios Ambientales (NEA)Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Bogdan Chojnicki
- Laboratory of BioclimatologyDepartment of Ecology and Environmental ProtectionPoznan University of Life SciencesPoznanPoland
| | - Philippe Choler
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSLECAGrenobleFrance
- Univ. Grenoble AlpesUniv. Savoie Mont BlancCNRSLTSER Zone Atelier AlpesGrenobleFrance
| | - Steven L. Chown
- Securing Antarctica's Environmental FutureSchool of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Edgar F. Cifuentes
- Forest Ecology and Conservation GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Marek Čiliak
- Faculty of Ecology and Environmental SciencesTechnical University in ZvolenZvolenSlovakia
| | - Tamara Contador
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)University Austral of ChileValdiviaChile
- Cape Horn International Center (CHIC)Puerto WilliamsChile
| | - Peter Convey
- British Antarctic SurveyNERC, High CrossCambridgeUK
| | - Elisabeth J. Cooper
- Department of Arctic and Marine BiologyFaculty of Biosciences Fisheries and EconomicsUiT‐The Arctic University of NorwayTromsøNorway
| | - Edoardo Cremonese
- Climate Change UnitEnvironmental Protection Agency of Aosta ValleyItaly
| | - Salvatore R. Curasi
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Robin Curtis
- Environment and Sustainability InstituteUniversity of ExeterPenryn CampusPenrynUK
| | | | - C. Johan Dahlberg
- Department of EcologyEnvironment and Plant Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
- The County Administrative Board of Västra GötalandGothenburgSweden
| | | | | | | | - Jürgen Dengler
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Vegetation EcologyInstitute of Natural Resource Sciences (IUNR)ZHAW Zurich University of Applied SciencesWädenswilSwitzerland
- Plant EcologyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | | | | | - Valter Di Cecco
- Majella Seed BankMajella National ParkColle MadonnaLama dei PeligniItaly
| | - Michele Di Musciano
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Jan Dick
- UK Centre for Ecology and HydrologyPenicuikUK
| | - Romina D. Dimarco
- Grupo de Ecología de Poblaciones de InsectosIFAB (INTA ‐ CONICET)BarilocheArgentina
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Jiri Dolezal
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of ScienceDepartment of BotanyUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Ellen Dorrepaal
- Climate Impacts Research CentreDepartment of Ecology and Environmental ScienceUmeå UniversityAbiskoSweden
| | - Jiří Dušek
- Global Change Research InstituteAcademy of Sciences of the Czech RepublicCzech Republic
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Lars Eklundh
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | - Todd E. Erickson
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkAustralia
| | - Brigitta Erschbamer
- Department of BotanyFaculty of BiologyUniversity of InnsbruckInnsbruckAustria
| | - Werner Eugster
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | | | | | - Nicolas Fanin
- INRAEBordeaux Sciences AgroUMR 1391 ISPAVillenave d'OrnonFrance
| | - Fatih Fazlioglu
- Faculty of Arts and SciencesDepartment of Molecular Biology and GeneticsOrdu UniversityOrduTurkey
| | - Iris Feigenwinter
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Giuseppe Fenu
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | | | | | - Manfred Finckh
- Institute for Plant Science and MicrobiologyUniversity of HamburgHamburgGermany
| | | | - T'ai G. W. Forte
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Erika C. Freeman
- Ecosystems and Global Change GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Esther R. Frei
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERCDavos DorfSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Eduardo Fuentes‐Lillo
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
- Laboratorio de Invasiones Biológicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- School of Education and Social SciencesAdventist University of ChileChile
| | - Rafael A. García
- Laboratorio de Invasiones Biológicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | | | - Charly Géron
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
- Biodiversity and LandscapeTERRA Research CentreGembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Mana Gharun
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Dany Ghosn
- Department of Geo‐information in Environmental ManagementMediterranean Agronomic Institute of ChaniaChaniaGreece
| | - Khatuna Gigauri
- Department of Environmental Management and PolicyGeorgian Institute of Public AffairsTbilisiGeorgia
| | - Anne Gobin
- Flemish Institute for Technological ResearchMolBelgium
- Department of Earth and Environmental ScienceFaculty of BioScience EngineeringKULeuvenBelgium
| | - Ignacio Goded
- European CommissionJoint Research Centre (JRC)IspraItaly
| | - Mathias Goeckede
- Department of Biogeochemical SignalsMax Planck Institute for BiogeochemistryJenaGermany
| | - Felix Gottschall
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Keith Goulding
- Sustainable Agricultural Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Sanne Govaert
- Forest & Nature LabDepartment of EnvironmentGhent UniversityMelle‐GontrodeBelgium
| | - Bente Jessen Graae
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | - Sarah Greenwood
- Biodiversity, Wildlife and Ecosystem HealthBiomedical SciencesUniversity of EdinburghEdinburghUK
| | - Caroline Greiser
- Department of EcologyEnvironment and Plant Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Achim Grelle
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Benoit Guénard
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Mauro Guglielmin
- Department of Theoretical and Applied SciencesInsubria UniversityVareseItaly
| | - Joannès Guillemot
- CIRAD, UMR Eco&SolsMontpellierFrance
- Eco&SolsUniv MontpellierCIRADINRAEIRDMontpellier SupAgroMontpellierFrance
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology / Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Aud H. Halbritter
- Department of Biological Sciences and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
| | - Maroof Hamid
- Centre for Biodiversity and TaxonomyDepartment of BotanyUniversity of KashmirSrinagarIndia
| | - Albin Hammerle
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | | | - Siri V. Haugum
- Department of Biological Sciences and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
- The Heathland CentreAlverNorway
| | - Lucia Hederová
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Bernard Heinesch
- TERRA Teaching and Research CenterFaculty of Gembloux Agro‐Bio TechUniversity of LiegeGemblouxBelgium
| | | | - Daniel Hepenstrick
- Vegetation EcologyInstitute of Natural Resource SciencesZHAW Zurich University of Applied SciencesGrüentalSwitzerland
| | - Maximiliane Herberich
- Institute for BotanyUniversity of Natural Resources and Life Sciences Vienna (BOKU)ViennaAustria
| | - Mathias Herbst
- Centre for Agrometeorological Research (ZAMF)German Meteorological Service (DWD)BraunschweigGermany
| | - Luise Hermanutz
- Dept of BiologyMemorial UniversitySt. John'sNewfoundlandCanada
| | - David S. Hik
- Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Raúl Hoffrén
- Department of GeographyUniversity of ZaragozaZaragozaSpain
| | - Jürgen Homeier
- Faculty of Resource ManagementHAWK University of Applied Sciences and ArtsGöttingenGermany
- Plant EcologyAlbrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August University of GöttingenGöttingenGermany
| | - Lukas Hörtnagl
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Toke T. Høye
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRøndeDenmark
| | - Filip Hrbacek
- Department of GeographyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kristoffer Hylander
- Department of EcologyEnvironment and Plant Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Hiroki Iwata
- Department of Environmental ScienceShinshu UniversityMatsumotoJapan
| | - Marcin Antoni Jackowicz‐Korczynski
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | | | - Järvi Järveoja
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Szymon Jastrzębowski
- Department of Silviculture and Forest Tree GeneticsForest Research InstituteRaszynPoland
| | - Anke Jentsch
- Disturbance EcologyBayCEERUniversity of BayreuthBayreuthGermany
- Bayreuth Center of Ecology and Environmental ResearchBayreuthGermany
| | - Juan J. Jiménez
- ARAID/IPE‐CSICPyrenean Institute of EcologyAvda. Llano de la VictoriaSpain
| | | | - Tommaso Jucker
- School of Biological SciencesUniversity of BristolBristolUK
| | - Alistair S. Jump
- Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingScotland
| | - Radoslaw Juszczak
- Laboratory of BioclimatologyDepartment of Ecology and Environmental ProtectionPoznan University of Life SciencesPoznanPoland
| | - Róbert Kanka
- Institute of Landscape Ecology Slovak Academy of SciencesBratislavaSlovakia
| | - Vít Kašpar
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
| | - George Kazakis
- Department of Geo‐information in Environmental ManagementMediterranean Agronomic Institute of ChaniaChaniaGreece
| | - Julia Kelly
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Anzar A. Khuroo
- Centre for Biodiversity and TaxonomyDepartment of BotanyUniversity of KashmirSrinagarIndia
| | - Leif Klemedtsson
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
| | - Marcin Klisz
- Department of Silviculture and Forest Tree GeneticsForest Research InstituteRaszynPoland
| | - Natascha Kljun
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | | | | | - Jozef Kollár
- Institute of Landscape Ecology Slovak Academy of SciencesBratislavaSlovakia
| | - Martyna M. Kotowska
- Plant EcologyAlbrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August University of GöttingenGöttingenGermany
| | - Bence Kovács
- Centre for Ecological ResearchInstitute of Ecology and BotanyVácrátótHungary
| | - Juergen Kreyling
- Experimental Plant EcologyInstitute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Andrea Lamprecht
- GLORIA CoordinationInstitute for Interdisciplinary Mountain ResearchAustrian Academy of Sciences (ÖAW) & Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simone I. Lang
- Department of Arctic BiologyThe University Centre in Svalbard (UNIS)Longyearbyen, SvalbardNorway
| | - Christian Larson
- Department of Land Resources and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| | - Keith Larson
- Climate Impacts Research CentreDepartment of Ecology and Environmental SciencesUmeå UniversityAbiskoSweden
| | - Kamil Laska
- Department of GeographyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Centre for Polar EcologyFaculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Guerric le Maire
- CIRAD, UMR Eco&SolsMontpellierFrance
- Eco&SolsUniv MontpellierCIRADINRAEIRDMontpellier SupAgroMontpellierFrance
| | - Rachel I. Leihy
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Luc Lens
- Terrestrial Ecology UnitDepartment of BiologyGhent UniversityGentBelgium
| | - Bengt Liljebladh
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
| | - Annalea Lohila
- Finnish Meteorological InstituteClimate System ResearchHelsinkiFinland
- INAR Institute for Atmospheric and Earth System Research/PhysicsFaculty of ScienceUniversity of HelsinkiFinland
| | - Juan Lorite
- Department of BotanyUniversity of GranadaGranadaSpain
- Interuniversity Institute for Earth System ResearchUniversity of GranadaGranadaSpain
| | | | - Joshua Lynn
- Department of Biological Sciences and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
| | - Martin Macek
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Roy Mackenzie
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE)University Austral of ChileValdiviaChile
| | - Enzo Magliulo
- CNR Institute for Agricultural and Forestry Systems in the MediterraneanPortici (Napoli)Italy
| | - Regine Maier
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Francesco Malfasi
- Department of Science and High TechnologyInsubria UniversityComoItaly
| | - František Máliš
- Faculty of ForestryTechnical University in ZvolenZvolenSlovakia
| | - Matěj Man
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
| | - Giovanni Manca
- European CommissionJoint Research Centre (JRC)IspraItaly
| | - Antonio Manco
- CNR Institute for Agricultural and Forestry Systems in the MediterraneanPortici (Napoli)Italy
| | - Tanguy Manise
- TERRA Teaching and Research CenterFaculty of Gembloux Agro‐Bio TechUniversity of LiegeGemblouxBelgium
| | - Paraskevi Manolaki
- School of Pure & Applied SciencesEnvironmental Conservation and Management ProgrammeOpen University of CyprusLatsiaCyprus
- Department of BiologyAarhus UniversityAarhus CDenmark
- Aarhus Institute of Advanced StudiesAIAS Høegh‐Guldbergs Gade 6BAarhusDenmark
| | - Felipe Marciniak
- Pós‐Graduação em Ciências de Florestas TropicaisInstituto Nacional de Pesquisas da AmazôniaManausBrasil
| | - Radim Matula
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
- Department of Forest Botany, Dendrology and GeobiocoenologyFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
| | - Ana Clara Mazzolari
- Instituto Argentino de NivologiáGlaciologiá y Ciencias Ambientales (IANIGLA)CONICETCCT‐MendozaMendozaArgentina
| | - Sergiy Medinets
- Regional Centre for Integrated Environmental MonitoringOdesa National I.I. Mechnikov UniversityOdesaUkraine
- Department of AgroecologyAarhus UniversityTjeleDenmark
- NGO New EnergyKharkivUkraine
| | - Volodymyr Medinets
- Regional Centre for Integrated Environmental MonitoringOdesa National I.I. Mechnikov UniversityOdesaUkraine
| | - Camille Meeussen
- Forest & Nature LabDepartment of EnvironmentGhent UniversityMelle‐GontrodeBelgium
| | - Sonia Merinero
- Department of EcologyEnvironment and Plant Sciences and Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Rita de Cássia Guimarães Mesquita
- Biological Dynamics of Forest Fragments ProjectCoordenação de Dinâmica AmbientalInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | | | - Sean T. Michaletz
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ann Milbau
- Department of EnvironmentProvince of AntwerpAntwerpenBelgium
| | - Dmitry Moiseev
- Institute of Plant and Animal Ecology of Ural Division of Russian Academy of ScienceEkaterinburgRussia
| | - Pavel Moiseev
- Institute of Plant and Animal Ecology of Ural Division of Russian Academy of ScienceEkaterinburgRussia
| | - Andrea Mondoni
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | | | | | - Mikel Moriana‐Armendariz
- Department of Arctic and Marine BiologyFaculty of Biosciences Fisheries and EconomicsUiT‐The Arctic University of NorwayTromsøNorway
| | - Umberto Morra di Cella
- Climate Change Unit, Environmental Protection Agency of Aosta ValleySaint‐ChristopheItaly
| | | | - Jonathan R. Mosedale
- Environment and Sustainability InstituteUniversity of ExeterPenryn CampusCornwallUK
| | - Lena Muffler
- Plant EcologyAlbrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August University of GöttingenGöttingenGermany
| | - Miriam Muñoz‐Rojas
- Centre for Ecosystem ScienceSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- Department of Plant Biology and EcologyUniversity of SevilleSevilleSpain
| | - Jonathan A. Myers
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Laszlo Nagy
- Department of Animal BiologyInstitute of BiologyUniversity of CampinasCampinasBrazil
| | | | - Ilona Naujokaitis‐Lewis
- National Wildlife Research CentreEnvironment and Climate Change CanadaCarleton UniversityOttawaOntarioCanada
| | - Emily Newling
- School of Life and Environmental SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Lena Nicklas
- Department of BotanyFaculty of BiologyUniversity of InnsbruckInnsbruckAustria
| | - Georg Niedrist
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | - Armin Niessner
- Institute of BiologyDepartment of Molecular BotanyUniversity of HohenheimStuttgartGermany
| | - Mats B. Nilsson
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Signe Normand
- Center for Sustainable Landscapes Under Global ChangeDepartment of BiologyAarhus UniversityAarhus CDenmark
- Center for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - Marcelo D. Nosetto
- Instituto de Matemática Aplicada San LuisIMASL, CONICET and Universidad Nacional de San LuisSan LuisArgentina
- Cátedra de Climatología Agrícola (FCA‐UNER)Entre RíosArgentina
| | - Yann Nouvellon
- CIRAD, UMR Eco&SolsMontpellierFrance
- Eco&SolsUniv MontpellierCIRADINRAEIRDMontpellier SupAgroMontpellierFrance
| | - Martin A. Nuñez
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- Grupo de Ecología de InvasionesINIBIOMACONICET/ Universidad Nacional del ComahueBarilocheArgentina
| | - Romà Ogaya
- CSICGlobal Ecology Unit CREAF‐ CSIC‐UABBellaterraSpain
- CREAFSpain
| | - Jérôme Ogée
- INRAEBordeaux Sciences AgroUMR 1391 ISPAVillenave d'OrnonFrance
| | - Joseph Okello
- Isotope Bioscience Laboratory ‐ ISOFYSGhent UniversityGentBelgium
- Mountains of the Moon UniversityFort PortalUganda
- National Agricultural Research OrganisationMbarara Zonal Agricultural Research and Development InstituteMbararaUganda
| | - Janusz Olejnik
- Laboratory of MeteorologyDepartment of Construction and GeoengineeringFaculty of Environmental Engineering and Mechanical EngineeringPoznan University of Life SciencesPoznanPoland
| | | | | | - Simone Orsenigo
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | - Andrej Palaj
- Institute of Landscape Ecology Slovak Academy of SciencesBratislavaSlovakia
| | - Timo Pampuch
- Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
| | | | - Meelis Pärtel
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Ada Pastor
- Department of BiologyAarhus UniversityAarhus CDenmark
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB)Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Harald Pauli
- GLORIA CoordinationInstitute for Interdisciplinary Mountain ResearchAustrian Academy of Sciences (ÖAW) & Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | - Marian Pavelka
- Global Change Research InstituteAcademy of Sciences of the Czech RepublicCzech Republic
| | - William D. Pearse
- Department of Biology and Ecology CenterUtah State UniversityLoganUtahUSA
- Department of Life SciencesImperial CollegeAscot, BerkshireUK
| | - Matthias Peichl
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Loïc Pellissier
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | | | - Josep Penuelas
- CSICGlobal Ecology Unit CREAF‐ CSIC‐UABBellaterraSpain
- CREAFSpain
| | - Matteo Petit Bon
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Department of Arctic and Marine BiologyFaculty of Biosciences Fisheries and EconomicsUiT‐The Arctic University of NorwayTromsøNorway
- Department of Arctic BiologyThe University Centre in Svalbard (UNIS)Longyearbyen, SvalbardNorway
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Shyam S. Phartyal
- School of Ecology and Environment StudiesNalanda UniversityRajgirIndia
| | | | - Casimiro Pio
- CESAM & Department of EnvironmentUniversity of AveiroAveiroPortugal
| | - Andrea Pitacco
- Department of Agronomy, Food, Natural resourcesAnimals and Environment ‐ University of PaduaLegnaroItaly
| | - Camille Pitteloud
- Landscape EcologyInstitute of Terrestrial EcosystemsDepartment of Environmental Systems ScienceETH ZürichZürichSwitzerland
- Unit of Land Change ScienceSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Roman Plichta
- Department of Forest Botany, Dendrology and GeobiocoenologyFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
| | - Francesco Porro
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | | | - Jérôme Poulenard
- Univ. Savoie Mont BlancCNRSUniv. Grenoble AlpesEDYTEMChambéryFrance
| | - Rafael Poyatos
- CREAFE08193 Bellaterra (Cerdanyola del Vallès)Spain
- Universitat Autònoma de BarcelonaSpain
| | - Anatoly S. Prokushkin
- Siberian Federal UniversityKrasnoyarskRussia
- V.N. Sukachev Institute of Forest SB RASKrasnoyarskRussia
| | - Radoslaw Puchalka
- Department of Ecology and BiogeographyFaculty of Biological and Veterinary SciencesNicolaus Copernicus UniversityToruńPoland
- Centre for Climate Change ResearchNicolaus Copernicus UniversityToruńPoland
| | - Mihai Pușcaș
- A. Borza Botanic GardenBabeș‐Bolyai UniversityCluj‐NapocaRomania
- Faculty of Biology and GeologyDepartment of Taxonomy and EcologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
- E. G. Racoviță InstituteBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Dajana Radujković
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Krystal Randall
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Amanda Ratier Backes
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology / Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Sabine Remmele
- Institute of BiologyDepartment of Molecular BotanyUniversity of HohenheimStuttgartGermany
| | - Wolfram Remmers
- University of Applied Sciences TrierEnvironmental Campus BirkenfeldBirkenfeldGermany
| | - David Renault
- Université de RennesCNRSEcoBio (Ecosystèmes, biodiversité, évolution) ‐ UMR 6553RennesFrance
- Institut Universitaire de FranceParisFrance
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERCDavos DorfSwitzerland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Bjorn J. M. Robroek
- Aquatic Ecology and Environmental Biology, Radboud Institute for Environmental and Biological SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Adrian V. Rocha
- Department of Biological Sciences and the Environmental Change InitiativeUniversity of Notre DameNotre DameIndianaUSA
| | - Christian Rossi
- Swiss National ParkChastè Planta‐WildenbergZernezSwitzerland
- Remote Sensing LaboratoriesDepartment of GeographyUniversity of ZurichZurichSwitzerland
| | - Graziano Rossi
- Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
| | - Olivier Roupsard
- CIRADUMR Eco&SolsDakarSenegal
- Eco&SolsUniv MontpellierCIRADINRAE, IRDInstitut AgroMontpellierFrance
- LMI IESOLCentre IRD‐ISRA de Bel AirDakarSenegal
| | | | - Patrick Saccone
- GLORIA CoordinationInstitute for Interdisciplinary Mountain ResearchAustrian Academy of Sciences (ÖAW) & Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Jhonatan Sallo Bravo
- Universidad Nacional de San Antonio Abad del CuscoCuscoPerú
- Centro de Investigación de la Biodiversidad Wilhelm L. JohannsenCuscoPerú
| | - Cinthya C. Santos
- Biological Dynamics of Forest Fragments Project, PDBFFInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Judith M. Sarneel
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | - Tobias Scharnweber
- Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
| | - Jonas Schmeddes
- Experimental Plant EcologyInstitute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
| | - Marius Schmidt
- Institute of Bio‐ and Geosciences (IBG‐3): AgrosphereForschungszentrum Jülich GmbHJülichGermany
| | - Thomas Scholten
- Chair of Soil Science and GeomorphologyDepartment of GeosciencesUniversity of TuebingenTuebingenGermany
| | - Max Schuchardt
- Disturbance EcologyBayCEERUniversity of BayreuthBayreuthGermany
| | - Naomi Schwartz
- Department of GeographyThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Tony Scott
- Sustainable Agricultural Sciences DepartmentRothamsted ResearchHarpendenUK
| | - Julia Seeber
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
- Institute for Alpine EnvironmentEurac ResearchBozen/BolzanoItaly
| | | | - Tim Seipel
- Department of Land Resources and Environmental SciencesMontana State UniversityBozemanMontanaUSA
| | | | - Rebecca A. Senior
- Princeton School of Public and International AffairsPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Piotr Sewerniak
- Department of Soil Science and Landscape ManagementFaculty of Earth Sciences and Spatial ManagementNicolaus Copernicus UniversityToruńPoland
| | - Ankit Shekhar
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | | | | | - Laura Siegwart Collier
- Dept of BiologyMemorial UniversitySt. John'sNewfoundlandCanada
- Terra Nova National ParkParks Canada AgencyGlovertownNewfoundlandCanada
| | - Elizabeth Simpson
- Department of Biology and Ecology CenterUtah State UniversityLoganUtahUSA
| | - David P. Siqueira
- Universidade Estadual do Norte Fluminense Darcy RibeiroRio de JaneiroBrazil
| | - Zuzana Sitková
- National Forest CentreForest Research Institute ZvolenZvolenSlovakia
| | - Johan Six
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Marko Smiljanic
- Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
| | - Stuart W. Smith
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
- Department of Physical GeographyStockholm UniversityStockholmSweden
| | - Sarah Smith‐Tripp
- Department of GeographyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ben Somers
- Department of Earth and Environmental SciencesLeuvenBelgium
| | - Mia Vedel Sørensen
- Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Bartolomeu Israel Souza
- Departamento de Geociências. Cidade UniversitáriaUniversidade Federal da ParaíbaJoão Pessoa ‐ PBBrasil
| | - Arildo Souza Dias
- Biological Dynamics of Forest Fragments Project, PDBFFInstituto Nacional de Pesquisas da AmazôniaManausBrazil
- Department of Physical GeographyGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Marko J. Spasojevic
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCaliforniaUSA
| | - James D. M. Speed
- Department of Natural HistoryNTNU University MuseumNorwegian University of Science and TechnologyTrondheimNorway
| | - Fabien Spicher
- UMR 7058 CNRS ‘Ecologie et Dynamique des Systèmes Anthropisés’ (EDYSAN)Univ. de Picardie Jules VerneAmiensFrance
| | - Angela Stanisci
- EnvixLabDipartimento di Bioscienze e TerritorioUniversità degli Studi del MoliseTermoliItaly
| | - Klaus Steinbauer
- GLORIA CoordinationInstitute for Interdisciplinary Mountain ResearchAustrian Academy of Sciences (ÖAW) & Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | - Rainer Steinbrecher
- Institute of Meteorology and Climate Research (IMK)Department of Atmospheric Environmental Research (IFU)Karlsruhe Institute of Technology (KIT)Garmisch‐PartenkirchenGermany
| | | | - Michael Stemkovski
- Department of Biology and Ecology CenterUtah State UniversityLoganUtahUSA
| | - Jörg G. Stephan
- Swedish University of Agricultural SciencesSLU Swedish Species Information CentreUppsalaSweden
| | | | - Stefan Stoll
- University of Applied Sciences TrierEnvironmental Campus BirkenfeldBirkenfeldGermany
- Faculty for BiologyUniversity Duisburg‐EssenEssenGermany
| | - Martin Svátek
- Department of Forest Botany, Dendrology and GeobiocoenologyFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
| | - Miroslav Svoboda
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
| | - Torbern Tagesson
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Andrew J. Tanentzap
- Ecosystems and Global Change GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Franziska Tanneberger
- Experimental Plant EcologyInstitute of Botany and Landscape EcologyUniversity of Greifswald, partner in the Greifswald Mire CentreGreifswaldGermany
| | - Jean‐Paul Theurillat
- Foundation J.‐M. AubertChampex‐LacSwitzerland
- Département de Botanique et Biologie végétaleUniversité de GenèveChambésySwitzerland
| | | | - Andrew D. Thomas
- Department of Geography and Earth SciencesAberystwyth UniversityWalesUK
| | - Katja Tielbörger
- Plant Ecology GroupDepartment of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Marcello Tomaselli
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Urs Albert Treier
- Center for Sustainable Landscapes Under Global ChangeDepartment of BiologyAarhus UniversityAarhus CDenmark
- Center for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - Mario Trouillier
- Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
| | - Pavel Dan Turtureanu
- A. Borza Botanic GardenBabeș‐Bolyai UniversityCluj‐NapocaRomania
- E. G. Racoviță InstituteBabeș‐Bolyai UniversityCluj‐NapocaRomania
- Center for Systematic Biology, Biodiversity and Bioresources ‐ 3BBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | - Rosamond Tutton
- Northern Environmental Geoscience LaboratoryDepartment of Geography and PlanningQueen's UniversityKingstonOntarioCanada
| | - Vilna A. Tyystjärvi
- Department of Geosciences and GeographyUniversity of HelsinkiFinland
- Finnish Meteorological InstHelsinkiFinland
| | - Masahito Ueyama
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityJapan
| | - Karol Ujházy
- Faculty of ForestryTechnical University in ZvolenZvolenSlovakia
| | - Mariana Ujházyová
- Faculty of Ecology and Environmental SciencesTechnical University in ZvolenZvolenSlovakia
| | | | - Anastasiya V. Urban
- Department of Forest Botany, Dendrology and GeobiocoenologyFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
- V.N. Sukachev Institute of Forest SB RASKrasnoyarskRussia
| | - Josef Urban
- Siberian Federal UniversityKrasnoyarskRussia
- Department of Forest Botany, Dendrology and GeobiocoenologyFaculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
| | - Marek Urbaniak
- Laboratory of MeteorologyDepartment of Construction and GeoengineeringFaculty of Environmental Engineering and Mechanical EngineeringPoznan University of Life SciencesPoznanPoland
| | - Tudor‐Mihai Ursu
- Institute of Biological Research Cluj‐NapocaNational Institute of Research and Development for Biological SciencesBucharestRomania
| | | | - Stijn Van de Vondel
- The Ecosystem Management Research Group (ECOBE)University of AntwerpWilrijk (Antwerpen)Belgium
| | - Liesbeth van den Brink
- Plant Ecology GroupDepartment of Evolution and EcologyUniversity of TübingenTübingenGermany
| | - Maarten Van Geel
- Plant Conservation and Population BiologyDepartment of BiologyKU LeuvenHeverleeBelgium
| | - Vigdis Vandvik
- Department of Biological Sciences and Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
| | - Pieter Vangansbeke
- Forest & Nature LabDepartment of EnvironmentGhent UniversityMelle‐GontrodeBelgium
| | - Andrej Varlagin
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
| | - G. F. Veen
- Netherlands Institute of EcologyWageningenthe Netherlands
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenthe Netherlands
| | - Susanna E. Venn
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityBurwoodVictoriaAustralia
| | - Hans Verbeeck
- CAVElab ‐ Computational and Applied Vegetation EcologyDepartment of EnvironmentGhent UniversityGentBelgium
| | - Erik Verbrugggen
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Frank G. A. Verheijen
- Earth Surface Processes TeamCentre for Environmental and Marine Studies (CESAM)Department of Environment and PlanningUniversity of AveiroAveiroPortugal
| | - Luis Villar
- Instituto Pirenaico de EcologíaIPE‐CSIC. Av. Llano de la VictoriaJaca (Huesca)Spain
| | - Luca Vitale
- CNR ‐ Institute for Agricultural and Forestry Systems in the MediterraneanPorticiItaly
| | - Pascal Vittoz
- Institute of Earth Surface DynamicsFaculty of Geosciences and EnvironmentUniversity of LausanneGéopolisSwitzerland
| | | | - Jonathan von Oppen
- Center for Sustainable Landscapes Under Global ChangeDepartment of BiologyAarhus UniversityAarhus CDenmark
- Center for Biodiversity Dynamics in a Changing WorldDepartment of BiologyAarhus UniversityAarhus CDenmark
| | - Josefine Walz
- Climate Impacts Research CentreDepartment of Ecology and Environmental SciencesUmeå UniversityAbiskoSweden
| | - Runxi Wang
- School of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Yifeng Wang
- Northern Environmental Geoscience LaboratoryDepartment of Geography and PlanningQueen's UniversityKingstonOntarioCanada
| | - Robert G. Way
- Northern Environmental Geoscience LaboratoryDepartment of Geography and PlanningQueen's UniversityKingstonOntarioCanada
| | | | - Robert Weigel
- Plant EcologyAlbrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August University of GöttingenGöttingenGermany
| | - Jan Wild
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague 6 ‐ SuchdolCzech Republic
| | | | - Martin Wilmking
- Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
| | - Lisa Wingate
- INRAEBordeaux Sciences AgroUMR 1391 ISPAVillenave d'OrnonFrance
| | - Manuela Winkler
- GLORIA CoordinationInstitute for Interdisciplinary Mountain ResearchAustrian Academy of Sciences (ÖAW) & Department of Integrative Biology and Biodiversity ResearchUniversity of Natural Resources and Life SciencesViennaAustria
| | - Sonja Wipf
- WSL Institute for Snow and Avalanche Research SLFDavos DorfSwitzerland
- Swiss National ParkChastè Planta‐WildenbergZernezSwitzerland
| | - Georg Wohlfahrt
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | | | - Yan Yang
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduP.R. China
| | - Zicheng Yu
- MOE Key Laboratory of Geographical Processes and Ecological Security in Changbai MountainsSchool of Geographical SciencesNortheast Normal UniversityChangchunChina
- Department of Earth and Environmental SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Kailiang Yu
- High Meadows Environmental InstitutePrinceton UniversityNew JerseyUSA
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research StationSchool of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Zhaochen Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research StationSchool of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
| | - Peng Zhao
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
| | - Klaudia Ziemblińska
- Laboratory of MeteorologyDepartment of Construction and GeoengineeringFaculty of Environmental Engineering and Mechanical EngineeringPoznan University of Life SciencesPoznanPoland
| | - Reiner Zimmermann
- Institute of BiologyDepartment of Molecular BotanyUniversity of HohenheimStuttgartGermany
- Ecological‐Botanical GardensUniversity of BayreuthBayreuthGermany
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai MountainsMinistry of EducationSchool of Geographical SciencesNortheast Normal UniversityChangchunChina
| | | | - Ivan Nijs
- Research Group PLECO (Plants and Ecosystems)University of AntwerpWilrijkBelgium
| | - Jonathan Lenoir
- UMR 7058 CNRS ‘Ecologie et Dynamique des Systèmes Anthropisés’ (EDYSAN)Univ. de Picardie Jules VerneAmiensFrance
| |
Collapse
|
129
|
Modelling Climate Change Impacts on Tropical Dry Forest Fauna. SUSTAINABILITY 2022. [DOI: 10.3390/su14084760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Tropical dry forests are among the most threatened ecosystems in the world, and those occurring in the insular Caribbean are particularly vulnerable. Climate change represents a significant threat for the Caribbean region and for small islands like Jamaica. Using the Hellshire Hills protected area in Jamaica, a simple model was developed to project future abundance of arthropods and lizards based on current sensitivities to climate variables derived from rainfall and temperature records. The abundances of 20 modelled taxa were predicted more often by rainfall variables than temperature, but both were found to have strong impacts on arthropod and lizard abundance. Most taxa were projected to decrease in abundance by the end of the century under drier and warmer conditions. Where an increase in abundance was projected under a low emissions scenario, this change was reduced or reversed under a high emissions climate change scenario. The validation process showed that, even for a small population, there was reasonable skill in predicting its annual variability. Results of this study show that this simple model can be used to identify the vulnerability of similar sites to the effects of shifting climate and, by extension, their conservation needs.
Collapse
|
130
|
Yu X, Wu NC, Ge L, Li L, Zhang Z, Lei J. Artificial shelters provide suitable thermal habitat for a cold-blooded animal. Sci Rep 2022; 12:5879. [PMID: 35393502 PMCID: PMC8991271 DOI: 10.1038/s41598-022-09950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Human activities such as urbanization often has negative affects wildlife. However, urbanization can also be beneficial to some animals by providing suitable microhabitats. To test the impact of urbanization on cold-blooded animals, we first conducted a snake survey at a national nature reserve (Xianghai natural reserve) and an adjacent tourist bird park (Red-crowned Crane Park). We show high presence of Elaphe dione in the tourist park even with high human activities and predator population (the endangered, red-crowned crane, Grus japonensis). We then radio-tracked 20 individuals of E. dione, set seven camera traps, and recorded the temperature of the snakes and artificial structures in Crane Park to document their space use, activity, and thermal preference, respectively. Our results show E. dione preferred to use artificial facilities to shelter from their predators and for thermoregulation. The high number of rats from the camera traps indicate abundant prey items. Overall, E. dione appears to be adapted to modified habitats and may expand population size at the current study site.
Collapse
Affiliation(s)
- Xin Yu
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luyuan Ge
- Ecology, Evolution and Conservation, Department of Life Sciences, Imperial College London, London, SW72AZ, UK
| | - Lianshan Li
- Xianghai National Nature Reserve Administration, Jilin, 137215, China
| | - Zhengwang Zhang
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Juan Lei
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
131
|
Reider KE, Zerger M, Whiteman HH. Extending the biologging revolution to amphibians: Implantation, extraction, and validation of miniature temperature loggers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:403-411. [PMID: 34982510 DOI: 10.1002/jez.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Quantifying ectotherm body temperature is important to understand physiological performance under environmental change. The increasing availability of small, commercially-available animal-borne biologgers increases accessibility to high-quality body temperature data. However, amphibians present several challenges to successful datalogger implantation including small body sizes and physiologically active skin. We developed a method for the implantation, extraction, and validation of temperature biologgers in captive salamanders. We assessed the effect of biologger implantation and extraction surgery on body condition. Implantation had no effects on short or long-term body condition. Body condition also did not differ between implant and control groups after datalogger extraction. Biologgers did not alter preferred temperature in a laboratory thermal gradient, indicating that temperature data would not be biased by implantation. We provide detailed recommendations for datalogger placement and refinement of surgical techniques to further improve outcomes, enhance our understanding of fitness, species range limitations, and responses to environmental and climatic change.
Collapse
Affiliation(s)
- Kelsey E Reider
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Megan Zerger
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| | - Howard H Whiteman
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| |
Collapse
|
132
|
Qi Y, Zhang T, Wu Y, Yao Z, Qiu X, Pu P, Tang X, Fu J, Yang W. A Multilevel Assessment of Plasticity in Response to High-Altitude Environment for Agama Lizards. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Upslope range shifting has been documented in diverse species in response to global warming. Plasticity, which refers to the ability of organisms to alter their phenotypes in changing environments, is crucial for the survival of those that newly migrated to a high-altitude environment. The scope and mechanisms of plasticity across biological levels, however, have rarely been examined. We used two agama lizards (genus Phrynocephalus) as model systems and a transplant experiment to comprehensively assess their plasticity on multiple organization levels. Two low-altitude (934 m) agama species, Phrynocephalus axillaris (oviparous) and P. forsythii (viviparous), were transplanted to a high-altitude site (3,400 m). After acclimation for 6 weeks in seminatural enclosures, plasticity was measured from bite force, tail display behavior, gene expression, and metabolome. Both lizards were capable of acclimating to the high-altitude environment without sacrificing their performance in bite force, but they also showed high plasticity in tail display behavior by either decreasing the intensity of a specific display component (P. forsythii) or by the trade-off between display components (P. axillaris). Genes and metabolites associated with lipids, especially fatty acid metabolism, exhibited significant differentiation in expression, compared to individuals from their native habitats. Improved fatty acid storage and metabolism appeared to be a common response among animals at high altitudes. Despite distinct reproductive modes that may differ in response to physiological pressure, the two lizards demonstrated high concordance in plasticity when they faced a novel environment at high altitudes. Taken together, lizards likely acclimate to high-altitude environments by reducing behavioral activity and increasing energy efficiency after range shifting. Our results provide new insights into our understanding of phenotypic plasticity and its importance in today’s changing climate.
Collapse
|
133
|
Cestari C, Melo C. Shorebirds adjust resting orientation in response to solar radiation and wind speed. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- César Cestari
- Instituto de Biologia Universidade Federal de Uberlândia (UFU) Campus Umuarama – Bloco 2D. Avenida Pará, 1720 Uberlândia MG CEP 1720 Brazil
| | - Celine Melo
- Instituto de Biologia Universidade Federal de Uberlândia (UFU) Campus Umuarama – Bloco 2D. Avenida Pará, 1720 Uberlândia MG CEP 1720 Brazil
| |
Collapse
|
134
|
Hui TY, Crickenberger S, Lau JWT, Williams GA. Why are "suboptimal" temperatures preferred in a tropical intertidal ectotherm? J Anim Ecol 2022; 91:1400-1415. [PMID: 35302242 DOI: 10.1111/1365-2656.13690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
In thermally extreme environments it is challenging for organisms to maximize performance due to risks associated with stochastic variation in temperature and, subsequently, over evolutionary time minimizing the exposure to risk can serve as one of the mechanisms that result in organisms preferring suboptimal temperatures. We tested this hypothesis in a slow-moving intertidal snail on tropical rocky shores, where temperature variability increases with time from 30 min to 20 h when recorded at 30 min intervals (due to short-term environmental autocorrelation where temperatures closer in time are more similar as compared to temperatures over a long period of time). Failure to accommodate temporal variation in thermal stress by selecting cool habitats can result in mortality. Thermal performance curves for different traits (heart rate and locomotion) were measured and compared to the snail's thermal preferences in both the field and laboratory. Predicted performances of the snails were simulated based on thermal performance curves for different traits over multiple time scales and simulated carryover effects. A strong mismatch was found between physiological and behavioural thermal maxima of the snails (physiological thermal maximum being higher by ~ 7 °C), but the snails avoided these maxima and sought temperatures 7 - 14 °C cooler. Such a risk-averse strategy can be explained by their predicted performances where the snails should make decisions about preferred temperatures based on time periods ≥ 5 h to avoid underestimating the temporal variation in body temperature. In extreme and stochastic environments, where the temporal variation in environmental conditions can lead to substantial divergence between instantaneous and time-averaged thermal performances, "cooler is better" and "suboptimal" body temperatures are preferred as they provide sufficient buffer to reduce mortality risk from heat stress.
Collapse
Affiliation(s)
- T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - S Crickenberger
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - J W T Lau
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - G A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
135
|
Sullivan S, Heinrich GL, Mattheus NM, Cassill D, Doody JS. Can Reptiles Use Nest Site Choice Behavior to Counter Global Warming Effects on Developing Embryos? Potential Climate Responses in a Turtle. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.825110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate warming is forecasted to cause extinctions, but populations could theoretically avoid extinction in a rapidly changing environment via adaptive evolution (i.e., evolutionary rescue), precluding the need for intervention. Although strong links between a changing climate and the physiology of an organism are expected, climate effects can be buffered by behavior. Nest site choice behavior, for example, can reduce environmental variation that would be experienced by embryos placed randomly with respect to environmental temperatures. We tested four provisions of this prediction by quantifying nest sites and “potential” nest sites in the Florida softshell turtle (Apalone ferox). First, turtles chose nest sites with mean canopy openness values (32–47%) that were intermediate between the shadiest (14–17%) and the sunniest potential nest sites (36–57%) available. Second, canopy openness, incident radiation intensity, and nest temperatures were generally, positively related to one another, indicating definitive thermal consequences of nest site choice. Third, our study revealed ample, cooler nest sites available to turtle mothers within close proximity to nest sites utilized; by nesting in the most shaded sites, softshell turtle mothers could depress mean nest temperatures by ∼2°C. Fourth, the growth of vegetative cover throughout incubation had negligible effects on canopy openness, incident radiation intensity, and nest temperatures, supporting the potential for mothers to “predict” developmental temperatures using temperature cues during nest site choice. Finally, our data revealed considerable variation in canopy openness chosen by nesting mothers; such behavior could thus, be subject to natural selection via embryonic mortality under future warming. Collectively, our study suggests that Florida softshell turtles, and probably other turtle species nesting in relatively open areas, may be able to counter climate change effects on developing embryos by nesting in more shaded microhabitats, assuming nest site choice behavior is heritable and can evolve at a sufficient rate to keep pace with climate warming. The evolutionary and behavioral mechanisms (e.g., assessing substrate temperatures directly vs. indirect choice of canopy cover) in the repertoire of nesting mother turtles for responding to climate warming remain elusive and are required for a more complete understanding of climate responses.
Collapse
|
136
|
Noer NK, Ørsted M, Schiffer M, Hoffmann AA, Bahrndorff S, Kristensen TN. Into the wild-a field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210004. [PMID: 35067088 PMCID: PMC8784925 DOI: 10.1098/rstb.2021.0004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding how environmental factors affect the thermal tolerance of species is crucial for predicting the impact of thermal stress on species abundance and distribution. To date, species' responses to thermal stress are typically assessed on laboratory-reared individuals and using coarse, low-resolution, climate data that may not reflect microhabitat dynamics at a relevant scale. Here, we examine the daily temporal variation in heat tolerance in a range of species in their natural environments across temperate and tropical Australia. Individuals were collected in their habitats throughout the day and tested for heat tolerance immediately thereafter, while local microclimates were recorded at the collection sites. We found high levels of plasticity in heat tolerance across all the tested species. Both short- and long-term variability of temperature and humidity affected plastic adjustments of heat tolerance within and across days, but with species differences. Our results reveal that plastic changes in heat tolerance occur rapidly at a daily scale and that environmental factors on a relatively short timescale are important drivers of the observed variation in thermal tolerance. Ignoring such fine-scale physiological processes in distribution models might obscure conclusions about species' range shifts with global climate change. This article is part of the theme issue 'Species' ranges in the face of changing environments (part 1)'.
Collapse
Affiliation(s)
- Natasja K Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| | - Michael Ørsted
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Cape Tribulation, Douglas, Queensland 4873, Australia
| | - Ary A Hoffmann
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark.,School of BioSciences, Bio21 Institute, the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg E 9220, Denmark
| |
Collapse
|
137
|
Ariano‐Sánchez D, Mortensen RM, Wilson RP, Bjureke P, Reinhardt S, Rosell F. Temperature and barometric pressure affect the activity intensity and movement of an endangered thermoconforming lizard. Ecosphere 2022. [DOI: 10.1002/ecs2.3990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Daniel Ariano‐Sánchez
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
- Centro de Estudios Ambientales y Biodiversidad Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Rasmus M. Mortensen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Rory P. Wilson
- Biosciences, College of Science Swansea University Swansea Wales UK
| | - Peder Bjureke
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Stefanie Reinhardt
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| | - Frank Rosell
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences University of South‐Eastern Norway Bø Telemark Norway
| |
Collapse
|
138
|
Dubos N, Augros S, Deso G, Probst J, Notter J, Roesch MA. Here be dragons: important spatial uncertainty driven by climate data in forecasted distribution of an endangered insular reptile. Anim Conserv 2022. [DOI: 10.1111/acv.12775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N Dubos
- INRAE (UMR TETIS) Maison de la télédétection Montpellier Cedex 5 France
- Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204) Sorbonne Université, MNHN Paris France
| | - S Augros
- Eco‐Med Océan Indien Saint‐Denis France
| | - G Deso
- Association Herpétologique de Provence Alpes Méditerranée Maison des Associations Orange France
| | - J‐M Probst
- Association Nature and Patrimoine Sainte Clotilde La Réunion France
| | - J‐C Notter
- Parc National de La Réunion La Plaine Des Palmistes La Réunion France
| | - M A Roesch
- Nature Océan Indien Petite‐Ile La Réunion France
| |
Collapse
|
139
|
Moldowan PD, Tattersall GJ, Rollinson N. Climate-associated decline of body condition in a fossorial salamander. GLOBAL CHANGE BIOLOGY 2022; 28:1725-1739. [PMID: 34542922 DOI: 10.1111/gcb.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Temperate ectotherms have responded to recent environmental change, likely due to the direct and indirect effects of temperature on key life cycle events. Yet, a substantial number of ectotherms are fossorial, spending the vast majority of their lives in subterranean microhabitats that are assumed to be buffered against environmental change. Here, we examine whether seasonal climatic conditions influence body condition (a measure of general health and vigor), reproductive output, and breeding phenology in a northern population of fossorial salamander (Spotted Salamander, Ambystoma maculatum). We found that breeding body condition declined over a 12-year monitoring period (2008-2019) with warmer summer and autumn temperatures at least partly responsible for the observed decline in body condition. Our findings are consistent with the hypothesis that elevated metabolism drives the negative association between temperature and condition. Population-level reproduction, assessed via egg mass counts, showed high interannual variation and was weakly influenced by autumn temperatures. Salamander breeding phenology was strongly correlated with lake ice melt but showed no long-term temporal trend (1986-2019). Climatic warming in the region, which has been and is forecasted to be strongest in the summer and autumn, is predicted to lead to a 5%-27% decline in salamander body condition under realistic near-future climate scenarios. Although the subterranean environment offers a thermal buffer, the observed decline in condition and relatively strong effect of summer temperature on body condition suggest that fossorial salamanders are sensitive to the effects of a warming climate. Given the diversity of fossorial taxa, heightened attention to the vulnerability of subterranean microhabitat refugia and their inhabitants is warranted amid global climatic change.
Collapse
Affiliation(s)
- Patrick D Moldowan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
- Algonquin Wildlife Research Station, Whitney, ON, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
140
|
Stabentheiner A, Nagy JM, Kovac H, Käfer H, Petrocelli I, Turillazzi S. Effect of climate on strategies of nest and body temperature regulation in paper wasps, Polistes biglumis and Polistes gallicus. Sci Rep 2022; 12:3372. [PMID: 35233017 PMCID: PMC8888551 DOI: 10.1038/s41598-022-07279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Polistes paper wasps are a widespread taxon inhabiting various climates. They build nests in the open without a protective outer layer, which makes them vulnerable to changing temperatures. To better understand the options they have to react to environmental variation and climate change, we here compare the thermoregulatory behavior of Polistes biglumis from cool Alpine climate with Polistes gallicus from warm Mediterranean climate. Behavioral plasticity helps both of them to withstand environmental variation. P. biglumis builds the nests oriented toward east-south-east to gain solar heat of the morning sun. This increases the brood temperature considerably above the ambience, which speeds up brood development. P. gallicus, by contrast, mostly avoids nesting sites with direct insolation, which protects their brood from heat stress on hot days. To keep the brood temperature below 40-42 °C on warm days, the adults of the two species show differential use of their common cooling behaviors. While P. biglumis prefers fanning of cool ambient air onto the nest heated by the sun and additionally cools with water drops, P. gallicus prefers cooling with water drops because fanning of warm ambient air onto a warm nest would not cool it, and restricts fanning to nests heated by the sun.
Collapse
Affiliation(s)
- Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Julia Magdalena Nagy
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030, Wien, Austria
| | - Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| | - Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Turillazzi
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
141
|
Sun J, Tan X, Li Q, Francis F, Chen J. Effects of Different Temperatures on the Development and Reproduction of Sitobion miscanthi From Six Different Regions in China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increase in temperature caused by global warming has greatly impacted plant growth and pest population dynamics worldwide, especially for wheat aphids. In this study, Sitobion miscanthi individuals from six geographic populations located in different wheat-producing areas in China were compared with regard to their growth, development, survival, and reproductive under different temperature conditions (17, 22 and 27°C). A population life-table analysis and a correlation analysis between geographic factors and S. miscanthi longevity or fecundity were also performed. Temperature significantly affected the nymphal development duration (NDD), the adult longevity (ALY) and the fecundity (AFY) of the aphids, however, latitude can only affect the NDD and ALY. There is an obvious interaction between temperature and latitude on the NDD, ALY, and AFY. The NDD in the three northern populations was significantly shorter than that in the southern populations. The ALY in northern populations was significantly longer than that in southern populations at different temperatures. Except for Yinchuan population was no significantly different under different degrees, the ALY of other populations was significantly shortened at 27°C. The AFY of northern populations was significantly lower than that of southern populations at 22°C, while significantly higher at 27°C. With the increase of temperature, the fecundity of northern population gradually decreased from 17 to 22°C, while the southern population suddenly decreased at 27°C. The curves of survival rate (sxj) in southern populations were significantly shorter than that of northern population. Especially the populations in Suzhou and Wuhan, in which the survival rate decreased rapidly at 27°C. Age-specific survival rate (lx) of southern populations began to decline rapidly on 15 days of age at 27°C, while those of northern populations were not significantly affected until on 20 days of age. The highest peaks of age-stage fecundity (fxj), age-specific fecundity (mx), and age-specific net maternity (lxmx) were occurred in northern populations. In addition, there was a positive correlation between latitude and longevity under the three degrees, however, only at 27°C, there was a positive correlation between latitude and fecundity. Our result proved that the higher reproductive rate of southern population requires aphids to live at the suitable ambient temperature, and aphid populations in the north have a wider ecological amplitude. The results will be helpful for predicting the potential aphid outbreaks in China’s main wheat areas under suitable conditions.
Collapse
|
142
|
Noer NK, Sørensen MH, Colinet H, Renault D, Bahrndorff S, Kristensen TN. Rapid Adjustments in Thermal Tolerance and the Metabolome to Daily Environmental Changes - A Field Study on the Arctic Seed Bug Nysius groenlandicus. Front Physiol 2022; 13:818485. [PMID: 35250620 PMCID: PMC8889080 DOI: 10.3389/fphys.2022.818485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laboratory investigations on terrestrial model-species, typically of temperate origin, have demonstrated that terrestrial ectotherms can cope with daily temperature variations through rapid hardening responses. However, few studies have investigated this ability and its physiological basis in the field. Especially in polar regions, where the temporal and spatial temperature variations can be extreme, are hardening responses expected to be important. Here, we examined diurnal adjustments in heat and cold tolerance in the Greenlandic seed bug Nysius groenlandicus by collecting individuals for thermal assessment at different time points within and across days. We found a significant correlation between observed heat or cold tolerance and the ambient microhabitat temperatures at the time of capture, indicating that N. groenlandicus continuously and within short time-windows respond physiologically to thermal changes and/or other environmental variables in their microhabitats. Secondly, we assessed underlying metabolomic fingerprints using GC-MS metabolomics in a subset of individuals collected during days with either low or high temperature variation. Concentrations of metabolites, including sugars, polyols, and free amino acids varied significantly with time of collection. For instance, we detected elevated sugar levels in animals caught at the lowest daily field temperatures. Polyol concentrations were lower in individuals collected in the morning and evening and higher at midday and afternoon, possibly reflecting changes in temperature. Additionally, changes in concentrations of metabolites associated with energetic metabolism were observed across collection times. Our findings suggest that in these extreme polar environments hardening responses are marked and likely play a crucial role for coping with microhabitat temperature variation on a daily scale, and that metabolite levels are actively altered on a daily basis.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Hervé Colinet
- UMR 6553, CNRS, Ecosystèmes, Biodiversité, Évolution, University of Rennes 1, Rennes, France
| | - David Renault
- UMR 6553, CNRS, Ecosystèmes, Biodiversité, Évolution, University of Rennes 1, Rennes, France
- Institut Universitaire de France, Paris, France
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
143
|
Ma G, Ma CS. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. CURRENT OPINION IN INSECT SCIENCE 2022; 49:15-21. [PMID: 34728406 DOI: 10.1016/j.cois.2021.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Climate change facilitates biological invasions globally. Predicting potential distribution shifts of invasive crop pests under climate change is essential for global food security in the context of ongoing world population increase. However, existing predictions often omit the capacity of crop pests to mitigate the impacts of climate change by using microclimates, as well as through thermoregulation, life history variation and evolutionary responses. Microclimates provide refugia buffering climate extremes. Thermoregulation and life history variation can reduce the effects of diurnal and seasonal temperature variability. Evolutionary responses allow insects to adapt to long-term climate change. Neglecting these ecological processes may lead to overestimations in the negative impacts of climate change on invasive pests whereas in turn cause underestimations in their range expansions. To improve model predictions, we need to incorporate the fine-scale microclimates experienced by invasive crop pests and the mitigation responses of insects to climate change into species distribution models.
Collapse
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
144
|
Robertson EP, Tanner EP, Elmore RD, Fuhlendorf SD, Mays JD, Knutson J, Weir JR, Loss SR. Fire management alters the thermal landscape and provides multi-scale thermal options for a terrestrial turtle facing a changing climate. GLOBAL CHANGE BIOLOGY 2022; 28:782-796. [PMID: 34741780 DOI: 10.1111/gcb.15977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/04/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
As effects of climate change intensify, there is a growing need to understand the thermal properties of landscapes and their influence on wildlife. A key thermal property of landscapes is vegetation structure and composition. Management approaches can alter vegetation and consequently the thermal landscape, potentially resulting in underappreciated consequences for wildlife thermoregulation. Consideration of spatial scale can clarify how management overlaid onto existing vegetation patterns affects thermal properties of landscapes relevant to wildlife. We examined effects of temperature, fire management, and vegetation structure on multi-scale habitat selection of an ectothermic vertebrate (the turtle Terrapene carolina triunguis) in the Great Plains of the central United States by linking time-since-fire data from 18 experimental burn plots to turtle telemetry locations and thermal and vegetation height data. Within three 60-ha experimental landscapes, each containing six 10-ha sub-blocks that are periodically burned, we found that turtles select time-since-fire gradients differently depending on maximum daily ambient temperature. At moderate temperatures, turtles selected sub-blocks with recent (<1 year) time-since-fire, but during relatively hot and cool conditions, they selected sub-blocks with later (2-3 year) time-since-fire that provided thermal buffering compared with recently burned sub-blocks. Within 10-ha sub-blocks, turtles selected locations with taller vegetation during warmer conditions that provided thermal buffering. Thermal performance curves revealed that turtle activity declined as temperatures exceeded ~24-29°C, and on "heat days" (≥29°C) 73% of turtles were inactive compared with 37% on non-heat days, emphasizing that thermal extremes may lead to opportunity costs (i.e., foregone benefits turtles could otherwise accrue if active). Our results indicate that management approaches that promote a mosaic of vegetation heights, like spatiotemporally dynamic fire, can provide thermal refuges at multiple spatial scales and thus be an actionable way to provide wildlife with multiple thermal options in the context of ongoing and future climate change.
Collapse
Affiliation(s)
- Ellen P Robertson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
- South Central Climate Adaptation Science Center, Norman, Oklahoma, USA
| | - Evan P Tanner
- Department of Rangeland and Wildlife Science, Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - R Dwayne Elmore
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Samuel D Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jonathan D Mays
- Florida Fish and Wildlife Research Institute, Gainesville, Florida, USA
| | - Jennifer Knutson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - John R Weir
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Scott R Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
145
|
Gómez Alés R, Acosta JC, Astudillo V, Córdoba M. Season-sex interaction induces changes in the ecophysiological traits of a lizard in a high altitude cold desert, Puna region. J Therm Biol 2022; 103:103152. [PMID: 35027202 DOI: 10.1016/j.jtherbio.2021.103152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Functional traits are those characteristics of organisms that influence the ability of a species to develop in a habitat and persist in the face of environmental changes. The traits are often affected by a multiplicity of species-dependent and external factors. Our objective was to investigate thermal biology of Liolaemus ruibali in a high altitude cold desert at the arid Puna region, Argentina. We address the following question: do sex and seasonal variations in environmental temperature induce changes in the ecophysiological traits? We measured and compared the operative temperatures between fall and spring; and between sexes and seasons, we compared the ecophysiological traits of lizards, microenvironmental temperatures and thermoregulatory behavior. Air and operative temperatures were different between seasons. We found an effect of season-sex interaction on field body temperatures, preferred temperatures, panting threshold and thermal quality. The voluntary and critical temperatures presented seasonal variation in relation to changes in environmental temperatures, suggesting thermal acclimatization. We note behavioral changes between seasons, with the substrate being the main resource for gaining heat in spring. We conclude that Liolaemus ruibali is an efficient thermoregulator; it is a eurythermic lizard and presents phenotypic plasticity in different ecophysiological and behavioral traits induced by sex and seasonality. In addition, we predict that this population could buffer the effects of projected global warming scenarios.
Collapse
Affiliation(s)
- Rodrigo Gómez Alés
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), San Juan, Argentina.
| | - Juan Carlos Acosta
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Vanesa Astudillo
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), San Juan, Argentina
| | - Mariela Córdoba
- DIBIOVA (Gabinete Diversidad y Biología de Vertebrados del Árido), Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), San Juan, Argentina
| |
Collapse
|
146
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
147
|
OUP accepted manuscript. Behav Ecol 2022. [DOI: 10.1093/beheco/arab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
148
|
Alruiz JM, Peralta-Maraver I, Bozinovic F, Santos M, Rezende EL. Thermal tolerance in Drosophila: repercussions for distribution, community coexistence and responses to climate change. J Anim Ecol 2021; 91:655-667. [PMID: 34951017 DOI: 10.1111/1365-2656.13653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Here we combined controlled experiments and field surveys to determine if estimates of heat tolerance predict distributional ranges and phenology of different Drosophila species in southern South America. We contrasted thermal death time curves, which consider both magnitude and duration of the challenge to estimate heat tolerance, against the thermal range where populations are viable based on field surveys in an 8-yr longitudinal study. We observed a strong correspondence of the physiological limits, the thermal niche for population growth, and the geographic ranges across studied species, which suggests that the thermal biology of different species provides a common currency to understand how species will respond to warming temperatures both at a local level and throughout their distribution range. Our approach represents a novel analytical toolbox to anticipate how natural communities of ectothermic organisms will respond to global warming.
Collapse
Affiliation(s)
- José M Alruiz
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Ignacio Peralta-Maraver
- Departamento de Ecología, Universidad de Granada, Granada, Spain.,Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Francisco Bozinovic
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biología Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas, Santiago, Chile
| |
Collapse
|
149
|
Şahin MK, Kuyucu AC. Thermal biology of two sympatric Lacertid lizards (Lacerta diplochondrodes and Parvilacerta parva) from Western Anatolia. J Therm Biol 2021; 101:103094. [PMID: 34879912 DOI: 10.1016/j.jtherbio.2021.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Sympatric lizard species present convenient models for studying differentiation in thermal behavior and the role of morphological differences in their thermal biology. Here we studied the thermal biology of two sympatric lizard species which occur sympatrically in the Phrygian Valley of Western Anatolia. These two species differ in body size, with Lacerta diplochondrodes being larger than Parvilacerta parva. The surface body temperatures of the individuals belonging to both species were recorded when active in the field. Additionally, several environmental parameters including solar radiation, substrate temperature, air temperature and wind speed were monitored to investigate the relative effects of these abiotic parameters on the thermal biology of the two species. The surface body temperature and temperature excess (difference between body and substrate temperature) of the two species, while being relatively close to each other, showed seasonal differences. Solar radiation, substrate temperature and air temperature were the main factors influencing their thermal biology. Additionally, although body size did not have a direct effect on body temperature or temperature excess, the interaction between body size and solar radiation on temperature excess was significant. In conclusion, our study partially supports the conservation of body temperature of related lizard species.
Collapse
Affiliation(s)
- Mehmet Kürşat Şahin
- Karamanoğlu Mehmetbey University, Department of Biology, Kamil Ozdag Faculty of Science, Karaman, Turkey.
| | - Arda Cem Kuyucu
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey.
| |
Collapse
|
150
|
McMunn M, Pepi A. Predicted Asymmetrical Effects of Warming on Nocturnal and Diurnal Soil-Dwelling Ectotherms. Am Nat 2021; 199:302-312. [DOI: 10.1086/717431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marshall McMunn
- Department of Entomology and Nematology, University of California, Davis, California 95618
| | - Adam Pepi
- Department of Entomology and Nematology, University of California, Davis, California 95618
| |
Collapse
|