101
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
102
|
Chan SK, Lim TS. Immune Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:61-78. [PMID: 29549635 DOI: 10.1007/978-3-319-72077-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The incident of two children in Europe who died of diphtheria due to a shortage of anti-toxin drugs has highlighted the need for alternative anti-toxins. Historically, antiserum produced from immunised horses have been used to treat diphtheria. Despite the potential of antiserum, the economical and medial concerns associated with the use of animal antiserum has led to its slow market demise. Over the years, new and emerging infectious diseases have grown to be a major global health threat. The emergence of drug-resistant superbugs has also pushed the boundaries of available therapeutics to deal with new infectious diseases. Antibodies have emerged as a possible alternative to combat the continuous onslaught of various infectious agents. The isolation of antibodies against pathogens of infectious diseases isolated from immune libraries utilising phage display has yielded promising results in terms of affinities and neutralizing activities. This chapter focuses on the concept of immune antibody libraries and highlights the application of immune antibody libraries to generate antibodies for various infectious diseases.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
103
|
Hashiguchi T. [Molecular basis for negative-strand RNA virus entry and neutralization by antibodies]. Uirusu 2017; 67:69-78. [PMID: 29593155 DOI: 10.2222/jsv.67.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mononegaviruses are non-segmented negative-strand RNA viruses, and include measles, mumps, Marburg, and Ebola viruses. Measles virus and mumps virus, members of the family Paramyxoviridae, are immunotropic and neurotropic, respectively. Marburg virus and Ebola virus, members of the family Filoviridae, cause highly lethal hemorrhagic fever. In this paper, I summarize the recent structural and functional studies on the viral glycoproteins (GPs) of these viruses, which have shed light on virus entry and the humoral response. The structural and functional analyses of the interaction between viral GPs and receptors/antibodies also illuminate directions toward therapeutics against the viruses.
Collapse
Affiliation(s)
- Takao Hashiguchi
- Affiliation; Department of Virology, Faculty of medicine, Kyushu University
| |
Collapse
|
104
|
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus Structural Biology: The Molecules in the Machine. Curr Top Microbiol Immunol 2017; 411:381-417. [PMID: 28795188 DOI: 10.1007/82_2017_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hal Wasserman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|
105
|
Qiu X, Audet J, Lv M, He S, Wong G, Wei H, Luo L, Fernando L, Kroeker A, Fausther Bovendo H, Bello A, Li F, Ye P, Jacobs M, Ippolito G, Saphire EO, Bi S, Shen B, Gao GF, Zeitlin L, Feng J, Zhang B, Kobinger GP. Two-mAb cocktail protects macaques against the Makona variant of Ebola virus. Sci Transl Med 2016; 8:329ra33. [PMID: 26962157 DOI: 10.1126/scitranslmed.aad9875] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 2014-2015 Ebola virus (EBOV) outbreak in West Africa highlighted the urgent need for specific therapeutic interventions for infected patients. The human-mouse chimeric monoclonal antibody (mAb) cocktail ZMapp, previously shown to be efficacious in EBOV (variant Kikwit) lethally infected nonhuman primates (NHPs) when administration was initiated up to 5 days, was used in some patients during the outbreak. We show that a two-antibody cocktail, MIL77E, is fully protective in NHPs when administered at 50 mg/kg 3 days after challenge with a lethal dose of EBOV variant Makona, the virus responsible for the ongoing 2014-2015 outbreak, whereas a similar formulation of ZMapp protected two of three NHPs. The chimeric MIL77E mAb cocktail is produced in engineered Chinese hamster ovary cells and is based on mAbs c13C6 and c2G4 from ZMapp. The use of only two antibodies in MIL77E opens the door to a pan-ebolavirus cocktail.
Collapse
Affiliation(s)
- Xiangguo Qiu
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada.
| | - Jonathan Audet
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ming Lv
- Laboratory of Immunology, Institute of Basic Medical Sciences, Taiping Road #27, Beijing 100850, China
| | - Shihua He
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Gary Wong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Haiyan Wei
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. Institute of Infectious Disease, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450012, China
| | - Longlong Luo
- Laboratory of Immunology, Institute of Basic Medical Sciences, Taiping Road #27, Beijing 100850, China
| | - Lisa Fernando
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Andrea Kroeker
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Hugues Fausther Bovendo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Alexander Bello
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Feng Li
- Beijing Mabworks Biotech Co. Ltd., No. 99, Kechuang 14th Street, Economic-Technological Development Area, Beijing 101111, China
| | - Pei Ye
- Beijing Mabworks Biotech Co. Ltd., No. 99, Kechuang 14th Street, Economic-Technological Development Area, Beijing 101111, China
| | - Michael Jacobs
- Royal Free London NHS (National Health Service) Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani," Rome 00149, Italy
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shengli Bi
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Taiping Road #27, Beijing 100850, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | - Jiannan Feng
- Laboratory of Immunology, Institute of Basic Medical Sciences, Taiping Road #27, Beijing 100850, China.
| | - Boyan Zhang
- Beijing Mabworks Biotech Co. Ltd., No. 99, Kechuang 14th Street, Economic-Technological Development Area, Beijing 101111, China.
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA.
| |
Collapse
|
106
|
Khurana S, Fuentes S, Coyle EM, Ravichandran S, Davey RT, Beigel JH. Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies. Nat Med 2016; 22:1439-1447. [PMID: 27798615 DOI: 10.1038/nm.4201] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against Ebola virus is of high priority. However, knowledge about potential correlates of protection and the durability of immune response after vaccination is limited. Here, we elucidate the human antibody repertoire after administration of vesicular stomatitis virus (VSV)-Ebola vaccine at 3 million, 20 million and 100 million plaque-forming units (PFU) and homologous VSV-Ebola vaccine boost in healthy adult volunteers. Whole genome-fragment phage display libraries, expressing linear and conformational epitopes of Ebola glycoprotein (GP), showed higher diversity of antibody epitopes in individuals vaccinated with 20 million PFU than in those vaccinated with 3 million or 100 million PFU. Surface plasmon resonance kinetics showed higher levels of GP-binding antibodies after a single vaccination with 20 million or 100 million PFU than with 3 million PFU, and these correlated strongly with neutralization titers. A second vaccination did not boost antibody or virus neutralization titers, which declined rapidly, and induced only minimal antibody affinity maturation. Isotype analysis revealed a predominant IgM response even after the second vaccination, which contributed substantially to virus neutralization in vitro. These findings may help identify new vaccine targets and aid development and evaluation of effective countermeasures against Ebola.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard T Davey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Beigel
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
107
|
Li X, Zai J, Liu H, Feng Y, Li F, Wei J, Zou S, Yuan Z, Shao Y. The 2014 Ebola virus outbreak in West Africa highlights no evidence of rapid evolution or adaptation to humans. Sci Rep 2016; 6:35822. [PMID: 27767073 PMCID: PMC5073338 DOI: 10.1038/srep35822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Following its immergence in December 2013, the recent Zaire Ebola virus (EBOV) outbreak in West Africa has spread and persisted for more than two years, making it the largest EBOV epidemic in both scale and geographical region to date. In this study, a total of 726 glycoprotein (GP) gene sequences of the EBOV full-length genome obtained from West Africa from the 2014 outbreak, combined with 30 from earlier outbreaks between 1976 and 2008 were used to investigate the genetic divergence, evolutionary history, population dynamics, and selection pressure of EBOV among distinct epidemic waves. Results from our dataset showed that no non-synonymous substitutions occurred on the GP gene coding sequences of EBOV that were likely to have affected protein structure or function in any way. Furthermore, the significantly different dN/dS ratios observed between the 2014 West African outbreak and earlier outbreaks were more likely due to the confounding presence of segregating polymorphisms. Our results highlight no robust evidence that the 2014 EBOV outbreak is fast-evolving and adapting to humans. Therefore, the unprecedented nature of the 2014 EBOV outbreak might be more likely related to non-virological elements, such as environmental and sociological factors.
Collapse
Affiliation(s)
- Xingguang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Junjie Zai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Fan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jing Wei
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Sen Zou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
108
|
Wec AZ, Nyakatura EK, Herbert AS, Howell KA, Holtsberg FW, Bakken RR, Mittler E, Christin JR, Shulenin S, Jangra RK, Bharrhan S, Kuehne AI, Bornholdt ZA, Flyak AI, Saphire EO, Crowe JE, Aman MJ, Dye JM, Lai JR, Chandran K. A "Trojan horse" bispecific-antibody strategy for broad protection against ebolaviruses. Science 2016; 354:350-354. [PMID: 27608667 PMCID: PMC5647781 DOI: 10.1126/science.aag3267] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022]
Abstract
There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.
Collapse
Affiliation(s)
- Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Katie A Howell
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | | | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ana I Kuehne
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Zachary A Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 10550, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 10550, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - M Javad Aman
- Integrated Biotherapeutics Inc., Gaithersburg, MD 20878, USA.
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
109
|
Moekotte AL, Huson MAM, van der Ende AJ, Agnandji ST, Huizenga E, Goorhuis A, Grobusch MP. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin Investig Drugs 2016; 25:1325-1335. [PMID: 27676206 DOI: 10.1080/13543784.2016.1240785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To date, the management of patients with suspected or confirmed Ebolavirus disease (EVD) depends on quarantine, symptomatic management and supportive care, as there are no approved vaccines or treatments available for human use. However, accelerated by the recent large outbreak in West Africa, significant progress has been made towards vaccine development but also towards specific treatment with convalescent plasma and monoclonal antibodies. Areas covered: We describe recent developments in monoclonal antibody treatment for EVD, encompassing mAb114 and the MB-003, ZMAb, ZMapp™ and MIL-77E cocktails. Expert opinion: Preventive measures, are, and will remain essential to curb EVD outbreaks; even more so with vaccine development progressing. However, research for treatment options must not be neglected. Small-scale animal and individual human case studies show that monoclonal antibodies (mAbs) can be effective for EVD treatment; thus justifying exploration in clinical trials. Potential limitations are that high doses may be needed to yield clinical efficacy; epitope mutations might reduce efficacy; and constant evolution of (outbreak-specific) mAb mixtures might be required. Interim advice based on the clinical experience to date is that treatment of patients with mAbs is sensible, provided those could be made available in the necessary amounts in time.
Collapse
Affiliation(s)
- A L Moekotte
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - M A M Huson
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A J van der Ende
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - S T Agnandji
- d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| | - E Huizenga
- b Lion Heart Medical Center , Yele , Sierra Leone.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - A Goorhuis
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone
| | - M P Grobusch
- a Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,c Lion Heart Medical Research Unit , Yele , Sierra Leone.,d Centre de Recherches Médicales en Lambaréné (CERMEL) , Lambaréné , Gabon.,e Institute of Tropical Medicine , University of Tübingen , Tübingen , Germany
| |
Collapse
|
110
|
Molecular Basis for Antibody-Mediated Neutralization of New World Hemorrhagic Fever Mammarenaviruses. Cell Host Microbe 2016; 18:705-13. [PMID: 26651946 DOI: 10.1016/j.chom.2015.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/18/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
Abstract
In the Western hemisphere, at least five mammarenaviruses cause human viral hemorrhagic fevers with high case fatality rates. Junín virus (JUNV) is the only hemorrhagic fever virus for which transfusion of survivor immune plasma that contains neutralizing antibodies ("passive immunity") is an established treatment. Here, we report the structure of the JUNV surface glycoprotein receptor-binding subunit (GP1) bound to a neutralizing monoclonal antibody. The antibody engages the GP1 site that binds transferrin receptor 1 (TfR1)-the host cell surface receptor for all New World hemorrhagic fever mammarenaviruses-and mimics an important receptor contact. We show that survivor immune plasma contains antibodies that bind the same epitope. We propose that viral receptor-binding site accessibility explains the success of passive immunity against JUNV and that this functionally conserved epitope is a potential target for therapeutics and vaccines to limit infection by all New World hemorrhagic fever mammarenaviruses.
Collapse
|
111
|
Mire CE, Geisbert JB, Agans KN, Thi EP, Lee ACH, Fenton KA, Geisbert TW. Passive Immunotherapy: Assessment of Convalescent Serum Against Ebola Virus Makona Infection in Nonhuman Primates. J Infect Dis 2016; 214:S367-S374. [PMID: 27571900 PMCID: PMC5050484 DOI: 10.1093/infdis/jiw333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background. Convalescent serum and blood were used to treat patients during outbreaks of Zaire ebolavirus (ZEBOV) infection in 1976 and 1995, with inconclusive results. During the recent 2013–2016 West African epidemic, serum/plasma from survivors of ZEBOV infection was used to treat patients in the affected countries and several repatriated patients. The effectiveness of this strategy remains unknown. Methods. Nine rhesus monkeys were experimentally infected with ZEBOV-Makona. Beginning on day 3 after exposure (at the onset of viremia), 4 animals were treated with homologous ZEBOV-Makona convalescent macaque sera, 3 animals were treated in parallel with heterologous Sudan ebolavirus (SEBOV) convalescent macaque sera, and 2 animals served as positive controls and were not treated. Surviving animals received additional treatments on days 6 and 9. Results. Both untreated control animals died on postinfection day 9. All 4 ZEBOV-Makona–infected macaques treated with homologous ZEBOV-Makona convalescent sera died on days 8–9. One macaque treated with heterologous SEBOV convalescent sera survived, while the other animals treated with the heterologous SEBOV sera died on days 7 and 9. Conclusions. The findings suggest that convalescent sera alone is not sufficient for providing 100% protection against lethal ZEBOV infection when administered at the onset of viremia.
Collapse
Affiliation(s)
- Chad E Mire
- Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | | | | | - Karla A Fenton
- Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Thomas W Geisbert
- Galveston National Laboratory Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| |
Collapse
|
112
|
Mapping of Ebolavirus Neutralization by Monoclonal Antibodies in the ZMapp Cocktail Using Cryo-Electron Tomography and Studies of Cellular Entry. J Virol 2016; 90:7618-27. [PMID: 27279622 DOI: 10.1128/jvi.00406-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED ZMapp, a cocktail of three monoclonal antibodies (MAbs; c2G4, c4G7, and c13C6) against the ebolavirus (EBOV) glycoprotein (GP), shows promise for combatting outbreaks of EBOV, as occurred in West Africa in 2014. Prior studies showed that Fabs from these MAbs bind a soluble EBOV GP ectodomain and that MAbs c2G4 and c4G7, but not c13C6, neutralize infections in cell cultures. Using cryo-electron tomography, we extended these findings by characterizing the structures of c2G4, c4G7, and c13C6 IgGs bound to native, full-length GP from the West African 2014 isolate embedded in filamentous viruslike particles (VLPs). As with the isolated ectodomain, c13C6 bound to the glycan cap, whereas c2G4 and c4G7 bound to the base region of membrane-bound GP. The tomographic data suggest that all three MAbs bind with high occupancy and that the base-binding antibodies can potentially bridge neighboring GP spikes. Functional studies indicated that c2G4 and c4G7, but not c13C6, competitively inhibit entry of VLPs bearing EBOV GP into the host cell cytoplasm, without blocking trafficking of VLPs to NPC1(+) endolysosomes, where EBOV fuses. Moreover, c2G4 and c4G7 bind to and can block entry mediated by the primed (19-kDa) form of GP without impeding binding of the C-loop of NPC1, the endolysosomal receptor for EBOV. The most likely mode of action of c2G4 and c4G7 is therefore by inhibiting conformational changes in primed, NPC1-bound GP that initiate fusion between the viral and target membranes, similar to the action of certain broadly neutralizing antibodies against influenza hemagglutinin and HIV Env. IMPORTANCE The recent West African outbreak of ebolavirus caused the deaths of more than 11,000 individuals. Hence, there is an urgent need to be prepared with vaccines and therapeutics for similar future disasters. ZMapp, a cocktail of three MAbs directed against the ebolavirus glycoprotein, is a promising anti-ebolavirus therapeutic. Using cryo-electron tomography, we provide structural information on how each of the MAbs in this cocktail binds to the ebolavirus glycoprotein as it is displayed-embedded in the membrane and present at high density-on filamentous viruslike particles that recapitulate the surface structure and entry functions of ebolavirus. Moreover, after confirming that two of the MAbs bind to the same region in the base of the glycoprotein, we show that they competitively block the entry function of the glycoprotein and that they can do so after the glycoprotein is proteolytically primed and bound to its intracellular receptor, Niemann-Pick C1. These findings should inform future developments of ebolavirus therapeutics.
Collapse
|
113
|
Pontremoli C, Forni D, Cagliani R, Filippi G, De Gioia L, Pozzoli U, Clerici M, Sironi M. Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface. Mol Biol Evol 2016; 33:2836-2847. [PMID: 27512112 DOI: 10.1093/molbev/msw158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Collapse
Affiliation(s)
- Chiara Pontremoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
114
|
Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat Microbiol 2016; 1:16128. [PMID: 27562261 PMCID: PMC5003320 DOI: 10.1038/nmicrobiol.2016.128] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
The Ebola virus (EBOV) GP gene encodes two glycoproteins. The major product is a soluble, dimeric glycoprotein termed sGP that is secreted abundantly. Despite the abundance of sGP during infection, little is known regarding its structure or functional role. A minor product, resulting from transcriptional editing, is the transmembrane-anchored, trimeric viral surface glycoprotein termed GP. GP mediates attachment to and entry into host cells, and is the intended target of antibody therapeutics. Because large portions of sequence are shared between GP and sGP, it has been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity. In this study, we present cryo-EM structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer presented here, in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permits us to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP. Further, we provide biophysical evaluation of naturally occurring GP/sGP mutations that fall within the footprints identified by our high-resolution structures. Taken together, our data provide a detailed and more complete picture of the accessible Ebolavirus glycoprotein landscape and a structural basis to evaluate patient and vaccine antibody responses toward differently structured products of the GP gene.
Collapse
|
115
|
Madelain V, Nguyen THT, Olivo A, de Lamballerie X, Guedj J, Taburet AM, Mentré F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet 2016; 55:907-23. [PMID: 26798032 PMCID: PMC5680399 DOI: 10.1007/s40262-015-0364-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 2014-2015 outbreak of Ebola virus disease is the largest epidemic to date in terms of the number of cases, deaths, and affected areas. In October 2015, no antiviral agents had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried and has since regularly updated a list of potential drug candidates with demonstrated antiviral efficacy in in vitro or animal models. This includes agents belonging to various therapeutic classes, namely direct antiviral agents (favipiravir and BCX4430), a combination of antibodies (ZMapp), type I interferons, RNA interference-based drugs (TKM-Ebola and AVI-7537), and anticoagulant drugs (rNAPc2). Here, we review the pharmacokinetic and pharmacodynamic information presently available for these drugs, using data obtained in healthy volunteers for pharmacokinetics and data obtained in human clinical trials or animal models for pharmacodynamics. Future studies evaluating these drugs in clinical trials are critical to confirm their efficacy in humans, propose appropriate doses, and evaluate the possibility of treatment combinations.
Collapse
Affiliation(s)
- Vincent Madelain
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Thi Huyen Tram Nguyen
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anaelle Olivo
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jérémie Guedj
- INSERM, IAME, UMR 1137, Paris, France
- Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Taburet
- Hospital Bicêtre, Assistance Publique-Hôpitaux de Paris, DHU Hepatinov, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Université Paris-Sud, Kremlin Bicêtre, France
| | | |
Collapse
|
116
|
Ren H, Zhou P. Epitope-focused vaccine design against influenza A and B viruses. Curr Opin Immunol 2016; 42:83-90. [PMID: 27343703 DOI: 10.1016/j.coi.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/07/2016] [Indexed: 01/19/2023]
Abstract
The threat of influenza A and B variants via antigenic drift and emerging novel influenza A and B strains in the human population via antigenic shift has spurred research efforts to improve upon current seasonal influenza vaccines. In recent years, a wave of novel technological breakthroughs has lead to the identification of many broadly anti-influenza hemagglutinin (HA) monoclonal antibodies (mAbs) and the elucidation of the conserved epitopes recognized by these mAbs in both the head and the stem of HA as well as the mechanisms of inhibition. These discoveries along with an improved understanding of how the immune system responds to influenza infection and vaccination has spurred great efforts on stem-based cross-subtype ('universal') vaccine design as well as RBS-based HA subtype-specific vaccine design.
Collapse
Affiliation(s)
- Huanhuan Ren
- Unit of Anti-Viral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Paul Zhou
- Unit of Anti-Viral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
117
|
Saphire EO, Aman MJ. Feverish Quest for Ebola Immunotherapy: Straight or Cocktail? Trends Microbiol 2016; 24:684-686. [PMID: 27338027 DOI: 10.1016/j.tim.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022]
Abstract
The ebolavirus immunotherapeutics field has replaced previous perceptions of antibody inadequacy with a new abundance of monoclonals exhibiting post exposure efficacy. Now the questions are: what epitopes to target, what immunological mechanisms to seek, whether species-specific or broadly reactive antibodies are best, and whether a cocktail or monotherapy should be used.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD, USA.
| |
Collapse
|
118
|
The use of convalescent plasma to treat emerging infectious diseases: focus on Ebola virus disease. Curr Opin Hematol 2016; 22:521-6. [PMID: 26457963 DOI: 10.1097/moh.0000000000000191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the use of convalescent plasma for the treatment of emerging infectious diseases, focusing on the recent use for the treatment of Ebola virus disease (EVD). RECENT FINDINGS Ebola convalescent plasma has been used as a therapy for treatment of EVD during the 2014 West Africa epidemic. Several cases from the United States and Europe have been recently published, in addition to multiple ongoing clinical trials in the United States and West Africa. Even more recently, convalescent plasma has been used for treatment of individuals with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. SUMMARY Although the first reports of successful treatment with passive immune therapy date back to the early 1900s, convalescent plasma has materialized as a possible therapy for patients who develop infection from one of the emerging infectious diseases such as EVD or MERS-CoV, although the efficacy of such therapy has yet to be proven in clinical trials.
Collapse
|
119
|
Zhang Q, Gui M, Niu X, He S, Wang R, Feng Y, Kroeker A, Zuo Y, Wang H, Wang Y, Li J, Li C, Shi Y, Shi X, Gao GF, Xiang Y, Qiu X, Chen L, Zhang L. Potent neutralizing monoclonal antibodies against Ebola virus infection. Sci Rep 2016; 6:25856. [PMID: 27181584 PMCID: PMC4867612 DOI: 10.1038/srep25856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.
Collapse
Affiliation(s)
- Qi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miao Gui
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ruoke Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yupeng Feng
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Yanan Zuo
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiade Li
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chufang Li
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology and Research Network of Immunity and Health, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structure Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2 Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9 Canada
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
120
|
Both Epistasis and Diversifying Selection Drive the Structural Evolution of the Ebola Virus Glycoprotein Mucin-Like Domain. J Virol 2016; 90:5475-5484. [PMID: 27009964 DOI: 10.1128/jvi.00322-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. IMPORTANCE The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak.
Collapse
|
121
|
Howell KA, Qiu X, Brannan JM, Bryan C, Davidson E, Holtsberg FW, Wec AZ, Shulenin S, Biggins JE, Douglas R, Enterlein SG, Turner HL, Pallesen J, Murin CD, He S, Kroeker A, Vu H, Herbert AS, Fusco ML, Nyakatura EK, Lai JR, Keck ZY, Foung SKH, Saphire EO, Zeitlin L, Ward AB, Chandran K, Doranz BJ, Kobinger GP, Dye JM, Aman MJ. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Rep 2016; 15:1514-1526. [PMID: 27160900 PMCID: PMC4871745 DOI: 10.1016/j.celrep.2016.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/07/2016] [Accepted: 04/03/2016] [Indexed: 12/02/2022] Open
Abstract
Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Collapse
Affiliation(s)
- Katie A Howell
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jennifer M Brannan
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Julia E Biggins
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Robin Douglas
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrea Kroeker
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hong Vu
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhen-Yong Keck
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Steven K H Foung
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Gary P Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Deparment of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA.
| |
Collapse
|
122
|
Babalola MO. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS - PAPER RETRACTED. Afr J Infect Dis 2016; 10:69-88. [PMID: 28480441 PMCID: PMC5411992 DOI: 10.21010/ajid.v10i2.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. Method: This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Results: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely associated with Ebola virus only; Ability to effectively cross the species barrier and establish productive infection in humans, non human primates, and other mammals; Ebola virus attacks every part of the human body; The Weaknesses include: Ebola virus transmission and persistence is severely limited by its virulence; Ebola virus essentially requires host encoded protein Niemann–Pick C1 (NPC1) for host’s cell’ entry; Ebola virus essentially requires host encoded proteins (TIM-1) for cell’ entry; Relative abundance of Ebolavirus Nucleoprotein than the other virion components; The Opportunities harnessed by ebola virus include: Lack of infection control practices in African health-care facilities and paucity of health infrastructures, especially in the endemic zones; Permissiveness of circulating Monocytes, Macrophages and dendritic cells in virus mobilization and dissemination; Collection, consumption and trade of wild games (bushmeats); Pertubation and drastic changes in forest ecosystems present opportunities for Ebola virus; Use of dogs in hunting predisposes man and animals to inter-species contact; Poverty, malnutrition, crowding, social disorder, mobility and political instability; Ease of travel and aviation as potentials for global spread; Possible mechanical transmission by arthropod vectors; No vaccines or therapeutics are yet approved for human treatment; The Threats to ebola virus include: Avoidance of direct contact with infected blood and other bodily fluids of infected patient; Appropriate and correct burial practices; Adoption of barrier Nursing; Improved surveillance to prevent potential spread of epidemic; Making Available Rapid laboratory equipment and procedures for prompt detection (ELISA, Western Blot, PCR); Sterilization or disinfection of equipment and safe disposal of instrument; Prompt hospitalization, isolation and quarantine of infected individual; Active contact tracing and monitoring, among others. Conclusion: The identified capacities and gaps presented in this study are inexhaustive framework to combat the ebola virus. To undermine and overcome the virus, focus should be aimed at strategically decreasing the identified strengths and opportunities, while increasing on the weaknesses of, and threats to the virus.
Collapse
Affiliation(s)
- Michael Oluyemi Babalola
- Epidemiology, Molecular Virology, and Special Pathogens Research, Department of Microbiology, Adekunle Ajasin University, P.M.B. 001, Akungba Akoko, Ondo state, Nigeria
| |
Collapse
|
123
|
Abstract
During virus entry, the surface glycoprotein of Ebola virus (EBOV) undergoes a complex set of transformations within the endosomal network. Tools to study EBOV entry have been limited to static immunofluorescence or biochemical and functional analysis. In a recent article in mBio, Spence et al. reported a novel, live-cell-imaging method that tracks this transformational journey of EBOV in real time [J. S. Spence, T. B. Krause, E. Mittler, R. K. Jangra, and K. Chandran, mBio 7(1):e01857-15, 2016, http://dx.doi.org/10.1128/mBio.01857-15]. The assay validates known mechanisms of EBOV entry and sheds light on some novel intricacies. Direct evidence supports the hypothesis that fusion is a rare event that starts in maturing early endosomes, is completed in late endosomes, and occurs entirely in Niemann-Pick C1 (NPC1)-positive (NPC1+) compartments. The study demonstrated that lipid mixing and productive fusion are temporally decoupled, with different energetic barriers and a protease-dependent step between the two events. Analysis of the mechanism of action of an important class of EBOV neutralizing antibodies, such as KZ52 and ZMapp, provides direct evidence that these antibodies act by inhibiting the membrane fusion.
Collapse
|
124
|
Abstract
As the 2014-15 Ebola virus epidemic in West Africa evolved from emergency to lesson, developers of both vaccines and therapeutic antibodies were left with the puzzlement of what kinds of anti-Ebola antibodies are predictably desirable in treating the afflicted, and what antibodies might account for the specific and lasting protection elicited by the more effective vaccines. The facile answer in virology is that neutralizing antibody (NAb) is desired and required. However, with Ebola and other filoviruses (as with many prior viral examples), there are multiple discordances in which neutralizing antibodies fail to protect animals, and others in which antibody-mediated protection is observed in the absence of measured virus neutralization. Explanation presumably resides in the protective role of antibodies that bind and functionally 'target' virus-infected cells, here called 'cell-targeting antibody', or CTAb. To be clear, many NAbs are also CTAbs, and in the case of Ebola the great majority of NAbs are likely CTAbs. Isotype, glycosylation, and other features of CTAbs are likely crucial in their capacity to mediate protection. Overall, results and analysis invite an increasingly complex view of antibody-mediated immunity to enveloped viruses.
Collapse
Affiliation(s)
- Alan Schmaljohn
- Microbiology & Immunology, University of Maryland School of Medicine,
USA,Corresponding author: Department of Microbiology & Immunology, University
of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA. Tel:
410-706-3059
| | - George K. Lewis
- Institute of Human Virology, University of Maryland School of Medicine, 725
W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|
125
|
Misasi J, Gilman MSA, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351:1343-6. [PMID: 26917592 PMCID: PMC5241105 DOI: 10.1126/science.aad6117] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Ebola virus causes hemorrhagic fever with a high case fatality rate for which there is no approved therapy. Two human monoclonal antibodies, mAb100 and mAb114, in combination, protect nonhuman primates against all signs of Ebola virus disease, including viremia. Here, we demonstrate that mAb100 recognizes the base of the Ebola virus glycoprotein (GP) trimer, occludes access to the cathepsin-cleavage loop, and prevents the proteolytic cleavage of GP that is required for virus entry. We show that mAb114 interacts with the glycan cap and inner chalice of GP, remains associated after proteolytic removal of the glycan cap, and inhibits binding of cleaved GP to its receptor. These results define the basis of neutralization for two protective antibodies and may facilitate development of therapies and vaccines.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02215, USA
| | - Morgan S A Gilman
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Gui
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - James Cunningham
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Xiang
- Centre for Infectious Diseases Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084 China.
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
126
|
Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M, Shi W, Choe M, Marcus H, Thompson EA, Cagigi A, Silacci C, Fernandez-Rodriguez B, Perez L, Sallusto F, Vanzetta F, Agatic G, Cameroni E, Kisalu N, Gordon I, Ledgerwood JE, Mascola JR, Graham BS, Muyembe-Tamfun JJ, Trefry JC, Lanzavecchia A, Sullivan NJ. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016; 351:1339-42. [PMID: 26917593 DOI: 10.1126/science.aad5224] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023]
Abstract
Ebola virus disease in humans is highly lethal, with case fatality rates ranging from 25 to 90%. There is no licensed treatment or vaccine against the virus, underscoring the need for efficacious countermeasures. We ascertained that a human survivor of the 1995 Kikwit Ebola virus disease outbreak maintained circulating antibodies against the Ebola virus surface glycoprotein for more than a decade after infection. From this survivor we isolated monoclonal antibodies (mAbs) that neutralize recent and previous outbreak variants of Ebola virus and mediate antibody-dependent cell-mediated cytotoxicity in vitro. Strikingly, monotherapy with mAb114 protected macaques when given as late as 5 days after challenge. Treatment with a single human mAb suggests that a simplified therapeutic strategy for human Ebola infection may be possible.
Collapse
Affiliation(s)
- Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Humabs BioMed SA, 6500 Bellinzona, Switzerland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sabue Mulangu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Suzanne Wollen
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ryan P Staupe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michael Bailey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hadar Marcus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Emily A Thompson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Chiara Silacci
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Blanca Fernandez-Rodriguez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | | | | | | | - Neville Kisalu
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Jean-Jacques Muyembe-Tamfun
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - John C Trefry
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland. Institute of Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
127
|
Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies. mBio 2016; 7:e02154-15. [PMID: 26908579 PMCID: PMC4791852 DOI: 10.1128/mbio.02154-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. IMPORTANCE Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs.
Collapse
|
128
|
Bornholdt ZA, Turner HL, Murin CD, Li W, Sok D, Souders CA, Piper AE, Goff A, Shamblin JD, Wollen SE, Sprague TR, Fusco ML, Pommert KBJ, Cavacini LA, Smith HL, Klempner M, Reimann KA, Krauland E, Gerngross TU, Wittrup KD, Saphire EO, Burton DR, Glass PJ, Ward AB, Walker LM. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 2016; 351:1078-83. [PMID: 26912366 DOI: 10.1126/science.aad5788] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.
Collapse
Affiliation(s)
- Zachary A Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D Murin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen Li
- Adimab, Lebanon, NH 03766, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colby A Souders
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Ashley E Piper
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Arthur Goff
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Joshua D Shamblin
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Suzanne E Wollen
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Thomas R Sprague
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kathleen B J Pommert
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa A Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Heidi L Smith
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Mark Klempner
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | - Keith A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126, USA
| | | | | | | | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02142, USA
| | - Pamela J Glass
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
129
|
Furuyama W, Marzi A, Nanbo A, Haddock E, Maruyama J, Miyamoto H, Igarashi M, Yoshida R, Noyori O, Feldmann H, Takada A. Discovery of an antibody for pan-ebolavirus therapy. Sci Rep 2016; 6:20514. [PMID: 26861827 PMCID: PMC4748290 DOI: 10.1038/srep20514] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023] Open
Abstract
During the latest outbreak of Ebola virus disease in West Africa, monoclonal antibody therapy (e.g., ZMapp) was utilized to treat patients. However, due to the antigenic differences among the five ebolavirus species, the current therapeutic monoclonal antibodies are only effective against viruses of the species Zaire ebolavirus. Although this particular species has indeed caused the majority of human infections in Central and, recently, West Africa, other ebolavirus species (e.g., Sudan ebolavirus and Bundibugyo ebolavirus) have also repeatedly caused outbreaks in Central Africa and thus should not be neglected in the development of countermeasures against ebolaviruses. Here we report the generation of an ebolavirus glycoprotein-specific monoclonal antibody that effectively inhibits cellular entry of representative isolates of all known ebolavirus species in vitro and show its protective efficacy in mouse models of ebolavirus infections. This novel neutralizing monoclonal antibody targets a highly conserved internal fusion loop in the glycoprotein molecule and prevents membrane fusion of the viral envelope with cellular membranes. The discovery of this highly cross-neutralizing antibody provides a promising option for broad-acting ebolavirus antibody therapy and will accelerate the design of improved vaccines that can selectively elicit cross-neutralizing antibodies against multiple species of ebolaviruses.
Collapse
Affiliation(s)
- Wakako Furuyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Asuka Nanbo
- Department of Cell Physiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Osamu Noyori
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
130
|
Spence JS, Krause TB, Mittler E, Jangra RK, Chandran K. Direct Visualization of Ebola Virus Fusion Triggering in the Endocytic Pathway. mBio 2016; 7:e01857-15. [PMID: 26861015 PMCID: PMC4752599 DOI: 10.1128/mbio.01857-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Ebola virus (EBOV) makes extensive and intricate use of host factors in the cellular endosomal/lysosomal pathway to release its genome into the cytoplasm and initiate infection. Following viral internalization into endosomes, host cysteine proteases cleave the EBOV fusion glycoprotein (GP) to unmask the binding site for its intracellular receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). GP-NPC1 interaction is required for viral entry. Despite these and other recent discoveries, late events in EBOV entry following GP-NPC1 binding and culminating in GP-catalyzed fusion between viral and cellular lipid bilayers remain enigmatic. A mechanistic understanding of EBOV membrane fusion has been hampered by the failure of previous efforts to reconstitute fusion in vitro or at the cell surface. This report describes an assay to monitor initial steps directly in EBOV membrane fusion-triggering of GP and virus-cell lipid mixing-by single virions in live cells. Fusogenic triggering of GP occurs predominantly in Rab7-positive (Rab7(+)) endosomes, absolutely requires interaction between proteolytically primed GP and NPC1, and is blocked by key GP-specific neutralizing antibodies with therapeutic potential. Unexpectedly, cysteine protease inhibitors do not inhibit lipid mixing by virions bearing precleaved GP, even though they completely block cytoplasmic entry by these viruses, as shown previously. These results point to distinct cellular requirements for different steps in EBOV membrane fusion and suggest a model in which host cysteine proteases are dispensable for GP fusion triggering after NPC1 binding but are required for the formation of fusion pores that permit genome delivery. IMPORTANCE Ebola virus (EBOV) causes outbreaks of highly lethal disease for which no approved vaccines or treatments exist. Recent work has elucidated key molecular features of the complex EBOV entry process, including stepwise interactions with multiple host factors. However, there is a critical gap in our understanding of events that surround the final membrane fusion step which persists due to the paucity of direct and extensive investigation of EBOV fusion. Here, we report a real-time assay for EBOV glycoprotein fusion triggering and use it to define its cellular location and requirements. We also uncover an unexpected requirement for host proteases at a step after fusion triggering that may reflect their role in formation of fusion pores for genome delivery.
Collapse
Affiliation(s)
- Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tyler B Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
131
|
Krause PR, Bryant PR, Clark T, Dempsey W, Henchal E, Michael NL, Regules JA, Gruber MF. Immunology of protection from Ebola virus infection. Sci Transl Med 2016; 7:286ps11. [PMID: 25947159 DOI: 10.1126/scitranslmed.aaa8202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A December 2014 meeting reviewed Ebola virus immunology relevant to vaccine development, including Ebola prevention, immunity, assay standardization, and regulatory considerations. Vaccinated humans appear to achieve immune responses comparable in magnitude with those associated with protection in nonhuman primates, suggesting that immunological data could be used to demonstrate vaccine efficacy.
Collapse
Affiliation(s)
- Philip R Krause
- Office of Vaccines Research and Review, U.S. Food and Drug Administration/Center for Biologics Evaluation and Research, Silver Spring, MD, USA.
| | - Paula R Bryant
- Division of Microbial and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Clark
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Walla Dempsey
- Division of Microbial and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erik Henchal
- Office of Vaccines Research and Review, U.S. Food and Drug Administration/Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | | | - Jason A Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Marion F Gruber
- Office of Vaccines Research and Review, U.S. Food and Drug Administration/Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
132
|
Flyak AI, Shen X, Murin CD, Turner HL, David JA, Fusco ML, Lampley R, Kose N, Ilinykh PA, Kuzmina N, Branchizio A, King H, Brown L, Bryan C, Davidson E, Doranz BJ, Slaughter JC, Sapparapu G, Klages C, Ksiazek TG, Saphire EO, Ward AB, Bukreyev A, Crowe JE. Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell 2016; 164:392-405. [PMID: 26806128 PMCID: PMC4733404 DOI: 10.1016/j.cell.2015.12.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/17/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022]
Abstract
Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections.
Collapse
Affiliation(s)
- Andrew I Flyak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua A David
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marnie L Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca Lampley
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andre Branchizio
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Hannah King
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Leland Brown
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | - James C Slaughter
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Curtis Klages
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
133
|
Geisen C, Kann G, Strecker T, Wolf T, Schüttfort G, van Kraaij M, MacLennan S, Rummler S, Weinigel C, Eickmann M, Fehling SK, Krähling V, Seidl C, Seifried E, Schmidt M, Schäfer R. Pathogen-reduced Ebola virus convalescent plasma: first steps towards standardization of manufacturing and quality control including assessment of Ebola-specific neutralizing antibodies. Vox Sang 2016; 110:329-35. [PMID: 26766162 DOI: 10.1111/vox.12376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Ebola virus disease is a public health emergency of international concern, and enormous efforts are being made in the development of vaccines and therapies. Ebola virus convalescent plasma is a promising anti-infective treatment of Ebola virus disease. Therefore, we developed and implemented a pathogen-reduced Ebola virus convalescent plasma concept in accordance with national, European and global regulatory framework. MATERIALS AND METHODS Ebola virus convalescent plasma manufacture and distribution was managed by a collection centre, two medical centres and an expert group from the European Blood Alliance. Ebola virus convalescent plasma was collected twice with an interval of 61 days from a donor recovering from Ebola virus disease in Germany. After pathogen reduction, the plasma was analysed for Ebola virus-specific immunoglobulin G (IgG) antibodies and its Ebola virus neutralizing activity. RESULTS Convalescent plasma could be collected without adverse events. Anti-Ebola virus IgG titres and Ebola-specific neutralizing antibodies in convalescent plasma were only slightly reduced after pathogen reduction treatment with S59 amotosalen/UVA. A patient in Italy with Ebola virus disease was treated with convalescent plasma without apparent adverse effects. DISCUSSION As proof of principle, we describe a concept and practical implementation of pathogen-reduced Ebola virus convalescent plasma manufacture, quality control and its clinical application to an Ebola virus disease patient.
Collapse
Affiliation(s)
- C Geisen
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - G Kann
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | - T Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - T Wolf
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | - G Schüttfort
- Department of Infectious Diseases, Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - S Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - C Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - M Eickmann
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - S K Fehling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - V Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - C Seidl
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - E Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - M Schmidt
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| | - R Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
134
|
Frei JC, Nyakatura EK, Zak SE, Bakken RR, Chandran K, Dye JM, Lai JR. Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Sci Rep 2016; 6:19193. [PMID: 26758505 PMCID: PMC4725817 DOI: 10.1038/srep19193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022] Open
Abstract
Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.
Collapse
Affiliation(s)
- Julia C Frei
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Elisabeth K Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - Samantha E Zak
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Disease, 1425 Porter Street, Fort Detrick, MD 21702
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
| |
Collapse
|
135
|
Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion. Viruses 2016; 8:v8010015. [PMID: 26761026 PMCID: PMC4728575 DOI: 10.3390/v8010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system.
Collapse
|
136
|
Zhang X, Ao Z, Bello A, Ran X, Liu S, Wigle J, Kobinger G, Yao X. Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection. Antiviral Res 2016; 127:20-31. [PMID: 26778707 PMCID: PMC7113790 DOI: 10.1016/j.antiviral.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/25/2022]
Abstract
Currently, no approved antiviral therapeutic is available for treatment or prevention of Ebola virus (EBOV) infection. In this study, we characterized an EBOV-glycoprotein (GP) pseudotyped HIV-1-based vector system in different cell cultures, including human umbilical vein endothelial cells (HUVECs) and human macrophages, for the screening of anti-EBOV-GP agent(s). Based on this system, we demonstrated that an aqueous extract (CHPV) from the Chinese herb Prunella vulgaris displayed a potent inhibitory effect on EBOV-GP pseudotyped virus (EBOV-GP-V)-mediated infection in various cell lines, including HUVEC and macrophage. In addition, our results indicated that CHPV was able to block an eGFP-expressing Zaire ebola virus (eGFP-ZEBOV) infection in VeroE6 cells. The anti-EBOV activity of CHPV was exhibited in a dose-dependent manner. At a 12.5 μg/ml concentration, the CHPV showed a greater than 80% inhibition of EBOV-GP-V and eGFP-EBOV infections. Likewise, our studies suggested that the inhibitory effect of CHPV occurred by binding directly to EBOV-GP-Vs and blocking the early viral events. Interestingly, our results have shown that CHPV was able to enhance the anti-EBOV activity of the monoclonal antibody MAb 2G4 against EBOV-GP. Overall, this study provides evidence that CHPV has anti-EBOV activity and may be developed as a novel antiviral approach against EBOV infection.
Collapse
Affiliation(s)
- Xu Zhang
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Alexander Bello
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaozhuo Ran
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China
| | - Jeffrey Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Canada; Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
137
|
Abstract
Antiviral therapy is one of the most exciting aspects of virology, since it has successfully employed basic science to generate very effective treatments for serious viral infections. Table 1 lists selected examples of those human viral diseases for which there are established antiviral drugs. Therapy for human immunodeficiency virus (HIV) infection has demonstrated that the potential impact antivirals can have on a lethal, chronic infection with lifesaving therapy administered to more than 12 million individuals by 2015. This dramatic advance is about to be recapitulated for the treatment of hepatitis C virus (HCV) infection. The development of new antiviral drugs is very much a work in progress, with active drug discovery programs for filoviruses, coronaviruses, dengue, and others.
Collapse
|
138
|
Luczkowiak J, Arribas JR, Gómez S, Jiménez-Yuste V, de la Calle F, Viejo A, Delgado R. Specific neutralizing response in plasma from convalescent patients of Ebola Virus Disease against the West Africa Makona variant of Ebola virus. Virus Res 2015; 213:224-229. [PMID: 26739425 DOI: 10.1016/j.virusres.2015.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The current outbreak of Ebola Virus Disease in West Africa is caused by a new variant of Ebola virus (EBOV) named Makona 2014, whose sequence differs 3% from isolates from Central Africa such as Mayinga 1976 EBOV. The specificity and kinetics of the neutralizing antibody response induced by the circulating Makona EBOV has not been thoroughly studied. METHODS We have used a lentiviral EBOV-glycoprotein (GP)-pseudotyped infection assay to measure Makona-GP and Mayinga-GP specific neutralizing activity of plasma from three convalescent Ebola Virus Disease patients from the current EBOV outbreak at 2, 3, 4 and 9 months post-infection. Total anti-EBOV GP IgG was measured by a commercial ELISA assay. FINDINGS In convalescent Ebola Virus Disease patients, Makona-GP-specific neutralizing titers increased from 2 months (mean IC50 1/59), 3 months (IC50 1/212), 4 months (IC50 1/239) and up to 9 months (IC50 1/268) post-infection. Neutralizing activity of plasma from the three convalescent Ebola Virus Disease patients was more vigorous against the current Makona-GP pseudotyped EBOV variant than against Mayinga-GP pseudotyped EBOV and this difference was observed at each time point tested: Mayinga vs Makona mean IC50 fold=4.92 at 2 months post-infection, 2.89 fold at 3 months post-infection, 2.23 at 4 months post-infection and 2.98 at 9 months post-infection (all differences p<0.01). Total level of IgG against EBOV-GP did not evolve significantly during the follow up. DISCUSSION In convalescent Ebola Virus Disease patients, EBOV-GP specific neutralizing activity increases over time, at least up to 9 months post-infection, which suggests that active affinity maturation of antibodies takes place long after clinical recovery. EBOV-GP specific neutralizing response is significantly higher against Makona EBOV circulating in West Africa than against the variants included in the currently approved vaccines. Correlates of protection for EBOV vaccines have not been completely established and the relevance of a lower neutralizing activity in convalescent plasma from the current outbreak against one of the EBOV-GPs contained in the vaccines in terms of its potential efficacy does not necessarily preclude its efficacy. However, this observation highlights the concern regarding the natural diversity of EBOV and its subsequent challenge for diagnosis, therapy and vaccine design. EBOV-GP neutralizing activity varies considerably over time in convalescent Ebola Virus Disease patients. Titering of convalescent blood products would be desirable to standardize and evaluate their potential therapeutic value.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| | - José R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Sara Gómez
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| | - Víctor Jiménez-Yuste
- Department of Hematology, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Fernando de la Calle
- Tropical Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Aurora Viejo
- Department of Hematology, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| |
Collapse
|
139
|
Dowall SD, Callan J, Zeltina A, Al-Abdulla I, Strecker T, Fehling SK, Krähling V, Bosworth A, Rayner E, Taylor I, Charlton S, Landon J, Cameron I, Hewson R, Nasidi A, Bowden TA, Carroll MW. Development of a Cost-effective Ovine Polyclonal Antibody-Based Product, EBOTAb, to Treat Ebola Virus Infection. J Infect Dis 2015; 213:1124-33. [PMID: 26715676 PMCID: PMC4779302 DOI: 10.1093/infdis/jiv565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022] Open
Abstract
The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease.
Collapse
Affiliation(s)
| | | | - Antra Zeltina
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas A Bowden
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
140
|
Vu H, Shulenin S, Grolla A, Audet J, He S, Kobinger G, Unfer RC, Warfield KL, Aman MJ, Holtsberg FW. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans. Antiviral Res 2015; 126:55-61. [PMID: 26681387 DOI: 10.1016/j.antiviral.2015.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 11/27/2022]
Abstract
The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals.
Collapse
Affiliation(s)
- Hong Vu
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Allen Grolla
- Public Health Agency of Canada, Winnipeg, Canada
| | | | - Shihua He
- Public Health Agency of Canada, Winnipeg, Canada
| | | | - Robert C Unfer
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | |
Collapse
|
141
|
Rodríguez-Martínez LM, Marquez-Ipiña AR, López-Pacheco F, Pérez-Chavarría R, González-Vázquez JC, González-González E, Trujillo-de Santiago G, Ponce-Ponce de León CA, Zhang YS, Dokmeci MR, Khademhosseini A, Alvarez MM. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS One 2015; 10:e0135859. [PMID: 26489048 PMCID: PMC4619498 DOI: 10.1371/journal.pone.0135859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs) have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV. METHODS/PRINCIPAL FINDINGS We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude) and they are easily and economically produced in bacterial cultures. CONCLUSION/SIGNIFICANCE Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.
Collapse
Affiliation(s)
| | | | - Felipe López-Pacheco
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
| | - Roberto Pérez-Chavarría
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
| | | | | | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
142
|
Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein. J Virol 2015; 90:279-91. [PMID: 26468532 DOI: 10.1128/jvi.02172-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus. Since the nature of future outbreaks cannot be predicted, there is an urgent need for therapeutics with broad protective efficacy against multiple filoviruses. Here we describe a set of monoclonal antibodies cross-reactive with multiple filovirus species. These antibodies target novel conserved epitopes within the envelope glycoprotein and exhibit protective efficacy in mice. We further present novel concepts for combination of cross-reactive antibodies against multiple epitopes that show enhanced efficacy compared to monotherapy and provide complete protection in mice. These findings set the stage for further evaluation of these antibodies in nonhuman primates and development of effective pan-filovirus immunotherapeutics for use in future outbreaks.
Collapse
|
143
|
Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J Virol 2015; 90:266-78. [PMID: 26468533 DOI: 10.1128/jvi.02171-15] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines.
Collapse
|
144
|
Ebola Virus Infection: Overview and Update on Prevention and Treatment. Infect Dis Ther 2015; 4:365-90. [PMID: 26363787 PMCID: PMC4675769 DOI: 10.1007/s40121-015-0079-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/08/2022] Open
Abstract
In 2014 and 2015, the largest Ebola virus disease (EVD) outbreak in history affected large populations across West Africa. The goal of this report is to provide an update on the epidemic and review current progress in the development,
evaluation and deployment of prevention and treatment strategies for EVD. Relevant information was identified through a comprehensive literature search using Medline, PubMed and CINAHL Complete and using the search terms Ebola, Ebola virus disease, Ebola hemorrhagic fever, West Africa outbreak, Ebola transmission, Ebola symptoms and signs, Ebola diagnosis, Ebola treatment, vaccines for Ebola and clinical trials on Ebola. Through 22 July 2015, a total of 27,741 EVD cases and 11,284 deaths were reported from all affected countries. Several therapeutic agents and novel vaccines for EVD have been developed and are now undergoing evaluation. Concurrent with active case investigation, contact tracing, surveillance and supportive care to patients and communities, there has been rapid progress in the development of new therapies and vaccines against EVD. Continued focus on strengthening clinical and public health infrastructure will have direct benefits in controlling the spread of EVD and will provide a strong foundation for deployment of new drugs and vaccines to affected countries when they become available. The unprecedented West Africa Ebola outbreak, response measures, and ensuing drug and vaccine development suggest that new tools for Ebola control may be available in the near future.
Collapse
|
145
|
Rhein BA, Maury WJ. Ebola virus entry into host cells: identifying therapeutic strategies. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:115-124. [PMID: 26509109 PMCID: PMC4617201 DOI: 10.1007/s40588-015-0021-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Filoviruses cause severe hemorrhagic fever in humans. The archetypal virus of this group, Ebola virus, is responsible for the current filovirus epidemic in West Africa. Filoviruses infect most mammalian cells, resulting in broad species tropism and likely contributing to rapid spread of virus throughout the body. A thorough understanding of filovirus entry events will facilitate the development of therapeutics against these critical steps in the viral life cycle. This review summarizes the current understanding of filovirus entry and discusses some of the recent advancements in therapeutic strategies that target entry.
Collapse
Affiliation(s)
- Bethany A. Rhein
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| | - Wendy J. Maury
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| |
Collapse
|
146
|
Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies. J Virol 2015; 89:10982-92. [PMID: 26311869 DOI: 10.1128/jvi.01490-15] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/17/2015] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epitope conservation, and epitope accessibility—also remain largely unknown. To help define how each MAb interacts with GP, here we used comprehensive alanine-scanning mutagenesis (shotgun mutagenesis), neutralization escape, and whole virion binding to define each MAb's specific epitope, epitope accessibility, epitope conservation, and apparent affinity. Each of the six therapeutic MAbs binds nonidentical epitopes in the GP base, glycan cap, or mucin-like domain. Their apparent affinity, epitope complementarity, and epitope accessibility helps explain why MAbs 4G7 and 13C6 are more protective than 2G4 and 1H3. The mucin-like domain MAbs 6D8 and 13F6 bind with the strongest apparent affinity, helping to explain their effectiveness in vivo despite their inability to neutralize virus. IMPORTANCE Ebola virus disease (EVD) can be caused by four different filovirus family members, including Ebola virus (EBOV), which infected 10 times more people in western Africa over the last year than all previous EVD outbreaks combined, with a number of cases distributed across the globe by travelers. Cocktails of inhibitory monoclonal antibodies (MAbs), such as ZMAb, MB-003, and in particular ZMapp, have demonstrated in animal models some of the most significant therapeutic potential for treating EVD, and in 2014, 15 patients were treated with ZMapp or ZMAb under compassionate-use protocols. Here, we have defined the epitope features for the most important therapeutic MAbs against EBOV developed to date. Defining the epitopes and binding characteristics for these MAbs, as well as the commonly used reference MAb KZ52, helps explain their breadth of reactivity against different ebolavirus species, predict viral evasion against these MAbs, and design new cocktails of MAbs with improved complementarity.
Collapse
|
147
|
Reynard O, Volchkov VE. Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP. J Infect Dis 2015; 212 Suppl 2:S372-8. [DOI: 10.1093/infdis/jiv303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
148
|
Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks. Antimicrob Agents Chemother 2015; 59:5892-902. [PMID: 26248374 DOI: 10.1128/aac.01105-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients.
Collapse
|
149
|
Carra JH, Martins KAO, Schokman RD, Robinson CG, Steffens JT, Bavari S. A thermostable, chromatographically purified Ebola nano-VLP vaccine. J Transl Med 2015; 13:228. [PMID: 26174690 PMCID: PMC4502941 DOI: 10.1186/s12967-015-0593-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Filovirus virus-like particles (VLP) are strong immunogens with the potential for development into a safe, non-infectious vaccine. However, the large size and filamentous structure of this virus has heretofore made production of such a vaccine difficult. Herein, we present new assays and a purification procedure to yield a better characterized and more stable product. METHODS Sonication of VLP was used to produce smaller "nano-VLP", which were purified by membrane chromatography. The sizes and lengths of VLP particles were analyzed using electron microscopy and an assay based on transient occlusion of a nanopore. Using conformationally-sensitive antibodies, we developed an in vitro assay for measuring GP conformational integrity in the context of VLP, and used it to profile thermal stability. RESULTS We developed a new procedure for rapid isolation of Ebola VLP using membrane chromatography that yields a filterable and immunogenic product. Disruption of VLP filaments by sonication followed by filtration produced smaller particles of more uniform size, having a mean diameter close to 230 nm. These reduced-size VLP retained GP conformation and were protective against mouse-adapted Ebola challenge in mice. The "nano-VLP" consists of GP-coated particles in a mixture of morphologies including circular, branched, "6"-shaped, and filamentous ones up to ~1,500 nm in length. Lyophilization conferred a high level of thermostability on the nano-VLP. Unlike Ebola VLP in solution, which underwent denaturation of GP upon moderate heating, the lyophilized nano-VLP can withstand at least 1 h at 75°C, while retaining conformational integrity of GP and the ability to confer protective immunity in a mouse model. CONCLUSIONS We showed that Ebola virus-like particles can be reduced in size to a more amenable range for manipulation, and that these smaller particles retained their temperature stability, the structure of the GP antigen, and the ability to stimulate a protective immune response in mice. We developed a new purification scheme for "nano-VLP" that is more easily scaled up and filterable. The product could also be made thermostable by lyophilization, which is highly significant for vaccines used in tropical countries without a reliable "cold-chain" of refrigeration.
Collapse
Affiliation(s)
- John H Carra
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA.
| | - Karen A O Martins
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA.
| | - Rowena D Schokman
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA.
| | - Camenzind G Robinson
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA. .,Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| | - Jesse T Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA.
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702-9211, USA.
| |
Collapse
|
150
|
Park DJ, Dudas G, Wohl S, Goba A, Whitmer SLM, Andersen KG, Sealfon RS, Ladner JT, Kugelman JR, Matranga CB, Winnicki SM, Qu J, Gire SK, Gladden-Young A, Jalloh S, Nosamiefan D, Yozwiak NL, Moses LM, Jiang PP, Lin AE, Schaffner SF, Bird B, Towner J, Mamoh M, Gbakie M, Kanneh L, Kargbo D, Massally JLB, Kamara FK, Konuwa E, Sellu J, Jalloh AA, Mustapha I, Foday M, Yillah M, Erickson BR, Sealy T, Blau D, Paddock C, Brault A, Amman B, Basile J, Bearden S, Belser J, Bergeron E, Campbell S, Chakrabarti A, Dodd K, Flint M, Gibbons A, Goodman C, Klena J, McMullan L, Morgan L, Russell B, Salzer J, Sanchez A, Wang D, Jungreis I, Tomkins-Tinch C, Kislyuk A, Lin MF, Chapman S, MacInnis B, Matthews A, Bochicchio J, Hensley LE, Kuhn JH, Nusbaum C, Schieffelin JS, Birren BW, Forget M, Nichol ST, Palacios GF, Ndiaye D, Happi C, Gevao SM, Vandi MA, Kargbo B, Holmes EC, Bedford T, Gnirke A, Ströher U, Rambaut A, Garry RF, Sabeti PC. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell 2015; 161:1516-26. [PMID: 26091036 PMCID: PMC4503805 DOI: 10.1016/j.cell.2015.06.007] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.
Collapse
Affiliation(s)
- Daniel J Park
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA.
| | - Gytis Dudas
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Shirlee Wohl
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Shannon L M Whitmer
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Kristian G Andersen
- Scripps Translational Science Institute, The Scripps Research Institute, 3344 N Torrey Pines Court, La Jolla, CA 92037, USA
| | - Rachel S Sealfon
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason T Ladner
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | - Sarah M Winnicki
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - James Qu
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Stephen K Gire
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | - Dolo Nosamiefan
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Nathan L Yozwiak
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Lina M Moses
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Pan-Pan Jiang
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Brian Bird
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jonathan Towner
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Mambu Mamoh
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | - David Kargbo
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | - Edwin Konuwa
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | | | - Momoh Foday
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | - Bobbie R Erickson
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Tara Sealy
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Dianna Blau
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Christopher Paddock
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Aaron Brault
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Brian Amman
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jane Basile
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Scott Bearden
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jessica Belser
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Eric Bergeron
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Shelley Campbell
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Ayan Chakrabarti
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Kimberly Dodd
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Mike Flint
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Aridth Gibbons
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Christin Goodman
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - John Klena
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Laura McMullan
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Laura Morgan
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Brandy Russell
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Johanna Salzer
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Angela Sanchez
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - David Wang
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Irwin Jungreis
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Andrey Kislyuk
- DNAnexus, 1975 West El Camino Real, Suite 101, Mountain View, CA 94040, USA
| | - Michael F Lin
- DNAnexus, 1975 West El Camino Real, Suite 101, Mountain View, CA 94040, USA
| | - Sinead Chapman
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Bronwyn MacInnis
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Ashley Matthews
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - James Bochicchio
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Chad Nusbaum
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - John S Schieffelin
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Bruce W Birren
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Marc Forget
- Médecins Sans Frontières, Rue de l'Arbre Bénit 46, 1050 Bruxelles, Belgium
| | - Stuart T Nichol
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Gustavo F Palacios
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Daouda Ndiaye
- Université Cheikh Anta Diop, BP 5005, Dakar, Sénégal
| | - Christian Happi
- Redeemers University Nigeria, KM 46 Lagos-Ibadan Expressway, Redemption City, Ogun State, Nigeria
| | - Sahr M Gevao
- University of Sierra Leone, A.J. Momoh St, Tower Hill, Freetown, Sierra Leone
| | - Mohamed A Vandi
- Sierra Leone Ministry of Health and Sanitation, Youyi Building, Freetown, Sierra Leone
| | - Brima Kargbo
- Sierra Leone Ministry of Health and Sanitation, Youyi Building, Freetown, Sierra Leone
| | - Edward C Holmes
- University of Sydney, Johns Hopkins Drive, Camperdown NSW 2050, Australia
| | - Trevor Bedford
- Fred Hutchinson Cancer Research Center, 110 Fairview Avenue North, Seattle, WA 98109, USA
| | - Andreas Gnirke
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Ute Ströher
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK; Fogarty International Center, National Institutes of Health, 31 Center Drive, MSC 2220 Bethesda, MD 20892, USA.
| | - Robert F Garry
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|