101
|
Regan EA, Mazur W, Meoni E, Toljamo T, Millar J, Vuopala K, Bowler RP, Rahman I, Nicks ME, Crapo JD, Kinnula VL. Smoking and COPD increase sputum levels of extracellular superoxide dismutase. Free Radic Biol Med 2011; 51:726-32. [PMID: 21621610 DOI: 10.1016/j.freeradbiomed.2011.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 02/02/2023]
Abstract
Extracellular superoxide dismutase (ECSOD) is the major superoxide-scavenging enzyme in the lung. Certain ECSOD polymorphisms are protective against COPD. We postulated that smokers and COPD subjects would have altered levels of ECSOD in the lung, airway secretions, and/or plasma. Lung tissue ECSOD was evaluated from nonsmokers, smokers, and subjects with mild to very severe COPD by Western blot, immunohistochemistry, and ELISA. ECSOD levels in plasma, bronchoalveolar lavage fluid (BALF), and induced-sputum supernatants were analyzed by ELISA and correlated with smoking history and disease status. Immunohistochemistry identified ECSOD in extracellular matrix around bronchioles, arteries, and alveolar walls, with decreases seen in the interstitium and vessels of severe COPD subjects using digital image analysis. Plasma ECSOD did not differ between COPD subjects and controls nor based on smoking status. ECSOD levels in induced sputum supernatants were elevated in current smokers and especially in COPD subjects compared to nonsmokers, whereas corresponding changes could not be seen in the BALF. ECSOD expression was reduced around vessels and bronchioles in COPD lungs. Substantial increases in sputum ECSOD in smokers and COPD is interpreted as an adaptive response to increased oxidative stress and may be a useful biomarker of disease activity in COPD.
Collapse
Affiliation(s)
- Elizabeth A Regan
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Xu D, Guo H, Xu X, Lu Z, Fassett J, Hu X, Xu Y, Tang Q, Hu D, Somani A, Geurts A, Ostertag E, Bache RJ, Weir EK, Chen Y. Exacerbated pulmonary arterial hypertension and right ventricular hypertrophy in animals with loss of function of extracellular superoxide dismutase. Hypertension 2011; 58:303-9. [PMID: 21730301 PMCID: PMC3170043 DOI: 10.1161/hypertensionaha.110.166819] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 06/06/2011] [Indexed: 12/15/2022]
Abstract
Studies have demonstrated that increased oxidative stress contributes to the pathogenesis and the development of pulmonary artery hypertension (PAH). Extracellular superoxide dismutase (SOD3) is essential for removing extracellular superoxide anions, and it is highly expressed in lung tissue. However, it is not clear whether endogenous SOD3 can influence the development of PAH. Here we examined the effect of SOD3 knockout on hypoxia-induced PAH in mice and a loss-of-function SOD3 gene mutation (SOD3(E124D)) on monocrotaline (40 mg/kg)-induced PAH in rats. SOD3 knockout significantly exacerbated 2 weeks of hypoxia-induced right ventricular (RV) pressure and RV hypertrophy, whereas RV pressure in SOD3 knockout mice under normoxic conditions is similar to wild-type controls. In untreated control rats at age of 8 weeks, there was no significant difference between wild-type and SOD3(E124D) rats in RV pressure and the ratio of RV weight:left ventricular weight (0.25±0.02 in wild-type rats versus 0.25±0.01 in SOD3(E124D) rats). However, monocrotaline caused significantly greater increases of RV pressure in SOD3(E124D) rats (48.6±1.8 mm Hg in wild-type versus 57.5±3.1 mm Hg in SOD3(E124D) rats), of the ratio of RV weight:left ventricular weight (0.41±0.01 versus 0.50±0.09; P<0.05), and of the percentage of fully muscularized small arterioles in SOD3(E124D) rats (55.2±2.3% versus 69.9±2.6%; P<0.05). Together, these findings indicate that the endogenous SOD3 has no role in the development of PAH under control conditions but plays an important role in protecting the lung from the development of PAH under stress conditions.
Collapse
Affiliation(s)
- Dachun Xu
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, Shanghai Tenth People's Hospital, of Tongji University, Shanghai, China
| | - Haipeng Guo
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Xu
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Zhongbing Lu
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John Fassett
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Xinli Hu
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, of Tongji University, Shanghai, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dayi Hu
- Peking University People's Hospital, Beijing, China
| | - Arif Somani
- Pediatric Critical Care Medicine, University of Minnesota
| | - Aron Geurts
- Human and Molecular Genetics Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric Ostertag
- Transposagen Biopharmaceuticals, Lexington, KY
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky & Department of Pathology & Laboratory Medicine, University of Kentucky Chandler Hospital
| | - Robert J. Bache
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - E. Kenneth Weir
- Department of Medicine, University of Minnesota and Veterans Affairs Medical Center, Minneapolis, Minnesota
| | - Yingjie Chen
- Lillehei Heart Institute and the Cardiovascular Division, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
103
|
Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol 2011; 43:1122-33. [DOI: 10.1016/j.biocel.2011.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 11/18/2022]
|
104
|
Jung I, Kim TY, Kim-Ha J. Identification of Drosophila
SOD3 and its protective role against phototoxic damage to cells. FEBS Lett 2011; 585:1973-8. [DOI: 10.1016/j.febslet.2011.05.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/29/2022]
|
105
|
Jiang Z, Fletcher NM, Ali-Fehmi R, Diamond MP, Abu-Soud HM, Munkarah AR, Saed GM. Modulation of redox signaling promotes apoptosis in epithelial ovarian cancer cells. Gynecol Oncol 2011; 122:418-23. [PMID: 21620448 DOI: 10.1016/j.ygyno.2011.04.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Epithelial ovarian cancer (EOC) cells are known to be resistant to apoptosis through a mechanism that may involve alteration in their redox balance. NADPH oxidase is a major source of intracellular superoxide, which is converted to the less toxic product by superoxide dismutase (SOD). Superoxide contributes to hypoxia inducible factor (HIF)-1α stabilization. We sought to determine the effects of inhibiting the generation of intracellular reactive oxygen species (ROS) on apoptosis of EOC cells. METHODS Diphenyleneiodonium (DPI), an irreversible ROS inhibitor, was used to inhibit the generation of ROS in EOC cell lines, SKOV-3 and MDAH-2774, followed by assessment of apoptosis, NADPH oxidase, SOD3 and HIF-1α expression. A combination of immunohistochemistry, immunoprecipitation/western blot, and real-time RT-PCR were utilized to evaluate the expression of these enzymes in EOC cells as well as normal ovarian tissue and ovarian cancer tissue specimens. RESULTS DPI treatment significantly induced apoptosis in both EOC cell lines as evident by increased caspase-3 activity and TUNEL assay. Additionally, both EOC cell lines were found to express NADPH oxidase, HIF-1α, and SOD3, which were highly sensitive to DPI treatment. DPI treatment resulted in reduced NADPH oxidase, SOD3 and HIF-1α levels. Furthermore, ovarian cancer tissues were found to manifest higher NADPH oxidase levels as compared to normal ovarian tissues. CONCLUSIONS These data suggest that lowering oxidative stress, possibly through the inhibition of NADPH oxidase, induces apoptosis in ovarian cancer cells and may serve as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhongliang Jiang
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
N-Glycosylation profiling of recombinant mouse extracellular superoxide dismutase produced in Chinese hamster ovary cells. Glycoconj J 2011; 28:183-96. [PMID: 21573946 DOI: 10.1007/s10719-011-9333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD), the major SOD isoenzyme in biological fluids, is known to be N-glycosylated and heterogeneous as was detected in most glycoproteins. However, only one N-glycan structure has been reported in recombinant human EC-SOD produced in Chinese hamster ovary (CHO) cells. Thus, a precise N-glycan profile of the recombinant EC-SOD is not available. In this study, we report profiling of the N-glycan in the recombinant mouse EC-SOD produced in CHO cells using high-resolution techniques, including the liberation of N-glycans by treatment with PNGase F, fluorescence labeling by pyridylamination, characterization by anion-exchange, normal and reversed phase-HPLC separation, and mass spectrometry. We succeeded in identifying 26 different types of N-glycans in the recombinant enzyme. The EC-SOD N-glycans were basically core-fucosylated (98.3% of the total N-glycan content), and were high mannose sugar chain, and mono-, bi-, tri-, and tetra-antennary complex sugar chains exhibiting varying degrees of sialylation. Four of the identified N-glycans were uniquely modified with a sulfate group, a Lewis(x) structure, or an α-Gal epitope. The findings will shed new light on the structure-function relationships of EC-SOD N-glycans.
Collapse
|
107
|
Jun S, Fattman CL, Kim BJ, Jones H, Dory L. Allele-specific effects of ecSOD on asbestos-induced fibroproliferative lung disease in mice. Free Radic Biol Med 2011; 50:1288-96. [PMID: 21362472 PMCID: PMC5819745 DOI: 10.1016/j.freeradbiomed.2011.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 01/31/2023]
Abstract
Previous work by others suggests that there is a strain-dependent variation in the susceptibility to inflammatory lung injury in mice. Specifically, the 129/J mice appear to be more resistant to asbestos-induced pulmonary fibrosis than the C57BL/6 strain. A separate line of evidence suggests that extracellular superoxide dismutase (ecSOD) may play an important role in protecting the lung from such injuries. We have recently reported that the 129/J strain of mice has an ecSOD genotype and phenotype distinctly different from those of the C57BL/6 mice. In order to identify ecSOD as a potential "asbestos-injury resistance" gene, we bred congenic mice, on the C57BL/6 background, carrying the wild type (sod3wt) or the 129/J (sod3129) allele for ecSOD. This allowed us to examine the role of ecSOD polymorphism in susceptibility to lung injury in an otherwise identical genetic background. Interestingly, asbestos treatment induces a significant (~40%) increase in plasma ecSOD activity in the sod3129 mice, but not in the sod3wt mice. Asbestos administration results in a loss of ecSOD activity and protein from lung tissue of both congenic strains, but the lung ecSOD activity remains significantly higher in sod3129 mice. As expected, asbestos treatment results in a significant recovery of ecSOD protein in bronchoalveolar lavage fluid (BALF). The BALF of sod3129 mice also have significantly lower levels of proteins and inflammatory cells, especially neutrophils, accompanied by a significantly lower extent of lung injury, as measured by a pathology index score or hydroxyproline content. Immunohistochemistry reveals a significant loss of ecSOD from the tips of the respiratory epithelial cells in response to asbestos treatment and that the loss of immunodetectable ecSOD is compensated for by enzyme expression by infiltrating cells, especially in the sod3wt mice. Our studies thus identify ecSOD as an important anti-inflammatory gene, responsible for most, if not all of the resistance to asbestos-induced lung injury reported for the 129/J strain of mice. The data further suggest allele-specific differences in the regulation of ecSOD expression. These congenic mice therefore represent a very useful model to study the role of this enzyme in all inflammatory diseases. Polymorphisms in human ecSOD have also been reported and it appears logical to assume that such variations may have a profound effect on disease susceptibility.
Collapse
Affiliation(s)
- Sujung Jun
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Cheryl L. Fattman
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219
| | - Byung-Jin Kim
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Harlan Jones
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| | - Ladislav Dory
- Department of Molecular Biology and Immunology, University of North Texas Health Sciences Center at Fort Worth, Fort Worth, TX 76107
| |
Collapse
|
108
|
Qiu Z, Li J, Zhang Y, Bi Z, Wei H. Microwave pretreatment can enhance tolerance of wheat seedlings to CdCl2 stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:820-825. [PMID: 21145593 DOI: 10.1016/j.ecoenv.2010.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
In order to determine the role of microwave in cadmium stress tolerance of wheat (Triticum aestivum L.), seeds were exposed to microwave radiation for 0, 5, 10 and 15 s (wavelength 125 mm, power density 126 mW cm(-2), 2450 MHz), and when the seedlings were 7 d old (with one fully expanded leaves), they were treated with 150 μM CdCl(2) solution for 10 d. Changes in a number of physiological and biochemical characteristics were measured and used as indicators of the protective capacity of microwave radiation in this experiment. Our results showed that 150 μM CdCl(2) treatment reduced plant height, root length, dry weight, AsA and GSH concentration and the activities of SOD, POD, CAT and APX, enhanced the concentration of MDA, H(2)O(2) and the production rate of O(2)- when compared with the control. However, seeds with microwave pretreatment 5 or 10 s conferred tolerance to cadmium stress in wheat seedlings by decreasing the concentration of MDA and H(2)O(2), the production rate of O(2)- and increasing the activities of SOD, POD, CAT, APX and AsA and GSH concentration. Therefore, antioxidative enzymes and antioxidative compounds may participate in tolerance of wheat seedlings to cadmium stress. The results also showed that the microwave radiation had a positive physiological effect on the growth and development of cadmium stressed seedlings. This is the first investigation reporting the use of microwave pretreatment to enhance cadmium stress tolerance of wheat.
Collapse
Affiliation(s)
- ZongBo Qiu
- College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, PR China.
| | | | | | | | | |
Collapse
|
109
|
Kliment CR, Oury TD. Extracellular superoxide dismutase protects cardiovascular syndecan-1 from oxidative shedding. Free Radic Biol Med 2011; 50:1075-80. [PMID: 21334435 PMCID: PMC3070856 DOI: 10.1016/j.freeradbiomed.2011.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/20/2011] [Accepted: 02/11/2011] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex system that regulates cell function within a tissue. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is bound to the matrix, and previous studies show that a lack of EC-SOD results in increased cardiac injury, fibrosis, and loss of cardiac function. This study tests the hypothesis that EC-SOD protects against cardiac fibrosis mechanistically by limiting oxidative stress and oxidant-induced shedding of syndecan-1 in the extracellular matrix. Wild-type and EC-SOD null mice were treated with a single dose of doxorubicin, 15 mg/kg, and evaluated on day 15. Serum and left-ventricle tissue were collected for biochemical assays, including Western blot, mRNA expression, and immunohistochemical staining for syndecan-1. The loss of EC-SOD and doxorubicin-induced oxidative injury led to increases in shed syndecan-1 in the serum, which originates from the endothelium of the vasculature. The shed syndecan-1 ectodomain induces proliferation of primary mouse cardiac fibroblasts. This study suggests that one mechanism by which EC-SOD protects the heart against cardiac fibrosis is the prevention of oxidative shedding of cardiovascular syndecan-1 and its subsequent induction of fibroblast proliferation. This study provides potential new targets for understanding and altering fibrosis progression in the heart.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
110
|
Case AJ, McGill JL, Tygrett LT, Shirasawa T, Spitz DR, Waldschmidt TJ, Legge KL, Domann FE. Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic Biol Med 2011; 50:448-58. [PMID: 21130157 PMCID: PMC3026081 DOI: 10.1016/j.freeradbiomed.2010.11.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/12/2010] [Accepted: 11/22/2010] [Indexed: 01/23/2023]
Abstract
Reactive oxygen species (ROS) are critical in a broad spectrum of cellular processes including signaling, tumor progression, and innate immunity. The essential nature of ROS signaling in the immune systems of Drosophila and zebrafish has been demonstrated; however, the role of ROS, if any, in mammalian adaptive immune system development and function remains unknown. This work provides the first clear demonstration that thymus-specific elevation of mitochondrial superoxide (O(2)(•-)) disrupts normal T cell development and impairs the function of the mammalian adaptive immune system. To assess the effect of elevated mitochondrial superoxide in the developing thymus, we used a T-cell-specific knockout of manganese superoxide dismutase (i.e., SOD2) and have thus established a murine model to examine the role of mitochondrial superoxide in T cell development. Conditional loss of SOD2 led to increased superoxide, apoptosis, and developmental defects in the T cell population, resulting in immunodeficiency and susceptibility to the influenza A virus H1N1. This phenotype was rescued with mitochondrially targeted superoxide-scavenging drugs. These findings demonstrate that loss of regulated levels of mitochondrial superoxide lead to aberrant T cell development and function, and further suggest that manipulations of mitochondrial superoxide levels may significantly alter clinical outcomes resulting from viral infection.
Collapse
Affiliation(s)
- Adam J. Case
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Jodi L. McGill
- Department of Pathology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Lorraine T. Tygrett
- Department of Pathology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Takuji Shirasawa
- Juntendo University, Department of Aging Control Medicine, Hongo 3-3-10-201, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Thomas J. Waldschmidt
- Department of Pathology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Kevin L. Legge
- Department of Pathology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
111
|
Sasaki T, Shimizu T, Koyama T, Sakai M, Uchiyama S, Kawakami S, Noda Y, Shirasawa T, Kojima S. Superoxide dismutase deficiency enhances superoxide levels in brain tissues during oxygenation and hypoxia-reoxygenation. J Neurosci Res 2011; 89:601-10. [PMID: 21280062 DOI: 10.1002/jnr.22581] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/18/2022]
Abstract
To determine whether the mitochondria or cytoplasm produces superoxide during ischemia-reperfusion of the brain, we analyzed lucigenine-enhanced chemiluminescence emission in slices of brain tissue prepared from manganese-superoxide dismutase (Mn-SOD)-deficient (Sod2-deficient) and copper and zinc-superoxide dismutase (Cu,Zn-SOD)-deficient (Sod1-deficient) mice during oxygenation and hypoxia-reoxygenation. The steady-state level of chemiluminescence under oxygenated conditions was significantly enhanced by a lack of either Sod. We hypothesize that the enhanced chemiluminescence produced by Sod2 and Sod1 deficiency reflects in situ superoxide generation in the mitochondria and cytoplasm, respectively. Based on this hypothesis, the major site of intracellular superoxide generation was assumed to be the cytoplasm. However, mitochondria occupy less cellular space than the cytoplasm. In terms of volume, the superoxide concentration is assumed to be higher in mitochondria than in the cytoplasm. Mn-SOD activity was 18% of the Cu,Zn-SOD activity observed in the wild-type mouse brain. However, when mitochondrial SOD activity was expressed as per volume, it was assumed to be equal to that observed in the cytoplasm. This imbalance between superoxide and SOD activity is expected to cause mitochondrial oxidative damage. The chemiluminescence intensity increased significantly during reoxygenation and was enhanced by Sod2 deficiency but was not significantly affected by Sod1 deficiency. The superoxide concentration in the reoxygenated brain would be higher in the mitochondria than in the cytoplasm. The present study indicated that the major site of intracellular superoxide generation in the brain during oxygenation is the cytoplasm, whereas it is the mitochondria during reoxygenation.
Collapse
Affiliation(s)
- Toru Sasaki
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H. The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic Biol Med 2011; 50:371-80. [PMID: 21092756 PMCID: PMC3340560 DOI: 10.1016/j.freeradbiomed.2010.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/13/2010] [Accepted: 11/10/2010] [Indexed: 01/09/2023]
Abstract
Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole-body inflammation, is particularly threatening for elderly patients, who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage) and a decrease in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD) in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, whereas up-regulation of iNOS is augmented, in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by two-dimensional gel electrophoresis, Western blotting, and mass spectrometry, we identified proteins that show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin, and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Junji Ueda
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Shoji Yamamoto
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - B. Mark Evers
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Hiroshi Saito
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
113
|
Raber J, Villasana L, Rosenberg J, Zou Y, Huang TT, Fike JR. Irradiation enhances hippocampus-dependent cognition in mice deficient in extracellular superoxide dismutase. Hippocampus 2011; 21:72-80. [PMID: 20020436 PMCID: PMC2891276 DOI: 10.1002/hipo.20724] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild-type mice, irradiation enhances hippocampus- dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype-dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild-type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype-dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
115
|
Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, Crapo JD, Rahman I. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A 2010; 107:15571-6. [PMID: 20713693 PMCID: PMC2932580 DOI: 10.1073/pnas.1007625107] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and functions as a scavenger of O(2)(*-). ECM fragmentation, which can be triggered by oxidative stress, participates in the pathogenesis of chronic obstructive pulmonary disease (COPD) through attracting inflammatory cells into the lungs. The level of SOD3 is significantly decreased in lungs of patients with COPD. However, the role of endogenous SOD3 in the development/progression of emphysema is unknown. We hypothesized that SOD3 protects against emphysema by attenuating oxidative fragmentation of ECM in mice. To test this hypothesis, SOD3-deficient, SOD3-transgenic, and WT C57BL/6J mice were exposed to cigarette smoke (CS) for 3 d (300 mg total particulate matter/m(3)) to 6 mo (100 mg/m(3) total particulate matter) or by intratracheal elastase injection. Airspace enlargement, lung inflammation, lung mechanical properties, and exercise tolerance were determined at different time points during CS exposure or after elastase administration. CS exposure and elastase administration caused airspace enlargement as well as impaired lung function and exercise capacity in SOD3-null mice, which were improved in mice overexpressing SOD3 and by pharmacological SOD mimetic. These phenomena were associated with SOD3-mediated protection against oxidative fragmentation of ECM, such as heparin sulfate and elastin, thereby attenuating lung inflammatory response. In conclusion, SOD3 attenuates emphysema and reduces oxidative fragmentation of ECM in mouse lung. Thus, pharmacological augmentation of SOD3 in the lung may have a therapeutic potential in the intervention of COPD/emphysema.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Gnanapragasam Arunachalam
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Jae-woong Hwang
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Sangwoon Chung
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Isaac K. Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| | - Vuokko L. Kinnula
- Pulmonary Division, Department of Medicine, University of Helsinki and Helsinki University Hospital, FIN-00029 Helsinki, Finland; and
| | - James D. Crapo
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
116
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
117
|
Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L. Reactive oxygen species: A radical role in development? Free Radic Biol Med 2010; 49:130-43. [PMID: 20353819 DOI: 10.1016/j.freeradbiomed.2010.03.020] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/20/2010] [Accepted: 03/23/2010] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), mostly derived from mitochondrial activity, can damage various macromolecules and consequently cause cell death. This ROS activity has been characterized in vitro, and correlative evidence suggests a role in various pathological conditions. In addition to this passive ROS activity, ROS also participate in cell signaling processes, though the relevance of this function in vivo is poorly understood. Throughout development, elevated cell activity is probably accompanied by highly active metabolism and, consequently, the production of large amounts of ROS. To allow proper development, cells must protect themselves from these potentially damaging ROS. However, to what degree ROS could participate as signaling molecules controlling fundamental and developmentally relevant cellular processes such as proliferation, differentiation, and death is an open question. Here we discuss why available data do not yet provide conclusive evidence on the role of ROS in development, and we review recent methods to detect ROS in vivo and genetic strategies that can be exploited specifically to resolve these uncertainties.
Collapse
Affiliation(s)
- David Hernández-García
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | | | | | |
Collapse
|
118
|
Manni ML, Oury TD. Significance of Polymorphisms in the Superoxide Dismutase-3 Gene in COPD: It's all about Location! COPD 2010; 7:237-9. [DOI: 10.3109/15412555.2010.502818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
119
|
Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 2010; 7:239-54. [PMID: 20586583 DOI: 10.3109/1547691x.2010.492254] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxygen therapy using mechanical ventilation with hyperoxia is necessary to treat patients with respiratory failure and distress. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), causing cellular damage and multiple organ dysfunctions. As the lungs are directly exposed, hyperoxia can cause both acute and chronic inflammatory lung injury and compromise innate immunity. ROS may contribute to pulmonary oxygen toxicity by overwhelming redox homeostasis, altering signaling cascades that affect cell fate, ultimately leading to hyperoxia-induced acute lung injury (HALI). HALI is characterized by pronounced inflammatory responses with leukocyte infiltration, injury, and death of pulmonary cells, including epithelia, endothelia, and macrophages. Under hyperoxic conditions, ROS mediate both direct and indirect modulation of signaling molecules such as protein kinases, transcription factors, receptors, and pro- and anti-apoptotic factors. The focus of this review is to elaborate on hyperoxia-activated key sensing molecules and current understanding of their signaling mechanisms in HALI. A better understanding of the signaling pathways leading to HALI may provide valuable insights on its pathogenesis and may help in designing more effective therapeutic approaches.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Allied Health Professions, Queens, NY, USA
| | | | | | | | | |
Collapse
|
120
|
Son YJ, Bae JY, Chong SH, Lee HS, Mo SH, Kim TY, Choe H. Expression, high cell density culture and purification of recombinant EC-SOD in Escherichia coli. Appl Biochem Biotechnol 2010; 162:1585-98. [PMID: 20467833 DOI: 10.1007/s12010-010-8940-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 02/23/2010] [Indexed: 11/26/2022]
Abstract
Superoxide dismutase (SOD) catalyzes the dismutation of the biologically toxic superoxide anion into oxygen and hydrogen peroxide and is deployed by the immune system to kill invading microorganisms. Extracellular SOD (EC-SOD) is a copper- and zinc-containing glycoprotein found predominantly in the soluble extracellular compartment that consists of approximately 30-kDa subunits. Here, we purified recombinant EC-SOD3 (rEC-SOD) from Escherichia coli BL21(DE3) expressing a pET-SOD3-1 construct. Cells were cultured by high-density fed-batch fermentation to a final OD(600) of 51.8, yielding a final dry cell weight of 17.6 g/L. rEC-SOD, which was expressed as an inclusion body, comprised 48.7% of total protein. rEC-SOD was refolded by a simple dilution refolding method and purified by cation-exchange and reverse-phase chromatography. The highly purified rEC-SOD thus obtained was a mixture of monomers and dimers, both of which were active. The molecular weights of monomeric and dimeric rEC-SOD were 25,255 and 50,514 Da, respectively. The purified rEC-SOD had 4.3 EU/mg of endotoxin and the solubility of rEC-SOD was more than 80% between pH 7 and 10. In 2 L of fed-batch fermentation, 60 mg of EC-SOD (99.9% purity) could be produced and total activity was 330.24 U. The process established in this report, involving high-cell-density fermentation, simple dilution refolding, and purification with ion-exchange and reverse-phase chromatography, represents a commercially viable process for producing rEC-SOD.
Collapse
Affiliation(s)
- Young-Jin Son
- Department of Physiology and Research Institute for Biomacromolecules, University of Ulsan College of Medicine, 388-1 PoongNap-dong, Songpa-goo, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
121
|
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:297-348. [PMID: 20078222 DOI: 10.1146/annurev.pathol.4.110807.092314] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and Departments of Biological Chemistry, Ecology and Evolutionary Biology, and Pediatrics, University of California at Irvine, Irvine, California 92697-3940, USA.
| | | | | |
Collapse
|
122
|
Fukui M, Zhu BT. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic Biol Med 2010; 48:821-30. [PMID: 20060889 PMCID: PMC2861908 DOI: 10.1016/j.freeradbiomed.2009.12.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/10/2009] [Accepted: 12/30/2009] [Indexed: 11/20/2022]
Abstract
Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We show that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and function at early time points after glutamate exposure. However, overexpression of SOD2 in these cells reduced the mitochondrial superoxide level, protected mitochondrial morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochondria are important early targets of glutamate-induced oxidative neurotoxicity.
Collapse
Affiliation(s)
- Masayuki Fukui
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
123
|
Saed GM, Jiang ZL, Fletcher NM, Al Arab A, Diamond MP, Abu-Soud HM. Exposure to polychlorinated biphenyls enhances lipid peroxidation in human normal peritoneal and adhesion fibroblasts: a potential role for myeloperoxidase. Free Radic Biol Med 2010; 48:845-50. [PMID: 20067832 PMCID: PMC2834263 DOI: 10.1016/j.freeradbiomed.2010.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/14/2009] [Accepted: 01/05/2010] [Indexed: 01/28/2023]
Abstract
Nitric oxide, superoxide, and lipid peroxidation (LPO) produced under oxidative stress may contribute to the development of postoperative adhesions. The objective of this study was to determine the effects of polychlorinated biphenyls (PCBs) on LPO, superoxide dismutase, myeloperoxidase (MPO), and nitrite/nitrate in human normal peritoneal and adhesion fibroblasts. PCB treatment reduced inducible nitric oxide synthase (iNOS) expression as well as levels of nitrite/nitrate in both cell lines. Although there was no difference in iNOS expression between the two cell lines, adhesion fibroblasts manifested lower basal levels of MPO compared to normal peritoneal fibroblasts. There was a reduction in MPO expression and its activity in response to PCB treatment in normal peritoneal fibroblasts; however, this effect was minimal in adhesion fibroblasts. Moreover, adhesion fibroblasts manifested higher levels of LPO compared to normal peritoneal fibroblasts, whereas PCB treatment increased LPO levels in both cell types. We conclude that PCBs promote the development of the adhesion phenotype by generating an oxidative stress environment. This is evident by lower iNOS, MPO, and nitrite/nitrate and a simultaneous increase in LPO. Loss of MPO activity, possibly through a mechanism involving MPO heme depletion and free iron release, is yet another source of oxidative stress.
Collapse
Affiliation(s)
- Ghassan M Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48:642-55. [PMID: 20036736 PMCID: PMC2819595 DOI: 10.1016/j.freeradbiomed.2009.12.015] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.
Collapse
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
125
|
Nagato A, Silva FL, Silva AR, Bezerra FS, Oliveira ML, Belló-Klein A, Cristovao Porto L, Santos Valenca S. Hyperoxia-induced lung injury is dose dependent in Wistar rats. Exp Lung Res 2010; 35:713-28. [PMID: 19895324 DOI: 10.3109/01902140902853184] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxygen is indispensable for aerobic respiration. However, the effects of hyperoxia on the lungs are poorly defined. The aim of the present study was to determine the effects of different oxygen concentrations on rat lungs. Rats (n = 6 per group) were exposed to hyperoxia for 90 minutes at 3 different concentrations: 50% (H50%), 75% (H75%), or 100% (H100%). Bronchoalveolar lavage (BAL) was performed and the right lungs were removed for histological analyses. The BAL samples were assayed for lipid peroxidation and antioxidant status using biochemical methods. Hyperoxia induced influxes of macrophages (1.8- to 2.3-fold) and neutrophils (7.0- to 10.2-fold) into the lungs compared to the control group (exposed to normoxia; n = 6). Histological analyses of the hyperoxic groups showed hemorrhagic areas and septal edema. A significant increase (2.2-fold) in lipid peroxidation was observed in the H100% group compared to the control group (P <.05). Glutathione peroxidase and superoxide dismutase activities were reduced to approximately 20% and 40% of the control values, respectively, in all 3 hyperoxic groups, and catalase activity was reduced in both the H75% (-0.6-fold) and H100% (-0.7-fold) groups. These results indicate a harmful effect of hyperoxia on the rat lung, with evidence of oxidant/antioxidant imbalance and histological damage.
Collapse
Affiliation(s)
- Akinori Nagato
- Department of Histology and Embryology, UERJ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Fischer LR, Glass JD. Oxidative stress induced by loss of Cu,Zn-superoxide dismutase (SOD1) or superoxide-generating herbicides causes axonal degeneration in mouse DRG cultures. Acta Neuropathol 2010; 119:249-59. [PMID: 20039174 DOI: 10.1007/s00401-009-0631-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 12/13/2022]
Abstract
Axonal degeneration is a common pathologic feature in peripheral neuropathy, neurodegenerative disease, and normal aging. Oxidative stress may be an important mechanism of axonal degeneration, but is underrepresented among current experimental models. To test the effects of loss of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) on axon survival, we cultured dorsal root ganglion (DRG) neurons from SOD1 knockout mice. Beginning as early as 48-72 h, we observed striking degeneration of Sod1-/- axons that was prevented by introduction of human SOD1 and was attenuated by antioxidant treatment. To test susceptibility to increased superoxide production, we exposed wild-type DRGs to the redox-cycling herbicides paraquat and diquat (DQ). Dose-dependent axon degeneration was observed, and toxicity of DQ was exacerbated by SOD1 deficiency. MTT staining suggested that DRG axons are more susceptible to injury than their parent cell bodies in both paradigms. Taken together, these data demonstrate susceptibility of DRG axons to oxidative stress-mediated injury due to loss of SOD1 or excess superoxide production. These in vitro models provide a novel means of investigating oxidative stress-mediated injury to axons, to improve our understanding of axonal redox control and dysfunction in peripheral neuropathy.
Collapse
Affiliation(s)
- Lindsey R Fischer
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
127
|
|
128
|
Abstract
The reader may be eager to examine in which diseases ozonetherapy can be proficiently used and she/he will be amazed by the versatility of this complementary approach (Table 9 1). The fact that the medical applications are numerous exposes the ozonetherapist to medical derision because superficial observers or sarcastic sceptics consider ozonetherapy as the modern panacea. This seems so because ozone, like oxygen, is a molecule able to act simultaneously on several blood components with different functions but, as we shall discuss, ozonetherapy is not a panacea. The ozone messengers ROS and LOPs can act either locally or systemically in practically all cells of an organism. In contrast to the dogma that “ozone is always toxic”, three decades of clinical experience, although mostly acquired in private clinics in millions of patients, have shown that ozone can act as a disinfectant, an oxygen donor, an immunomodulator, a paradoxical inducer of antioxidant enzymes, a metabolic enhancer, an inducer of endothelial nitric oxide synthase and possibly an activator of stem cells with consequent neovascularization and tissue reconstruction.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Physiology, University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
129
|
Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 2010; 88:23-45. [PMID: 19850449 PMCID: PMC3236664 DOI: 10.1016/j.eplepsyres.2009.09.020] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/18/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Mitochondrial oxidative stress and dysfunction are contributing factors to various neurological disorders. Recently, there has been increasing evidence supporting the association between mitochondrial oxidative stress and epilepsy. Although certain inherited epilepsies are associated with mitochondrial dysfunction, little is known about its role in acquired epilepsies such as temporal lobe epilepsy (TLE). Mitochondrial oxidative stress and dysfunction are emerging as key factors that not only result from seizures, but may also contribute to epileptogenesis. The occurrence of epilepsy increases with age, and mitochondrial oxidative stress is a leading mechanism of aging and age-related degenerative disease, suggesting a further involvement of mitochondrial dysfunction in seizure generation. Mitochondria have critical cellular functions that influence neuronal excitability including production of adenosine triphosphate (ATP), fatty acid oxidation, control of apoptosis and necrosis, regulation of amino acid cycling, neurotransmitter biosynthesis, and regulation of cytosolic Ca(2+) homeostasis. Mitochondria are the primary site of reactive oxygen species (ROS) production making them uniquely vulnerable to oxidative stress and damage which can further affect cellular macromolecule function, the ability of the electron transport chain to produce ATP, antioxidant defenses, mitochondrial DNA stability, and synaptic glutamate homeostasis. Oxidative damage to one or more of these cellular targets may affect neuronal excitability and increase seizure susceptibility. The specific targeting of mitochondrial oxidative stress, dysfunction, and bioenergetics with pharmacological and non-pharmacological treatments may be a novel avenue for attenuating epileptogenesis.
Collapse
Affiliation(s)
- Simon Waldbaum
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| | - Manisha Patel
- Department of Pharmaceutical Sciences University of Colorado Denver School of Pharmacy Aurora, CO 80045 U.S.A
| |
Collapse
|
130
|
Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, Schnapp LM. Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J 2009; 35:1388-95. [PMID: 20032019 DOI: 10.1183/09031936.00089409] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We hypothesised that comparing the protein mixture in bronchoalveolar lavage fluid (BALF) between humans and mice may lead to mechanistic insights into common and divergent pathways that evolved in each species. BALF from four humans and six mice was pooled separately and underwent identical shotgun proteomic analysis. Functional and network analysis was applied to identify overlapping and distinct pathways enriched in the BALF. Follow-up experiments using Western analysis in unpooled BALF samples were performed. We identified 91 unique proteins in human and 117 unique proteins in mouse BALF samples. Functional analysis of the proteins revealed conservation of several key processes between the species, including defence response. Oxidative stress response, however, was selectively enriched only in mouse BALF. Differences in the expression of peroxiredoxin-1, a key member of the defence pathway against oxidative injury, were confirmed between normal human and mouse BALF and in models of lung injury. A computational proteomics approach of mouse and human BALF confirms the conservation of immune and defence-mediated pathways while highlighting differences in response to oxidative stress. These observations suggest that the use of mice models to study human lung disorders should be undertaken with an appreciation of interspecies variability.
Collapse
Affiliation(s)
- S A Gharib
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
131
|
Kliment CR, Suliman HB, Tobolewski JM, Reynolds CM, Day BJ, Zhu X, McTiernan CF, McGaffin KR, Piantadosi CA, Oury TD. Extracellular superoxide dismutase regulates cardiac function and fibrosis. J Mol Cell Cardiol 2009; 47:730-42. [PMID: 19695260 PMCID: PMC2774793 DOI: 10.1016/j.yjmcc.2009.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 01/12/2023]
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant that protects the heart from ischemia and the lung from inflammation and fibrosis. The role of cardiac EC-SOD under normal conditions and injury remains unclear. Cardiac toxicity, a common side effect of doxorubicin, involves oxidative stress. We hypothesize that EC-SOD is critical for normal cardiac function and protects the heart from oxidant-induced fibrosis and loss of function. C57BL/6 and EC-SOD-null mice were treated with doxorubicin, 15 mg/kg (i.p.). After 15 days, echocardiography was used to assess cardiac function. Left ventricle (LV) tissue was used to assess fibrosis and inflammation by staining, Western blot, and hydroxyproline analysis. At baseline, EC-SOD-null mice have LV wall thinning and increases in LV end diastolic dimensions compared to wild-type mice but have normal cardiac function. After doxorubicin, EC-SOD-null mice have decreases in fractional shortening not apparent in WT mice. Lack of EC-SOD also leads to increases in myocardial apoptosis and significantly more LV fibrosis and inflammatory cell infiltration. Administration of the metalloporphyrin AEOL 10150 abrogates the loss of cardiac function, and potentially fibrosis, associated with doxorubicin treatment in both wild-type and EC-SOD KO mice. EC-SOD is critical for normal cardiac morphology and protects the heart from oxidant-induced fibrosis, apoptosis, and loss of function. The antioxidant metalloporphyrin AEOL 10150 effectively protects cardiac function from doxorubicin-induced oxidative stress in vivo. These findings identify targets for the use of antioxidant agents in oxidant-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Esposito E, Cuzzocrea S. Role of nitroso radicals as drug targets in circulatory shock. Br J Pharmacol 2009; 157:494-508. [PMID: 19630831 DOI: 10.1111/j.1476-5381.2009.00255.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants [such as peroxynitrite (OONO(-))] as mediators of shock and ischaemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium adenosine 5'-triphosphate-ase activity, inactivation of membrane sodium channels and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock and ischaemia and reperfusion. Moreover, various studies have clearly shown that treatment with either OONO(-) decomposition catalysts, which selectively inhibit OONO(-), or with superoxide dismutase (SOD) mimetics, which selectively mimic the catalytic activity of the human SOD enzymes, have been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock and ischaemia/reperfusion injury.
Collapse
|
133
|
Pouyet L, Carrier A. Mutant mouse models of oxidative stress. Transgenic Res 2009; 19:155-64. [PMID: 19662508 DOI: 10.1007/s11248-009-9308-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/21/2009] [Indexed: 01/14/2023]
Abstract
Oxidative stress corresponds to an excess in reactive oxygen species (ROS) including free radicals which are highly reactive with cellular constituents. Thereby ROS induce damage to DNA, proteins and lipids, which are all involved in the etiology of numerous pathologies such as cancer. To prevent potential damage, a tight regulation of ROS level is achieved through numerous enzyme systems and small molecules such as glutathione and vitamin C. Mutant mouse models targeting antioxidant enzymes have confirmed their essential role in ROS level control, and have shown a limited redundancy of their activity. Additionally, a number of other mutant mouse models exhibit increased ROS levels, suggesting an antioxidant role for the corresponding targeted gene. This is the case for mice deficient for the transcription factors p53, JunD, FoxOs, and HIF-2alpha, which are involved in the modulation of antioxidant enzymes expression. Mice deficient either for the stress factor TP53INP1, which is a target of p53, or for ATM involved in DNA damage sensoring, also show a constitutive oxidative stress. Finally, the last reported case of mice with a permanent oxidative stress targets Bmi which is a transcriptional repressor of the polycomb family. Interestingly, most of these "oxidative stressed mice" either spontaneously develop cancers or are more susceptible than wild-type to tumor-induced protocols. Altogether, these models markedly reinforce the causal link between oxidative stress and cancer. In the future, they will be helpful tools for basic research aimed at unraveling the interplay between redox control actors as well as their relative importance. In addition, these oxidative stressed mouse models may be useful for applied research in particular in preclinical assays where redox status regulation is absolutely required.
Collapse
Affiliation(s)
- Laurent Pouyet
- INSERM U624, Case 915 Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | | |
Collapse
|
134
|
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules for normal biologic processes. However, the generation of ROS can also provoke damage to multiple cellular organelles and processes, which can ultimately disrupt normal physiology. An imbalance between the production of ROS and the antioxidant defenses that protect cells has been implicated in the pathogenesis of a variety of diseases, such as cancer, asthma, pulmonary hypertension, and retinopathy. The nature of the injury will ultimately depend on specific molecular interactions, cellular locations, and timing of the insult. This review will outline the origins of endogenous and exogenously generated ROS. The molecular, cellular, pathologic, and physiologic targets will then be discussed with a particular emphasis on aspects relevant to child development. Finally, antioxidant defenses that scavenge ROS and mitigate associated toxicities will be presented, with a discussion of potential therapeutic approaches for the prevention and/or treatment of human diseases using enzymatic and nonenzymatic antioxidants.
Collapse
Affiliation(s)
- Richard L Auten
- Department of Pediatrics, Duke Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
135
|
Chen B, Caballero S, Seo S, Grant MB, Lewin AS. Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature. Invest Ophthalmol Vis Sci 2009; 50:5587-95. [PMID: 19628743 DOI: 10.1167/iovs.09-3633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Retinal ischemia/reperfusion (I/R) injury results in the generation of reactive oxygen species (ROS). The aim of this study was to investigate whether delivery of the manganese superoxide dismutase gene (SOD2) or the catalase gene (CAT) could rescue the retinal vascular damage induced by I/R in mice. METHODS I/R injury to the retina was induced in mice by elevating intraocular pressure for 2 hours, and reperfusion was established immediately afterward. One eye of each mouse was pretreated with plasmids encoding manganese superoxide dismutase or catalase complexed with cationic liposomes and delivered by intravitreous injection 48 hours before initiation of the procedure. Superoxide ion, hydrogen peroxide, and 4-hydroxynonenal (4-HNE) protein modifications were measured by fluorescence staining, immunohistochemistry, and Western blot analysis 1 day after the I/R injury. At 7 days after injury, retinal vascular cell apoptosis and acellular capillaries were quantitated. RESULTS Superoxide ion, hydrogen peroxide, and 4-HNE protein modifications increased at 24 hours after I/R injury. Administration of plasmids encoding SOD2 or CAT significantly reduced levels of superoxide ion, hydrogen peroxide, and 4-HNE. Retinal vascular cell apoptosis and acellular capillary numbers increased greatly by 7 days after the injury. Delivery of SOD2 or CAT inhibited the I/R-induced apoptosis of retinal vascular cell and retinal capillary degeneration. CONCLUSIONS Delivery of antioxidant genes inhibited I/R-induced retinal capillary degeneration, apoptosis of vascular cells, and ROS production, suggesting that antioxidant gene therapy might be a treatment for I/R-related disease.
Collapse
Affiliation(s)
- Baihua Chen
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha Hunan Province, People's Republic of China
| | | | | | | | | |
Collapse
|
136
|
Manganese and extracellular superoxide dismutase polymorphisms and risk for asbestosis. J Biomed Biotechnol 2009; 2009:493083. [PMID: 19636420 PMCID: PMC2712642 DOI: 10.1155/2009/493083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/08/2009] [Accepted: 05/24/2009] [Indexed: 11/18/2022] Open
Abstract
Manganese and extracellular superoxide dismutases (SOD2 and SOD3) are part of the enzymatic defence against reactive oxygen species, which are involved in the pathogenesis of asbestosis. This study investigates whether SOD2Ala − 9Val and SOD3 Arg213Gly genetic polymorphisms represent risk factors for asbestosis in workers exposed to asbestos. The study included 262 cases with asbestosis and 265 controls with no asbestos-related disease. Cumulative asbestos exposure was calculated for each subject. A real-time PCR assay was introduced for genotyping. Logistic regression analysis was used to assess asbestosis risk. Asbestosis was associated with the homozygous SOD2 − 9Ala/Ala genotype (OR = 1.50, 95% CI 1.01–2.24), whereas the association for the SOD3 Arg/Gly genotype was not significant (OR = 1.63, 95% CI 0.62–4.27).
The finding that the SOD2 − 9Ala/Ala genotype increases the risk for asbestosis indicates that, in addition to asbestos exposure, genetic factors may also have a significant influence on the development of asbestosis.
Collapse
|
137
|
Podowski M, Calvi CL, Cheadle C, Tuder RM, Biswals S, Neptune ER. Complex integration of matrix, oxidative stress, and apoptosis in genetic emphysema. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:84-96. [PMID: 19541933 DOI: 10.2353/ajpath.2009.080870] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alveolar enlargement, which is characteristic of bronchopulmonary dysplasia, congenital matrix disorders, and cigarette smoke-induced emphysema, is thought to result from enhanced inflammation and ensuing excessive matrix proteolysis. Although there is recent evidence that cell death and oxidative stress punctuate these diseases, the mechanistic link between abnormal lung extracellular matrix and alveolar enlargement is lacking. We hypothesized that the tight-skin (TSK) mouse, which harbors a spontaneous internal duplication in the microfibrillar glycoprotein fibrillin-1, might show whether matrix alterations are sufficient to promote oxidative stress and cell death, injury cascades central to the development of clinical emphysema. We observed no evidence of increased metalloprotease activation by histochemical and zymographic methods. We did find initial oxidative stress followed by increased apoptosis in the postnatal TSK lung. Both blunted antioxidant production and reduced extracellular superoxide dismutase activity were evident in the neonatal lung. High-dose antioxidant treatment with N-acetylcysteine improved airspace caliber and attenuated oxidative stress and apoptosis in neonatal and adult TSK mice. These data establish that an abnormal extracellular matrix without overt elastolysis is sufficient to confer susceptibility to postnatal normoxia, reminiscent of bronchopulmonary dysplasia. The resultant oxidative stress and apoptosis culminate in profound airspace enlargement. The TSK lung exemplifies the critical interplay between extracellular matrix, oxidative stress, and cell-death cascades that may contribute to genetic and acquired airspace enlargement.
Collapse
Affiliation(s)
- Megan Podowski
- Divisionsof Pulmonary, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
138
|
Usui S, Komeima K, Lee SY, Jo YJ, Ueno S, Rogers BS, Wu Z, Shen J, Lu L, Oveson BC, Rabinovitch PS, Campochiaro PA. Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. Mol Ther 2009; 17:778-86. [PMID: 19293779 PMCID: PMC2803613 DOI: 10.1038/mt.2009.47] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/11/2009] [Indexed: 01/10/2023] Open
Abstract
Oxidative and nitrosative damage are major contributors to cone cell death in retinitis pigmentosa (RP). In this study, we explored the effects of augmenting components of the endogenous antioxidant defense system in models of RP, rd1, and rd10 mice. Unexpectedly, overexpression of superoxide dismutase 1 (SOD1) in rd1 mice increased oxidative damage and accelerated cone cell death. With an elaborate mating scheme, genetically engineered rd10 mice with either inducible expression of SOD2, Catalase, or both in photoreceptor mitochondria were generated. Littermates with the same genetic background that did not have increased expression of SOD2 nor Catalase provided ideal controls. Coexpression of SOD2 and Catalase, but not either alone, significantly reduced oxidative damage in the retinas of postnatal day (P) 50 rd10 mice as measured by protein carbonyl content. Cone density was significantly greater in P50 rd10 mice with coexpression of SOD2 and Catalase together than rd10 mice that expressed SOD2 or Catalase alone, or expressed neither. Coexpression of SOD2 and Catalase in rd10 mice did not slow rod cell death. These data support the concept of bolstering the endogenous antioxidant defense system as a gene-based treatment strategy for RP, and also indicate that coexpression of multiple components may be needed.
Collapse
Affiliation(s)
- Shinichi Usui
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ganguly K, Depner M, Fattman C, Bein K, Oury TD, Wesselkamper SC, Borchers MT, Schreiber M, Gao F, von Mutius E, Kabesch M, Leikauf GD, Schulz H. Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics 2009; 37:260-7. [PMID: 19318538 DOI: 10.1152/physiolgenomics.90363.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polymorphisms in Superoxide dismutase 3, extracellular (SOD3) have been associated with reduced lung function and susceptibility to chronic obstructive pulmonary disease (COPD) in adults. Previously, we identified SOD3 as a contributing factor to altered ventilation efficiency (dead space volume/total lung capacity) in mice. Because SOD3 protects the extracellular matrix of the lung, we hypothesized that SOD3 variants also may influence postnatal lung function development. In this study, SOD3 transcript and protein localization were examined in mouse strains with differing ventilation efficiency [C3H/HeJ (high), JF1/Msf (low)] during postnatal lung development. Compared with C3H/HeJ mice, JF1/Msf mice had Sod3 promoter single nucleotide polymorphisms (SNPs) that could affect transcription factor binding sites and a decline in total lung SOD3 mRNA during postnatal development. In adult JF1/Msf mice, total lung SOD3 activity as well as SOD3 transcript and protein in airway epithelial and alveolar type II cells and the associated matrix decreased. In children (n = 1,555; age 9-11 yr), two common SOD3 SNPs, one located in the promoter region [C/T affecting a predicted aryl hydrocarbon receptor-xenobiotic response element (AhR-XRE) binding motif] and the other in exon 2 (Thr/Ala missense mutation), were associated with decreased forced expiratory volume in 1 s (FEV(1)), and the promoter SNP was associated with decreased maximal expiratory flow at 25% volume (MEF(25)). In vitro, a SOD3 promoter region-derived oligonucleotide containing the C variant was more effective in competing with the nuclear protein-binding capacity of a labeled probe than that containing the T variant. Along with the previous associated risk of lung function decline in COPD, these findings support a possible role of SOD3 variants in determining lung function in children.
Collapse
Affiliation(s)
- Koustav Ganguly
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Overexpression of manganese superoxide dismutase in human dermal fibroblasts enhances the contraction of free floating collagen lattice: implications for ageing and hyperplastic scar formation. Arch Dermatol Res 2009; 301:273-87. [PMID: 19306099 DOI: 10.1007/s00403-009-0935-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 01/14/2023]
Abstract
Cell-matrix interactions are of significant importance for tissue homeostasis of the skin and, if disturbed, may lead to ageing and hyperplastic scar formation. We have studied fibroblasts stably overexpressing manganese superoxide dismutase (MnSOD) with a defined capacity for the removal of superoxide anions and concomitant accumulation of hydrogen peroxide to evaluate the role of enhanced MnSOD activity on the dynamics of cell-matrix interactions in the three-dimensional collagen lattice contraction assay. MnSOD overexpressing fibroblast populated collagen lattices revealed a significantly enhanced contraction compared to collagen lattices populated with vector control cells. The enhanced collagen lattice contraction was in part due to an increase in active TGF-beta1 and the accumulation of H2O2 in MnSOD overexpressing fibroblasts populated collagen lattices. Inhibition of TGF-beta1 signalling by the ALK4,5,7 kinases' inhibitor SB431542 at least partly inhibited the enhanced collagen lattice contraction of MnSOD overexpressing fibroblasts populated lattices. In addition, supplementation of vector control fibroblast populated collagen lattices with recombinant TGF-beta1 concentration dependently enhanced the collagen lattice contraction. In the presence of the antioxidant Ebselen, a mimic of H2O2 and other hydroperoxides/peroxynitrite-detoxifying glutathione peroxidase, collagen lattice contraction and the activation of TGF-beta1 were significantly reduced in collagen lattices populated with MnSOD overexpressing fibroblasts. Collectively, these data suggest that H2O2 or other hydroperoxides or peroxynitrite or a combination thereof may function as important second messengers in collagen lattice contraction and act at least in part via TGF-beta1 activation.
Collapse
|
141
|
Antonyuk SV, Strange RW, Marklund SL, Hasnain SS. The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. J Mol Biol 2009; 388:310-26. [PMID: 19289127 DOI: 10.1016/j.jmb.2009.03.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/16/2022]
Abstract
Extracellular superoxide dismutase (SOD3) is a homotetrameric copper- and zinc-containing glycoprotein with affinity for heparin. The level of SOD3 is particularly high in blood vessel walls and in the lungs. The enzyme has multiple roles including protection of the lungs against hyperoxia and preservation of nitric oxide. The common mutation R213G, which reduces the heparin affinity of SOD3, is associated with increased risk of myocardial infarctions and stroke. We report the first crystal structure of human SOD3 at 1.7 A resolution. The overall subunit fold and the subunit-subunit interface of the SOD3 dimer are similar to the corresponding structures in Cu-Zn SOD (SOD1). The metal-binding sites are similar to those found in SOD1, but with Asn180 replacing Thr137 at the Cu-binding site and a much shorter loop at the zinc-binding site. The dimers form a functional homotetramer that is fashioned through contacts between two extended loops on each subunit. The N- and C-terminal end regions required for tetramerisation and heparin binding, respectively, are highly flexible. Two grooves fashioned by the tetramer interface are suggestive as the probable sites for heparin and collagen binding.
Collapse
Affiliation(s)
- Svetlana V Antonyuk
- Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
142
|
Abstract
Oxidative stress, resulting from mitochondrial dysfunction, excitotoxicity, or neuroinflammation, is implicated in numerous neurodegenerative conditions. Damage due to superoxide, hydroxyl radical, and peroxynitrite has been observed in diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as in acute conditions that lead to neuronal death, such as stroke and epilepsy. Antioxidant therapies to remove these toxic compounds have been of great interest in treating these disorders. Catalytic antioxidants mimic the activities of superoxide dismutase or catalase or both, detoxifying superoxide and hydrogen peroxide, and in some cases, peroxynitrite and other toxic species as well. Several compounds have demonstrated efficacy in in vitro and in animal models of neurodegeneration, leading to optimism that catalytic antioxidants may prove to be useful therapies in human disease.
Collapse
Affiliation(s)
- Tamara R Golden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
143
|
Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I, Oury TD. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 2009; 284:3537-45. [PMID: 19073610 PMCID: PMC2635035 DOI: 10.1074/jbc.m807001200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/07/2008] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by severe, progressive fibrosis. Roles for inflammation and oxidative stress have recently been demonstrated, but despite advances in understanding the pathogenesis, there are still no effective therapies for IPF. This study investigates how extracellular superoxide dismutase (EC-SOD), a syndecan-binding antioxidant enzyme, inhibits inflammation and lung fibrosis. We hypothesize that EC-SOD protects the lung from oxidant damage by preventing syndecan fragmentation/shedding. Wild-type or EC-SOD-null mice were exposed to an intratracheal instillation of asbestos or bleomycin. Western blot was used to detect syndecans in the bronchoalveolar lavage fluid and lung. Human lung samples (normal and IPF) were also analyzed. Immunohistochemistry for syndecan-1 and EC-SOD was performed on human and mouse lungs. In vitro, alveolar epithelial cells were exposed to oxidative stress and EC-SOD. Cell supernatants were analyzed for shed syndecan-1 by Western blot. Syndecan-1 ectodomain was assessed in wound healing and neutrophil chemotaxis. Increases in human syndecan-1 are detected in lung homogenates and lavage fluid of IPF lungs. Syndecan-1 is also significantly elevated in the lavage fluid of EC-SOD-null mice after asbestos and bleomycin exposure. On IHC, syndecan-1 staining increases within fibrotic areas of human and mouse lungs. In vitro, EC-SOD inhibits oxidant-induced loss of syndecan-1 from A549 cells. Shed and exogenous syndecan-1 ectodomain induce neutrophil chemotaxis, inhibit alveolar epithelial wound healing, and promote fibrogenesis. Oxidative shedding of syndecan-1 is an underlying cause of neutrophil chemotaxis and aberrant wound healing that may contribute to pulmonary fibrosis.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cellular & Molecular Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000361. [PMID: 19197346 PMCID: PMC2628729 DOI: 10.1371/journal.pgen.1000361] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/31/2008] [Indexed: 01/12/2023] Open
Abstract
The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants-including slow development, low brood size, and slow defecation-this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function.
Collapse
Affiliation(s)
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
145
|
Chen YP, Jia JF, Han XL. Weak microwave can alleviate water deficit induced by osmotic stress in wheat seedlings. PLANTA 2009; 229:291-298. [PMID: 18841385 DOI: 10.1007/s00425-008-0828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
The aim of the investigation is to determine the effect of microwave pretreatment of wheat seeds on the resistance of seedlings to osmotic stress. Changes in biophysical, physiological and biochemical characters were measured. The results showed: (1) The magnetic field intensity and seeds temperature increased progressively with microwave pretreatments of 5, 10, 15, 20 s and 25 s compared with controls. Although each microwave pretreatment resulted in an increase in alpha-amylase activity and photon emission intensity, the increase of alpha-amylase activity and photon emission intensity was maximal at a microwave pretreatment of 10 s. (2) Osmotic stress induced by PEG treatment enhanced the concentration of malondialdehyde, while decreasing the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid, glutathione in the seedlings compared with controls. However, compared to osmotic stress alone, in the seedlings treated with microwave irradiation plus osmotic stress the concentration of malondialdehyde decreased, while the activities of nitricoxide synthase, catalase, peroxidase, superoxide dismutase and the concentration of nitric oxide, ascorbic acid and glutathione increased. These results suggest that a suitable dose of microwave radiation can enhance the capability to eliminate free radicals induced by osmotic stress in wheat seedlings resulting in an increase in resistance to osmotic stress.
Collapse
Affiliation(s)
- Yi-Ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Science, 710075, Xi'an, People's Republic of China.
| | | | | |
Collapse
|
146
|
Yu DH, Kim MO, Kim SH, Shin MJ, Kim BS, Kim HJ, Lee SR, Lee SG, Yoo SA, Kim WU, Hyun BH, Park YS, Kim TY, Ryoo ZY. The Therapeutic Effect of Extracellular Superoxide Dismutase (EC-SOD) Mouse Embryonic Fibroblast (MEF) on Collagen-Induced Arthritis (CIA) Mice. Cell Transplant 2008; 17:1371-80. [DOI: 10.3727/096368908787648029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease. The generation of reactive oxygen species (ROS) within an inflamed joint has been suggested as playing a significant pathogenic role. Extracellular superoxide dismutase (EC-SOD) is a major scavenger enzyme of ROS, which has received growing attention for its therapeutic potential. To investigate the therapeutic effect of EC-SOD in mice with collagen-induced arthritis (CIA), we used mouse embryonic fibroblast (MEF) of transgenic mice that overexpresses EC-SOD on the skin by using hK14 promoter. DBA/1 mice that had been treated with bovine type II collagen were administrated subcutaneous injections of EC-SOD transgenic MEF (each at 1.4 × 106 cells) on days 28, 35, and 42 after primary immunization. To test EC-SOD activity, blood samples were collected in each group on day 49. The EC-SOD activity was nearly 1.5-fold higher in the transgenic MEF-treated group than in the non-transgenic MEF-treated group (p < 0.05). The severity of arthritis in mice was scored in a double-blind manner, with each paw being assigned a separate clinical score. The severity of arthritis in EC-SOD transgenic MEF-treated mice was significantly suppressed in the arthritic clinical score (p < 0.05). To investigate the alteration of cytokine levels, ELISA was used to measure blood samples. Levels of IL-1β and TNF-α were reduced in the transgenic MEF-treated group (p < 0.05). Abnormalities of the joints were examined by H&E staining. There were no signs of inflammation except for mild hyperplasia of the synovium in the transgenic MEF-treated group. The proliferation of CII-specific T cells was lower in the transgenic MEF-treated mice than in those in the other groups. The transfer of EC-SOD transgenic MEF has shown a therapeutic effect in CIA mice and this approach may be a safer and more effective form of therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Dong Hoon Yu
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Myoung Ok Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Sung Hyun Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Mi Jung Shin
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Bong Soo Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Hei Jung Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Sang Ryeul Lee
- Department of Immunology and Dermatology, College of Medicine, Catholic University, Seoul, 137-040, Korea
| | - Sang Gyu Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Seung-Ah Yoo
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Wan Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Byung Hwa Hyun
- Disease Model Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Young Sik Park
- School of Life and Food Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Tae Yoon Kim
- Department of Immunology and Dermatology, College of Medicine, Catholic University, Seoul, 137-040, Korea
| | - Zae Young Ryoo
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| |
Collapse
|
147
|
Behndig A. Corneal endothelial integrity in aging mice lacking superoxide dismutase-1 and/or superoxide dismutase-3. Mol Vis 2008; 14:2025-30. [PMID: 18989385 PMCID: PMC2579938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 11/01/2008] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To evaluate the age-induced changes in corneal endothelial morphology in mice lacking the cytosolic copper-zinc superoxide dismutase (SOD-1), the interstitial extracellular superoxide dismutase (SOD-3), or both of these SOD isoenzymes. METHODS The central corneal endothelial morphologies of old C57BL-6J wild type (n=19), SOD-1 null (n=16), SOD-3 null (n=15), and SOD1/3 null (n=11) mice were evaluated using alizarin red staining and light microscope photographs. For comparison, young endothelia from the same genotypes were evaluated similarly. The levels of corneal reactive oxygen species and nitrogen species in all four genotypes were quantified using fluorimetry with 2',7'-dichlorodihydrofluorescein diacetate and OxyBURST. RESULTS In accordance with our previous findings, the mean corneal endothelial cell area was larger in the SOD-3 null genotype than in the wild type mice. The SOD-1/3 null genotype had similar cell sizes as the SOD-3 null mice but had a more irregular morphology at an older age. Apparently, these irregularities develop with time as they are not seen in young animals. The SOD-1 null mice did not differ from the wild type mice in corneal endothelial morphology. Elevated levels of reactive oxygen species were seen in SOD-1 null and SOD-3 null corneas, and elevated superoxide levels were seen in all three knockout genotypes. CONCLUSIONS The increased spontaneous age-related enlargement of corneal endothelial cells seen in the absence of SOD-3 is associated with a more irregular cell pattern when combined with a lack of SOD-1. This indicates more cellular movements and ongoing repair in the SOD-1/3 null genotype and possibly a more vulnerable corneal endothelium. SOD-3 and SOD-1 appear to have functions in preserving corneal endothelial integrity in aging.
Collapse
|
148
|
Abstract
Recent evidence suggests that oxidative stress contributes significantly to the regulation of hematopoietic cell homeostasis. In particular, red blood cells and hematopoietic stem cells are highly sensitive to deregulated accumulation of reactive oxygen species (ROS). Unchecked ROS accumulation often leads to hemolysis, that is, to destruction and shortened life span of red blood cells. In addition, the process of erythroid cell formation is sensitive to ROS accumulation. Similarly, ROS buildup in hematopoietic stem cells compromises their function as a result of potential damage to their DNA leading to loss of quiescence and alterations of hematopoietic stem cell cycling. These abnormalities may lead to accelerated aging of hematopoietic stem cells or to hematopoietic malignancies.
Collapse
Affiliation(s)
- Saghi Ghaffari
- Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
149
|
Arcaroli JJ, Hokanson JE, Abraham E, Geraci M, Murphy JR, Bowler RP, Dinarello CA, Silveira L, Sankoff J, Heyland D, Wischmeyer P, Crapo JD. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med 2008; 179:105-12. [PMID: 18948423 DOI: 10.1164/rccm.200710-1566oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Extracellular superoxide dismutase (EC-SOD) is a potent antioxidant that plays an important role in controlling oxidant-mediated stress and inflammation. High levels of EC-SOD are found in the lung. Acute lung injury (ALI) frequently occurs in patients with infection, and levels of EC-SOD have been shown to modulate severity of lung injury in transgenic animal models of endotoxemia-induced ALI. An R213G single nucleotide polymorphism (SNP) has been shown to alter levels of EC-SOD and patient outcomes in chronic obstructive pulmonary disease (COPD) and ischemic heart disease. OBJECTIVES To determine genetic variation in the promoter and EC-SOD gene and to examine whether EC-SOD haplotype blocks are associated with clinical outcomes. METHODS We sequenced the EC-SOD promoter and gene to determine genetic variation and linkage disequilibrium (LD) patterns in a European American population. Two separate patient populations with infection-associated ALI were also evaluated to determine whether EC-SOD haplotypes were associated with clinical outcomes. MEASUREMENTS AND MAIN RESULTS Sequencing resulted in the identification of 28 SNPs with relatively strong LD and 1 block consisting of 4691-5321-5360-5955-5982. This specific block was shown to be protective in two separate patient populations with infection associated ALI. In particular, patients with a GCCT haplotype had a reduced risk of time on the ventilator and mortality. CONCLUSIONS These results indicate that a GCCT haplotype may reduce inflammation in the lung, thereby decreasing the severity of lung injury and ultimately protecting patients from mortality associated with infection-induced ALI.
Collapse
Affiliation(s)
- John J Arcaroli
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado at Denver, and Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Joseph A, Li Y, Koo HC, Davis JM, Pollack S, Kazzaz JA. Superoxide dismutase attenuates hyperoxia-induced interleukin-8 induction via AP-1. Free Radic Biol Med 2008; 45:1143-9. [PMID: 18692129 DOI: 10.1016/j.freeradbiomed.2008.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
Abstract
Exposure of lung epithelial cells to hyperoxia results in the generation of excess reactive oxygen species (ROS), cell damage, and production of proinflammatory cytokines (interleukin-8; IL-8). Although activation of the NF-kappaB and c-Jun N-terminal kinase (JNK)/activator protein (AP)-1 transcription pathways occurs in hyperoxia, it is unclear whether activation of the AP-1 pathway has a direct impact on IL-8 production and whether overexpression of superoxide dismutase (SOD) can mitigate these proinflammatory processes. A549 cells were exposed to 95% O(2), and ROS production, AP-1 activation, and IL-8 levels were determined. Experimental groups included cells transduced with a recombinant adenovirus encoding CuZnSOD or MnSOD (two- to threefold increased activity) or transfected with a JNK1 small interfering RNA (RNAi). Hyperoxia resulted in significant increases in ROS generation, AP-1 activation, and IL-8 production, which were significantly attenuated by overexpression of either MnSOD or CuZnSOD. JNK1 RNAi also moderated IL-8 induction. The data indicate that activation of JNK1/AP-1 and subsequent IL-8 induction in hyperoxia are mediated by intracellular ROS, with SOD having significant protective effects.
Collapse
Affiliation(s)
- Ansamma Joseph
- CardioPulmonary Research Institute, Department of Medicine, Winthrop University Hospital, State University of New York Stony Brook School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | | | |
Collapse
|