101
|
Force WR, Glass AA, Benedict CA, Cheung TC, Lama J, Ware CF. Discrete signaling regions in the lymphotoxin-beta receptor for tumor necrosis factor receptor-associated factor binding, subcellular localization, and activation of cell death and NF-kappaB pathways. J Biol Chem 2000; 275:11121-9. [PMID: 10753918 DOI: 10.1074/jbc.275.15.11121] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lymphotoxin-beta receptor (LTbetaR), a member of the tumor necrosis factor receptor superfamily, is essential for the development and organization of secondary lymphoid tissue. Wild type and mutant LTbetaR containing successive truncations of the cytoplasmic domain were investigated by retrovirus-mediated gene transfer into HT29.14s and in 293T cells by transfection. Wild type receptors accumulated in perinuclear compartments and enhanced responsiveness to ligand-induced cell death and ligand-independent activation of NFkappaB p50 dimers. Coimmunoprecipitation and confocal microscopy mapped the TRAF3 binding site to amino acids PEEGDPG at position 389. However, LTbetaR truncated at position Pro(379) acted as a dominant positive mutant that down-modulated surface expression and recruited TRAF3 to endogenous LTbetaR. This mutant exhibited ligand-independent cell death and activated NF-kappaB p50 dimers. By contrast, truncation at Gly(359) created a dominant-negative mutant that inhibited ligand-induced cell death and activation of NF-kappaB p50/p65 heterodimers. This mutant also blocked accumulation of wild type receptor into perinuclear compartments, suggesting subcellular localization may be crucial for signal transduction. A cryptic TRAF-independent NF-kappaB activating region was identified. These mutants define discrete subregions of a novel proline-rich domain that is required for subcellular localization and signal transduction by the LTbetaR.
Collapse
Affiliation(s)
- W R Force
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
102
|
Caulin C, Ware CF, Magin TM, Oshima RG. Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J Cell Biol 2000; 149:17-22. [PMID: 10747083 PMCID: PMC2175089 DOI: 10.1083/jcb.149.1.17] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2000] [Accepted: 02/22/2000] [Indexed: 01/15/2023] Open
Abstract
Tumor necrosis factor (TNF) is a cytokine produced by macrophages and T lymphocytes that acts through two distinct receptors, TNFR1 (60 kD, CD120a) and TNFR2 (80 kD, CD120b), to affect cellular proliferation, differentiation, survival, and cell death. In addition to its proinflammatory actions in mucosal tissue, TNF is important for liver regeneration. Keratin 8 (K8) and keratin 18 (K18) form intermediate filaments characteristic of liver and other single cell layered, internal epithelia and their derivative cancers. K8-deficient (K8(-)) mice, which escape embryonic lethality, develop inflammatory colorectal hyperplasia, mild liver abnormalities, and tolerate hepatectomy poorly. We show that normal and malignant epithelial cells deficient in K8 and K18 are approximately 100 times more sensitive to TNF-induced death. K8 and K18 both bind the cytoplasmic domain of TNFR2 and moderate TNF-induced, Jun NH(2)-terminal kinase (JNK) intracellular signaling and NFkappaB activation. Furthermore, K8(-) and K18(-) mice are much more sensitive to TNF dependent, apoptotic liver damage induced by the injection of concanavalin A. This moderation of the effects of TNF may be the fundamental function of K8 and K18 common to liver regeneration, inflammatory bowel disease, hepatotoxin sensitivity, and the diagnostic, persistent expression of these keratins in many carcinomas.
Collapse
Affiliation(s)
- Carlos Caulin
- Cancer Research Center, The Burnham Institute, La Jolla, California 92037
| | - Carl F. Ware
- La Jolla Institute for Allergy and Immunology, San Diego, California 92121
| | - Thomas M. Magin
- Institut fuer Genetik, Abteilung Molekulargenetik, Universitaet Bonn, Bonn, Germany
| | - Robert G. Oshima
- Cancer Research Center, The Burnham Institute, La Jolla, California 92037
| |
Collapse
|
103
|
Tai DI, Tsai SL, Chen YM, Chuang YL, Peng CY, Sheen IS, Yeh CT, Chang KS, Huang SN, Kuo GC, Liaw YF. Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 2000; 31:656-664. [PMID: 10706556 DOI: 10.1002/hep.510310316] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hepatitis C virus (HCV) core protein is a multifunctional protein. It may bind to the death domain of tumor necrosis factor receptor 1 (TNFR1) and to the cytoplasmic tail of lymphotoxin-beta receptor, implying that it may be involved in the apoptosis and anti-apoptosis signaling pathways. In vitro studies have been inconclusive regarding its ability to inhibit or enhance TNF-alpha-induced apoptosis. To address this issue, electrophoretic mobility shift assay (EMSA) and immunohistochemical studies were used to show the activation of nuclear factor kappaB (NF-kappaB) in HCV-infected liver tissues and in HCV core-transfected cells. The activation of NF-kappaB was correlated with the apoptosis assays. The results showed that NF-kappaB activation could be shown in HCV-infected livers and HCV core-transfected cells. The data of EMSA correlated with those of immunohistochemical studies, which revealed a higher frequency of NF-kappaB nuclear staining in HCV-infected than in normal livers. NF-kappaB activation conferred resistance to TNF-alpha-induced apoptosis in HCV core-transfected cells. Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate sensitized them to TNF-alpha-induced apoptosis. These findings suggest that HCV infection may cause anti-apoptosis by activation of NF-kappaB and implicate a mechanism by which HCV may evade the host's immune surveillance leading to viral persistence and possibly to hepatocarcinogenesis.
Collapse
Affiliation(s)
- D I Tai
- Graduate Institute of Clinical Medicine, Chang Gung University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Suzuki I, Fink PJ. The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci U S A 2000; 97:1707-12. [PMID: 10677522 PMCID: PMC26500 DOI: 10.1073/pnas.97.4.1707] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Fas ligand (FasL) is well characterized for its capacity to deliver a death signal through its receptor Fas, recent work demonstrates that FasL also can receive signals facilitating antigen (Ag)-specific proliferation of CD8(+) T cells. The fact that the gld mutation differentially influences the proliferative capacity of CD8(+) and CD4(+) T cells presented the intriguing possibility that a single molecule may play opposing roles in these two subpopulations. The present study focuses on how these positive and negative regulatory roles are balanced. We show that naive CD4(+) T cells are responsive to FasL-mediated costimulation on encounter with Ag when Fas-mediated death is prevented. Thus, the machinery responsible for transducing the FasL positive reverse signal operates in both CD4(+) and CD8(+) T cells. Instead, differential control of FasL expression distinguishes the role of FasL in these two T cell subpopulations. FasL costimulation occurs immediately on T cell receptor ligation and correlates with the up-regulation of FasL expression on CD8(+) and naive CD4(+) T cells, both of which are sensitive to the FasL costimulatory signal. Conversely, FasL-initiated death occurs late in an immune response when high levels of FasL expression are maintained on CD4(+) T cells that are sensitive to Fas-mediated death, but not on CD8(+) T cells that are relatively insensitive to this signal. This careful orchestration of FasL expression during times of susceptibility to costimulation and conversely, to death, endows FasL with the capacity to both positively and negatively regulate the peripheral T cell compartment.
Collapse
Affiliation(s)
- I Suzuki
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
105
|
Abstract
Members of the tumor necrosis factor receptor family as well as other receptors achieve their diverse biological effects through the activation of intracellular signals including the c-Jun N-terminal kinase (JNK) pathway. Such signals are believed to be delivered through mediators known as TNF receptor-associated factors (TRAFs). Although the N-terminal zinc finger region of TRAFs has been shown to be essential for downstream signaling, there is no indication yet as to the nature of its role or of the factors that distinguish the N terminus of TRAF 3, which does not activate JNK in the systems examined thus far, from those of other TRAFs, which do activate this pathway. In the present study, it is shown that, among the known TRAFs, localization to the insoluble cell pellet fraction consistently correlates with JNK activation and that both characteristics map to the TRAF N terminus. Furthermore, it is demonstrated that forced localization of TRAF 3 to the cell membrane is sufficient to convert this molecule into an activator of JNK. This suggests that one of the roles of the TRAF N terminus may be to participate in interactions that promote the recruitment of TRAFs to the membrane and that this localization effect plays an important role in TRAF-mediated JNK activation.
Collapse
Affiliation(s)
- H Dadgostar
- Molecular Biology Institute, Medical Scientist Training Program Graduate Program, UCLA School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
106
|
Inoue JI, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000; 254:14-24. [PMID: 10623461 DOI: 10.1006/excr.1999.4733] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J i Inoue
- Department of Oncology, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| | | | | | | | | | | | | |
Collapse
|
107
|
Gamper C, van Eyndhoven WG, Schweiger E, Mossbacher M, Koo B, Lederman S. TRAF-3 interacts with p62 nucleoporin, a component of the nuclear pore central plug that binds classical NLS-containing import complexes. Mol Immunol 2000; 37:73-84. [PMID: 10781837 DOI: 10.1016/s0161-5890(00)00015-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The TRAF-3 gene encodes a number of splice-variant isoforms that function as adapter molecules in NF-kappaB signaling, in part by associating with the cytoplasmic tails of CD40 or other TNF-receptor (TNF-R) family members. To identify downstream molecules in TRAF-3 signaling, a yeast two-hybrid library was screened with a full-length TRAF-3 construct. Nine independent TRAF-3 interacting clones encoded fragments of p62 Nucleoporin (p62), a 522 amino acid (aa) component of the nuclear pore central plug, that is known to bind karyopherin-beta/classical-NLS import factor complexes. The interaction of p62 with TRAF-3 was specific, since p62 failed to interact with TRAF-2, -4, -5, or -6. Deletional analysis in yeast revealed that the p62:TRAF-3 interaction is mediated by a p62 carboxy (C)-terminal coiled-coil domain and TRAF-3's fifth zinc (Zn) finger and coiled-coil domain. In human 293 T cells, recombinant TRAF-3 or p62 specifically co-immunoprecipitates the other species. In addition, endogenous p62 co-precipitates over-expressed TRAF-3. The functional effects of over-expressing a TRAF-3 binding fragment, p62(aa 336-522) were studied on NF-kappaB-dependent, or control STAT1-dependent reporter activity in 293 T cells, either resting or after stimulation by CD40 or IFN-gamma, respectively. Over-expression of p62(aa 336-522) induces NF-kappaB activation in resting cells and augments CD40-induced NF-kappaB activation, but has no effect on control STAT1 reporter activity, either at baseline or after IFN-gamma induction. The finding that TRAF-3 binds p62, suggests that TRAF-3 may serve as an adapter molecule at the nuclear membrane, in addition to its known adapter function at the plasma membrane.
Collapse
Affiliation(s)
- C Gamper
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Lai MM, Ware CF. Hepatitis C virus core protein: possible roles in viral pathogenesis. Curr Top Microbiol Immunol 1999; 242:117-34. [PMID: 10592658 DOI: 10.1007/978-3-642-59605-6_6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M M Lai
- Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
110
|
Izumi KM, Cahir McFarland ED, Riley EA, Rizzo D, Chen Y, Kieff E. The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 1999; 73:9908-16. [PMID: 10559303 PMCID: PMC113040 DOI: 10.1128/jvi.73.12.9908-9916.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.
Collapse
Affiliation(s)
- K M Izumi
- Department of Medicine, Brigham and Women's Hospital, Channing Laboratories, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
The MHC class II and CD40 molecules are two major components of the immune system that are involved in cell-cell interactions and signal transduction. Data obtained in the course of the present investigation show that these two molecules are physically associated on the surface of various human B cell lines and on normal tonsilar B cells. The CD40 / MHC class II complexes were not detected on the germinal center B cell line Ramos. However, stimulation of these cells via CD40 or MHC class II triggered their association, suggesting that the formation of the complex is related to the activation status of the cells. The formation of these complexes did not alter the interaction of MHC class II molecules with one of their natural ligands, the staphylococcal enterotoxin A (SEA), as evidenced by the ability of SEA to bind MHC class II / CD40 complexes. Cross-linking of MHC class II or CD40 molecules leads to the association as well as the co-association of both molecules to the NP-49-insoluble cellular matrix. Such association allowed us to demonstrate that only a fraction of these molecules can be physically associated on the cell surface. Based on previous observations and those presented here, it is highly possible that the CD40 / MHC class II complexes may have an important role in signal(s) induced via both molecules and during T / B cells interactions.
Collapse
Affiliation(s)
- C Léveillé
- Centre de Recherche en Rhumatologie et Immunologie, CHUL, Université Laval, St-Foy, Canada
| | | | | | | |
Collapse
|
112
|
Ye H, Park YC, Kreishman M, Kieff E, Wu H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 1999; 4:321-30. [PMID: 10518213 DOI: 10.1016/s1097-2765(00)80334-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many members of the tumor necrosis factor receptor (TNFR) superfamily initiate intracellular signaling by recruiting TNFR-associated factors (TRAFs) through their cytoplasmic tails. TRAFs apparently recognize highly diverse receptor sequences. Crystal structures of the TRAF domain of human TRAF2 in complex with peptides from the TNFR family members CD40, CD30, Ox40, 4-1BB, and the EBV oncoprotein LMP1 revealed a conserved binding mode. A major TRAF2-binding consensus sequence, (P/S/A/T)x(Q/E)E, and a minor consensus motif, PxQxxD, can be defined from the structural analysis, which encompass all known TRAF2-binding sequences. The structural information provides a template for the further dissection of receptor binding specificity of TRAF2 and for the understanding of the complexity of TRAF-mediated signal transduction.
Collapse
Affiliation(s)
- H Ye
- Department of Biochemistry, Weill Medical College, New York, New York, USA
| | | | | | | | | |
Collapse
|
113
|
Leo E, Welsh K, Matsuzawa S, Zapata JM, Kitada S, Mitchell RS, Ely KR, Reed JC. Differential requirements for tumor necrosis factor receptor-associated factor family proteins in CD40-mediated induction of NF-kappaB and Jun N-terminal kinase activation. J Biol Chem 1999; 274:22414-22. [PMID: 10428814 DOI: 10.1074/jbc.274.32.22414] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.
Collapse
Affiliation(s)
- E Leo
- Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Izumi KM, Cahir McFarland ED, Ting AT, Riley EA, Seed B, Kieff ED. The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol 1999; 19:5759-67. [PMID: 10409763 PMCID: PMC84426 DOI: 10.1128/mcb.19.8.5759] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.
Collapse
MESH Headings
- Antigens, CD/physiology
- Apoptosis
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Burkitt Lymphoma/pathology
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Cell Line, Transformed
- Cell Transformation, Viral
- Gene Expression Regulation
- Herpesvirus 4, Human/physiology
- Humans
- JNK Mitogen-Activated Protein Kinases
- Jurkat Cells/metabolism
- Jurkat Cells/pathology
- Kidney
- Macromolecular Substances
- Mitogen-Activated Protein Kinases
- Models, Molecular
- NF-kappa B/metabolism
- Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- TNF Receptor-Associated Factor 1
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Matrix Proteins/physiology
Collapse
Affiliation(s)
- K M Izumi
- Department of Medicine, Brigham and Women's Hospital, and Channing Laboratories, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115-5804, USA
| | | | | | | | | | | |
Collapse
|
115
|
McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci U S A 1999; 96:8408-13. [PMID: 10411888 PMCID: PMC17529 DOI: 10.1073/pnas.96.15.8408] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-A crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique beta-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer.
Collapse
Affiliation(s)
- S M McWhirter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3206, USA
| | | | | | | | | | | |
Collapse
|
116
|
van Eyndhoven WG, Gamper CJ, Cho E, Mackus WJ, Lederman S. TRAF-3 mRNA splice-deletion variants encode isoforms that induce NF-kappaB activation. Mol Immunol 1999; 36:647-58. [PMID: 10509816 DOI: 10.1016/s0161-5890(99)00079-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although TRAF-3 gene products are required for signaling in T-B cell collaboration, full-length TRAF-3 appears to lack signaling function in transient transfection assays that measure NF-kappaB activation. However, the TRAF-3 gene also encodes at least three mRNA splice-deletion variants that predict protein isoforms (delta25aa, delta52aa and delta56aa) with altered zinc (Zn) finger domains and unknown functional capacities. To determine whether TRAF-3 splice-deletion variants may transmit activating receptor signals to the nucleus, cDNAs for five additional splice-variant isoforms (delta27aa, delta83aa, delta103aa, delta130aa and delta221aa) were cloned from a TRAF-3+ lymphoma and the expression and function of each of the eight TRAF-3 splice-deletion variants was analyzed. Among the splice-deletion variants, TRAF-3 delta130 mRNA is expressed by tonsillar B cells and by each of a panel of B and T cell lines. TRAF-3 delta221 protein is expressed by tonsillar B cells and by each of the lymphocytic lines. The functional effect of over-expressing each TRAF-3 splice-deletion variant on NF-kappaB activation was studied in 293 T cells. Seven of the TRAF-3 splice-deletion variants, such as TRAF-3 delta130, induce substantial NF-kappaB-driven luciferase activity (80-500 fold). In contrast, TRAF-3 delta221 (in which the complete Zn finger domain is absent) fails to induce NF-kappaB activation. Although full-length TRAF-3 alone is inactive, it augments the functional effects of the seven activating TRAF-3 splice-deletion variants (1.4-5 fold). These data indicate that alterations of the Zn finger domains render the TRAF-3 splice-deletion variants capable of inducing NF-kappaB activation and that full-length TRAF-3 augments their signaling.
Collapse
Affiliation(s)
- W G van Eyndhoven
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
117
|
Schneider P, Schwenzer R, Haas E, Mühlenbeck F, Schubert G, Scheurich P, Tschopp J, Wajant H. TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol 1999; 29:1785-92. [PMID: 10382740 DOI: 10.1002/(sici)1521-4141(199906)29:06<1785::aid-immu1785>3.0.co;2-u] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.
Collapse
Affiliation(s)
- P Schneider
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Grell M, Zimmermann G, Gottfried E, Chen CM, Grünwald U, Huang DC, Wu Lee YH, Dürkop H, Engelmann H, Scheurich P, Wajant H, Strasser A. Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J 1999; 18:3034-43. [PMID: 10357816 PMCID: PMC1171385 DOI: 10.1093/emboj/18.11.3034] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several members of the tumour necrosis factor receptor (TNF-R) superfamily can induce cell death. For TNF-R1, Fas/APO-1, DR3, DR6, TRAIL-R1 and TRAIL-R2, a conserved 'death domain' in the intracellular region couples these receptors to activation of caspases. However, it is not yet known how TNF receptor family members lacking a death domain, such as TNF-R2, CD40, LT-betaR, CD27 or CD30, execute their death-inducing capability. Here we demonstrate in different cellular systems that cytotoxic effects induced by TNF-R2, CD40 and CD30 are mediated by endogenous production of TNF and autotropic or paratropic activation of TNF-R1. In addition, stimulation of TNF-R2 and CD40 synergistically enhances TNF-R1-induced cytotoxicity. These findings describe a novel pro-apoptotic mechanism induced by some members of the TNF-R family.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Apoptosis/drug effects
- CD40 Antigens/genetics
- CD40 Antigens/physiology
- Caspase Inhibitors
- Caspases/metabolism
- Fas Ligand Protein
- Humans
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/pharmacology
- Ki-1 Antigen/physiology
- Membrane Glycoproteins/physiology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mutation
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Transfection
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
- bcl-X Protein
- Interferon gamma Receptor
Collapse
Affiliation(s)
- M Grell
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 1999; 22:74-7. [PMID: 10319865 DOI: 10.1038/8780] [Citation(s) in RCA: 361] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alymphoplasia (aly) mutation of mouse is autosomal recessive and characterized by the systemic absence of lymph nodes (LN) and Peyer's patches (PP) and disorganized splenic and thymic structures with immunodeficiency. Although recent reports have shown that the interaction between lymphotoxin (LT) and the LT beta-receptor (Ltbeta r, encoded by Ltbr) provides a critical signal for LN genesis in mice, the aly locus on chromosome 11 is distinct from those for LT and its receptor. We found that the aly allele carries a point mutation causing an amino acid substitution in the carboxy-terminal interaction domain of Nf-kappa b-inducing kinase (Nik, encoded by the gene Nik). Transgenic complementation with wild-type Nik restored the normal structures of LN, PP, spleen and thymus, and the normal immune response in aly/aly mice. In addition, the aly mutation in a kinase domain-truncated Nik abolished its dominant-negative effect on Nf-kappa b activation induced by an excess of Ltbeta r. Our observations agree with previous reports that Ltbeta r-deficient mice showed defects in LN genesis and that Nik is a common mediator of Nf-kappa b activation by the tumour necrosis factor (TNF) receptor family. Nik is able to interact with members of the TRAF family (Traf1, 2, 3, 5 and 6), suggesting it acts downstream of TRAF-associating receptor signalling pathways, including Tnfr, Cd40, Cd30 and Ltbeta r. The phenotypes of aly/aly mice are more severe than those of Ltbr-/- mice, however, indicating involvement of Nik in signal transduction mediated by other receptors.
Collapse
Affiliation(s)
- R Shinkura
- Department of Medical Chemistry, Kyoto University, Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Wu MY, Wang PY, Han SH, Hsieh SL. The cytoplasmic domain of the lymphotoxin-beta receptor mediates cell death in HeLa cells. J Biol Chem 1999; 274:11868-73. [PMID: 10207006 DOI: 10.1074/jbc.274.17.11868] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of lymphotoxin-beta receptor (LT-betaR) by conjugation with heterotrimeric lymphotoxin, LT-alpha1/beta2, or by cross-linking with anti-LT-betaR antibodies can trigger apoptosis. We have observed that overexpression of either LT-betaR or the cytoplasmic domain of LT-betaR (LT-betaR(CD)) also induces apoptosis, which may be attributed to the tendency of LT-betaR(CD) to self-associate. The self-association domain of LT-betaR(CD) was mapped to amino acids 324-377, a region of the protein that is also essential for LT-betaR-induced apoptosis. Furthermore, we have shown that LT-betaR(CD)-induced apoptosis could be inhibited by a TRAF3 dominant negative mutant and by the caspase inhibitors Z-VAD-FMK, DEVD-FMK, and CrmA. The ligand-independent apoptosis induced by LT-betaR(CD) will help us to further dissect LT-betaR signaling pathway.
Collapse
Affiliation(s)
- M Y Wu
- Department of Microbiology and Immunology, National Yang-Ming University School of Medicine, Taipei 11221, Taiwan
| | | | | | | |
Collapse
|
121
|
Kwon B, Yu KY, Ni J, Yu GL, Jang IK, Kim YJ, Xing L, Liu D, Wang SX, Kwon BS. Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J Biol Chem 1999; 274:6056-61. [PMID: 10037686 DOI: 10.1074/jbc.274.10.6056] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among members of the tumor necrosis factor receptor (TNFR) superfamily, 4-1BB, CD27, and glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) share a striking homology in the cytoplasmic domain. Here we report the identification of a new member, activation-inducible TNFR family member (AITR), which belongs to this subfamily, and its ligand. The receptor is expressed in lymph node and peripheral blood leukocytes, and its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with anti-CD3/CD28 monoclonal antibodies or phorbol 12-myristate 13-acetate/ionomycin. AITR associates with TRAF1 (TNF receptor-associated factor 1), TRAF2, and TRAF3, and induces nuclear factor (NF)-kappaB activation via TRAF2. The ligand for AITR (AITRL) was found to be an undescribed member of the TNF family, which is expressed in endothelial cells. Thus, AITR and AITRL seem to be important for interactions between activated T lymphocytes and endothelial cells.
Collapse
Affiliation(s)
- B Kwon
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Just four years ago the first two members of a new family of molecules involved in signal transduction by members of the TNF receptor superfamily were described and designated TNF Receptor Associated Factors (TRAFs). In the meantime six human and murine TRAFs as well as a TRAF protein from C. elegans have been molecularly cloned. From our current point of view, TRAF proteins appear to represent multifunctional signal adaptors, tightly embedded in a network of signals culminating in the activation of kinase cascades that finally lead to the activation of c-Jun N-terminal kinase. p38 mitogen activated protein kinase, and the transcription factor NF-kappaB, thereby also affecting the balance between survival and cell death. Some of the activities of the individual TRAF family members may be redundant although transgenic knockout animal models have already shown that crucial signaling pathways for single TRAF molecules in vivo can be defined.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.
| | | | | |
Collapse
|
123
|
You LR, Chen CM, Lee YH. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J Virol 1999; 73:1672-81. [PMID: 9882379 PMCID: PMC103998 DOI: 10.1128/jvi.73.2.1672-1681.1999] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 10/20/1998] [Indexed: 12/14/2022] Open
Abstract
Our previous study indicated that the core protein of hepatitis C virus (HCV) can associate with tumor necrosis factor receptor (TNFR)-related lymphotoxin-beta receptor (LT-betaR) and that this protein-protein interaction plays a modulatory effect on the cytolytic activity of recombinant form LT-betaR ligand (LT-alpha1beta2) but not tumor necrosis factor alpha (TNF-alpha) in certain cell types. Since both TNF-alpha/TNFR and LT-alpha1beta2/LT-betaR are also engaged in transcriptional activator NF-kappaB activation or c-Jun N-terminal kinase (JNK) activation, the biological effects of the HCV core protein on these regards were elucidated in this study. As demonstrated by the electrophoretic mobility shift assay, the expression of HCV core protein prolonged or enhanced the TNF-alpha or LT-alpha1beta2-induced NF-kappaB DNA-binding activity in HuH-7 and HeLa cells. The presence of HCV core protein in HeLa or HuH-7 cells with or without cytokine treatment also enhanced the NF-kappaB-dependent reporter plasmid activity, and this effect was more strongly seen with HuH-7 cells than with HeLa cells. Western blot analysis suggested that this modulation of the NF-kappaB activity by the HCV core protein was in part due to elevated or prolonged nuclear retention of p50 or p65 species of NF-kappaB in core protein-producing cells with or without cytokine treatment. Furthermore, the HCV core protein enhanced or prolonged the IkappaB-beta degradation triggering by TNF-alpha or LT-alpha1beta2 both in HeLa and HuH-7 cells. In contrast to that of IkappaB-beta, the increased degradation of IkappaB-alpha occurred only in LT-alpha1beta2-treated core-producing HeLa cells and not in TNF-alpha-treated cells. Therefore, the HCV core protein plays a modulatory effect on NF-kappaB activation triggering by both cytokines, though the mechanism of NF-kappaB activation, in particular the regulation of IkappaB degradation, is rather cell line and cytokine specific. Studies also suggested that the HCV core protein had no effect on TNF-alpha-stimulated JNK activity in both HeLa and HuH-7 cells. These findings, together with our previous study, strongly suggest that among three signaling pathways triggered by the TNF-alpha-related cytokines, the HCV core protein potentiates NF-kappaB activation in most cell types, which in turn may contribute to the chronically activated, persistent state of HCV-infected cells.
Collapse
Affiliation(s)
- L R You
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
124
|
Abstract
Members of the TNF family of receptors play important roles in normal physiology and in defence. The recent rapid progress in the understanding of the mechanisms of apoptosis has been accompanied by assumptions that TNF family receptors such as CD95(Fas/APO-1) only have a role in regulating cell survival. While regulation of cell death is one important function of TNF family receptors, they are capable of activating signal transduction pathways that have many other effects. The present review will focus on signalling of some TNF family receptors in the immune system, not only for apoptosis, but also for survival or activation.
Collapse
Affiliation(s)
- C Magnusson
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
125
|
van Eyndhoven WG, Frank D, Kalachikov S, Cleary AM, Hong DI, Cho E, Nasr S, Perez AJ, Mackus WJ, Cayanis E, Wellington S, Fischer SG, Warburton D, Lederman S. A single gene for human TRAF-3 at chromosome 14q32.3 encodes a variety of mRNA species by alternative polyadenylation, mRNA splicing and transcription initiation. Mol Immunol 1998; 35:1189-206. [PMID: 10199393 DOI: 10.1016/s0161-5890(98)00099-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human TRAF-3 is a signaling molecule that interacts with the cytoplasmic tails of CD40 and other TNF-receptor family members. TRAF-3 mRNA is expressed as two major classes of approximately 2 and 8 kb and a number of TRAF-3 encoding cDNA clones differ in discrete gene segments. Because this variety of mRNA species could result from mRNA processing events and/or multiple genes, the structure and localization of TRAF-3 encoding gene elements were determined. FISH and radiation hybrid mapping demonstrated that TRAF-3 is located at chromosome 14q32.3, approximately 1 Mb centromeric to the Ig heavy chain gene complex. Physical mapping of four overlapping genomic PAC clones established that TRAF-3 transcripts are encoded by a single gene, comprised of 13 exons and spanning 130 kb. Alternative polyadenylation in the mRNA segment encoded by exon 12 accounts for the difference between the 2 kb and the 8 kb classes of transcripts. Alternative mRNA splicing in the coding region (encoded by exons 3-12) generates transcripts which delete exons 8 (75 nt), 7+8 (156 nt) or 8+9 (168 nt) and that encode distinct protein isoforms (delta25, delta52 and delta56 aa, respectively). Alternative splicing of exon 2 (139 nt) and alternative transcriptional initiation result in mRNA species with distinct 5'UTRs. Together, these data indicate that a single TRAF-3 gene encodes a variety of mRNA species by a combination of alternative polyadenylation, alternative mRNA splicing and/or alternative initiation.
Collapse
Affiliation(s)
- W G van Eyndhoven
- Laboratory of Molecular Immunology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Harrop JA, McDonnell PC, Brigham-Burke M, Lyn SD, Minton J, Tan KB, Dede K, Spampanato J, Silverman C, Hensley P, DiPrinzio R, Emery JG, Deen K, Eichman C, Chabot-Fletcher M, Truneh A, Young PR. Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J Biol Chem 1998; 273:27548-56. [PMID: 9765287 DOI: 10.1074/jbc.273.42.27548] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor family, mediates herpesvirus entry into cells during infection. Upon overexpression, HVEM activates NF-kappaB and AP-1 through a TNF receptor-associated factor (TRAF)-mediated mechanism. Using an HVEM-Fc fusion protein, we screened soluble forms of novel TNF-related proteins derived from an expressed sequence tag data base. One of these, which we designated HVEM-L, specifically bound to HVEM-Fc with an affinity of 44 nM. This association was confirmed with soluble and membrane forms of both receptor and ligand. HVEM-L mRNA is expressed in spleen, lymph nodes, macrophages, and T cells and encodes a 240-amino acid protein. A soluble, secreted form of the protein stimulates proliferation of T lymphocytes during allogeneic responses, inhibits HT-29 cell growth, and weakly stimulates NF-kappaB-dependent transcription.
Collapse
Affiliation(s)
- J A Harrop
- Department of Molecular and Cellular Immunology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E. Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 1998; 72:7900-8. [PMID: 9733827 PMCID: PMC110117 DOI: 10.1128/jvi.72.10.7900-7908.1998] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the induction of cellular gene expression by the Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1). Previously, LMP1 was shown to induce the expression of ICAM-1, LFA-3, CD40, and EBI3 in EBV-negative Burkitt lymphoma (BL) cells and of the epidermal growth factor receptor (EGF-R) in epithelial cells. We now show that LMP1 expression also increased Fas and tumor necrosis factor receptor-associated factor 1 (TRAF1) in BL cells. LMP1 mediates NF-kappaB activation via two independent domains located in its C-terminal cytoplasmic tail, a TRAF-interacting site that associates with TRAF1, -2, -3, and -5 through a PXQXT/S core motif and a TRADD-interacting site. In EBV-transformed B cells or transiently transfected BL cells, significant amounts of TRAF1, -2, -3, and -5 are associated with LMP1. In epithelial cells, very little TRAF1 is expressed, and only TRAF2, -3, and -5, are significantly complexed with LMP1. The importance of TRAF binding to the PXQXT/S motif in LMP1-mediated gene induction was studied by using an LMP1 mutant that contains alanine point mutations in this motif and fails to associate with TRAFs. This mutant, LMP1(P204A/Q206A), induced 60% of wild-type LMP1 NF-kappaB activation and had approximately 60% of wild-type LMP1 effect on Fas, ICAM-1, CD40, and LFA-3 induction. In contrast, LMP1(P204A/Q206A) was substantially more impaired in TRAF1, EBI3, and EGF-R induction. Thus, TRAF binding to the PXQXT/S motif has a nonessential role in up-regulating Fas, ICAM-1, CD40, and LFA-3 expression and a critical role in up-regulating TRAF1, EBI3, and EGF-R expression. Further, D1 LMP1, an LMP1 mutant that does not aggregate failed to induce TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 expression confirming the essential role for aggregation in LMP1 signaling. Overexpression of a dominant form of IkappaBalpha blocked LMP1-mediated TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 up-regulation, indicating that NF-kappaB is an important component of LMP1-mediated gene induction from both the TRAF- and TRADD-interacting sites.
Collapse
Affiliation(s)
- O Devergne
- INSERM U131 and Institut Paris-Sud sur les Cytokines, 92140 Clamart, France
| | | | | | | | | | | |
Collapse
|
128
|
Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS, Jiang GW, Lu J, Tan J, Ugustus M, Carter K, Rojas L, Zhu F, Lincoln C, Endress G, Xing L, Wang S, Oh KO, Gentz R, Ruben S, Lippman ME, Hsieh SL, Yang D. LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest 1998; 102:1142-51. [PMID: 9739048 PMCID: PMC509097 DOI: 10.1172/jci3492] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
LIGHT is a new member of tumor necrosis factor (TNF) cytokine family derived from an activated T cell cDNA library. LIGHT mRNA is highly expressed in splenocytes, activated PBL, CD8(+) tumor infiltrating lymphocytes, granulocytes, and monocytes but not in the thymus and the tumor cells examined. Introduction of LIGHT cDNA into MDA-MB-231 human breast carcinoma caused complete tumor suppression in vivo. Histological examination showed marked neutrophil infiltration and necrosis in LIGHT expressing but not in the parental or the Neo-transfected MDA-MB-231 tumors. Interferon gamma (IFNgamma) dramatically enhances LIGHT-mediated apoptosis. LIGHT protein triggers apoptosis of various tumor cells expressing both lymphotoxin beta receptor (LTbetaR) and TR2/HVEM receptors, and its cytotoxicity can be blocked specifically by addition of a LTbetaR-Fc or a TR2/HVEM-Fc fusion protein. However, LIGHT was not cytolytic to the tumor cells that express only the LTbetaR or the TR2/HVEM or hematopoietic cells examined that express only the TR2/HVEM, such as PBL, Jurkat cells, or CD8(+) TIL cells. In contrast, treatment of the activated PBL with LIGHT resulted in release of IFNgamma. Our data suggest that LIGHT triggers distinct biological responses based on the expression patterns of its receptors on the target cells. Thus, LIGHT may play a role in the immune modulation and have a potential value in cancer therapy.
Collapse
Affiliation(s)
- Y Zhai
- Human Genome Sciences, Inc., Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev 1998; 12:2821-30. [PMID: 9744859 DOI: 10.1101/gad.12.18.2821] [Citation(s) in RCA: 467] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R H Arch
- Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois 60637 USA
| | | | | |
Collapse
|
130
|
Grammer AC, Swantek JL, McFarland RD, Miura Y, Geppert T, Lipsky PE. TNF Receptor-Associated Factor-3 Signaling Mediates Activation of p38 and Jun N-Terminal Kinase, Cytokine Secretion, and Ig Production Following Ligation of CD40 on Human B Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.3.1183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD40 engagement induces a variety of functional outcomes following association with adaptor molecules of the TNF receptor-associated factor (TRAF) family. Whereas TRAF2, -5, and -6 initiate NF-κB activation, the outcomes of TRAF3-initiated signaling are less characterized. To delineate CD40-induced TRAF3-dependent events, Ramos B cells stably transfected with a dominant negative TRAF3 were stimulated with membranes expressing recombinant CD154/CD40 ligand. In the absence of TRAF3 signaling, activation of p38 and control of Ig production were abrogated, whereas Jun N-terminal kinase activation and secretion of IL-10, lymphotoxin-α, and TNF-α were partially blocked. By contrast, induction of apoptosis, activation of NF-κB, generation of granulocyte-macrophage CSF, and up-regulation of CD54, MHC class II, and CD95 were unaffected by the TRAF3 dominant negative. Together, these results indicate that TRAF3 initiates independent signaling pathways via p38 and JNK that are associated with specific functional outcomes.
Collapse
Affiliation(s)
- Amrie C. Grammer
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | | | | | - Yasushi Miura
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | - Thomas Geppert
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| | - Peter E. Lipsky
- *Harold C. Simmons Arthritis Research Center and Departments of Internal Medicine,
| |
Collapse
|
131
|
Declercq W, Denecker G, Fiers W, Vandenabeele P. Cooperation of Both TNF Receptors in Inducing Apoptosis: Involvement of the TNF Receptor-Associated Factor Binding Domain of the TNF Receptor 75. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
TNF-R55 is the main receptor mediating TNF-induced cytotoxicity. However, in some cells TNF-R75 also signals cell death. In PC60 cells, the presence of both receptor types is required to induce apoptosis following either specific TNF-R55 or TNF-R75 triggering, pointing to a mechanism of receptor cooperation. In this study, we extend previous observations and show that TNF-R55 and TNF-R75 cooperation in the case of apoptosis in PC60 cells is bidirectional. We also demonstrate ligand-independent TNF-R55-mediated cooperation in TNF-R75-induced granulocyte/macrophage-CSF secretion, but not vice versa. To determine which part of the intracellular TNF-R75 sequence was responsible for the observed receptor cooperation in apoptosis, we introduced different TNF-R75 mutant constructs in PC60 cells already expressing TNF-R55. Our data indicate that an intact TNF-R-associated factors 1 and 2 (TRAF1/TRAF2)-binding domain is required for receptor cooperation. These findings suggest a role for the TRAF complex in TNF-R cooperation in the induction of cell death in PC60 cells. Nevertheless, introduction of a dominant negative (DN) TRAF2 molecule was not able to affect receptor cooperation. Remarkably, TRAF2-DN overexpression, which was found to inhibit the TNF-dependent recruitment of endogenous wild-type TRAF2 to the TNF-R75 signaling complex, could neither block TNF-R55- or TNF-R75-induced NF-κB activation nor granulocyte/macrophage-CSF secretion. Possibly, additional factors different from TRAF2 are involved in TNF-mediated NF-κB activation.
Collapse
Affiliation(s)
- Wim Declercq
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Walter Fiers
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Peter Vandenabeele
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| |
Collapse
|
132
|
Koni PA, Flavell RA. A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin beta. J Exp Med 1998; 187:1977-83. [PMID: 9625757 PMCID: PMC2212356 DOI: 10.1084/jem.187.12.1977] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1998] [Revised: 04/08/1998] [Indexed: 11/30/2022] Open
Abstract
Lymphotoxin alpha (LTalpha) signals via tumor necrosis factor receptors (TNFRs) as a homotrimer and via lymphotoxin beta receptor (LTbetaR) as a heterotrimeric LTalpha1beta2 complex. LTalpha-deficient mice lack all lymph nodes (LNs) and Peyer's patches (PPs), and yet LTbeta-deficient mice and TNFR-deficient mice have cervical and mesenteric LN. We now show that mice made deficient in both LTbeta and TNFR type 1 (TNFR1) lack all LNs, revealing redundancy or synergism between TNFR1 and LTbeta, acting presumably via LTbetaR. A complete lack of only PPs in mice heterozygous for both ltalpha and ltbeta, but not ltalpha or ltbeta alone, suggests a similar two-ligand phenomenon in PP development and may explain the incomplete lack of PPs seen in tnfr1-/- mice.
Collapse
Affiliation(s)
- P A Koni
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
133
|
Krajewska M, Krajewski S, Zapata JM, Van Arsdale T, Gascoyne RD, Berern K, McFadden D, Shabaik A, Hugh J, Reynolds A, Clevenger CV, Reed JC. TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1549-61. [PMID: 9626059 PMCID: PMC1858434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TRAF-4 was discovered because of its expression in breast cancers and is a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family of putative signal-transducing proteins. In vitro binding assays demonstrated that TRAF-4 interacts with the cytosolic domain of the lymphotoxin-beta receptor (LT beta R) and weakly with the p75 nerve growth factor receptor (NGFR) but not with TNFR1, TNFR2, Fas, or CD40. Immunofluorescence analysis of TRAF-4 in transfected cells demonstrated localization to cytosol but not nucleus. Immunohistochemical assays of normal human adult tissues revealed prominent cytosolic immunostaining in thymic epithelial cells and lymph node dendritic cells but not in lymphocytes or thymocytes, paralleling the reported patterns of LT beta R expression. The basal cell layer of most epithelia in the body was very strongly TRAF-4 immunopositive, including epidermis, nasopharynx, respiratory tract, salivary gland, and esophagus. Similar findings were obtained in 12- to 18-week human fetal tissue, indicating a highly restricted pattern of expression even during development in the mammary gland, epithelial cells of the terminal ducts were strongly TRAF-4 immunopositive whereas myoepithelial cells and most of the mammary epithelial cells lining the extralobular ducts were TRAF-4 immunonegative. Of 84 primary breast cancers evaluated, only 7 expressed TRAF-4. Ductal carcinoma in situ (DCIS) lesions were uniformly TRAF-4 immunonegative (n = 21). In the prostate, the basal cells were strongly immunostained for TRAF-4, whereas the secretory epithelial cells were TRAF-4 negative. Basal cells in prostate hypertrophy (n = 6) and prostatic intraepithelial neoplasia (PIN; n = 6) were strongly TRAF-4 positive, but none of the 32 primary and 16 metastatic prostate cancer specimens examined contained TRAF-4-positive malignant cells. Although also expressed in some types of mesenchymal cells, these findings suggest that TRAF-4 is a marker of normal epithelial stem cells, the expression of which often ceases on differentiation and malignant transformation.
Collapse
|
134
|
Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, Yagita H, Okumura K. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 1998; 273:13353-8. [PMID: 9582383 DOI: 10.1074/jbc.273.21.13353] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD27 is a member of the tumor necrosis factor (TNF) receptor superfamily and is expressed on T, B, and NK cells. The signal via CD27 plays pivotal roles in T-T and T-B cell interactions. Here we demonstrate that overexpression of CD27 activates NF-kappaB and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). Deletion analysis of the cytoplasmic domain of CD27 revealed that the C-terminal PIQEDYR motif was indispensable for both NF-kappaB and SAPK/JNK activation and was also required for the interaction with TNF receptor-associated factor (TRAF) 2 and TRAF5, both of which have been implicated in NF-kappaB activation by members of the TNF-R superfamily. Co-transfection of a dominant negative TRAF2 or TRAF5 blocked NF-kappaB and SAPK/JNK activation induced by CD27. Recently, a TRAF2-interacting kinase has been identified, termed NF-kappaB-inducing kinase (NIK). A kinase-inactive mutant NIK blocked CD27-, TRAF2-, and TRAF5-mediated NF-kappaB and SAPK/JNK activation. These results indicate that TRAF2 and TRAF5 are involved in NF-kappaB and SAPK/JNK activation by CD27, and NIK is a common downstream kinase of TRAF2 and TRAF5 for NF-kappaB and SAPK/JNK activation.
Collapse
Affiliation(s)
- H Akiba
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
AbstractAlthough Hodgkin's disease is highly responsive to treatments that cause apoptosis, it remains resistant to the physiological mechanisms intended to cause cell death. Presumably, the Reed-Sternberg cell defies endogenous apoptosis, persists, accumulates, and manifests the malignant disorder seen clinically. The Reed-Sternberg cell expresses several members of the tumor necrosis factor receptor superfamily. This family of receptors is involved in both activation and proliferation of cells, as well as either protection from or initiation of apoptosis in cells expressing these surface proteins. Signals from these receptors affect transcription. We reasoned that the activation state and resistance to apoptosis of Reed-Sternberg cells might be attributable to dysregulation of genes controling these processes. To determine gene expression by Reed-Sternberg cells, we developed a method of micromanipulation, global reverse transcription, and the reverse transcription-polymerase chain reaction and applied it to 51 single Reed-Sternberg cells and their variants from six cases of Hodgkin's disease. This report analyzes the gene expression of bcl-xs,bcl-xl, bax-α,bax-β, fadd, fas, fas ligand (fas L), ice,TNF-α, TNF-β,TNFR1, TNFR2, TRAF1,TRAF2, TRAF3, cIAP2, and tradd at the level of mRNA in the single Reed-Sternberg cells and their variants. The findings here suggest a molecular mechanism for the activated state and in vivo survival occurring in untreated Reed-Sternberg cells of Hodgkin's disease.
Collapse
|
136
|
Abstract
Although Hodgkin's disease is highly responsive to treatments that cause apoptosis, it remains resistant to the physiological mechanisms intended to cause cell death. Presumably, the Reed-Sternberg cell defies endogenous apoptosis, persists, accumulates, and manifests the malignant disorder seen clinically. The Reed-Sternberg cell expresses several members of the tumor necrosis factor receptor superfamily. This family of receptors is involved in both activation and proliferation of cells, as well as either protection from or initiation of apoptosis in cells expressing these surface proteins. Signals from these receptors affect transcription. We reasoned that the activation state and resistance to apoptosis of Reed-Sternberg cells might be attributable to dysregulation of genes controling these processes. To determine gene expression by Reed-Sternberg cells, we developed a method of micromanipulation, global reverse transcription, and the reverse transcription-polymerase chain reaction and applied it to 51 single Reed-Sternberg cells and their variants from six cases of Hodgkin's disease. This report analyzes the gene expression of bcl-xs,bcl-xl, bax-α,bax-β, fadd, fas, fas ligand (fas L), ice,TNF-α, TNF-β,TNFR1, TNFR2, TRAF1,TRAF2, TRAF3, cIAP2, and tradd at the level of mRNA in the single Reed-Sternberg cells and their variants. The findings here suggest a molecular mechanism for the activated state and in vivo survival occurring in untreated Reed-Sternberg cells of Hodgkin's disease.
Collapse
|
137
|
Hatzivassiliou E, Miller WE, Raab-Traub N, Kieff E, Mosialos G. A Fusion of the EBV Latent Membrane Protein-1 (LMP1) Transmembrane Domains to the CD40 Cytoplasmic Domain Is Similar to LMP1 in Constitutive Activation of Epidermal Growth Factor Receptor Expression, Nuclear Factor-κB, and Stress-Activated Protein Kinase. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.3.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The EBV latent infection transforming protein, LMP1, has six hydrophobic transmembrane domains that enable it to aggregate in the plasma membrane and a 200-amino acid carboxyl-terminal cytoplasmic domain (CT) that activates nuclear factor-κB and induces many of the phenotypic changes in B lymphocytes that accompany CD40 activation. Since the phenotypic effects of LMP1 are similar to those of activated CD40, we now compare signaling from the LMP1 CT with that from the CD40 CT fused to the LMP1 transmembrane domains. The LMPCD40 chimera was similar to LMP1 in nuclear factor-κB activation and in up-regulation of epidermal growth factor receptor expression. CD40 ligation was known to activate the stress-activated protein kinase, and both LMPCD40 and LMP1 are now shown to induce stress-activated protein kinase activity in the absence of ligand. Deletion of the first four transmembrane domains of LMP1 abrogated LMP1 aggregation in the plasma membrane and nearly abolished signaling from LMP1 or the LMPCD40 chimera. These results highlight the role of LMP1 as a constitutively active receptor similar to CD40 and provide a novel approach for the generation of ligand-independent receptors.
Collapse
Affiliation(s)
- Eudoxia Hatzivassiliou
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| | - William E. Miller
- †Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Nancy Raab-Traub
- †Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Elliott Kieff
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| | - George Mosialos
- *Departments of Microbiology and Molecular Genetics and Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115; and
| |
Collapse
|
138
|
Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH, Spear PG, Ware CF. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 1998; 8:21-30. [PMID: 9462508 DOI: 10.1016/s1074-7613(00)80455-0] [Citation(s) in RCA: 619] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus (HSV) 1 and 2 infect activated T lymphocytes by attachment of the HSV envelope glycoprotein D (gD) to the cellular herpesvirus entry mediator (HVEM), an orphan member of the tumor necrosis factor receptor superfamily. Here, we demonstrate that HVEM binds two cellular ligands, secreted lymphotoxin alpha (LTalpha) and LIGHT, a new member of the TNF superfamily. LIGHT is a 29 kDa type II transmembrane protein produced by activated T cells that also engages the receptor for the LTalphabeta heterotrimer but does not form complexes with either LTalpha or LTbeta. HSV1 gD inhibits the interaction of HVEM with LIGHT, and LIGHT and gD interfere with HVEM-dependent cell entry by HSV1. This characterizes herpesvirus gD as a membrane-bound viokine and establishes LIGHT-HVEM as integral components of the lymphotoxin cytokine-receptor system.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/metabolism
- Humans
- Ligands
- Lymphocyte Activation
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sensitivity and Specificity
- Sequence Homology, Amino Acid
- T-Lymphocytes/metabolism
- T-Lymphocytes/ultrastructure
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- D N Mauri
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Force WR, Cheung TC, Ware CF. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. J Biol Chem 1997; 272:30835-40. [PMID: 9388227 DOI: 10.1074/jbc.272.49.30835] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ligation of the lymphotoxin-beta receptor (LTbetaR) recruits tumor necrosis factor receptor-associated factor-3 (TRAF3) and initiates cell death in HT29 adenocarcinoma cells. The minimal receptor binding domain (TRAF-C) defined by two hybrid analyses is not sufficient for direct recruitment to the ligated receptor. A series of TRAF3 deletion mutants reveal that a subregion of the coiled coil motif is required for efficient recruitment to the LTbetaR. Furthermore, the ability of TRAF3 to self-associate maps to an adjacent subregion. A TRAF3 deletion mutant that lacks the N-terminal zinc RING and zinc finger motifs, but retains the coiled coil and TRAF-C motifs, competitively displaces endogenous TRAF3 from the LTbetaR. A second TRAF3 mutant that lacks the receptor binding domain, yet contains the TRAF3 self-association domain, prevents TRAF3 homodimers from being recruited to the LTbetaR. Both of these mutants have a dominant negative effect on cell death and demonstrate that the recruitment of TRAF3 oligomers is necessary to initiate signal transduction that activates the cell death pathway.
Collapse
Affiliation(s)
- W R Force
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | |
Collapse
|
140
|
Izumi KM, Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A 1997; 94:12592-7. [PMID: 9356494 PMCID: PMC25049 DOI: 10.1073/pnas.94.23.12592] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
The Epstein-Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-kappaB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-kappaB activation also appears to be a critical component of long-term outgrowth.
Collapse
Affiliation(s)
- K M Izumi
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Medicine, Brigham and Women's Hospital, Eighth Floor Channing Laboratories, 181 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
141
|
Williams-Abbott L, Walter BN, Cheung TC, Goh CR, Porter AG, Ware CF. The lymphotoxin-alpha (LTalpha) subunit is essential for the assembly, but not for the receptor specificity, of the membrane-anchored LTalpha1beta2 heterotrimeric ligand. J Biol Chem 1997; 272:19451-6. [PMID: 9235946 DOI: 10.1074/jbc.272.31.19451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The lymphotoxins (LT) alpha and beta, members of the tumor necrosis factor (TNF) cytokine superfamily, are implicated as important regulators and developmental factors for the immune system. LTalpha is secreted as a homotrimer and signals through two TNF receptors of 55-60 kDa (TNFR60) or 75-80 kDa (TNFR80). LTalpha also assembles with LTbeta into a membrane-anchored, heterotrimeric LTalpha1beta2 complex that engages a distinct cognate receptor, the LTbeta receptor (LTbetaR). To investigate the role of the LTalpha subunit in the function of the membrane LTalpha1beta2 complex, gene transfer via baculovirus was used to assemble LTalpha and -beta complexes in insect cells. LTalpha containing mutations at D50N or Y108F are secreted as homotrimers that fail to bind either TNF receptor and are functionally inactive in triggering cell death of the HT29 adenocarcinoma cell line. In contrast, these mutant LTalpha proteins retain the ability to co-assemble with LTbeta into membrane-anchored LTalpha1beta2 complexes that engage the LTbetaR and trigger the death of HT29 cells. Membrane-anchored LTbeta expressed on the cell surface in absence of the LTalpha subunit binds the LTbetaR but is functionally inactive in the cell death assay. These results indicate that the TNF receptor-binding regions of the LTalpha subunit are not necessary for engagement of the LTbetaR, but the LTalpha subunit is required for the assembly of LTbeta into a functional heteromeric ligand.
Collapse
Affiliation(s)
- L Williams-Abbott
- Department of Biochemistry, University of California, Riverside, California 92021, USA
| | | | | | | | | | | |
Collapse
|
142
|
Wallach D, Boldin M, Varfolomeev E, Beyaert R, Vandenabeele P, Fiers W. Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Lett 1997; 410:96-106. [PMID: 9247131 DOI: 10.1016/s0014-5793(97)00553-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- D Wallach
- Department of Membrane Research and Biophysics, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
143
|
Nakano H, Shindo M, Yamada K, Yoshida MC, Santee SM, Ware CF, Jenkins NA, Gilbert DJ, Yagita H, Copeland NC, Okumura K. Human TNF receptor-associated factor 5 (TRAF5): cDNA cloning, expression and assignment of the TRAF5 gene to chromosome 1q32. Genomics 1997; 42:26-32. [PMID: 9177772 DOI: 10.1006/geno.1997.4697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are signal transducers for members of the TNF receptor superfamily. We previously identified murine TRAF5 (mTRAF5) and showed that it specifically interacts with the lymphotoxin-beta receptor (LT-beta R) and activates the transcription factor NF-kappa B. Here we have cloned the human TRAF5 homologue (hTRAF5) by cross hybridization with mTRAF5 cDNA. hTRAF5 cDNA is composed of 2894 nucleotides with a 557-amino-acid open reading frame that exhibits 77.5 and 80% identity to mTRAF5 at the nucleotide and amino acid levels, respectively. Northern blot analysis revealed that hTRAF5 mRNA is expressed in all visceral organs. Western blotting revealed that hTRAF5 protein was abundantly expressed in the human follicular dentritic cell line, FDC-1, and to a much lesser degree in several tumor cell lines. Interspecific backcross mapping revealed that Traf5 is located in the distal region of mouse chromosome 1, which shares a region of homology with human chromosome 1q. Fluorescence in situ hybridization confirmed regional localization to human chromosome 1q32.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carrier Proteins/genetics
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/genetics
- Dendritic Cells/metabolism
- Female
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Nucleic Acid Hybridization
- Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- TNF Receptor-Associated Factor 5
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- H Nakano
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|