101
|
Ewens KG, George RA, Sharma K, Ziyadeh FN, Spielman RS. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes 2005; 54:3305-18. [PMID: 16249459 DOI: 10.2337/diabetes.54.11.3305] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several lines of evidence, including familial aggregation, suggest that allelic variation contributes to risk of diabetic nephropathy. To assess the evidence for specific susceptibility genes, we used the transmission/disequilibrium test (TDT) to analyze 115 candidate genes for linkage and association with diabetic nephropathy. A comprehensive survey of this sort has not been undertaken before. Single nucleotide polymorphisms and simple tandem repeat polymorphisms located within 10 kb of the candidate genes were genotyped in a total of 72 type 1 diabetic families of European descent. All families had at least one offspring with diabetes and end-stage renal disease or proteinuria. As a consequence of the large number of statistical tests and modest P values, findings for some genes may be false-positives. Furthermore, the small sample size resulted in limited power, so the effects of some tested genes may not be detectable, even if they contribute to susceptibility. Nevertheless, nominally significant TDT results (P < 0.05) were obtained with polymorphisms in 20 genes, including 12 that have not been studied previously: aquaporin 1; B-cell leukemia/lymphoma 2 (bcl-2) proto-oncogene; catalase; glutathione peroxidase 1; IGF1; laminin alpha 4; laminin, gamma 1; SMAD, mothers against DPP homolog 3; transforming growth factor, beta receptor II; transforming growth factor, beta receptor III; tissue inhibitor of metalloproteinase 3; and upstream transcription factor 1. In addition, our results provide modest support for a number of candidate genes previously studied by others.
Collapse
Affiliation(s)
- Kathryn Gogolin Ewens
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | | | | | | | |
Collapse
|
102
|
Staub O, Verrey F. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron. J Am Soc Nephrol 2005; 16:3167-74. [PMID: 16192418 DOI: 10.1681/asn.2005050454] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The precise control of BP occurs via Na(+) homeostasis and involves the precise regulation of the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron. This has been corroborated by the linkage of mutations in the genes encoding ENaC subunits and Liddle's syndrome, a heritable form of human hypertension. Mapping of these mutations on ENaC indicated that inactivation of PY motifs is responsible and leads to the proposition that the channel interacts via its PY motifs with the WW domains of the Nedd4/Nedd4-like ubiquitin-protein ligase family. It is now well established that the cell surface expression of ENaC is controlled via ubiquitylation by this protein family and that this ubiquitylation is regulated by the aldosterone-induced protein serum and glucocorticoid induced kinase 1.
Collapse
Affiliation(s)
- Olivier Staub
- Department of Pharmacology & Toxicology, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.
| | | |
Collapse
|
103
|
Saad S, Stevens VA, Wassef L, Poronnik P, Kelly DJ, Gilbert RE, Pollock CA. High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule. Kidney Int 2005; 68:985-97. [PMID: 16105029 DOI: 10.1111/j.1523-1755.2005.00492.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Serum glucocorticoid regulated kinase (SGK-1) is induced in the kidney in diabetes mellitus. However, its role in the proximal tubule is unclear. This study determined the expression and functional role of SGK-1 in PTCs in high glucose conditions. As the epidermal growth factor (EGF) receptor is activated by both EGF and other factors implicated in diabetic nephropathy, the relationship of SGK-1 with EGFR activity was assessed. METHODS mRNA and protein expression of SGK-1 and mRNA expression of the sodium hydrogen exchanger NHE3 were measured in human PTCs exposed to 5 mmol/L (control) and 25 mmol/L (high) glucose. The effects of SGK-1 on cell growth, apoptosis, and progression through the cell cycle and NHE3 mRNA were examined following overexpression of SGK-1 in PTCs. The role of EGFR activation in observed changes was assessed by phospho-EGFR expression, and response to the EGFR blocker PKI166. SGK-1 expression was then assessed in vivo in a model of streptozotocin-induced diabetes mellitus type 2. RESULTS A total of 25 mmol/L glucose and EGF (10 ng/mL) increased SGK-1 mRNA (P < 0.005 and P < 0.002, respectively) and protein (both P < 0.02) expression. High glucose and overexpression of SGK-1 increased NHE3 mRNA (P < 0.05) and EGFR phosphorylation (P < 0.01), which were reversed by PKI166. SGK-1 overexpression increased PTC growth (P < 0.0001), progression through the cell cycle (P < 0.001), and increased NHE3 mRNA (P < 0.01), which were all reversed with PKI166. Overexpression of SGK-1 also protected against apoptosis induced in the PTCs (P < 0.0001). Up-regulation of tubular SGK-1 mRNA in diabetes mellitus was confirmed in vivo. Oral treatment with PKI166 attenuated this increase by 51%. No EGF protein was detectable in PTCs, suggestive of phosphorylation of the EGFR by high glucose and downstream induction of SGK-1. CONCLUSION The effects of high glucose on PTC proliferation, reduced apoptosis and increased NHE3 mRNA levels are mediated by EGFR-dependent up-regulation of SGK-1.
Collapse
Affiliation(s)
- Sonia Saad
- Kolling Institute Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
104
|
Vallon V, Huang DY, Grahammer F, Wyatt AW, Osswald H, Wulff P, Kuhl D, Lang F. SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am J Physiol Regul Integr Comp Physiol 2005; 289:R395-R401. [PMID: 16014448 DOI: 10.1152/ajpregu.00731.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mineralocorticoids modify salt balance by both stimulating salt intake and inhibiting salt loss. Renal salt retention is accomplished by upregulation of reabsorption, an effect partially mediated by serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored the contribution of SGK1 to the regulation of renal function, salt intake, and blood pressure during mineralocorticoid excess. DOCA/1% NaCl treatment increased blood pressure and creatinine clearance to a similar extent in SGK1-deficient sgk1−/−and wild-type sgk1+/+mice but led to more pronounced increase of proteinuria in sgk1+/+mice (by 474 ± 89%) than in sgk1−/−mice (by 154 ± 31%). DOCA/1% NaCl treatment led to significant increase of kidney weight (by 24%) and to hypokalemia (from 3.9 ± 0.1 to 2.7 ± 0.1 mmol/l) only in sgk1+/+mice. The treatment enhanced renal Na+excretion significantly more in sgk1+/+mice (from 3 ± 1 to 134 ± 32 μmol·24 h−1·g body wt−1) than in sgk1−/−mice (from 4 ± 1 to 49 ± 8 μmol·24 h−1·g body wt−1), pointing to SGK1-dependent stimulation of salt intake. With access to two drinking bottles containing 1% NaCl or water, DOCA treatment did not significantly affect water intake in either genotype but increased 1% NaCl intake in sgk1+/+mice (within 9 days from 3.5 ± 0.9 to 16.5 ± 2.4 ml/day) consistent with DOCA-induced salt appetite. This response was significantly attenuated in sgk1−/−mice (from 2.6 ± 0.6 to 5.9 ± 0.9 ml/day). Thus SGK1 contributes to the stimulation of salt intake, kidney growth, proteinuria, and renal K+excretion during mineralocorticoid excess.
Collapse
Affiliation(s)
- Volker Vallon
- Dept. of Physiology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Shumilina E, Lampert A, Lupescu A, Myssina S, Strutz-Seebohm N, Henke G, Grahammer F, Wulff P, Kuhl D, Lang F. Deranged Kv channel regulation in fibroblasts from mice lacking the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol 2005; 204:87-98. [PMID: 15605386 DOI: 10.1002/jcp.20267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coexpression of the serum and glucocorticoid inducible kinase 1 (SGK1) up-regulates Kv channel activity in Xenopus oocytes and human embryonic kidney cells. To investigate the physiological impact of SGK1 dependent Kv channel regulation, we recorded whole-cell currents in lung fibroblasts from SGK1 knockout mice (sgk1-/-) and wild-type littermates (sgk1+/+). Serum-grown mouse lung fibroblasts (MLF) from both genotypes exhibited voltage-gated outwardly rectifying K(+)-currents with time-dependent activation (tau(act) approximately 3 msec), slow inactivation (tau(inact) approximately 700 msec), use-dependent inactivation, and (partial) inhibition by K(+) channel blockers TEA, 4-AP, and margatoxin. In serum grown MLF peak Kv current density at +100 mV was significantly lower in sgk1-/- (14 +/- 2 pA/pF, n = 13) than in sgk1+/+ (31 +/- 4 pA/pF, n = 16). PCR amplification of different Kv1 and Kv3 subunits from mouse fibroblasts demonstrated the expression of Kv1.1-1.7, Kv3.1, and Kv3.3 mRNA in both sgk1+/+ and sgk1-/- cells. Upon serum deprivation Kv currents almost disappeared in sgk1+/+ (4 +/- 1 pA/pF, n = 11) but not in sgk1-/- (10 +/- 1 pA/pF, n = 6) MLF. Accordingly, following serum deprivation Kv current density was significantly lower in sgk1+/+ than in sgk1-/-. Stimulation of serum-depleted cells with dexamethasone (dex) (1 microM, 1 day), IGF-1 (6.7 microM, 4-6 h) or both, significantly activated Kv currents in sgk1+/+ but not in sgk1-/- MLF. In the presence of both, dex and IGF-1, the Kv current density was significantly larger in sgk1+/+ (27 +/- 3 pA/pF, n = 12) than in sgk1-/- (13 +/- 3 pA/pF, n = 10) cells. Similar to MLF, Kv currents were significantly higher in sgk1+/+ mouse tail fibroblasts (MTF). In sgk1+/+ but not sgk1-/- MTF the Kv currents were inhibited upon serum deprivation and reincreased after stimulation of serum deprived MTF with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h). According to Fura-2-fluorescence capacitative Ca(2+) entry was lower in sgk1-/- MTF compared to sgk1+/+ MTF. Upon serum deprivation capacitative Ca(2+) entry decreased significantly in sgk1+/+ but not in sgk1-/- MTF. Stimulation of depleted cells with dex (1 microM, 1 day) and afterwards with IGF-1 (6.7 microM, 4-6 h) reincreased capacitative Ca(2+) entry in sgk1+/+ MTF, whereas in sgk1-/- cells it remained unchanged. In conclusion, lack of SGK1 does not abrogate Kv channel activity but abolishes regulation of those channels by serum, glucocorticoids and IGF-1, an effect influencing capacitative Ca(2+) entry.
Collapse
|
106
|
Lang F, Capasso G, Schwab M, Waldegger S. Renal tubular transport and the genetic basis of hypertensive disease. Clin Exp Nephrol 2005; 9:91-9. [PMID: 15980941 DOI: 10.1007/s10157-005-0355-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Several monogenic hypertensive disorders are caused by genetic mutations leading to the deranged function and/or regulation of renal tubular NaCl transport, such as mutations of the renal epithelial Na+ channel (ENaC) in Liddle syndrome, of the kinase WNK1 (with no K) in Gordon syndrome, and of the mineralocorticoid receptor, or of 11beta-hydroxysteroid dehydrogenase. Moreover, excessive formation of aldosterone in glucocorticoid-remediable hypertension leads to severe hypertension. Conversely, impaired function of the Na+,K+,2Cl- cotransporter (NKCC2), the renal outer medullary K+ channel (ROMK1), and the renal epithelial Cl- channel ClCKb/Barttin causes Bartter syndrome and defective Na+,Cl+ cotransporter (NCCT) Gitelman syndrome, salt-wasting disorders with hypotension. These monogenic disorders are rare, but illustrate the significance of renal tubular transport in blood pressure regulation. There is little doubt, however, that deranged renal salt reabsorption significantly contributes to essential hypertension polymorphisms of several genes participating in the regulation of renal Na+ transport have been shown to be associated with blood pressure and prevalence of hypertension. Two common genes will be discussed in more detail. The first encodes the renal Cl- channel ClCKb. A gain-of-function mutation of ClCKb, increasing channel activity by 7- to 20-fold is found in approximately 20% of unselected Caucasians and 40% of an unselected African population. The second common gene variant (prevalence, 3%-5% in unselected Caucasians), to be discussed in more detail, affects the serum and glucocorticoid inducible kinase SGK1, a kinase upregulated by mineralocorticoids and enhancing the activity of ENaC, ROMK, and Na+/K+ATPase. Both gene variants are associated with slightly increased blood pressure. SGK1 further stimulates the glucose transporter SGLT1, and the SGK1 gene variant correlates, in addition, with increased body mass index.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
107
|
Sandu C, Rexhepaj R, Grahammer F, McCormick JA, Henke G, Palmada M, Nammi S, Lang U, Metzger M, Just L, Skutella T, Dawson K, Wang J, Pearce D, Lang F. Decreased intestinal glucose transport in the sgk3-knockout mouse. Pflugers Arch 2005; 451:437-44. [PMID: 15971077 DOI: 10.1007/s00424-005-1474-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/22/2005] [Indexed: 12/29/2022]
Abstract
Xenopus oocyte coexpression experiments revealed the capacity of the serum- and glucocorticoid-inducible kinase isoform 3 (SGK3) to up-regulate a variety of transport systems including the sodium-dependent glucose transporter SGLT1. The present study explored the functional significance of SGK3-dependent regulation of intestinal transport. To this end, experiments were performed in gene targeted mice lacking functional sgk3 (sgk3(-/-)) and their wild type littermates (sgk3(+/+)). Oral food intake and fecal dry weight were significantly larger in sgk3(-/-) than in sgk3(+/+) mice. Glucose-induced current (I(g)) in Ussing chamber as a measure of Na(+) coupled glucose transport was significantly smaller in sgk3(-/-) than in sgk3(+/+) mouse jejunal segments. Fasting plasma glucose concentrations were significantly lower in sgk3(-/-) than in sgk3(+/+) mice. Intestinal electrogenic transport of phenylalanine, cysteine, glutamine and proline were not significantly different between sgk3(-/-) and sgk3(+/+) mice. In conclusion, SGK3 is required for adequate intestinal Na(+) coupled glucose transport and impaired glucose absorption may contribute to delayed growth and decreased plasma glucose concentrations of SGK3 deficient mice. The hypoglycemia might lead to enhanced food intake to compensate for impaired intestinal absorption.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Vallon V, Lang F. New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure. Curr Opin Nephrol Hypertens 2005; 14:59-66. [PMID: 15586017 DOI: 10.1097/00041552-200501000-00010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The serum and glucocorticoid inducible kinase 1 (SGK1) is induced in the aldosterone sensitive distal nephron (ASDN) where it may stimulate Na reabsorption, partly by inhibiting ubiquitin ligase Nedd4-2-mediated retrieval of epithelial Na+ channel ENaC from the luminal membrane. We describe recent advances in our understanding of SGK1 function in the regulation of renal function and blood pressure. RECENT FINDINGS Thiazolidinediones, i.e. activators of peroxisome proliferator-activated receptor gamma (PPAR gamma), upregulate SGK1 and ENaC mRNA expression and increase cell-surface expression of ENaC alpha in a human cortical-collecting-duct cell line. cAMP/protein kinase A can induce phosphorylation and inhibition of Nedd4-2-independent of SGK1. Part of ENaC stimulation by SGK1 appears dependent on a SGK1 consensus motif in ENaC alpha and independent of Nedd4-2. SGK1-dependent upregulation of Na+ reabsorption in ASDN contributes to upregulation of renal K+ excretion. In oocytes, SGK1 activates various renal transport proteins including Na+/glucose cotransporter SGLT1, Na+-coupled dicarboxylate transporter NaDC-1, epithelial Ca+ channel TRPV5, renal outer medullary K+ channel ROMK and voltage gated K+ channels KCNE1/KCNQ1 and Kv1.3. A variant of the SGK1 gene associates with increased blood pressure and body mass index. SUMMARY PPAR gamma activators may increase renal Na reabsorption by stimulating SGK1 and ENaC. Nedd4-2 integrates influences of cAMP/protein kinase A and SGK1. SGK1 can activate ENaC in part directly and independent of Nedd4-2. K+ homeostasis requires SGK1-dependent Na+ reabsorption in ASDN. SGK1 may affect renal transport mechanisms beyond Na+ reabsorption and K+ secretion in ASDN. Polymorphisms of SGK1 may be relevant to the pathophysiology of hypertension and other diseases.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Health Care System, CA 92161, USA.
| | | |
Collapse
|
109
|
Boehmer C, Rajamanickam J, Schniepp R, Kohler K, Wulff P, Kuhl D, Palmada M, Lang F. Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid dependent kinases SGK1 and SGK3. Biochem Biophys Res Commun 2005; 329:738-42. [PMID: 15737648 DOI: 10.1016/j.bbrc.2005.02.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 12/30/2022]
Abstract
In the mammalian retina, glutamate re-uptake is mediated by the sodium dependent cotransport systems EAAT1-5 thus terminating neuronal excitation and preventing neuroexcitotoxicity. In retinal amacrine and ganglion cells, EAAT5 is colocalized with the serum and glucocorticoid inducible kinase SGK1, a serine/threonine kinase known to regulate transport. The study explored the possible regulation of EAAT5 by SGK1, its isoform SGK3, and the closely related protein kinase B. EAAT5 was coexpressed in Xenopus laevis oocytes with or without the respective kinases. Transport activity was quantified by electrophysiology and cell surface expression was determined by chemiluminescence. Both EAAT5 mediated currents and EAAT5 protein abundance at the cell surface were increased by a factor of 1.5-2 upon coexpression of SGK1 or SGK3 but not following coexpression of PKB. In conclusion, the kinases SGK1 and SGK3 increase EAAT5 activity by increasing cell surface abundance of the carrier.
Collapse
Affiliation(s)
- Christoph Boehmer
- Department of Physiology I, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
|
111
|
Embark HM, Böhmer C, Palmada M, Rajamanickam J, Wyatt AW, Wallisch S, Capasso G, Waldegger P, Seyberth HW, Waldegger S, Lang F. Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases. Kidney Int 2005; 66:1918-25. [PMID: 15496163 DOI: 10.1111/j.1523-1755.2004.00966.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND ClC-Ka and ClC-Kb, chloride channels participating in renal tubular Cl- transport, require the coexpression of barttin to become functional. Mutations of the barttin gene lead to the Bartter's syndrome variant BSND, characterized by congenital deafness and severe renal salt wasting. Barttin bears a proline-tyrosine motif, a target structure for the ubiquitin ligase Nedd4-2, which mediates the clearance of channel proteins from the cell membrane. Nedd4-2 is, in turn, a target of the serum- and glucocorticoid-inducible kinase SGK1, which phosphorylates and, thus, inactivates the ubiquitin ligase. ClC-Ka also possesses a SGK1 consensus site in its sequence. We hypothesized that ClC-Ka/barttin is stimulated by SGK1, and down-regulated by Nedd4-2, an effect that may be reversed by SGK1 and its isoforms, SGK2 or SGK3. METHODS To test this hypothesis, ClC-Ka/barttin was heterologously expressed in Xenopus oocytes with or without the additional expression of Nedd4-2, SGK1, SGK2, SGK3, constitutively active S422DSGK1, or inactive K127NSGK1. RESULTS Expression of ClC-Ka/barttin induced a slightly inwardly rectifying current that was significantly decreased upon coexpression of Nedd4-2, but not the catalytically inactive mutant C938SNedd4-2. The coexpression of S422DSGK1, SGK1, or SGK3, but not SGK2 or K127NSGK1 significantly stimulated the current. Moreover, S422DSGK1, SGK1, and SGK3 also phosphorylated Nedd4-2 and thereby inhibited Nedd4-2 binding to its target. The down-regulation of ClC-Ka/barttin by Nedd4-2 was abolished by elimination of the PY motif in barttin. CONCLUSION ClC-Ka/barttin channels are regulated by SGK1 and SGK3, which may thus participate in the regulation of transport in kidney and inner ear.
Collapse
Affiliation(s)
- Hamdy M Embark
- Department of Physiology I, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Khan ZA, Barbin YP, Farhangkhoee H, Beier N, Scholz W, Chakrabarti S. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression. Biochem Biophys Res Commun 2005; 329:275-80. [PMID: 15721303 DOI: 10.1016/j.bbrc.2005.01.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Indexed: 11/27/2022]
Abstract
Preferential expression of oncofetal extra domain-B fibronectin (EDB(+) FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB(+) FN expression in endothelial cells (ECs) via transforming growth factor-beta1 (TGF-beta1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB(+) FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-beta1, and ET-1 increase the EDB(+) FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-beta1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB(+) FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB(+) FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB(+) FN expression and provide novel avenues for therapeutic modalities.
Collapse
Affiliation(s)
- Zia A Khan
- Department of Pathology, University of Western Ontario, London, Ont., Canada
| | | | | | | | | | | |
Collapse
|
113
|
David S, Kalb RG. Serum/glucocorticoid-inducible kinase can phosphorylate the cyclic AMP response element binding protein, CREB. FEBS Lett 2005; 579:1534-8. [PMID: 15733869 DOI: 10.1016/j.febslet.2005.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 12/01/2004] [Accepted: 01/19/2005] [Indexed: 11/24/2022]
Abstract
To maintain homeostasis, cells often respond to stressful extra-cellular stimuli by new gene expression. Serum/glucocorticoid-induced kinase (SGK) is an immediate early gene whose expression is induced by a variety of extra-cellular stimuli. Here, we examine the possibility that SGK can directly phosphorylate the transcription factor cyclic AMP response element binding protein (CREB). In a cell-free context, SGK physically associates with CREB and SGK phosphorylates it on serine 133. Phospho-serine 133 is essential for stimulating the transcriptional activity of CREB. Further, we show that in a variety of cellular contexts, SGK phosphorylates CREB. Activation of receptor tyrosine kinase pathways or the phosphoinositide-dependent kinase 1 (PDK1) lead to SGK-dependent CREB phosphorylation. Hormonal stimulation of epithelial cells leads to the induction of endogenous SGK and CREB phosphorylation. A dominant-negative form of SGK blocks dexamethasone-induced CREB phosphorylation. Our studies indicate that stimulation of SGK can lead to CREB phosphorylation, suggesting that CREB-dependent gene transcription is an important link between stressful extra-cellular signals and cellular responses.
Collapse
Affiliation(s)
- Samuel David
- Children's Hospital of Philadelphia, Joseph Stokes Jr. Research Institute, ARC 814, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
114
|
Alvarez de la Rosa D, Paunescu TG, Els WJ, Helman SI, Canessa CM. Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells. ACTA ACUST UNITED AC 2005; 124:395-407. [PMID: 15452200 PMCID: PMC2233909 DOI: 10.1085/jgp.200409120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The serum and glucocorticoid induced kinase 1 (SGK1) participates in the regulation of sodium reabsorption in the distal segment of the renal tubule, where it may modify the function of the epithelial sodium channel (ENaC). The molecular mechanism underlying SGK1 regulation of ENaC in renal epithelial cells remains controversial. We have addressed this issue in an A6 renal epithelial cell line that expresses SGK1 under the control of a tetracycline-inducible system. Expression of a constitutively active mutant of SGK1 (SGK1TS425D) induced a sixfold increase in amiloride-sensitive short-circuit current (Isc). Using noise analysis we demonstrate that SGK1 effect on Isc is due to a fourfold increase in the number of functional ENaCs in the membrane and a 43% increase in channel open probability. Impedance analysis indicated that SGK1TS425D increased the absolute value of cell equivalent capacitance by an average of 13.7%. SGK1TS425D also produced a 1.6–1.9-fold increase in total and plasma membrane subunit abundance, without changing the half-life of channels in the membrane. We conclude that in contrast to aldosterone, where stimulation of transport can be explained simply by an increase in channel synthesis, SGK1 effects are more complex and involve at least three actions: (1) increase of ENaC open probability; (2) increase of subunit abundance within apical membranes and intracellular compartments; and (3) activation of one or more pools of preexistent channels within the apical membranes and/or intracellular compartments.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
115
|
Vallon V, Wulff P, Huang DY, Loffing J, Völkl H, Kuhl D, Lang F. Role of Sgk1 in salt and potassium homeostasis. Am J Physiol Regul Integr Comp Physiol 2005; 288:R4-10. [PMID: 15590995 DOI: 10.1152/ajpregu.00369.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone plays a pivotal role in NaCl and K(+) homeostasis by stimulation of Na(+) reabsorption and K(+) secretion in the aldosterone-sensitive distal nephron (ASDN). Recent studies demonstrated that the serum- and glucocorticoid-regulated kinase 1 (Sgk1) is induced by aldosterone in the ASDN and that polymorphisms of the kinase associate with arterial blood pressure in normotensive subjects. This review discusses the role of Sgk1 in NaCl and K(+) homeostasis as evidenced by in vivo studies, including those in Sgk1-deficient mice. The studies indicate that Sgk1 is not absolutely required for Na(+) reabsorption and K(+) secretion in the ASDN. On a standard NaCl and K(+) diet, modestly enhanced plasma aldosterone concentrations appear sufficient to establish a compensated phenotype in the absence of Sgk1. The kinase is necessary, however, for upregulation of transcellular Na(+) reabsorption in the ASDN. This may involve Sgk1-mediated stimulation of basolateral Na(+)-K(+)-ATPase as well as retention of epithelial Na(+) channel, ENaC, in the apical membrane. Such an upregulation is a prerequisite for adequate adaptation of 1) renal NaCl reabsorption during restricted dietary NaCl intake, as well as 2) K(+) secretion in response to enhanced K(+) intake. Thus gain-of-function mutations of Sgk1 are expected to result in renal NaCl retention and enhanced K(+) secretion. Further studies are required to elucidate renal and nonrenal aldosterone-induced effects of Sgk1, the role of other Sgk1 activators, as well as the link of Sgk1 polymorphisms to arterial hypertension in humans.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University. of California San Diego and Veterans Affairs Medical Center, 3350 La Jolla Village Drive (9151 San Diego, CA 92161, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Knoll KE, Pietrusz JL, Liang M. Tissue-specific transcriptome responses in rats with early streptozotocin-induced diabetes. Physiol Genomics 2005; 21:222-9. [PMID: 15713786 DOI: 10.1152/physiolgenomics.00231.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The understanding of common and tissue-specific molecular alterations in diabetes, particularly at early stages, is limited and fragmental. In the present study, we systematically compared transcriptome responses in four important diabetic target tissues in rats with 2 wk of streptozotocin (STZ)-induced diabetes. At this stage of diabetes, the skeletal muscle exhibited the highest transcriptome sensitivity to the STZ treatment with nearly 17% of the transcriptome being altered (false discovery rate, 1.6%) compared with approximately 3% in the cardiac left ventricle, renal cortex, and retina. Similarity in transcriptome response among tissues was low, with the highest similarity being 2.2% between skeletal muscle and the left ventricle. Several biological processes or cellular components, such as lipid metabolism in the left ventricle and collagen in the renal cortex, were significantly overrepresented in the responsive genes than in the entire array. Particularly interesting cases of common or tissue-specific regulation included decorin and CD36, which were upregulated in several tissues, and serum/glucocorticoid-regulated kinase and four and a half LIM domains 2, which were upregulated only in the renal cortex. Further biochemical analyses indicated that the thiol and oxidative stress pathway was altered in a tissue-specific manner at several levels including transcript abundance, content of reduced thiols, and lipid peroxidation, providing an example of the potential biological relevance of tissue-specific transcript regulation. These results provided a transcriptome-wide view of the molecular alterations across several key tissues in early diabetes. It appears that both common pathways and, perhaps more importantly, tissue-specific mechanisms are involved in the adaptation to diabetes or the initiation of diabetic complications.
Collapse
Affiliation(s)
- Kristen E Knoll
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
117
|
Friedrich B, Alexander D, Aicher WK, Duszenko M, Schaub TP, Passlick-Deetjen J, Waldegger S, Wolf S, Risler T, Lang F. Influence of standard haemodialysis treatment on transcription of human serum- and glucocorticoid-inducible kinase SGK1 and taurine transporter TAUT in blood leukocytes. Nephrol Dial Transplant 2005; 20:768-74. [PMID: 15701671 DOI: 10.1093/ndt/gfh697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Standard haemodialysis (HD) rapidly alters osmolality and composition of extracellular fluid and, thus, challenges cell volume constancy. Cell volume-sensitive genes upregulated by osmotic cell shrinkage include those encoding for taurine transporter TAUT as well as for serum- and glucocorticoid-inducible kinase SGK1. METHODS Six HD patients were haemodialysed for 4 h with high-flux dialysers. Blood was drawn from the arterial section of the fistula immediately prior to start of HD and subsequently after 60, 120 and 240 min of HD treatment and, in addition, 120 min after HD treatment. Taurine plasma concentrations ([taurine]p) and erythrocytic taurine content ([taurine]e) were determined by high-performance liquid chromatography. SGK1 and TAUT transcript levels in leukocytes were quantified by real-time polymerase chain reaction. RESULTS The [taurine]p was significantly higher in HD patients before HD treatment when compared with healthy controls and it decreased significantly during 4 h of HD. The ratio of SGK1/GAPDH and of TAUT/GAPDH transcript levels increased significantly by 50% or 27%, respectively, during HD. CONCLUSIONS Standard HD treatment decreases plasma taurine concentration and upregulates leukocyte SGK1 and TAUT transcription. As SGK1 is a potent regulator of ion channels and transporters in nervous system, heart muscle and epithelial cells, the deranged regulation of SGK1 may contribute to acute side effects of HD treatment.
Collapse
Affiliation(s)
- Björn Friedrich
- Department of Internal Medicine, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Böhmer C, Philippin M, Rajamanickam J, Mack A, Broer S, Palmada M, Lang F. Stimulation of the EAAT4 glutamate transporter by SGK protein kinase isoforms and PKB. Biochem Biophys Res Commun 2005; 324:1242-8. [PMID: 15504348 DOI: 10.1016/j.bbrc.2004.09.193] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Indexed: 01/18/2023]
Abstract
The serum and glucocorticoid inducible kinase (SGK) 1 is expressed in brain tissue and upregulated by ischemia, neuronal excitation, and dehydration. The present study has been performed to elucidate the expression of SGK1 in cerebellar Purkinje cells and to explore whether it influences the colocalized glutamate transporter EAAT4. Intense SGK1 staining was observed in Purkinje cells following 48h of water deprivation. The kinase activates glutamate induced current (I(GLU)) in Xenopus oocytes heterologously expressing EAAT4, an effect mimicked by its isoforms SGK2, 3 and PKB. I(GLU) was decreased by the ubiquitin ligase Nedd4-2, an effect partially but not completely reversed by additional coexpression of the SGK kinase isoforms or PKB. According to immunohistochemistry EAAT4 protein abundance in the cell membrane was enhanced by SGK1 and decreased by Nedd4-2. In conclusion, SGK1 expression is upregulated by ischemia, excitation, and dehydration in cerebellar Purkinje cells. The upregulation of SGK1 may serve to stimulate EAAT4 and thus to reduce neuroexcitotoxicity.
Collapse
|
119
|
Lang F, Vallon V, Grahammer F, Palmada M, Böhmer C. Transport regulation by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Soc Trans 2005; 33:213-5. [PMID: 15667310 DOI: 10.1042/bst0330213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The serum- and glucocorticoid-inducible kinase SGK1 is an ubiquitously expressed kinase with the ability to regulate a variety of transport systems. Recent observations point to a role of SGK1 in the regulation of diverse physiological functions such as epithelial transport and cardiac and neuronal excitability. At least partially through its effect on transport, SGK1 contributes to a number of pathophysiological conditions including metabolic syndrome and fibrosing disease.
Collapse
Affiliation(s)
- F Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstrasse 5, D-72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
120
|
Zholos A, Beck B, Sydorenko V, Lemonnier L, Bordat P, Prevarskaya N, Skryma R. Ca(2+)- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. ACTA ACUST UNITED AC 2005; 125:197-211. [PMID: 15657298 PMCID: PMC2217498 DOI: 10.1085/jgp.200409161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using patch-clamp and calcium imaging techniques, we characterized the effects of ATP and histamine on human keratinocytes. In the HaCaT cell line, both receptor agonists induced a transient elevation of [Ca2+]i in a Ca2+-free medium followed by a secondary [Ca2+]i rise upon Ca2+ readmission due to store-operated calcium entry (SOCE). In voltage-clamped cells, agonists activated two kinetically distinct currents, which showed differing voltage dependences and were identified as Ca2+-activated (ICl(Ca)) and volume-regulated (ICl, swell) chloride currents. NPPB and DIDS more efficiently inhibited ICl(Ca) and ICl, swell, respectively. Cell swelling caused by hypotonic solution invariably activated ICl, swell while regulatory volume decrease occurred in intact cells, as was found in flow cytometry experiments. The PLC inhibitor U-73122 blocked both agonist- and cell swelling–induced ICl, swell, while its inactive analogue U-73343 had no effect. ICl(Ca) could be activated by cytoplasmic calcium increase due to thapsigargin (TG)-induced SOCE as well as by buffering [Ca2+]i in the pipette solution at 500 nM. In contrast, ICl, swell could be directly activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable DAG analogue, but neither by InsP3 infusion nor by the cytoplasmic calcium increase. PKC also had no role in its regulation. Agonists, OAG, and cell swelling induced ICl, swell in a nonadditive manner, suggesting their convergence on a common pathway. ICl, swell and ICl(Ca) showed only a limited overlap (i.e., simultaneous activation), although various maneuvers were able to induce these currents sequentially in the same cell. TG-induced SOCE strongly potentiated ICl(Ca), but abolished ICl, swell, thereby providing a clue for this paradox. Thus, we have established for the first time using a keratinocyte model that ICl, swell can be physiologically activated under isotonic conditions by receptors coupled to the phosphoinositide pathway. These results also suggest a novel function for SOCE, which can operate as a “selection” switch between closely localized channels.
Collapse
Affiliation(s)
- Alexander Zholos
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologie de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Palmada M, Poppendieck S, Embark HM, van de Graaf SFJ, Boehmer C, Bindels RJM, Lang F. Requirement of PDZ Domains for the Stimulation of the Epithelial Ca 2+ Channel TRPV5 by the NHE Regulating Factor NHERF2 and the Serum and Glucocorticoid Inducible Kinase SGK1. Cell Physiol Biochem 2005; 15:175-82. [PMID: 15665527 DOI: 10.1159/000083650] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2004] [Indexed: 11/19/2022] Open
Abstract
Renal calcium reabsorption involves the epithelial calcium channel ECaC1 (TRPV5) which is tightly regulated by 1,25(OH)2D3. As shown recently, TRPV5 is activated by the serum and glucocorticoid inducible kinase SGK1, a kinase transcriptionally upregulated by 1,25(OH)2D3. This stimulatory effect is due to enhanced TRPV5 abundance in the plasma membrane and requires the presence of the scaffold protein NHERF2 (sodium hydrogen exchanger regulating factor 2). The present study aims to define the molecular requirements for the interaction of TRPV5 with SGK1 and NHERF2. Pull-down experiments and overlay assays revealed that the TRPV5 C-tail interacts in a Ca2+-independent manner with NHERF2. Deletion of the second but not of the first PDZ domain in NHERF2 abrogates the stimulating effect of SGK1/NHERF2 on TRPV5 protein abundance in the plasma membrane as quantified by chemiluminescence and electrophysiology. Thus, the second PDZ domain in NHERF2 is required for stabilization at or TRPV5 targeting to the plasma membrane. The experiments demonstrate the significance of SGK1 and NHERF2 as TRPV5 modulators which are likely to participate in the regulation of calcium homeostasis by 1,25(OH)2D3.
Collapse
Affiliation(s)
- Monica Palmada
- Dept. of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
122
|
Wang Q, Zhang X, Wang Y, Deng A, Zhu Z, Feng Y. Significance and expression of serum and glucocorticoid-inducible kinase in kidney of mice with diabetic nephropathy. Curr Med Sci 2005; 25:170-3. [PMID: 16116964 DOI: 10.1007/bf02873568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Indexed: 12/01/2022]
Abstract
To investigate the expression and the role of three isoforms of Serum and Glucocorticoid-inducible Kinase (SGK) in experimental diabetic nephropathy (DN), 12 male C57BL/6 mice of 8-weeks-old were divided into two groups. Streptozotocin (STZ)-induced diabetic nephropathy and normal controls were analyzed at the end of the 4th week after the induction of diabetes. Renal hemodynamics and histological studies were performed. The expression of SGK1 mRNA, SGK2 mRNA and SGK3 mRNA of kidney cortex were measured by RT-PCR, and the cortical SGK1 protein was detected with Western blotting. Our results showed that the blood glucose, blood HbA1c, 24h urinary protein, creatinine clearance and the renal index were all increased in DN group. More extracellular matrix (ECM) accumulation was observed. The level of cortical SGK1 mRNA and protein were up-regulated in DN group in comparison with control group. SGK2 and SGK3 mRNA were elevated in DN mice. In DN, mRNA level of three SGK isoforms and SGK1 protein were increased significantly. It is concluded that SGKs may contribute to the early renal injury of DN.
Collapse
Affiliation(s)
- Quansheng Wang
- Department of Chinese Traditional Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
123
|
Lang F. Surfing the lipid bilayer: how basolateral insulin receptors regulate Na+ channels in the apical cell membrane. Focus on “Real-time three-dimensional imaging of lipid signal transduction: apical membrane insertion of epithelial Na+ channels”. Am J Physiol Cell Physiol 2004; 287:C1539-40. [PMID: 15525687 DOI: 10.1152/ajpcell.00438.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
124
|
Boyd C, Náray-Fejes-Tóth A. Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1. Am J Physiol Renal Physiol 2004; 288:F505-12. [PMID: 15536167 DOI: 10.1152/ajprenal.00242.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldosterone is a key regulator of epithelial Na+ channels (ENaC) in renal cortical collecting ducts (CCD). The goal of this study was to examine whether serum- and glucocorticoid-inducible kinase-1 (SGK1), an aldosterone-induced gene, is vital to the delayed effect of aldosterone by increasing the gene expression of ENaC subunits. To test this hypothesis, we compared the levels of ENaC mRNA in mouse CCD cells that stably express either full-length (FL)-SGK1 or a kinase-dead dominant negative (K127M)-SGK1. Our results revealed that SGK1 regulates gene expression of ENaC, whether cells are maintained in steroid-free media or in the presence of corticosteroids (CS) and/or other growth factors. Under all conditions, the loss of function of SGK1 caused a significant decrease in the expression of alpha- and beta-ENaC, but not gamma-ENaC. Compared with cells expressing FL-SGK1, K127M-SGK1 decreased the expression of alpha- and beta-subunit mRNA by approximately 45 and approximately 90%, respectively. Next, to determine whether SGK1 is one of the proteins mediating the induction of alpha-ENaC mRNA by CS, we compared steroid induction of alpha-ENaC in cells expressing K127M-SGK1 vs. FL-SGK1. The maximum level of alpha-ENaC mRNA levels following CS was significantly (approximately 45%) higher in FL-SGK1- vs. K127M-SGK1-expressing cells, although the fold-induction by CS was similar in both FL-SGK1- and K127M-SGK1-expressing cells. In summary, we report for the first time that SGK1 regulates transcription of ENaC subunits. We propose that the effect of SGK1 on ENaC transcription is mediated by the activation of unidentified transcription factors.
Collapse
Affiliation(s)
- Cary Boyd
- Dartmouth Medical School, Dept. of Physiology, 1 Medical Center Dr., Lebanon, NH 03756-0001, USA
| | | |
Collapse
|
125
|
Palmada M, Dieter M, Boehmer C, Waldegger S, Lang F. Serum and glucocorticoid inducible kinases functionally regulate ClC-2 channels. Biochem Biophys Res Commun 2004; 321:1001-6. [PMID: 15358127 DOI: 10.1016/j.bbrc.2004.07.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Indexed: 12/22/2022]
Abstract
ClC-2 participates in the regulation of neuronal excitability, chloride secretion, and cell volume. The ClC-2 sequence contains a consensus site (Ser82) for phosphorylation by the serum and glucocorticoid inducible kinase isoforms SGK1-3. Thus, the present study explored whether ClC-2 is regulated by those kinases. ClC-2 expression in Xenopus oocytes induced inwardly rectifying currents that increased upon coexpression of SGK1-3 and the related kinase PKB. The stimulatory effect was still present upon disruption of the SGK phosphorylation site. SGKs can phosphorylate the ubiquitin ligase Nedd4-2 and prevent Nedd4-2 from binding to its target. Therefore, the role of Nedd4-2 in ClC-2 modulation was investigated. ClC-2 activity decreased upon Nedd4-2 coexpression, an effect reversed by the kinases. According to chemiluminescence ClC-2 membrane abundance was enhanced by SGKs and diminished by Nedd4-2. These observations suggest that SGK1-3 and Nedd4-2 regulate ClC-2 at least in part by modulating ClC-2 abundance at the plasma membrane.
Collapse
Affiliation(s)
- Monica Palmada
- Physiologisches Institut, Universität Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
126
|
Dieter M, Palmada M, Rajamanickam J, Aydin A, Busjahn A, Boehmer C, Luft FC, Lang F. Regulation of glucose transporter SGLT1 by ubiquitin ligase Nedd4-2 and kinases SGK1, SGK3, and PKB. ACTA ACUST UNITED AC 2004; 12:862-70. [PMID: 15166308 DOI: 10.1038/oby.2004.104] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Serum- and glucocorticoid-inducible kinase 1 (SGK1) inhibits the ubiquitin ligase neuronal cell expressed developmentally downregulated 4-2 (Nedd4-2), which retards the retrieval of the epithelial Na+ channel ENaC. Accordingly, SGK1 enhances ENaC abundance in the cell membrane. The significance of this effect is shown by an association of an E8CC/CT;I6CC polymorphism in the SGK1 gene with increased blood pressure. However, strong expression of SGK1 in enterocytes not expressing ENaC points to further functions of SGK1. This study was performed to test for regulation of Na+-coupled glucose transporter 1 (SGLT1) by Nedd4-2, SGK1, and/or the related kinases SGK3 and PKB. Additional studies searched for an association of the SGK1 gene with BMI. RESEARCH METHODS AND PROCEDURES mRNA encoding SGLT1, wild-type Nedd4-2, inactive (C938S)Nedd4-2, wild type SGK1, constitutively active (S422D)SGK1 or inactive (K127N)SGK1, wild-type SGK3, and constitutively active (T308DS473D)PKB or inactive (T308AS473A)PKB were injected into Xenopus oocytes, and glucose transport was quantified from glucose-induced current (I(glc)). BMI was determined in individuals with or without the E8CC/CT;I6CC polymorphism. RESULTS I(glc) was significantly decreased by coexpression of Nedd4-2 but not of (C938S)Nedd4-2. Coexpression of SGK1, (S422D)SGK1, SGK3, or (T308DS473D)PKB, but not of (K127N)SGK1 or (T308AS473A)PKB, enhanced I(glc) and reversed the effect of Nedd4-2. SGK1 and SGK3 phosphorylated Nedd4-2. Deletion of the SGK/PKB phosphorylation sites in Nedd4-2 blunted the kinase effects. BMI was significantly (p < 0.008) greater in individuals with the E8CC/CT;I6CC polymorphism than in individuals without. DISCUSSION Overactivity of SGK1 may lead not only to excessive ENaC activity and hypertension but also to enhanced SGLT1 activity and obesity.
Collapse
Affiliation(s)
- Michael Dieter
- Department of Physiology I, University of Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Trochen N, Ganapathipillai S, Ferrari P, Frey BM, Frey FJ. Low prevalence of nonconservative mutations of serum and glucocorticoid-regulated kinase (SGK1) gene in hypertensive and renal patients. Nephrol Dial Transplant 2004; 19:2499-504. [PMID: 15304560 DOI: 10.1093/ndt/gfh417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The serum- and glucocorticoid-regulated kinase (SGK1) gene is an important mediator of aldosterone action, regulating the expression of the renal epithelial Na(+) channel. In renal failure, blood pressure (BP) is markedly salt-dependent and increases with decreasing renal function. Mutations of the SGK1 gene affecting phosphorylation could be responsible for salt-mediated increases in BP and hypertension-related progression to end-stage renal disease (ESRD). METHODS The SGK1 gene was analysed for mutations in the exons 4, 5, 8 and 10-12, because of potential phosphorylation sites, in 591 subjects, including 311 ESRD patients (either dialysis or transplanted). In addition, an intron 6 single-nucleotide polymorphism (SNP) described previously was also investigated in this study. Genotyping was performed either by using a strategy based on single strand conformation polymorphism analysis of polymerase chain reaction (PCR) products and subsequent direct sequencing of identified gel shift variants or by using high throughput 5' nuclease allelic discrimination assay. RESULTS Two SNPs in coding regions of SGK1 potentially influencing the phosphorylation of Sgk1 were identified. Both SNPs were synonymous. The prevalence of the first variant, a previously reported SNP at codon 240 in exon 8, did not differ between ESRD patients (16.3%) and controls (15.7%). There was no association between the SNP in exon 8 and either BP within the control population or progression of renal disease in the ESRD population. The second SNP at codon 398 in exon 12 was identified in one patient only. Intron 6 and exon 8 SNPs were in strong linkage disequilibrium, but did not show any association with either BP or renal diseases. CONCLUSIONS Based on statistical analysis homozygosity for nonconservative mutations in the coding region of the SGK1 gene is estimated at < 1/300 000 when a white Caucasian population is considered, arguing against an important role of mutations of this coding region in hypertension and hypertension-associated progression of renal disease.
Collapse
Affiliation(s)
- Nadja Trochen
- Division of Nephrology and Hypertension, University Hospital, Berne, Switzerland
| | | | | | | | | |
Collapse
|
128
|
Palmada M, Dieter M, Speil A, Böhmer C, Mack AF, Wagner HJ, Klingel K, Kandolf R, Murer H, Biber J, Closs EI, Lang F. Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4-2 and by serum- and glucocorticoid-dependent kinase 1. Am J Physiol Gastrointest Liver Physiol 2004; 287:G143-50. [PMID: 15044175 DOI: 10.1152/ajpgi.00121.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is highly expressed in enterocytes. The significance of the kinase in regulation of intestinal function has, however, remained elusive. In Xenopus laevis oocytes, SGK1 stimulates the epithelial Na(+) channel by phosphorylating the ubiquitin ligase Nedd4-2, which regulates channels by ubiquitination leading to subsequent degradation of the channel protein. Thus the present study has been performed to explore whether SGK1 regulates transport systems expressed in intestinal epithelial cells, specifically type IIb sodium-phosphate (Na(+)-P(i)) cotransporter (NaPi IIb). Immunohistochemistry in human small intestine revealed SGK1 colocalization with Nedd4-2 in villus enterocytes. For functional analysis cRNA encoding NaPi IIb, the SGK isoforms and/or the Nedd4-2 were injected into X. laevis oocytes, and transport activity was quantified as the substrate-induced current (I(P)). Exposure to 3 mM phosphate induces an I(P) in NaPi IIb-expressing oocytes. Coinjection of Nedd4-2, but not the catalytically inactive mutant (C938S)Nedd4-2, significantly downregulates I(P), whereas the coinjection of (S422D)SGK1 markedly stimulates I(P) and even fully reverses the effect of Nedd4-2 on I(P). The effect of (S422D)SGK1 on NaPi IIb is mimicked by wild-type SGK3 but not by wild-type SGK2, constitutively active (T308D,S473D)PKB, or inactive (K127N)SGK1. Moreover, (S422D)SGK1 and SGK3 phosphorylate Nedd4-2. In conclusion, SGK1 stimulates the NaPi IIb, at least in part, by phosphorylating and thereby inhibiting Nedd4-2 binding to its target. Thus the present study reveals a novel signaling pathway in the regulation of intestinal phosphate transport, which may be important for regulation of phosphate balance.
Collapse
Affiliation(s)
- M Palmada
- Physiologisches Institut, Universitat Tubingen, Gmelinstrasse 5, D-72076 Tubingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Coric T, Hernandez N, Alvarez de la Rosa D, Shao D, Wang T, Canessa CM. Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2004; 286:G663-70. [PMID: 14630642 DOI: 10.1152/ajpgi.00364.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increase in epithelium sodium channel (ENaC) activity induced by aldosterone in the distal tubule of the kidney has been attributed to serum- and glucocorticoid-induced kinase 1 (sgk1). The distal colon constitutes another classical aldosterone-responsive epithelium that expresses both ENaC and sgk1 in an aldosterone-dependent manner. However, the site of expression and the temporal relationship of the aldosterone induction of these two proteins have not been investigated. Here, we examined the distribution and abundance of sgk1 in the rat intestine under basal conditions and after changes in the concentration of aldosterone and glucocorticoids. Results indicate that sgk1 is expressed in the distal colon and also in the ileum and jejunum. Abundance of sgk1 was high in control animals, and it did not change significantly after sodium depletion or after a single dose of aldosterone; however, it decreased after adrenalectomy. In contrast, the three subunits of ENaC were markedly induced in the distal colon by acute and chronic increases in aldosterone levels. Results indicate differential regulation of sgk and ENaC subunits by aldosterone in the distal colon. Distribution of sgk1 in the intestine beyond the aldosterone-responsive segments suggests that sgk1 may additionally regulate other sodium transporters in the intestinal epithelium.
Collapse
Affiliation(s)
- Tatjana Coric
- Department of Cellular and Molecular Psysiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
130
|
Náray-Fejes-Tóth A, Helms MN, Stokes JB, Fejes-Tóth G. Regulation of sodium transport in mammalian collecting duct cells by aldosterone-induced kinase, SGK1: structure/function studies. Mol Cell Endocrinol 2004; 217:197-202. [PMID: 15134818 DOI: 10.1016/j.mce.2003.10.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Serum- and glucocorticoid-induced kinases (SGK) are members of the serine-threonine kinase family. SGK1, the isoform identified first, is rapidly induced by aldosterone. In this study, we determined that the two recently described isoforms, SGK2 and SGK3 are also expressed in renal cortical collecting duct (CCD) cells; however, their expression is not induced by aldosterone or glucocorticoids. SGK1 increases the activity of the epithelial sodium channel (ENaC) in oocytes but its cellular targets in native mineralocorticoid target cells and its mechanism of action are still unknown. We studied the role of SGK1 in corticosteroid-regulated Na transport in M-1 mouse CCD cell lines that stably over-express or down-regulate SGK1. Basal rates of transepithelial Na transport were significantly lower in CCD cells in which SGK1 expression or activity was down-regulated than in SGK1 overexpressing cells. Importantly, corticosteroid treatment failed to stimulate Na transport in cells with down-regulated SGK1 while it significantly increased Na transport in parent and SGK1 overexpressing M-1 cells. To determine if C-terminal PDZ interactions are important for SGK's effect on ENaC activity or trafficking, we examined the effects of mutant SGK1 in which the conserved PDZ binding domain has been eliminated. However, such mutations did not decrease its stimulatory effect on ENaC current in Xenopus oocytes. Fluorescence confocal microscopy revealed that the intracellular localization of full-length and PDZ binding mutated SGK1 was identical: they both localize to intracellular vesicular structures. On the other hand, N-terminally truncated (delta 60)-SGK1 did not increase ENaC activity. We conclude that SGK1 is a critical component in corticosteroid-regulated Na transport in mammalian CCD cells. Our data also indicate that the N-terminal of SGK1 is necessary for its stimulatory effect on Na transport while elimination of the C-terminal PDZ binding domain did not change its function.
Collapse
|
131
|
Rangone H, Poizat G, Troncoso J, Ross CA, MacDonald ME, Saudou F, Humbert S. The serum- and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur J Neurosci 2004; 19:273-9. [PMID: 14725621 DOI: 10.1111/j.0953-816x.2003.03131.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is caused by abnormal polyglutamine (polyQ) expansion in the protein huntingtin. We have previously demonstrated the importance of the insulin-like growth factor I (IGF-1)/Akt pathway in HD. Indeed, upon IGF-1 activation, Akt phosphorylates polyQ-huntingtin at serine 421 and abrogates its toxicity. In addition, we have demonstrated that Akt is altered in the brain of HD patients. Here, we investigate the role of the serum- and glucocorticoid-induced kinase (SGK) in HD. We show that SGK phosphorylates huntingtin at serine 421 and that phosphorylation can protect striatal neurons against polyQ-huntingtin-induced toxicity. We find that SGK levels are increased in the brain of HD patients. Using a cellular model of HD, we demonstrate that the SGK dysregulation induced by polyQ-huntingtin occurs via the p38/MAPK pathway. Collectively, our results strongly suggest the involvement of SGK in HD and further imply that IGF-1 downstream signalling is a key transduction pathway that regulates the toxicity of huntingtin.
Collapse
Affiliation(s)
- Hélène Rangone
- UMR 146 CNRS/Institut Curie, Bldg. 110, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
132
|
Palmada M, Embark HM, Yun C, Böhmer C, Lang F. Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun 2003; 311:629-34. [PMID: 14623317 DOI: 10.1016/j.bbrc.2003.10.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The serum- and glucocorticoid- inducible kinase SGK1 stimulates the renal outer medullary K(+) channel ROMK1 in the presence of the Na(+)/H(+) exchanger regulating factor NHERF2. SGK1/NHERF2 are effective through enhancement of ROMK1 abundance within the cell membrane. The present study aims to define the molecular requirements for the interaction of ROMK1 with SGK1/NHERF2. Pull down assays reveal that SGK1 interacts with NHERF2 through the second PDZ domain of NHERF2. According to chemiluminescence and electrophysiology, deletion of the second PDZ domain of NHERF2 or the putative PDZ binding motif on ROMK1 abrogates the stimulating effect of SGK1 on ROMK1 protein abundance in the plasma membrane and K(+) current.
Collapse
Affiliation(s)
- Monica Palmada
- Department of Physiology I, University of Tübingen, Gmelinstr 5, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
133
|
Zhao H, Granberg F, Elfineh L, Pettersson U, Svensson C. Strategic attack on host cell gene expression during adenovirus infection. J Virol 2003; 77:11006-15. [PMID: 14512549 PMCID: PMC224976 DOI: 10.1128/jvi.77.20.11006-11015.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To understand the interaction between the virus and its host, we used three sources of cDNA microarrays to examine the expression of 12,309 unique genes at 6 h postinfection of HeLa cells with high multiplicities of adenovirus type 2. Seventy-six genes with significantly changed expression ratios were identified, suggesting that adenovirus only modulates expression of a limited set of cellular genes. Quantitative real-time PCR analyses on selected genes were performed to confirm the microarray results. Significantly, a pronounced transcriptional activation by the promiscuous E1A-289R transcriptional activator was not apparent. Instead, promoter sequences in 45% of the upregulated genes harbored a potential E2F binding site, suggesting that the ability of the amino-terminal domain of E1A to regulate E2F-dependent transcription may be a major pathway for regulation of cellular gene expression. CDC25A was the only upregulated gene directly involved in cell cycle control. In contrast, several genes implicated in cell growth arrest were repressed. The transforming growth factor beta superfamily was specifically affected in the expression of both the upstream ligand and an intracellular regulator. In agreement with previous reports, adenovirus also targeted the innate immune response by downregulating several cytokines, including CLL2, CXCL1, and interleukin-6. Finally, stress response genes encoding GADD45B, ATF3, and TP53AP1 were upregulated. Importantly, we also found a novel countermeasure-activation of the apoptosis inhibitor survivin.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Genetics and Pathology, Rudbeck Laboratory, S-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
134
|
Henke G, Setiawan I, Böhmer C, Lang F. Activation of Na+/K+-ATPase by the serum and glucocorticoid-dependent kinase isoforms. Kidney Blood Press Res 2003; 25:370-4. [PMID: 12590200 DOI: 10.1159/000068699] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Expression of the constitutively active form of serum and glucocorticoid-dependent kinase ((S422D)SGK1) in Xenopus oocytes has recently been shown to upregulate endogenous Na(+)/K(+)-ATPase activity, an effect presumably participating in the regulation of cellular K(+) uptake and transepithelial Na(+) transport. SGK1 and the two isoforms SGK2 and SGK3 are stimulated by insulin and insulin-like growth factor-1 (IGF-1), which have been shown to enhance Na(+)/K(+)-ATPase activity in a variety of cells. The present experiments have been performed to elucidate whether or not wild-type SGK1, SGK2 and SGK3 are similar to (S422D)SGK1 in being effective regulators of Na(+)/K(+)-ATPase. METHODS To this end, dual-electrode voltage clamp experiments were performed in Xenopus oocytes injected either with water or with mRNA of constitutively active (S422D)SGK1 and wild-type SGK1, SGK2 or SGK3. Na(+)/K(+)-ATPase activity was estimated from the outward-directed current created by readdition of extracellular K(+) in the presence of K(+) channel blocker Ba(2+) following a 10-min exposure to K(+)-free extracellular fluid. RESULTS The outward-directed current was fully abolished by incubation with 1 mM ouabain and was significantly larger in oocytes expressing (S422D)SGK1, SGK1, SGK2 or SGK3, as compared to those injected with water. CONCLUSION The stimulating effect of SGK1 on the Xenopus oocyte Na(+)/K(+)-ATPase is mimicked by the isoforms SGK2 and SGK3. Thus, all three kinases may participate in the regulation of Na(+)/K(+)-ATPase activity by hormones such as insulin and IGF-1.
Collapse
Affiliation(s)
- Guido Henke
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
135
|
Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Bröer S, Lang F. Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem 2003; 86:1181-8. [PMID: 12911626 DOI: 10.1046/j.1471-4159.2003.01937.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Surface expression of the glial glutamate transporter EAAT1 is stimulated by insulin-like growth factor 1 through activation of phosphatidylinositol-3-kinase. Downstream targets include serum and glucocorticoid-sensitive kinase isoforms SGK1, SGK2 and SGK3, and protein kinase B. SGK1 regulates Nedd4-2, a ubiquitin ligase that prepares cell membrane proteins for degradation. To test whether Nedd4-2, SGK1, SGK3 and protein kinase B regulate EAAT1, cRNA encoding EAAT1 was injected into Xenopus oocytes with or without additional injection of wild-type Nedd4-2, constitutively active S422DSGK1, inactive K127NSGK1, wild-type SGK3 and/or constitutively active T308D,S473DPKB. Glutamate induces a current in Xenopus oocytes expressing EAAT1, but not in water-injected oocytes, which is decreased by co-expression of Nedd4-2, an effect reversed by additional co-expression of S422DSGK1, SGK3 and T308D,S473DPKB, but not K127NSGK1. Site-directed mutagenesis of the SGK1 phosphorylation sites in the Nedd4-2 protein (S382A,S468ANedd4-2) and in the EAAT1 protein (T482AEAAT1, T482DEAAT1) significantly blunts the effect of S422DSGK1. Moreover, the current is significantly larger in T482DEAAT1- than in T482AEAAT1-expressing oocytes, indicating that a negative charge mimicking phosphorylation at T482 increases transport. The experiments reveal a powerful novel mechanism that regulates the activity of EAAT1. This mechanism might participate in the regulation of neuronal excitability and glutamate transport in other tissues.
Collapse
Affiliation(s)
- Christoph Boehmer
- Department of Physiology I, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
136
|
Alvarez de la Rosa D, Coric T, Todorovic N, Shao D, Wang T, Canessa CM. Distribution and regulation of expression of serum- and glucocorticoid-induced kinase-1 in the rat kidney. J Physiol 2003; 551:455-66. [PMID: 12816971 PMCID: PMC2343216 DOI: 10.1113/jphysiol.2003.042903] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2003] [Accepted: 06/12/2003] [Indexed: 01/03/2023] Open
Abstract
The serum- and glucocorticoid-induced kinase-1 (sgk1) increases the activity of a number of epithelial ion channels and transporters. The present study examines the distribution and subcellular localization of sgk1 protein in the rat kidney and the regulation of levels of expression induced by steroids. The results indicate that the kidney expresses predominantly the sgk1 isoform with a distribution restricted to the thick ascending limb of Henle, distal convoluted, connecting and cortical collecting tubules. Within cells, sgk1 strongly associates with the microsomal fraction of homogenates and it colocalizes with the Na+,K+-ATPase to the basolateral membrane. Analysis of the levels of expression of sgk1 by Western blotting and immunohistochemistry indicates constitutive high expression under basal conditions. Approximately half of the basal level is maintained by glucocorticoids whereas physiological fluctuations of aldosterone produce minor changes in sgk1 abundance in adrenal-intact animals. These results do not support the notion that physiological changes of aldosterone concentration turn the expression of sgk1 'on and off' in the mammalian kidney. Additionally, localization of sgk1 to the basolateral membrane indicates that the effects mediated by sgk1 do not require a direct interaction with the ion channels and transporters whose activity is modulated, since most of these proteins are located in the apical membrane of renal epithelial cells.
Collapse
MESH Headings
- Adrenalectomy
- Aldosterone/pharmacology
- Animals
- Antibodies/chemistry
- Antibody Specificity
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Electrophoresis, Polyacrylamide Gel
- Epithelial Cells/enzymology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glucocorticoids/pharmacology
- Immediate-Early Proteins
- Immunoblotting
- In Vitro Techniques
- Isoenzymes/genetics
- Isoenzymes/immunology
- Isoenzymes/metabolism
- Kidney/enzymology
- Kidney Tubules/enzymology
- Microscopy, Fluorescence
- Nuclear Proteins
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- RNA/isolation & purification
- RNA/metabolism
- Rats
- Rats, Sprague-Dawley
- Subcellular Fractions/enzymology
- Transfection
Collapse
Affiliation(s)
- D Alvarez de la Rosa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
137
|
Palmada M, Embark HM, Wyatt AW, Böhmer C, Lang F. Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1. Biochem Biophys Res Commun 2003; 307:967-72. [PMID: 12878206 DOI: 10.1016/s0006-291x(03)01301-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The renal outer medullary K(+)-channel ROMK1 is upregulated by the serum- and glucocorticoid-inducible kinase SGK1, an effect potentiated by Na(+)/H(+)-exchanger-regulating-factor NHERF2. SGK1 phosphorylates ROMK1 at serine44. To explore the role of SGK1 phosphorylation, serine44 was replaced by an alanine ([S44A]ROMK1) or an aspartate ([S44D]ROMK1). Wild type ROMK1, [S44A]ROMK1, and [S44D]ROMK1 were expressed in Xenopus oocytes with or without constitutively active [S422D]SGK1 and NHERF2, and K(+) current (I(KR)) determined. Cytosolic pH required for halfmaximal I(KR) (pK(a)) amounted to 7.05+/-0.01 for ROMK1, 7.07+/-0.02 for [S44A]ROMK1, and 6.83+/-0.05 for [S44D]ROMK1. Maximal I(KR) was [S44D]ROMK1>wild type ROMK1>[S44A]ROMK1. Coexpression of [S422D]SGK1 and NHERF2 enhanced the activity of ROMK1, [S44A]ROMK1 and [S44D]ROMK1, but led to a significant shift of pK(a) only in wild type ROMK1 (6.95+/-0.03). In conclusion, phosphorylation by SGK1 or introduction of a negative charge at serine44 shifts the pH sensitivity of the channel and contributes to the stimulation of maximal channel activity by the kinase.
Collapse
Affiliation(s)
- Monica Palmada
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
138
|
Friedrich B, Wärntges S, Klingel K, Sauter M, Kandolf R, Risler T, Müller GA, Witzgall R, Kriz W, Gröne HJ, Lang F. Up-regulation of the human serum and glucocorticoid-dependent kinase 1 in glomerulonephritis. Kidney Blood Press Res 2003; 25:303-7. [PMID: 12435876 DOI: 10.1159/000066794] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glomerulonephritis is paralleled by excessive formation of transforming growth factor-beta (TGF-beta), which participates in the pathophysiology of the disease. Recently, a novel downstream target of TGF-beta has been identified, i.e. the human serum and glucocorticoid-dependent kinase 1 (hSGK1), a serine/threonine kinase participating in the regulation of Na(+) transport. The present study was performed to elucidate transcriptional regulation of hSGK1 in glomerulonephritis. To this end, in situ hybridization was performed in biopsies from patients with clinical diagnosis of glomerulonephritis. hSGK1 transcript levels were moderately enhanced in 5 out of 9 patients and strongly enhanced in 4 out of 9 patients. Distal nephron epithelial cell hSGK1 transcript levels were low or absent in 7 of the 9 patients but markedly enhanced in 2 of the 9 patients. In conclusion, glomerulonephritis leads to glomerular and in some cases to epithelial up-regulation of hSGK1 transcription.
Collapse
Affiliation(s)
- B Friedrich
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Friedrich B, Feng Y, Cohen P, Risler T, Vandewalle A, Bröer S, Wang J, Pearce D, Lang F. The serine/threonine kinases SGK2 and SGK3 are potent stimulators of the epithelial Na+ channel alpha,beta,gamma-ENaC. Pflugers Arch 2003; 445:693-6. [PMID: 12632189 DOI: 10.1007/s00424-002-0993-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 10/29/2002] [Accepted: 11/07/2002] [Indexed: 11/28/2022]
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) has been identified as a signalling molecule up-regulated by aldosterone, which stimulates the renal epithelial Na(+) channel ENaC. It is therefore thought to participate in the antinatriuretic action of this hormone. More recently, two isoforms, SGK2 and SGK3, have been cloned. The present study was performed to establish whether SGK2 and SGK3 influence ENaC activity similarly to SGK1. Dual-electrode voltage-clamp experiments in Xenopus laevis oocytes expressing alpha,ss,gamma-ENaC with or without SGK1, SGK2 or SGK3 revealed a stimulatory effect of all three kinases on the amiloride-sensitive current (I(Na)). To establish whether the SGK isoforms exert their effects through direct phosphorylation, we replaced the serine at the SGK consensus site of alphaENaC (alpha(S622A)ENaC) by site-directed mutagenesis. alpha(S622A),beta,gamma-ENaC was up-regulated similar to wild-type ENaC, suggesting that SGK isoforms do not act via direct phosphorylation of the transport proteins. In conclusion, SGK2 and SGK3 mimic the function of SGK1 and are likely to participate in the regulation of ENaC activity.
Collapse
Affiliation(s)
- B Friedrich
- Physiologisches Institut der Universität Tübingen, Gmelinstrasse 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Embark HM, Böhmer C, Vallon V, Luft F, Lang F. Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Pflugers Arch 2003; 445:601-6. [PMID: 12634932 DOI: 10.1007/s00424-002-0982-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 10/22/2002] [Indexed: 01/09/2023]
Abstract
The slowly activating K(+) channel subunit KCNE1 is expressed in a variety of tissues including proximal renal tubules, cardiac myocytes and stria vascularis of inner ear. The present study has been performed to explore whether the serum- and glucocorticoid-inducible kinase family members SGK1, SGK2, or SGK3 and/or protein kinase B (PKB) influence K(+) channel activity in Xenopus oocytes expressing KCNE1. cRNA encoding KCNE1 was injected with or without cRNA encoding wild-type SGK1, constitutively active (S422D)SGK1, inactive (K127 N)SGK1, wild-type SGK2, wild-type SGK3 or constitutively active (T308D,S473D)PKB. In oocytes injected with KCNE1 cRNA but not in water-injected oocytes a depolarization from -80 mV to -10 mV led to the appearance of a slowly activating K(+) current. Coexpression of SGK1,( S422D)SGK1, SGK2, SGK3 or (T308D,S473D)PKB but not (K127 N)SGK1 significantly stimulated KCNE1-induced current. The effect did not depend on Na(+)/K(+)-ATPase activity. KCNE1-induced current was markedly upregulated by coexpression of KCNQ1 and further increased by additional expression of (S422D)SGK1, SGK2, SGK3 or (T308D,S473D)PKB. In conclusion, all three members of the SGK family of kinases SGK1-3 and protein kinase B stimulate the slowly activating K(+) channel KCNE1/KCNQ1. The kinases may thus participate in the regulation of KCNE1-dependent transport and excitability.
Collapse
Affiliation(s)
- Hamdy M Embark
- Department of Physiology, University of Tübingen, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
141
|
Alvarez de la Rosa D, Canessa CM. Role of SGK in hormonal regulation of epithelial sodium channel in A6 cells. Am J Physiol Cell Physiol 2003; 284:C404-14. [PMID: 12388075 DOI: 10.1152/ajpcell.00398.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the role of the serum- and glucocorticoid-induced kinase (SGK) in the activation of the epithelial sodium channel (ENaC) by aldosterone, arginine vasopressin (AVP), and insulin. We used a tetracycline-inducible system to control the expression of wild-type (SGK(wt)(T)), constitutively active (S425D mutation; SGK(S425D)(T)), or inactive (K130M mutation; SGK(K130M)(T)) SGK in A6 cells independently of hormonal stimulation. The effect of SGK expression on ENaC activity was monitored by measuring transepithelial amiloride-sensitive short-circuit current (I(sc)) of transfected A6 cell lines. Expression of SGK(wt)(T) or SGK(S425D)(T) and aldosterone stimulation have additive effects on I(sc). Although SGK could play some role in the aldosterone response, our results suggest that other mechanisms take place. SGK(S425D)(T) abrogates the responses to AVP and insulin; hence, in the signaling pathways of these hormones there is a shared step that is stimulated by SGK. Because AVP and insulin induce fusion of vesicles to the apical membrane, our results support the notion that SGK promotes incorporation of channels in the apical membrane.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | |
Collapse
|
142
|
Lang KS, Weigert C, Braedel S, Fillon S, Palmada M, Schleicher E, Rammensee HG, Lang F. Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes. Am J Physiol Cell Physiol 2003; 284:C200-8. [PMID: 12475762 DOI: 10.1152/ajpcell.00259.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.
Collapse
Affiliation(s)
- K S Lang
- Department of Immunology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Chaturvedi N, Schalkwijk CG, Abrahamian H, Fuller JH, Stehouwer CDA. Circulating and urinary transforming growth factor beta1, Amadori albumin, and complications of type 1 diabetes: the EURODIAB prospective complications study. Diabetes Care 2002; 25:2320-7. [PMID: 12453980 DOI: 10.2337/diacare.25.12.2320] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Transforming growth factor (TGF)-beta1 is overexpressed in diabetes as a consequence of hyperglycemia and the creation of early glycated end products and may be responsible for the characteristic structural renal changes associated with diabetes. We sought to examine the role of both urinary and circulating TGF-beta1 and its promoter Amadori albumin in the vascular complications of type 1 diabetes. RESEARCH DESIGN AND METHODS The present article reports on a nested case-control study from the EURODIAB Prospective Complications Study of Europeans with type 1 diabetes. Case subjects (n = 356) were all individuals with one or more complications of diabetes; control subjects (n = 185) were all individuals with no evidence of complications. RESULTS Urinary TGF-beta1 and Amadori albumin were elevated in patients with micro- or macroalbuminuria. Standardized regression effects (SREs) for macroalbuminuria versus normoalbuminuria were 2.45 (95% CI 1.88-3.18, P = 0.0001 for urinary TGF-beta1) and 1.67 (1.34-2.07, P = 0.001 for Amadori albumin). The SRE for urinary TGF-beta1 remained statistically significant when adjusted for HbA(1c), Amadori albumin, and blood pressure. Circulating TGF-beta1 was elevated in individuals with proliferative retinopathy compared with individuals without retinopathy (SRE 1.29 [1.07-1.550], P = 0.007). This result was attenuated to 1.16 (0.95-1.43, P = 0.2) in the multivariate model, largely because of HbA(1c). CONCLUSIONS Elevated levels of urinary TGF-beta1 in macroalbuminuria were associated with elevations in Amadori albumin and HbA(1c) and also in blood pressure. In contrast, only circulating TGF-beta1 was related to proliferative retinopathy, and HbA(1c) largely accounted for this. These findings may indicate novel pathways for understanding mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Nish Chaturvedi
- Department of Epidemiology and Public Health, Imperial College of Medicine at St. Mary's, London, UK.
| | | | | | | | | |
Collapse
|
144
|
Wulff P, Vallon V, Huang DY, Völkl H, Yu F, Richter K, Jansen M, Schlünz M, Klingel K, Loffing J, Kauselmann G, Bösl MR, Lang F, Kuhl D. Impaired renal Na+ retention in the sgk1-knockout mouse. J Clin Invest 2002. [DOI: 10.1172/jci0215696] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
145
|
Wulff P, Vallon V, Huang DY, Völkl H, Yu F, Richter K, Jansen M, Schlünz M, Klingel K, Loffing J, Kauselmann G, Bösl MR, Lang F, Kuhl D. Impaired renal Na(+) retention in the sgk1-knockout mouse. J Clin Invest 2002; 110:1263-8. [PMID: 12417564 PMCID: PMC151609 DOI: 10.1172/jci15696] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The serum- and glucocorticoid-regulated kinase (sgk1) is induced by mineralocorticoids and, in turn, upregulates heterologously expressed renal epithelial Na(+) channel (ENaC) activity in Xenopus oocytes. Accordingly, Sgk1 is considered to mediate the mineralocorticoid stimulation of renal ENaC activity and antinatriuresis. Here we show that at standard NaCl intake, renal water and electrolyte excretion is indistinguishable in sgk1-knockout (sgk1(-/-)) mice and wild-type (sgk1(+/+)) mice. In contrast, dietary NaCl restriction reveals an impaired ability of sgk1(-/-) mice to adequately decrease Na(+) excretion despite increases in plasma aldosterone levels and proximal-tubular Na(+) and fluid reabsorption, as well as decreases in blood pressure and glomerular filtration rate.
Collapse
Affiliation(s)
- Peer Wulff
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Mishra R, Leahy P, Simonson MS. Gene expression profiling reveals role for EGF-family ligands in mesangial cell proliferation. Am J Physiol Renal Physiol 2002; 283:F1151-9. [PMID: 12372792 DOI: 10.1152/ajprenal.00103.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of mesangial cell growth and matrix accumulation is critical for normal development of the glomerular tuft and progression of glomerular injury, but the genes that control mesangial cell growth are not well understood. We used high-density oligonucleotide microarrays to analyze gene expression in well-differentiated human mesangial cells treated with serum to stimulate proliferation. Parallel measurement of >12,000 genes and expressed sequence tags identified 5,806 mRNA transcripts in quiescent, unstimulated cells and 609 genes significantly induced or repressed by serum. Functional classification of serum-regulated genes revealed many genes not directly related to cell cycle progression that, instead, might control renal hemodynamics and glomerular filtration or cause tissue injury, leukocyte exudation, matrix accumulation, and fibrosis. Hierarchical cluster analysis defined sets of coregulated genes with similar functions and identified networks of proinflammatory genes with similar expression patterns. Pathway analysis of the gene expression profile suggested an autocrine role in mesangial cell proliferation for three growth factors in the epidermal growth factor (EGF) family: heparin-binding EGF-like growth factor, amphiregulin, and epiregulin. A functional role for EGF receptor (EGFR) activation was confirmed by blocking serum-induced proliferation with an EGFR-selective kinase inhibitor and a specific EGFR-neutralizing antibody. Taken together, these results suggest a role for EGFR signaling in control of mesangial cell growth in response to serum.
Collapse
Affiliation(s)
- Rangnath Mishra
- Division of Nephrology, Department of Medicine, School of Medicine, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
147
|
Abstract
Type 1 diabetes is commonly associated with microvascular complications. Most of the microvascular blood vessels are involved but those in the kidney, retina and large nerves exhibit the more significant pathology. Haemodynamic and metabolic factors both alone and through the activation of a common pathway contribute to the characteristic dysfunction observed in diabetic vasculopathy. The haemodynamic abnormalities in type 1 diabetes are characterized by increased systemic blood pressure and altered blood flow with subsequent activation of various vasoactive factors, which can contribute to the maintenance of the haemodynamic alterations and to the development and progression of the microvascular complications. These vasoactive factors include vasoconstrictors such as angiotensin II, and endothelin, as well as vasodilators such as nitric oxide (NO). Systemic hypertension and vasoactive factors independently and in interaction with the metabolic pathway activate intracellular second messengers, nuclear transcription factors and various growth factors which lead to the typical functional and structural alterations of diabetic microvascular complications. Therapeutic strategies involved in the management and prevention of diabetic complications currently include antihypertensive agents, particularly those that interrupt the renin-angiotensin system. Further understanding of the interactions among the vasoactive factors, the intracellular second messengers and the growth factors may help to identify novel strategies to influence the action of the vasoactive factors. These novel therapies, together with specific inhibitors of the metabolic pathway or the common pathway, may provide the possibility of preventing or even reversing the progression of diabetic microvascular complications.
Collapse
Affiliation(s)
- Riccardo Candido
- Division of Diabetes, Lipoproteins and Metabolism, Baker Heart Research Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|
148
|
Rozansky DJ, Wang J, Doan N, Purdy T, Faulk T, Bhargava A, Dawson K, Pearce D. Hypotonic induction of SGK1 and Na+ transport in A6 cells. Am J Physiol Renal Physiol 2002; 283:F105-13. [PMID: 12060592 DOI: 10.1152/ajprenal.00176.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase-1 (SGK1) is a serine-threonine kinase that is regulated at the transcriptional level by numerous regulatory inputs, including mineralocorticoids, glucocorticoids, follicle-stimulating hormone, and osmotic stress. In the distal nephron, SGK1 is induced by aldosterone and regulates epithelial Na+ channel-mediated transepithelial Na+ transport. In other tissues, including liver and shark rectal gland, SGK1 is regulated by hypertonic stress and is thought to modulate epithelial Na+ channel- and Na+-K+-2Cl- cotransporter-mediated Na+ transport. In this report, we examined the regulation of SGK1 mRNA and protein expression and Na+ currents in response to osmotic stress in A6 cells, a cultured cell line derived from Xenopus laevis distal nephron. We found that in contrast to hepatocytes and rectal gland cells, hypotonic conditions stimulated SGK1 expression and Na+ transport in A6 cells. Moreover, a correlation was found between SGK1 induction and the later phase of activation of Na+ transport in response to hypotonic treatment. When A6 cells were pretreated with an inhibitor of phosphatidylinositol 3-kinase (PI3K), Na+ transport was blunted and only inactive forms of SGK1 were expressed. Surprisingly, these results demonstrate that both hypertonic and hypotonic stimuli can induce SGK1 gene expression in a cell type-dependent fashion. Moreover, these data lend support to the view that SGK1 contributes to the defense of extracellular fluid volume and tonicity in amphibia by mediating a component of the hypotonic induction of distal nephron Na+ transport.
Collapse
Affiliation(s)
- David J Rozansky
- Division of Nephrology, Department of Pediatrics, University of California, San Francisco, California 94143-0532, USA
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Shelly C, Herrera R. Activation of SGK1 by HGF, Rac1 and integrin-mediated cell adhesion in MDCK cells: PI-3K-dependent and -independent pathways. J Cell Sci 2002; 115:1985-93. [PMID: 11956329 DOI: 10.1242/jcs.115.9.1985] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SGK1 protein belongs to the AGC gene family of kinases that are regulated by phosphorylation mediated by PDK1. SGK1 regulation is accomplished by several pathways including growth-factor and stress-mediated signaling. We have expanded the analysis of SGK1 regulation in epithelial cells. We used HA-tagged SGK1 to transiently transfect MDCK cells and study the regulation of SGK1 upon stimulation with HGF, cAMP or upon adhesion of the cells to immobilized fibronectin. In addition, we studied the regulation of SGK1 activity by small GTP-binding proteins of the Rho family.
Treatment of MDCK cells with HGF leads to a time-dependent activation of SGK1 that is blocked by wortmanin. This activation requires the conserved phosphorylation site present in the activation loop of the kinase (T256 in SGK1) and the phosphorylation site present in a hydrophobic domain at its C-terminus (S422 in SGK1), which are targets for PDK1/PDK2-mediated regulation of SGK1. We tested whether SGK1 could be activated by cAMP as it contains a putative PKA site. We were unable to demonstrate a significant activation of HA-SGK1 by cAMP stimulation under conditions where we detect cAMP-mediated phosphorylation of the transcription factor CREB.
Cotransfection of SGK1 with activated small GTP-binding proteins revealed that Rac1, but not Rho or Rap1, induces activation of SGK1. However, this activation was wortmanin insensitive and dominant-negative Rac1 did not inhibit the HGF-mediated activation of SGK1. Adhesion of MDCK cells to immobilized fibronectin also leads to activation of SGK1. However, it appears that the integrin-mediated activation of HA-SGK1 differs from AKT activation in the fact that AKT phosphorylation was blocked by wortmanin (or LY294002)whereas HA-SGK1 was not. The adhesion-dependent activation, however, requires the intact phosphorylation sites of SGK1. Co-transfection of HA-SGK1 with RacV12 results in increased activity in adherent cells compared with HA-SGK1 alone. Since RacN17 failed to inhibit adhesion dependent-activation of SGK1,it suggests that integrin activation is achieved by a parallel Rac-independent pathway.
The activation of SGK1 by HGF and integrin provides a link between HGF-mediated protection of MDCK from de-attachment induced apoptosis(anoikis). We demonstrate that dephosphorylation of the transcription factor FKRHL1 induced by cell de-attachment is prevented by activated SGK1,suggesting that SGK1 regulates cell survival pathways.
In summary, we demonstrate that SGK1 activation could be achieved through signaling pathways involved in the regulation of cell survival, cell-cell and cell-matrix interactions. SGK1 activation can be accomplished via HGF,PI-3K-dependent pathways and by integrin-mediated, PI-3K independent pathways. In addition, activation of SGK1 by the small GTP-binding protein Rac1 has been observed.
Collapse
Affiliation(s)
- Candace Shelly
- Department of Cell Biology, Global Research and Development, Ann Arbor Laboratories, Pfizer Co., Ann Arbor, MI 48105, USA
| | | |
Collapse
|
150
|
Sgk1 Gene Expression in Kidney and Its Regulation by Aldosterone: Spatio-Temporal Heterogeneity and Quantitative Analysis. J Am Soc Nephrol 2002. [DOI: 10.1097/01.asn.0000013702.73570.3b] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT. The serine-threonine kinase sgk1 was recently identified as a gene rapidly induced by mineralocorticoids, resulting in increased sodium transportin vitro. To carefully localize and quantify the renal sgk1 expression response to aldosterone,in situhybridization was performed on kidneys of mice having aldosterone excess over a range of doses and durations. In control and adrenalectomized animals, the glomeruli and inner medullary collecting ducts were the major sites of sgk1 expression, which was maintained independent of aldosterone. Sgk1 upregulation induced by aldosterone excess exhibited spatio-temporal heterogeneity. Both acute (3-h) and chronic (6-d) aldosterone excess stimulated sgk1 expression in the distal nephron,i.e., from the distal convoluted tubules through to the outer medullary collecting ducts. Treatments for 6 d with low sodium diet (0.03% [I]) and aldosterone infusions (50 μg/kg per d [II], 150 μg/kg per d [III], and 750 μg/kg per d [IV]) generated elevation of circulating aldosterone. Across these treatments (I through IV), the circulating level correlated with the progressive induction of sgk1 expression, with highly stimulated tubules first appearing in cortex (I) and continuing downward (II) until there was a strong stimulation throughout outer medulla (III and IV). Interestingly, chronic but not acute aldosterone excess caused a slight increase of sgk1 expression in glomerulus (30 to 50%;P< 0.01) and a dramatic downregulation in the initial portion of inner medulla, which could result from diminished interstitial osmolarity. Relative quantification (versuscontrol) of sgk1 upregulation in individual tubules revealed: (1) a 1.8-fold increase of sgk1 mRNA at 3 h (150 μg/kg injection) and (2) a dose-dependence of chronic upregulation reaching a ceiling of eightfold elevation.
Collapse
|