101
|
|
102
|
Britto JA. Advances in the molecular pathogenesis of craniofacial conditions. Oral Maxillofac Surg Clin North Am 2007; 16:567-86. [PMID: 18088755 DOI: 10.1016/j.coms.2004.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The impact that the understanding of fibroblast growth factor receptor (FGFR) biology and its relevance to the pathogenesis of the craniosynostoses has made cannot be underestimated. As the genetic and molecular pathology of other conditions become increasingly understood, there is much hope that robust and relevant animal models of these conditions may be generated. From these models-and in conjunction with laboratory studies in vitro-comes a real hope of improved therapeutic strategies. The future lies in increased cooperation between clinicians working in high-volume centers and basic scientists. This article decribes the results of a decade of research in which the molecular pathology of the craniosynostoses was unravelled. The understanding of the importance of FGFR mutations to the genetic etiology of craniosynostosis opened up novel studies in developmental biology in various tissues. Such studies describe the functional effects of FGFR mutations. Investigations of FGFR expression in human craniofacial development have related functional molecular studies to human craniosynostosis syndromes, which provides a link between the gene mutation and the affected child.
Collapse
Affiliation(s)
- Jonathan A Britto
- Craniofacial Centre, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N3JH, UK
| |
Collapse
|
103
|
Shidaifat F. Development-related expression of KGF and FGF-10 mRNA in the canine prostate gland. JOURNAL OF VETERINARY MEDICINE. A, PHYSIOLOGY, PATHOLOGY, CLINICAL MEDICINE 2007; 54:549-52. [PMID: 18045337 DOI: 10.1111/j.1439-0442.2007.00983.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keratinocyte growth factor (KGF) and fibroblast growth factor 10 (FGF-10) are stromal-derived growth factors that interact with their epithelial FGFR2 receptors to mediate stromal--epithelial cell interaction within the prostate gland. This study was conducted to compare the development-related mRNA expression of KGF, FGF-10 and their receptor FGFR2 in immature and mature canine prostate glands. In addition, their expression levels were correlated with the differentiation of stromal cells using vimentin as a mesenchymal cell marker. Quantitative mRNA expression was assessed by real-time polymerase chain reaction (PCR) and the results were expressed as relative mRNA expression of the target gene, which was normalized to the GAPDH reference gene. mRNA analysis revealed a differential expression of KGF, FGF-10 and FGFR2 receptor by the prostate glands of immature and mature dogs. The results showed a 7.3- and 9-fold decrease in mRNA expression of KGF and FGF-10 by mature and immature prostate glands respectively. However, there was no significant change in FGFR2 receptor mRNA expression by mature or immature prostate glands. This downregulation of KGF and FGF-10 expression was associated with a 15-fold decrease in vimentin expression. These results indicate that KGF and FGF-10 expression varied according to the differentiation status of stromal cells and might reflect differential developmental requirements of immature and mature canine prostate glands.
Collapse
Affiliation(s)
- F Shidaifat
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110 Jordan.
| |
Collapse
|
104
|
Belleudi F, Leone L, Nobili V, Raffa S, Francescangeli F, Maggio M, Morrone S, Marchese C, Torrisi MR. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 2007; 8:1854-1872. [PMID: 17944804 DOI: 10.1111/j.1600-0854.2007.00651.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.
Collapse
Affiliation(s)
- Francesca Belleudi
- Dipartimento di Medicina Sperimentale, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lotti LV, Rotolo S, Francescangeli F, Frati L, Torrisi MR, Marchese C. AKT and MAPK signaling in KGF-treated and UVB-exposed human epidermal cells. J Cell Physiol 2007; 212:633-42. [PMID: 17458890 DOI: 10.1002/jcp.21056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulation of proliferation and differentiation in keratinocyte is a complex and dynamic process that involves activation of multiple signaling pathways triggered by different growth factors. Keratinocyte growth factor (KGF) is not only a potent mitogen, but differently from other growth factors, is a potent inducer of differentiation. The MAP kinase and AKT pathways are involved in proliferation and differentiation of many cell types including keratinocytes. We investigated here the role of KGF in modulating AKT and MAPK activity during differentiation of human keratinocytes. Our results show that the mechanisms of action of KGF are dose-dependent and that a sustained activation of the MAPK signaling cascade causes a negative regulation of AKT. We also demostrated increasing expression of KGFR substrates, such as PAK4 during keratinocyte differentiation parallel to the receptor upregulation.
Collapse
Affiliation(s)
- Lavinia Vittoria Lotti
- Department of Experimental Medicine, University Sapienza, Viale Regina Elena, Rome, Italy
| | | | | | | | | | | |
Collapse
|
106
|
Wang Y, Yuan S, Wang P, Liu X, Zhan D, Zhang Z. Expression, purification, and characterization of recombinant human keratinocyte growth factor-2 in Pichia pastoris. J Biotechnol 2007; 132:44-8. [PMID: 17884221 DOI: 10.1016/j.jbiotec.2007.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 08/03/2007] [Accepted: 08/13/2007] [Indexed: 12/29/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2) is a member of the fibroblast growth factor family. The full-length human KGF-2 coding sequence, gained by synthesizing, was cloned into the pPICZalphaA vector in frame with the yeast alpha-factor secretion signal under the transcriptional control of the AOX promoter and integrated into Pichia pastoris strain GS115. In shake-flask culture induced with methanol, the rhKGF-2 content was about 17.5% of the total secreted proteins. Under the optimal conditions, stable production of rhKGF-2 around 1.0g/l was achieved. The recombinant protein was purified by heparin affinity chromatography. A preliminary biochemical characterization of purified rhKGF-2 was performed both by Western blot analysis and biological activity analysis, and the result demonstrated that the recombinant KGF-2 was expressed successfully.
Collapse
Affiliation(s)
- Yanchun Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | | | | | | | | | | |
Collapse
|
107
|
Lendvay TS, Sweet R, Han CH, Soygur T, Cheng JF, Plaire JC, Charleston JS, Charleston LB, Bagai S, Cochrane K, Rubio E, Bassuk JA. Compensatory paracrine mechanisms that define the urothelial response to injury in partial bladder outlet obstruction. Am J Physiol Renal Physiol 2007; 293:F1147-56. [PMID: 17609292 DOI: 10.1152/ajprenal.00006.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functional protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo. To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.
Collapse
Affiliation(s)
- Thomas S Lendvay
- Program in Human Urothelial Biology, Seattle Children's Hospital Research Institute, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 2007; 236:1175-92. [PMID: 17394208 DOI: 10.1002/dvdy.21133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | |
Collapse
|
109
|
Buratini J, Pinto MGL, Castilho AC, Amorim RL, Giometti IC, Portela VM, Nicola ES, Price CA. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol Reprod 2007; 77:743-50. [PMID: 17582010 DOI: 10.1095/biolreprod.107.062273] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some fibroblast growth factors (FGFs) affect ovarian follicle cell growth and/or differentiation. Whereas many FGFs activate several FGF receptors, FGF7 and FGF10 primarily activate only one, FGFR2B. As FGF7 is produced by bovine theca cells and acts on granulosa cells, we tested the hypothesis that FGF10 may also play a role in folliculogenesis in cattle. Reverse transcription-polymerase chain reaction demonstrated the presence of FGF10 mRNA in the oocytes and theca cells of the antral follicles, as well as in the preantral follicles. FGF10 protein was detected by immunohistochemistry in the oocytes of the preantral and antral follicles, and in the granulosa and theca cells of the antral follicles. FGF10 expression in theca cells changed during follicle development; mRNA abundance decreased with increasing follicular estradiol concentration in healthy follicles, and was lowest in highly atretic follicles. Culturing of granulosa cells in serum-free medium revealed FSH regulation of FGF10 receptor expression. The addition of FGF10 to cultured granulosa cells decreased the level of estradiol but did not alter cell proliferation. These data support a role for FGF10 in signaling to granulosa cells from theca cells and/or the oocyte.
Collapse
Affiliation(s)
- J Buratini
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, CEP 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med 2007; 33:1243-1251. [PMID: 17530222 PMCID: PMC7095466 DOI: 10.1007/s00134-007-0661-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 03/05/2007] [Indexed: 01/11/2023]
Abstract
Active transport of sodium across the alveolar epithelium, undertaken in part by the Na,K-adenosine triphosphatase (Na,K-ATPase), is critical for clearance of pulmonary edema fluid and thus the outcome of patients with acute lung injury. Acute lung injury results in disruption of the alveolar epithelial barrier and leads to impaired clearance of edema fluid and altered Na,K-ATPase function. There has been significant progress in the understanding of mechanisms regulating alveolar edema clearance and signaling pathways modulating Na,K-ATPase function during lung injury. The accompanying review by Morty et al. focuses on intact organ and animal models as well as clinical studies assessing alveolar fluid reabsorption in alveolar epithelial injury. Elucidation of the mechanisms underlying regulation of active Na+ transport, as well as the pathways by which the Na,K-ATPase regulates epithelial barrier function and edema clearance, are of significance to identify interventional targets to improve outcomes of patients with acute lung injury.
Collapse
Affiliation(s)
- István Vadász
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Stacy Raviv
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA.
| |
Collapse
|
111
|
Taniguchi F, Harada T, Iwabe T, Ohama Y, Takenaka Y, Terakawa N. Aberrant expression of keratinocyte growth factor receptor in ovarian surface epithelial cells of endometrioma. Fertil Steril 2007; 89:478-80. [PMID: 17482184 DOI: 10.1016/j.fertnstert.2007.02.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Ovarian surface epithelial cells (OSEs) are considered to be the common source of endometrioma and epithelial ovarian cancer. The present study reveals that keratinocyte growth factor receptor (KGFR) messenger RNA was expressed in OSEs of endometriomas but not in those of normal ovaries, suggesting that autocrine KGF/KGFR and paracrine fibroblast growth factor 10/KGFR signaling loops may be involved with the proliferation in OSEs of endometrioma.
Collapse
Affiliation(s)
- Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
112
|
Ceccarelli S, Cardinali G, Aspite N, Picardo M, Marchese C, Torrisi MR, Mancini P. Cortactin involvement in the keratinocyte growth factor and fibroblast growth factor 10 promotion of migration and cortical actin assembly in human keratinocytes. Exp Cell Res 2007; 313:1758-77. [PMID: 17449030 DOI: 10.1016/j.yexcr.2007.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
113
|
Derrick T, Grillo AO, Vitharana SN, Jones L, Rexroad J, Shah A, Perkins M, Spitznagel TM, Middaugh CR. Effect of Polyanions on the Structure and Stability of Repifermin™ (Keratinocyte Growth Factor-2). J Pharm Sci 2007; 96:761-76. [PMID: 17094125 DOI: 10.1002/jps.20797] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction of several of the fibroblast growth factors (FGFs) with polyanions is thought to be of physiological significance and has been exploited to create more stable pharmaceutical formulations of FGF-1 and -2. The extent of such phenomena throughout the 23-member FGF family is, however, unknown. In these studies, we examine the effect of several polyanions on the structure and stability of keratinocyte growth factor 2 (KGF-2, FGF-10), a candidate for use as a wound-healing agent. Employing a variety of methods sensitive to the protein's structure including circular dichroism (CD), intrinsic fluorescence, derivative near-UV absorption spectroscopy, bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid) fluorescence, differential scanning calorimetry (DSC), and dynamic light scattering (DLS), we find that a variety of polyanions (e.g., heparin, sucrose octasulfate (SOS), and inositol hexaphosphate (IHP)) stabilize KGF-2 by increasing the thermal-unfolding temperature by approximately 9-15 degrees C. Negatively charged liposomes produce a similar effect, arguing for relatively nonspecific interactions of polyanions with KGF-2. Unlike some other FGFs, no evidence for the presence of a molten globule state is found during thermal perturbation of this growth factor. The generality of this polyanion/protein interaction is discussed as well as its potential role in various cellular events such as protein folding and transport.
Collapse
|
114
|
Skibinski G, Elborn JS, Ennis M. Bronchial epithelial cell growth regulation in fibroblast cocultures: the role of hepatocyte growth factor. Am J Physiol Lung Cell Mol Physiol 2007; 293:L69-76. [PMID: 17384084 DOI: 10.1152/ajplung.00299.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied.
Collapse
Affiliation(s)
- Grzegorz Skibinski
- Respiratory Medicine Research Cluster, School of Medicine and Dentistry, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
115
|
Upadhyay D, Chang W, Wei K, Gao M, Rosen GD. Fibroblast growth factor-10 prevents H2O2-induced cell cycle arrest by regulation of G1 cyclins and cyclin dependent kinases. FEBS Lett 2006; 581:248-52. [PMID: 17188682 PMCID: PMC1861821 DOI: 10.1016/j.febslet.2006.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/28/2006] [Accepted: 12/07/2006] [Indexed: 02/03/2023]
Abstract
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.
Collapse
Affiliation(s)
- D Upadhyay
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, 300 Pasteur Drive, Rm H3143, Stanford, CA 94305-5236, USA.
| | | | | | | | | |
Collapse
|
116
|
Zhang D, Kosman J, Carmean N, Grady R, Bassuk JA. FGF-10 and its receptor exhibit bidirectional paracrine targeting to urothelial and smooth muscle cells in the lower urinary tract. Am J Physiol Renal Physiol 2006; 291:F481-94. [PMID: 16597614 DOI: 10.1152/ajprenal.00025.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Control of the regenerative properties of urothelial tissue would greatly aid the clinician in the management of urinary tract disease and disorders. Fibroblast growth factor 10 (FGF-10) is a mitogen which is particularly promising as a protein therapy for urothelial injury. The spatial synthesis, transport, targeting, and mechanistic pathway of FGF-10 and its receptor were studied in a human urothelial cell culture model and in fixed sections of lower urinary tract tissue. Synthesis of FGF-10 was restricted to mesenchymal fibroblasts, and secreted FGF-10 exhibited paracrine transport to two proximal sites, transitional epithelium and smooth muscle cell bundles, both of which were also the exclusive sites of FGF-10 receptor synthesis. The addition of recombinant FGF-10 to quiescent urothelial cells in vitro was sufficient to stimulate DNA synthesis. This stimulation was through a pathway independent of the epidermal growth factor receptor pathway. Deconvolution, light and transmission electron microscopic studies captured FGF-10 and its receptor in association with the urothelial cell surface, in cytoplasm, and within nuclei, observations that describe the mechanism that transduces the mitogenic signal in these tissues. Localization of the FGF-10 receptor to the superficial urothelial layer is clinically significant because intravesical administration of FGF-10 may provide the clinician a means to control the turnover of transitional epithelium in bladder disorders such as interstitial cystitis.
Collapse
MESH Headings
- Cells, Cultured
- DNA/biosynthesis
- Fibroblast Growth Factor 10/analysis
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/physiology
- Fibroblasts/chemistry
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Humans
- Microscopy, Electron, Transmission
- Mucous Membrane/chemistry
- Mucous Membrane/cytology
- Mucous Membrane/physiology
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/physiology
- Paracrine Communication/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor Cross-Talk/physiology
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Urinary Tract Physiological Phenomena
- Urothelium/chemistry
- Urothelium/cytology
- Urothelium/physiology
- Urothelium/ultrastructure
Collapse
Affiliation(s)
- Dianzhong Zhang
- Program in Human Urothelial Biology, Children's Hospital and Regional Medical Center, 4800 NE Sand Point Way, Mail Stop A8938, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
117
|
Tao H, Ono K, Kurose H, Noji S, Ohuchi H. Exogenous FGF10 can rescue an eye-open at birth phenotype of Fgf10-null mice by activating activin and TGFalpha-EGFR signaling. Dev Growth Differ 2006; 48:339-46. [PMID: 16759284 DOI: 10.1111/j.1440-169x.2006.00869.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit an eye-open phenotype at birth. It has previously been shown that FGF10 has a dual role in proliferation and migration during the early and later stages of eyelid development, respectively. To verify the role of FGF10 during eyelid closure, explant culture of Fgf10-null eyelid anlagen was performed, by which it was examined whether or not exogenous FGF10 could rescue the expression of activin betaB and transforming growth factor alpha, known to be required for eyelid closure. We found that the expression of these genes was markedly induced while that of Shh or Ptch1, Ptch2 was not. We also observed the distribution of filamentous actin (F-actin) after FGF10 application in the mutant eyelid explant, finding that the FGF10 protein induced F-actin accumulation. We further examined filopodia of the eyelid leading edge cells, finding the length of the filopodia was significantly reduced in the mutant. These results verify that FGF10 promotes eyelid closure through activating activin and TGFalpha-EGFR signaling.
Collapse
Affiliation(s)
- Hirotaka Tao
- Department of Biological Science and Technology, Faculty of Engineering, University of Tokushima, 2-1 Minami-Jyosanjima, Tokushima 770-8506, Japan
| | | | | | | | | |
Collapse
|
118
|
Shin M, Noji S, Neubüser A, Yasugi S. FGF10 is required for cell proliferation and gland formation in the stomach epithelium of the chicken embryo. Dev Biol 2006; 294:11-23. [PMID: 16616737 DOI: 10.1016/j.ydbio.2005.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/21/2005] [Accepted: 12/07/2005] [Indexed: 11/20/2022]
Abstract
The development of digestive organs in vertebrates involves active epithelial-mesenchymal interactions. In the chicken proventriculus (glandular stomach), the morphogenesis and cytodifferentiation of the epithelium are controlled by the inductive signaling factors that are secreted from the underlying mesenchyme. Previous studies have shown that Fgf10 is expressed in the developing chicken proventricular mesenchyme, whereas its receptors are present in the epithelium. In our present study, we show that FGF10 is an early mesenchymal signal that is critically associated with the developmental processes in the proventricular epithelium. Furthermore, virus-mediated Fgf10 overexpression in ovo results in a hypermorphic epithelial structure and an increase in epithelial cell number. In contrast, the overexpression of a secreted FGFR2b (sFGFR2b), an FGF10 antagonist, blocks cell proliferation and gland formation in the proventricular epithelium in ovo. This downregulation of proliferative activity was subsequently found to retard gland formation and also to delay differentiation of the epithelium. These results demonstrate that FGF10 signaling, mediated by FGFR1b and/or FGFR2b, is required for proliferation and gland formation in the epithelium in the developing chick embryo.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
119
|
Havens BA, Rodgers B, Mina M. Tissue-specific expression of Fgfr2b and Fgfr2c isoforms, Fgf10 and Fgf9 in the developing chick mandible. Arch Oral Biol 2006; 51:134-45. [PMID: 16105644 DOI: 10.1016/j.archoralbio.2005.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Experimental evidence has demonstrated the importance of FGF signalling in morphogenesis of the mandibular processes. FGFs transmit their signals through four tyrosine kinase transmembrane receptors (FGFRs). Alternative splicing in FGFRs including FGFR2 generates different isoforms that exhibit different ligand-specificities, exclusive tissue distributions and specific biological functions. Despite extensive information regarding the isoform-specific patterns of expression Fgfr2c and Fgfr2b during morphogenesis of many organs, a comparative analysis of these specific isoforms in the chick mandible has not been reported. To better understand the function of FGFR2 in mandibular morphogenesis, we have analysed the expression Fgfr2b, Fgfr2c and their putative ligands Fgf10 and Fgf9, in the developing chick mandibular processes by in situ hybridisation and RT-PCR. Our observations show that Fgfr2b was primarily expressed in the mandibular epithelium while Fgfr2c was expressed in the mandibular mesenchyme including Meckel's cartilage. Fgf9 and Fgf10 were expressed in a variety of craniofacial regions including the mandibular epithelium and mesenchyme respectively. The temporal and spatial distributions of Fgfr2b, Fgfr2c, Fgf10 and Fgf9 in the developing mandible reported in this study make them attractive candidates for involvement in epithelial-mesenchymal signalling interactions that are known to be necessary for proper mandibular outgrowth and morphogenesis.
Collapse
Affiliation(s)
- Bruce A Havens
- Departments of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, USA
| | | | | |
Collapse
|
120
|
Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S. The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene 2005; 24:5269-77. [PMID: 15806171 DOI: 10.1038/sj.onc.1208560] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The fibroblast growth factor-binding protein (FGF-BP) binds and activates FGF-1 and FGF-2, thereby contributing to tumor angiogenesis. In this study, we identified novel binding partners of FGF-BP, and we provide evidence for a role of this protein in epithelial repair processes. We show that expression of FGF-BP increases after injury to murine and human skin, in particular in keratinocytes. This upregulation is most likely achieved by major keratinocyte mitogens present at the wound site. Most importantly, we demonstrate that FGF-BP interacts with FGF-7, FGF-10, and with the recently identified FGF-22, and enhances the activity of low concentrations of ligand. Due to the important functions of FGF-7 and FGF-10 for repair of injured epithelia, our findings suggest that upregulation of FGF-BP expression after injury stimulates FGF activity at the wound site, thus enhancing the process of epithelial repair.
Collapse
Affiliation(s)
- Hans-Dietmar Beer
- Department of Biology, Institute of Cell Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16:107-37. [PMID: 15863029 DOI: 10.1016/j.cytogfr.2005.01.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
FGF signaling plays a ubiquitous role in human biology as a regulator of embryonic development, homeostasis and regenerative processes. In addition, aberrant FGF signaling leads to diverse human pathologies including skeletal, olfactory, and metabolic disorders as well as cancer. FGFs execute their pleiotropic biological actions by binding, dimerizing and activating cell surface FGF receptors (FGFRs). Proper regulation of FGF-FGFR binding specificity is essential for the regulation of FGF signaling and is achieved through primary sequence variations among the 18 FGFs and seven FGFRs. The severity of human skeletal syndromes arising from mutations that violate FGF-FGFR specificity is a testament to the importance of maintaining precision in FGF-FGFR specificity. The discovery that heparin/heparan sulfate (HS) proteoglycans are required for FGF signaling led to numerous models for FGFR dimerization and heralded one of the most controversial issues in FGF signaling. Recent crystallographic analyses have led to two fundamentally different models for FGFR dimerization. These models differ in both the stoichiometry and minimal length of heparin required for dimerization, the quaternary arrangement of FGF, FGFR and heparin in the dimer, and in the mechanism of 1:1 FGF-FGFR recognition and specificity. In this review, we provide an overview of recent structural and biochemical studies used to differentiate between the two crystallographic models. Interestingly, the structural and biophysical analyses of naturally occurring pathogenic FGFR mutations have provided the most compelling and unbiased evidences for the correct mechanisms for FGF-FGFR dimerization and binding specificity. The structural analyses of different FGF-FGFR complexes have also shed light on the intricate mechanisms determining FGF-FGFR binding specificity and promiscuity and also provide a plausible explanation for the molecular basis of a large number craniosynostosis mutations.
Collapse
Affiliation(s)
- Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016, USA.
| | | | | |
Collapse
|
122
|
Jameson JM, Cauvi G, Sharp LL, Witherden DA, Havran WL. Gammadelta T cell-induced hyaluronan production by epithelial cells regulates inflammation. ACTA ACUST UNITED AC 2005; 201:1269-79. [PMID: 15837812 PMCID: PMC2213158 DOI: 10.1084/jem.20042057] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonhealing wounds are a major complication of diseases such as diabetes and rheumatoid arthritis. For efficient tissue repair, inflammatory cells must infiltrate into the damaged tissue to orchestrate wound closure. Hyaluronan is involved in the inflammation associated with wound repair and binds the surface of leukocytes infiltrating damaged sites. Skin gammadelta T cells play specialized roles in keratinocyte proliferation during wound repair. Here, we show that gammadelta T cells are required for hyaluronan deposition in the extracellular matrix (ECM) and subsequent macrophage infiltration into wound sites. We describe a novel mechanism of control in which gammadelta T cell-derived keratinocyte growth factors induce epithelial cell production of hyaluronan. In turn, hyaluronan recruits macrophages to the site of damage. These results demonstrate a novel function for skin gammadelta T cells in inflammation and provide a new perspective on T cell regulation of ECM molecules.
Collapse
|
123
|
Kovacs D, Falchi M, Cardinali G, Raffa S, Carducci M, Cota C, Amantea A, Torrisi MR, Picardo M. Immunohistochemical analysis of keratinocyte growth factor and fibroblast growth factor 10 expression in psoriasis. Exp Dermatol 2005; 14:130-7. [PMID: 15679583 DOI: 10.1111/j.0906-6705.2005.00261.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogenic mechanism underlying the hyperproliferation of keratinocytes in psoriasis is still not completely clarified. The production of cytokines released by activated T lymphocytes infiltrating the upper dermis probably has a crucial role. Even dermal fibroblasts can participate in the process through the secretion of growth factors, and some studies have reported an increased expression of the insulin-like growth factor 1. Few studies, however, have focused on the possible involvement of the keratinocyte growth factor (KGF/FGF-7) and the fibroblast growth factor 10 (FGF-10/KGF-2), which are secreted by fibroblasts and stimulate keratinocyte proliferation acting through a receptor specifically expressed by epithelial cells. The aim of this study was to investigate the expression of KGF and FGF-10 on the skin of patients with psoriasis by immunohistochemical analysis and to evaluate the correlation with the lymphocyte infiltrate and the epidermal proliferation. Immunostaining for KGF and FGF-10 showed that both the growth factors are upregulated in the upper dermis of psoriatic skin, and that the expression is correlated with the presence of T-cell infiltrate and with keratinocyte proliferation. Our data suggest that in psoriatic lesions activated lymphocytes can stimulate fibroblasts to produce KGF and FGF-10, which in turn contribute to sustain the hyperproliferative status of the keratinocytes.
Collapse
Affiliation(s)
- D Kovacs
- Istituto Dermatologico San Gallicano, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kawano M, Komi-Kuramochi A, Asada M, Suzuki M, Oki J, Jiang J, Imamura T. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J Invest Dermatol 2005; 124:877-85. [PMID: 15854025 DOI: 10.1111/j.0022-202x.2005.23693.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We quantified the mRNA expression of all 22 fibroblast growth factor family members (FGF) and their four receptors (FGFR) in adult mouse full-thickness skin at various stages of the hair growth cycle. We found that in addition to mRNA encoding FGF previously identified in skin (FGF1, 2, 5, 7, 10, 13, and 22), FGF18 mRNA was also strongly expressed. Expression of these FGF varied throughout hair growth cycle: mRNA expression of FGF18 and 13 peaked at telogen; FGF7 and 10 at anagen V; and FGF5 and 22 at anagen VI. In situ hybridization revealed that FGF18 mRNA is mainly expressed in the anagen inner root sheath and telogen bulge of hair follicles. In culture, FGF18 stimulated DNA synthesis in human dermal fibroblasts, dermal papilla cells, epidermal keratinocytes and vascular endothelial cells. When FGF18 was administered subcutaneously to mice in a uniform telogen state, anagen hair growth was observed. Our findings suggest that FGF18 is important for the regulation of hair growth and the maintenance of skin in adult mice.
Collapse
Affiliation(s)
- Mitsuko Kawano
- National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
125
|
Schlake T. FGF signals specifically regulate the structure of hair shaft medulla via IGF-binding protein 5. Development 2005; 132:2981-90. [PMID: 15930103 DOI: 10.1242/dev.01873] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reciprocal interactions between the dermal papilla and the hair matrix control proliferation and differentiation in the mature hair follicle. Analysis of expression suggests an important role for FGF7 and FGF10, as well as their cognate receptor FGFR2-IIIb, in these processes. Transgenic mice that express a soluble dominant-negative version of this receptor in differentiating hair keratinocytes were generated to interfere with endogenous FGF signalling. Transgenic mice develop abnormally thin but otherwise normal hairs, characterised by single columns of medulla cells in all hair types. All structural defects and the accompanying changes of global gene expression patterns are restricted to the hair medulla. Forced transgenic expression of IGF-binding protein 5, whose expression level is elevated upon suppression of FGFR2-IIIb-mediated signalling largely phenocopies the defect of dnFgfr2-IIIb-expressing hairs. Thus, the results identify Igfbp5-mediated FGFR2-IIIb signals as a key regulator of the genetic program that controls the structure of the hair shaft medulla.
Collapse
Affiliation(s)
- Thomas Schlake
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
126
|
Jang JH. Stimulation of Human Hair Growth by the Recombinant Human Keratinocyte Growth Factor-2 (KGF-2). Biotechnol Lett 2005; 27:749-52. [PMID: 16086254 DOI: 10.1007/s10529-005-5624-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 04/06/2005] [Accepted: 04/08/2005] [Indexed: 11/29/2022]
Abstract
Keratinocyte growth factor-2 (KGF-2) is found in dermal papilla fibroblasts and its receptor, fibroblast growth factor receptor 2 (FGFR2), in the neighboring outer root sheath of keratinocytes. Administration of recombinant human KGF-2 (rhKGF-2) at 10 ng ml(-1) significantly stimulated human hair-follicle cell proliferation in organ culture (26-35%). Thus, rhKGF-2 is a promising therapeutic agent to stimulate human hair growth.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Department of Biochemistry, Inha University College of Medicine, Incheon 400-712, Korea.
| |
Collapse
|
127
|
Ibrahimi OA, Yeh BK, Eliseenkova AV, Zhang F, Olsen SK, Igarashi M, Aaronson SA, Linhardt RJ, Mohammadi M. Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Mol Cell Biol 2005; 25:671-84. [PMID: 15632068 PMCID: PMC543411 DOI: 10.1128/mcb.25.2.671-684.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two competing models for fibroblast growth factor (FGF) receptor (FGFR) dimerization have recently emerged based on ternary FGF-FGFR-heparin crystal structures. In the symmetric two-end model, heparin promotes dimerization of two FGF-FGFR complexes by stabilizing bivalent interactions of the ligand and receptor through primary and secondary sites and by stabilizing direct receptor-receptor contacts. In the asymmetric model, there are no protein-protein contacts between the two FGF-FGFR complexes, which are bridged solely by heparin. To identify the correct mode of FGFR dimerization, we abolished interactions at the secondary ligand-receptor interaction site, which are observed only in the symmetric two-end model, using site-directed mutagenesis. Cellular studies and real-time binding assays, as well as matrix-assisted laser desorption ionization-time of flight analysis, demonstrate that loss of secondary ligand-receptor interactions results in diminished FGFR activation due to decreased dimerization without affecting FGF-FGFR binding. Additionally, structural and biochemical analysis of an activating FGFR2 mutation resulting in Pfeiffer syndrome confirms the physiological significance of receptor-receptor contacts in the symmetric two-end model and provides a novel mechanism for FGFR gain of function in human skeletal disorders. Taken together, the data validate the symmetric two-end model of FGFR dimerization and argue against the asymmetric model of FGFR dimerization.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dimerization
- Fibroblast Growth Factor 10
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Heparin/chemistry
- Heparin/genetics
- Heparin/metabolism
- Humans
- Models, Molecular
- Mutation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Omar A Ibrahimi
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, Larsen M, Hoffman MP. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 2005; 132:1223-34. [PMID: 15716343 DOI: 10.1242/dev.01690] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Branching morphogenesis of mouse submandibular glands is regulated by multiple growth factors. Here, we report that ex vivo branching of intact submandibular glands decreases when either FGFR2 expression is downregulated or soluble recombinant FGFR2b competes out the endogenous growth factors. However, a combination of neutralizing antibodies to FGF1, FGF7 and FGF10 is required to inhibit branching in the intact gland, suggesting that multiple FGF isoforms are required for branching. Exogenous FGFs added to submandibular epithelial rudiments cultured without mesenchyme induce distinct morphologies. FGF7 induces epithelial budding, whereas FGF10 induces duct elongation, and both are inhibited by FGFR or ERK1/2 signaling inhibitors. However, a PI3-kinase inhibitor also decreases FGF7-mediated epithelial budding, suggesting that multiple signaling pathways exist. We immunolocalized FGF receptors and analyzed changes in FGFR, FGF and MMP gene expression to identify the mechanisms of FGF-mediated morphogenesis. FGFR1b and FGFR2b are present throughout the epithelium,although FGFR1b is more highly expressed around the periphery of the buds and the duct tips. FGF7 signaling increases FGFR1b and FGF1expression, and MMP2 activity, when compared with FGF10, resulting in increased cell proliferation and expansion of the epithelial bud, whereas FGF10 stimulates localized proliferation at the tip of the duct. FGF7- and FGF10-mediated morphogenesis is inhibited by an MMP inhibitor and a neutralizing antibody to FGF1, suggesting that both FGF1 and MMPs are essential downstream mediators of epithelial morphogenesis. Taken together,our data suggests that FGFR2b signaling involves a regulatory network of FGFR1b/FGF1/MMP2 expression that mediates budding and duct elongation during branching morphogenesis.
Collapse
Affiliation(s)
- Zachary Steinberg
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Upadhyay D, Panduri V, Kamp DW. Fibroblast Growth Factor-10 Prevents Asbestos-Induced Alveolar Epithelial Cell Apoptosis by a Mitogen-Activated Protein Kinase–Dependent Mechanism. Am J Respir Cell Mol Biol 2005; 32:232-8. [PMID: 15618436 DOI: 10.1165/rcmb.2004-0242oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Asbestos induces alveolar epithelial cell (AEC) DNA damage and apoptosis by the mitochondria-regulated death pathway and oxidative stress. Fibroblast growth factor-10 (FGF-10), an alveolar epithelial type II cell mitogen that is required for the lung development, prevents H(2)O(2)-induced AEC DNA damage by a mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-dependent mechanism. In this study, we show that FGF-10 attenuates asbestos-induced AEC DNA strand break formation and apoptosis. MAPK/ERK kinase (MEK) inhibitors, U0126 or PD98059, each blocked the protective effect of FGF-10 against asbestos-induced DNA damage and apoptosis, whereas a p38-MAPK inhibitor had a negligible effect, suggesting a crucial role for MEK/ERK activation in mediating the protective effects of FGF-10. Further, we show that FGF-10 attenuates asbestos-induced change in AEC mitochondrial membrane potential and caspase 9 activation, both of which are blocked by U0126. We conclude that FGF-10 decreases asbestos-induced AEC DNA damage and apoptosis in part by mechanisms involving MEK/ERK-dependent signaling that affects the mitochondria-regulated death pathway.
Collapse
Affiliation(s)
- Daya Upadhyay
- Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 240 E. Huron Street, McGaw 2-2300, Chicago, IL 60611, USA
| | | | | |
Collapse
|
130
|
Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis. Biochem Biophys Res Commun 2005; 327:523-32. [DOI: 10.1016/j.bbrc.2004.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Indexed: 10/26/2022]
|
131
|
Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol 2005; 277:102-13. [PMID: 15572143 DOI: 10.1016/j.ydbio.2004.09.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 08/12/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Mammalian palatogenesis depends on interactions between the stomodium-derived epithelium and the cranial neural crest-derived ectomesenchyme. Fibroblast growth factor 10 (FGF10) is a mesenchymal signaling factor that guides the morphogenesis of multiple organs through tissue-tissue interactions. This is consistent with widespread agenesis and dysgenesis of organs observed in Fgf10-/- mice. In this study, we report the presence of a wide-open cleft secondary palate in Fgf10 homozygous null mutant mice. Fgf10 transcripts were detected in the palatal mesenchyme from E11.5 to E13.5 during normal palatogenesis and were enriched in the anterior and middle portions of the palatal shelves. In Fgf10-/- embryos, histological analyses revealed aberrant adhesion of the palatal shelves with the tongue in the anterior and fusion with the mandible in the middle and posterior beginning at E13.5, which could prevent normal elevation of the palatal shelves leading to a cleft palate. TUNEL and BrdU assays demonstrated significant levels of apoptosis in the medial edge epithelium (MEE) but unaltered cell proliferation in mutant palatal shelves. At the molecular level, we show that Fgf10 is epistatic to Jagged2 and Tgfbeta3 in the developing palate. Notably, the expression of Jagged2 is downregulated throughout the palate epithelium in Fgf10 mutants while Tgfbeta3 is misexpressed in the palatal epithelium at the oral side. Our results demonstrate that mesenchymally expressed Fgf10 is necessary for the survival of MEE cells and for the normal expression of Jagged2 and Tgfbeta3 in the palatal epithelium during mammalian palatogenesis.
Collapse
Affiliation(s)
- Sylvia R Alappat
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
133
|
Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B Biol Sci 2004; 359:753-7. [PMID: 15293802 PMCID: PMC1693362 DOI: 10.1098/rstb.2004.1464] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factors are polypeptides that stimulate the division of certain cell types at low concentrations. Fibroblast growth factor (FGF) 7 (FGF-7) and its homologue FGF-10 act specifically on various types of epithelial cells including keratinocytes of the skin, intestinal epithelial cells and hepatocytes. In addition, FGF-7 and FGF-10 have been shown to be more than growth factors: they can protect epithelial cells from damaging effects induced, for example, by radiation and oxidative stress. Therefore, they are currently in clinical trials for the treatment of oral mucositis, a severe side-effect of cancer therapy characterized by painful inflammation and ulceration of the oral epithelium. To gain insight into the mechanisms of FGF-7/FGF-10 action in epithelial cells, we searched for genes that are regulated by these growth factors. Indeed, we identified genes that help us to explain the mechanisms that underlie the effects of FGF-7. Most interestingly, several genes were identified that are likely to mediate the cytoprotective effect of FGF-7 for epithelial cells in vitro and possibly also in injured and diseased tissues in vivo.
Collapse
Affiliation(s)
- Susanne Braun
- Institute of Cell Biology, Department of Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
134
|
Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, Meng A. fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 2004; 271:130-43. [PMID: 15196956 DOI: 10.1016/j.ydbio.2004.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 03/01/2004] [Accepted: 03/25/2004] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (Fgfs) play important roles in the pattern formation of early vertebrate embryos. We have identified a zebrafish ortholog of human FGF17, named fgf17b. The first phase of fgf17b expression occurs in the blastodermal margin of late blastulae and in the embryonic shield of early gastrulae. The second phase starts after the onset of segmentation, mainly in the presomitic mesoderm and newly formed somites. Injection of fgf17b mRNA into one-cell embryos induces expression of the mesodermal marker no tail (ntl) and rescues ntl expression suppressed by overexpression of lefty1 (lft1). Overexpression of fgf17b dorsalizes zebrafish gastrulae by enhancing expression of chordin (chd), which is an antagonist of the ventralizing signals BMPs. In addition, overexpression of fgf17b posteriorizes the neuroectoderm. Simultaneous knockdown of fgf17b and fgf8 with antisense morpholinos results in reduction of chd and ntl. Knockdown of fgf17b can alleviate inhibitory effect of ectopic expression of fgf3 on otx1. These data together suggest that Fgf17b plays a role in early embryonic patterning. We also demonstrate that fgf17b and fgf8 have stronger mesoderm inducting activity than fgf3, whereas fgf17b and fgf3 have stronger activity in posteriorizing the neuroectoderm than fgf8. Like fgf8, activation of fgf17b expression depends on Nodal signaling.
Collapse
Affiliation(s)
- Ying Cao
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane & Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
135
|
Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Dev Biol 2004; 273:350-60. [PMID: 15328018 DOI: 10.1016/j.ydbio.2004.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.
Collapse
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
136
|
Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet 2004; 13:2313-24. [PMID: 15282208 PMCID: PMC4140565 DOI: 10.1093/hmg/ddh235] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gain-of-function missense mutations in FGF receptor 2 (FGFR2) are responsible for a variety of craniosynostosis syndromes including Apert syndrome (AS), Pfeiffer syndrome (PS) and Crouzon syndrome (CS). Unlike the majority of FGFR2 mutations, S252W and P253R AS mutations and a D321A PS mutation retain ligand-dependency and are also associated with severe limb pathology. In addition, a recently identified ligand-dependent S252L/A315S double mutation in FGFR2 was shown to cause syndactyly in the absence of craniosynostosis. Here, we analyze the effect of the canonical AS mutations, the D321A PS mutation and the S252L/A315S double mutation on FGFR2 ligand binding affinity and specificity using surface plasmon resonance. Both AS mutations and the D321A PS mutation, but not the S252L/A315S double mutation, increase the binding affinity of FGFR2c to multiple FGFs expressed in the cranial suture. Additionally, all four pathogenic mutations also violate FGFR2c ligand binding specificity and enable this receptor to bind FGF10. Based on our data, we propose that an increase in mutant FGFR2c binding to multiple FGFs results in craniosynostosis, whereas binding of mutant FGFR2c to FGF10 results in severe limb pathology. Structural and biophysical analysis shows that AS mutations in FGFR2b also enhance and violate FGFR2b ligand binding affinity and specificity, respectively. We suggest that elevated AS mutant FGFR2b signaling may account for the dermatological manifestations of AS.
Collapse
Affiliation(s)
- Omar A. Ibrahimi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Fuming Zhang
- Departments of Chemistry, Chemical Biology and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Anna V. Eliseenkova
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Yoshida-Shimoadachi, Kyoto 606-8501, Japan
| | - Robert J. Linhardt
- Departments of Chemistry, Chemical Biology and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- To whom correspondence should be addressed at: Moosa Mohammadi, NYU School of Medicine, 550 First Avenue, MSB 425, Department of Pharmacology, New York, NY 10016, USA. Tel: +1 2122632907; Fax: +1 2122637133;
| |
Collapse
|
137
|
Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff I, Rice DPC. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest 2004; 113:1692-700. [PMID: 15199404 PMCID: PMC420504 DOI: 10.1172/jci20384] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 04/14/2004] [Indexed: 12/16/2022] Open
Abstract
Classical research has suggested that early palate formation develops via epithelial-mesenchymal interactions, and in this study we reveal which signals control this process. Using Fgf10-/-, FGF receptor 2b-/- (Fgfr2b-/-), and Sonic hedgehog (Shh) mutant mice, which all exhibit cleft palate, we show that Shh is a downstream target of Fgf10/Fgfr2b signaling. Our results demonstrate that mesenchymal Fgf10 regulates the epithelial expression of Shh, which in turn signals back to the mesenchyme. This was confirmed by demonstrating that cell proliferation is decreased not only in the palatal epithelium but also in the mesenchyme of Fgfr2b-/- mice. These results reveal a new role for Fgf signaling in mammalian palate development. We show that coordinated epithelial-mesenchymal interactions are essential during the initial stages of palate development and require an Fgf-Shh signaling network.
Collapse
Affiliation(s)
- Ritva Rice
- Departments of Craniofacial Development and Orthodontics, King's College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Visco V, Belleudi F, Marchese C, Leone L, Aimati L, Cardinali G, Kovacs D, Frati L, Torrisi MR. Differential response to keratinocyte growth factor receptor and epidermal growth factor receptor ligands of proliferating and differentiating intestinal epithelial cells. J Cell Physiol 2004; 200:31-44. [PMID: 15137055 DOI: 10.1002/jcp.10385] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The expression of the keratinocyte growth factor receptor (KGFR) has been analyzed on intestinal epithelial Caco-2 cells upon confluence-induced spontaneous differentiation. Western blot and immunofluorescence analysis showed that the expression of functional KGFRs, differently from that of epidermal growth factor receptor (EGFR), was up-modulated in post-confluent differentiated cultures compared with the pre-confluent cells. Confocal microscopy and immunoelectron microscopy revealed that the up-regulated KGFRs displayed a basolateral polarized distribution on the cell surfaces in the monolayer. In vivo immunohistochemical analysis on normal human colon tissue sections showed that KGFRs, differently from EGFRs, were mostly distributed on the more differentiated cells located on the upper portion of the intestinal crypt. Bromodeoxyuridine incorporation assay and Ki67 labeling indicated that the differentiated cells were able to proliferate in response to the two ligands of KGFR, KGF and FGF-10, whereas they were not stimulated by the EGFR ligands TGFalpha and EGF. Western blot and quantitative immunofluorescence analysis of the expression of carcinoembryonic antigen (CEA) in post-confluent cells revealed that incubation with KGF induced an increase of cell differentiation. Taken together these results indicate that up-modulation of KGFR may be required to promote proliferation and differentiation in differentiating cells and that, among the cells componing the intestinal epithelial monolayer, the target cells for KGFR ligands appear to be different during differentiation from those responsive to EGFR ligands.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- Caco-2 Cells
- Carcinoembryonic Antigen/metabolism
- Cell Differentiation
- Cell Division
- Cell Line
- Cell Line, Tumor
- Cell Polarity
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- ErbB Receptors/metabolism
- ErbB Receptors/ultrastructure
- Fibroblast Growth Factor 10
- Fibroblast Growth Factors/pharmacology
- Fluorescent Antibody Technique, Indirect
- Growth Substances/pharmacology
- HT29 Cells
- Humans
- Intestines/cytology
- Keratinocytes/cytology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Ki-67 Antigen/metabolism
- Ligands
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Models, Biological
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/ultrastructure
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Vincenzo Visco
- Dipartimento di Medicina Sperimentale e Patologia, Università di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Upadhyay D, Bundesmann M, Panduri V, Correa-Meyer E, Kamp DW. Fibroblast Growth Factor-10 Attenuates H2O2-Induced Alveolar Epithelial Cell DNA Damage. Am J Respir Cell Mol Biol 2004; 31:107-13. [PMID: 14975937 DOI: 10.1165/rcmb.2003-0064oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor-10 (FGF-10), an alveolar epithelial cell (AEC) mitogen that is critical for lung development, may promote AEC repair. We determined whether FGF-10 attenuates H2O2-induced, A549 and rat alveolar type II cell DNA damage. We show that FGF-10 prevents H2O2-induced DNA damage assessed by an alkaline elution, ethidium bromide fluorescence as well as by a comet assay. Mitogen-activated protein kinase inhibitors abolished the protective effect of FGF-10 against H2O2-induced DNA damage yet had no effect on H2O2-induced DNA damage. A Grb2-SOS inhibitor (SH3 binding peptide), an Ras inhibitor (farnesyl transferase inhibitor 277), and an Raf-1 inhibitor (forskolin) each prevented FGF-10- and H2O2-induced A549 cell ERK1/2 phosphorylation. Also, FGF-10 and H2O2 each induced negligible ERK1/2 phosphorylation in Ras dominant-negative (N17) cells. Inhibitors of Ras and Raf-1 blocked the protective effect of FGF-10 against H2O2-induced DNA damage but had no effect on H2O2-induced DNA damage. Furthermore, cold conditions and aphidicolin, an inhibitor of DNA polymerase-alpha, -delta, and -epsilon, each blocked the protective effects of FGF-10, suggesting a role for DNA repair. We conclude that FGF-10 attenuates H2O2-induced AEC DNA damage by mechanisms that involve activation of Grb2-SOS/Ras/RAF-1/ERK1/2 pathway and DNA repair.
Collapse
Affiliation(s)
- Daya Upadhyay
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Veterans Administration Chicago Health Care System, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
140
|
Kawano M, Suzuki S, Suzuki M, Oki J, Imamura T. Bulge- and basal layer-specific expression of fibroblast growth factor-13 (FHF-2) in mouse skin. J Invest Dermatol 2004; 122:1084-90. [PMID: 15140207 DOI: 10.1111/j.0022-202x.2004.22514.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A variety of polypeptide growth factors are involved in the dynamic maintenance of the skin and hair. Here, we demonstrate the presence of high levels of fibroblast growth factor (FGF)-13 in the bulge region of hair follicles. Using real-time PCR, we found that expression of FGF-13 mRNA is comparable to, or higher than, that of other FGF known to regulate hair growth and wound healing. To gain additional insight into the function of FGF-13, we evaluated its distribution using in situ hybridization and immunohistochemical staining. Unlike other FGF, the distribution of FGF-13 mRNA and protein in adult mice was mainly restricted to cells in the bulge region of hair follicles, although lower levels were detected with less frequency in keratinocytes in the basal layer of the epidermis. FGF-13 protein was detectable in the bulge region throughout the hair growth cycle, but its distribution was especially wide during telogen and early anagen. During hair follicle morphogenesis in newborn mice, FGF-13 protein was first detected in the bulge region and basal layer keratinocytes 3 d after birth. These findings suggest that FGF-13 may play a role in regulating the function of cells in the bulge region and basal layer of the epidermis.
Collapse
Affiliation(s)
- Mitsuko Kawano
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
141
|
Theodorou V, Boer M, Weigelt B, Jonkers J, van der Valk M, Hilkens J. Fgf10 is an oncogene activated by MMTV insertional mutagenesis in mouse mammary tumors and overexpressed in a subset of human breast carcinomas. Oncogene 2004; 23:6047-55. [PMID: 15208658 DOI: 10.1038/sj.onc.1207816] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mouse mammary tumor virus (MMTV) infection causes a high incidence of murine mammary carcinomas by insertion of its proviral DNA in the genome of mammary epithelial cells. Retroviral insertion can activate flanking proto-oncogenes by a process called insertional mutagenesis. By sequencing the DNA adjacent to MMTV proviral insertions in mammary tumors from BALB/c mice infected with C3H-MMTV, we have found a common MMTV insertion site in the Fgf10 locus. RT-PCR studies showed that Fgf10 is expressed only in those tumors harboring a MMTV proviral insertion in this locus, suggesting that Fgf10 is a proto-oncogene. The oncogenicity of Fgf10 was evaluated in vivo by subcutaneous transplantation of retrovirally transduced HC11 mammary epithelial cells into BALB/c mice. Highly vascularized invasive subcutaneous tumors developed indicating that Fgf10 can act as an oncogene. A survey of primary human breast carcinomas revealed strongly elevated Fgf10 mRNA levels in approximately 10% of the tumors tested, suggesting that Fgf10 may also be involved in oncogenicity of a subset of human breast cancers.
Collapse
Affiliation(s)
- Vassiliki Theodorou
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
142
|
Wright TJ, Ladher R, McWhirter J, Murre C, Schoenwolf GC, Mansour SL. Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 2004; 269:264-75. [PMID: 15081372 DOI: 10.1016/j.ydbio.2004.02.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 01/29/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The inner ear develops from an ectodermal placode that is specified by inductive signals from the adjacent neurectoderm and underlying mesoderm. In chick, fibroblast growth factor (Fgf)-19 is expressed in mesoderm underlying the presumptive otic placode, and human FGF19 induces expression of otic markers in a tissue explant containing neural plate and surface ectoderm. We show here that mouse Fgf15 is the sequence homolog of chick and human Fgf19/FGF19. In addition, we show that FGF15, like FGF19, is sufficient to induce expression of otic markers in a chick explant assay, suggesting that these FGFs are orthologs. Mouse embryos lacking Fgf15, however, do not have otic abnormalities at E9.5-E10.5, suggesting that Fgf15 is not uniquely required for otic induction or early patterning of the otocyst. To compare FGF15 and FGF19 signaling components and assess where signals potentially redundant with FGF15 might function, we determined the expression patterns of Fgf15 and Fgf19. Unlike Fgf19, Fgf15 is not expressed in mesoderm underlying the presumptive otic placode, but is expressed in the adjacent neurectoderm. Fgfr4, which encodes the likely receptor for both FGF19 and FGF15, is expressed in the neurectoderm of both species, and is also expressed in the mesoderm only in chick. These results suggest the hypotheses that during otic induction, FGF19 signals in either an autocrine fashion to the mesoderm or a paracrine fashion to the neurectoderm, whereas FGF15 signals in an autocrine fashion to the neurectoderm. Thus, the FGFs that signal to the neurectoderm are the best potential candidates for redundancy with FGF15 during mouse otic development.
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | | | | | | | | |
Collapse
|
143
|
Kessaris N, Jamen F, Rubin LL, Richardson WD. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 2004; 131:1289-98. [PMID: 14960493 DOI: 10.1242/dev.01027] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) and fibroblast growth factor 2 (FGF2) can both induce neocortical precursors to express the transcription factor OLIG2 and generate oligodendrocyte progenitors (OLPs) in culture. The activity of FGF2 is unaffected by cyclopamine, which blocks Hedgehog signalling, demonstrating that the FGF pathway to OLP production is Hedgehog independent. Unexpectedly, SHH-mediated OLP induction is blocked by PD173074, a selective inhibitor of FGF receptor (FGFR) tyrosine kinase. SHH activity also depends on mitogen-activated protein kinase (MAPK) but SHH does not itself activate MAPK. Instead, constitutive activity of FGFR maintains a basal level of phosphorylated MAPK that is absolutely required for the OLIG2- and OLP-inducing activities of SHH. Stimulating the MAPK pathway with a retrovirus encoding constitutively active RAS shows that the requirement for MAPK is cell-autonomous, i.e. MAPK is needed together with SHH signalling in the cells that become OLPs.
Collapse
Affiliation(s)
- Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
144
|
Alvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bösl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T. Requirements for FGF3 and FGF10 during inner ear formation. Development 2004; 130:6329-38. [PMID: 14623822 DOI: 10.1242/dev.00881] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Zhang H, Dessimoz J, Beyer TA, Krampert M, Williams LT, Werner S, Grose R. Fibroblast growth factor receptor 1-IIIb is dispensable for skin morphogenesis and wound healing. Eur J Cell Biol 2004; 83:3-11. [PMID: 15085950 DOI: 10.1078/0171-9335-00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.
Collapse
Affiliation(s)
- Hongbing Zhang
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
auf demKeller U, Krampert M, Kümin A, Braun S, Werner S. Keratinocyte growth factor: effects on keratinocytes and mechanisms of action. Eur J Cell Biol 2004; 83:607-12. [PMID: 15679105 DOI: 10.1078/0171-9335-00389] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Keratinocyte growth factor (KGF) is a potent and specific mitogen for different types of epithelial cells, and it can protect these cells from various insults. Due to these properties, it is of particular importance for the repair of injured epithelial tissues, and it is currently therapeutically explored for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage in cancer patients. In this review we summarize the current knowledge on the role of KGF in tissue repair and cytoprotection, and we report on its mechanisms of action in keratinocytes.
Collapse
Affiliation(s)
- Ulrich auf demKeller
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
147
|
Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol 2003; 14:533-7. [PMID: 14580585 DOI: 10.1016/j.copbio.2003.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factors (FGFs) regulate early development and organogenesis. In particular, a subfamily of FGFs is essential for the formation and differentiation of epithelial tissues and organs. Recent studies revealed a crucial role for these FGFs in repair of the skin, intestine and liver. In addition, the cytoprotective potential of FGFs suggests their use for the protection of epithelial cells under conditions of stress in vivo. Indeed, the first successful clinical trials using FGFs for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage have been announced.
Collapse
Affiliation(s)
- Heike Steiling
- Institute of Cell Biology, Department of Biology, ETH Zürich, Hönggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
148
|
Clouthier SG, Cooke KR, Teshima T, Lowler KP, Liu C, Connolly K, Ferrara JLM. Repifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect. Biol Blood Marrow Transplant 2003; 9:592-603. [PMID: 14506661 DOI: 10.1016/s1083-8791(03)00230-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Graft-versus-host disease (GVHD) is the principal complication after allogeneic bone marrow transplantation (BMT). Reductions in systemic GVHD are frequently associated with a corresponding diminishment of the graft-versus-leukemia (GVL) response. In this study, we tested the effects of a novel recombinant human keratinocyte growth factor, repifermin (keratinocyte growth factor-2), on the induction of GVHD in a well-defined murine BMT model (B6 --> B6D2F1). Administration of repifermin (5 mg/kg/d) to allogeneic BMT recipients resulted in a significant decrease in both systemic GVHD and target organ histopathology. Repifermin treatment also reduced serum levels of tumor necrosis factor alpha and lipopolysaccharide compared with control mice. In contrast, repifermin did not affect T-cell proliferation, cytokine production, or cytotoxic responses to host antigens. When 2000 host-derived P815 (H-2(d)) leukemia cells were added to the bone marrow inoculum, repifermin preserved GVL effects and resulted in significantly delayed mortality compared with control-treated allogeneic BMT recipients. Collectively, these data suggest that repifermin administration may represent a novel strategy to separate the toxicity of GVHD from the beneficial GVL effects after allogeneic BMT.
Collapse
|
149
|
Liu Y, Jiang H, Crawford HC, Hogan BLM. Role for ETS domain transcription factors Pea3/Erm in mouse lung development. Dev Biol 2003; 261:10-24. [PMID: 12941618 DOI: 10.1016/s0012-1606(03)00359-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the development of the mouse lung, the expression of a number of genes, including those encoding growth factors and components of their downstream signaling pathways, is enriched in the epithelium and/or mesenchyme of the distal buds. In this location, they regulate processes such as cell proliferation, branching morphogenesis, and the differentiation of specialized cell types. Here, we report that the expression of Pea3 and Erm (or Etv5, Ets variant gene 5), which encode Pea3 subfamily ETS domain transcription factors, is initially restricted to the distal buds of the developing mouse lung. Erm is transcribed exclusively in the epithelium, while Pea3 is expressed in both epithelium and mesenchyme. Erm/Pea3 are downstream of FGF signaling from the mesenchyme, but their responses toward different FGFs are not the same. The functions of the two proteins were investigated by transgenic expression of a repressor form of Erm specifically in the embryonic lung epithelium. When examined at E18.5, the distal epithelium of transgenic lungs is composed predominantly of immature type II cells, while no mature type I cells are observed. In contrast, the differentiation of proximal epithelial cells, including ciliated cells and Clara cells, appears to be unaffected. A model is proposed for the role of Pea3/Erm during the dynamic process of lung bud outgrowth and proximal-distal differentiation, in response to FGF signaling. Our results provide the first functional evidence that Pea3 subfamily members play a role in epithelial-mesenchymal interactions during lung organogenesis.
Collapse
Affiliation(s)
- Yuru Liu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
150
|
Sher I, Yeh BK, Mohammadi M, Adir N, Ron D. Structure-based mutational analyses in FGF7 identify new residues involved in specific interaction with FGFR2IIIb. FEBS Lett 2003; 552:150-4. [PMID: 14527678 DOI: 10.1016/s0014-5793(03)00909-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Receptor binding specificity is an essential element in regulating the diverse activities of fibroblast growth factors (FGFs). FGF7 is ideal to study how this specificity is conferred at the structural level, as it interacts exclusively with one isoform of the FGF-receptor (FGFR) family, known as FGFR2IIIb. Previous mutational analysis suggested the importance of the beta4/beta5 loop of FGF7 in specific receptor recognition. Here a theoretical model of FGFR2IIIb/FGF7 complex showed that this loop interacts with the FGFR2IIIb unique exon. In addition, the model revealed new residues that either directly interact with the FGFR2IIIb unique exon (Asp63, Leu142) or facilitate this interaction (Arg65). Mutations in these residues reduced both receptor binding affinity and biological activity of FGF7. Altogether, these results provide the basis for understanding how receptor-binding specificity of FGF7 is conferred at the structural level.
Collapse
Affiliation(s)
- Ifat Sher
- Department of Biology, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | | | | | | |
Collapse
|