101
|
Alkharsah KR, Aljaroodi SA, Rahman JU, Alnafie AN, Al Dossary R, Aljindan RY, Alnimr AM, Hussen J. Low levels of soluble DPP4 among Saudis may have constituted a risk factor for MERS endemicity. PLoS One 2022; 17:e0266603. [PMID: 35413090 PMCID: PMC9004781 DOI: 10.1371/journal.pone.0266603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Most of the cases of Middle East respiratory syndrome coronavirus (MERS-CoV) were reported in Saudi Arabia. Dipeptidyl peptidase-4 (DPP4) was identified as the receptor for the virus. The level of soluble DPP4 (sDPP4) was found to be reduced in MERS-CoV infected patients while high levels of sDPP4 were suggested to be protective against MERS-CoV in animal models. We investigated whether the Saudi population has lower levels of sDPP4 which makes them more susceptible to MERS-CoV infection and, therefore, could explain the larger number of cases from the country. Blood samples were collected from 219 Saudi blood donors and 200 blood donors from other ethnic groups. The plasma level of sDPP4 was measured by ELISA and the following SNPs in the DPP4 gene; rs35128070, rs1861978, rs79700168, and rs17574, were genotyped by TaqMan SNP genotyping assay. The average level of plasma sDDP4 was significantly lower in Saudis than other Arabs and non-Arabs (P value 0.0003 and 0.012, respectively). The genotypes AG of rs35128070 and GT of rs1861978 were significantly associated with lower sDPP4 among Saudis (P value 0.002 for each). While both genotypes AA and AG of rs79700168 and rs17574 were associated with significantly lower average sDPP4 level in Saudis compared to other ethnic groups (P value 0.031 and 0.032, and 0.027 and 0.014, respectively). Herein, we report that the Saudi population has lower levels of plasma sDPP4 than other ethnic groups, which is associated with genetic variants in the DPP4 gene. This may have contributed to increase the susceptibility of the Saudi population to MERS-CoV infection and could be a factor in the long-lasting persistence of the virus in the country.
Collapse
Affiliation(s)
- Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- * E-mail:
| | - Salma Ali Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Awatif N. Alnafie
- Department of Pathology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem Y. Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Amani M. Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
102
|
de Donato A, Buonincontri V, Borriello G, Martinelli G, Mone P. The dopamine system: insights between kidney and brain. Kidney Blood Press Res 2022; 47:493-505. [PMID: 35378538 DOI: 10.1159/000522132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the most common diseases in adult age and it is typical of older adults. Recent data suggest that almost half of the elders have CKD. It is now clear that CKD is accompanied, in the early stages, by cognitive impairment, together with depression and subtle abnormalities in motor control (such as gait and balance alterations). SUMMARY Several data suggest a link between brain dopamine and kidney diseases. Metabolic syndrome and diabetes can affect dopamine neuron survival (leading to Parkinson's Disease). Several uremic toxins in CKD (uric acid, indoxyl sulphate) and trace elements accumulating in CKD (aluminium, manganese) can also modify the dopaminergic system. Hormones produced by the kidney such as vitamin D are neuroprotective for dopamine neurons. Dopaminergic drugs are useful for the treatment of a common sleep disorder in CKD, the restless legs syndrome. However, experiments on animal models of CKD show conflicting results regarding a modification of dopamine neurons. KEY MESSAGES Several observations suggest a limited relevance of the dopaminergic system in CKD-related cognitive impairment. However, a common sleep disturbance in CKD, the restless leg syndrome, improves with dopaminergic drugs. Therefore, it remains to be established the role of the dopamine system in subtle motor dysfunction observed in CKD, such as tremors, gait alterations, and central sleep apnea.
Collapse
Affiliation(s)
- Antonio de Donato
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Veronica Buonincontri
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gianmarco Borriello
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Giuseppe Martinelli
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
- ASL Napoli, Naples, Italy
| | - Pasquale Mone
- Dipartimento di Salute Mentale, Fisica e Medicina Preventiva, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
- ASL Avellino, Avellino, Italy
| |
Collapse
|
103
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
104
|
Huang J, Liu X, Wei Y, Li X, Gao S, Dong L, Rao X, Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol 2022; 13:830863. [PMID: 35309368 PMCID: PMC8931313 DOI: 10.3389/fimmu.2022.830863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4's immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoquan Rao
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
105
|
Nasr NE, Sadek KM. Role and mechanism(s) of incretin-dependent therapies for treating diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18408-18422. [PMID: 35031999 DOI: 10.1007/s11356-022-18534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Diabetes mellitus (DM) is a worldwide ailment which leads to chronic complications like cardiac disorders, renal perturbations, limb amputation and blindness. Type one diabetes (T1DM), Type two diabetes (T2DM), Another types of diabetes, such as genetic errors in function of β-cell and action of insulin, cystic fibrosis, chemical-instigated diabetes or following tissue transplantation), and pregnancy DM (GDM). In response to nutritional ingestion, the gut may release a pancreatic stimulant that affects carbohydrate metabolism. The duodenum produces a 'chemical excitant' that stimulates pancreatic output, and researchers have sought to cure diabetes using gut extract injections, coining the word 'incretin' to describe the phenomena. Incretins include GIP and GLP-1. The 'enteroinsular axis' is the link between pancreas and intestine. Nutrient, neuronal and hormonal impulses from intestine to cells secreting insulin were thought to be part of this axis. In addition, the hormonal component, incretin, must meet two requirements: (1) it secreted by foods, mainly carbohydrates, and (2) it must induce an insulinotropic effect which is glucose-dependent. In this review, we clarify the ability of using incretin-dependent treatments for treating DM.
Collapse
Affiliation(s)
- Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
106
|
Nishina S, Hino K. CD26/DPP4 as a Therapeutic Target in Nonalcoholic Steatohepatitis Associated Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14020454. [PMID: 35053615 PMCID: PMC8774170 DOI: 10.3390/cancers14020454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary CD26/DPP4 has been reported to attenuate anticancer immunity via chemokine cleavage and to promote insulin resistance and inflammation in the liver and/or adipose tissue via dysregulation of macrophage M1/M2 polarization. These results suggest the promotive roles of CD26/DPP4 especially in nonalcoholic steatohepatitis (NASH) associated hepatocellular carcinoma (HCC). In this review, we discuss the biological roles of CD26/DPP4 in the development and progression of NASH associated HCC and the potential of DPP4 inhibitors as therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is generally considered an “immune-cold” cancer since T cells are not observed abundantly in HCC tumor tissue. Combination therapy with immune checkpoint inhibitors and vascular endothelial growth factor (VEGF) inhibitors is currently recognized as a first-line systemic treatment for advanced-stage HCC. Immunologically, immune checkpoint inhibitors influence the recognition of cancer cells by T cells, and VEGF inhibitors influence the infiltration of T cells into tumors. However, no drugs that facilitate the trafficking of T cells toward tumors have been developed. Chemokines are promising agents that activate T cell trafficking. On the other hand, metabolic factors such as obesity and insulin resistance are considered risk factors for HCC development. CD26/dipeptidyl peptidase 4 (DPP4) functions as a serine protease, selectively cleaving polypeptides with a proline or alanine at the penultimate N-terminal position, such as chemokines. Recently, CD26/DPP4 has been reported to attenuate anticancer immunity via chemokine cleavage and to promote insulin resistance and inflammation in the liver and/or adipose tissue via dysregulation of macrophage M1/M2 polarization. In this review, we discuss the promotive roles of CD26/DPP4 in HCC development and progression and the potential of DPP4 inhibitors as therapeutic agents for HCC.
Collapse
Affiliation(s)
| | - Keisuke Hino
- Correspondence: ; Tel.: +81-864621111; Fax: +81-864641196
| |
Collapse
|
107
|
Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W, Rossi GA. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr 2022; 10:1051079. [PMID: 36479289 PMCID: PMC9720385 DOI: 10.3389/fped.2022.1051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Respiratory tract infections (RTI) are mainly viral in origin and among the leading cause of childhood morbidity globally. Associated wheezing illness and asthma are still a clear unmet medical need. Despite the continuous progress in understanding the processes involved in their pathogenesis, preventive measures and treatments failed to demonstrate any significant disease-modifying effect. However, in the last decades it was understood that early-life exposure to microbes, may reduce the risk of infectious and allergic disorders, increasing the immune response efficacy. These results suggested that treatment with bacterial lysates (BLs) acting on gut microbiota, could promote a heterologous immunomodulation useful in the prevention of recurrent RTIs and of wheezing inception and persistence. This hypothesis has been supported by clinical and experimental studies showing the reduction of RTI frequency and severity in childhood after oral BL prophylaxis and elucidating the involved mechanisms. OM-85 is the product whose anti-viral effects have been most extensively studied in vitro, animal, and human cell studies and in translational animal infection/disease models. The results of the latter studies, describing the potential immune training-based activities of such BL, leading to the protection against respiratory viruses, will be reported. In response to human rhinovirus, influenza virus, respiratory syncytial virus and severe acute respiratory coronavirus-2, OM-85 was effective in modulating the structure and the functions of a large numbers of airways epithelial and immune cells, when administered both orally and intranasally.
Collapse
Affiliation(s)
| | - Ledit Ardusso
- Allergy and Immunology Department, Rosario School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Oliviero Sacco
- Department of Pediatrics, Pulmonary and Allergy Disease Unit, G. Gaslini University Hospital, Genoa, Italy
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, The Medical University Children's Hospital, Warszawa, Poland
| | - Giovanni A Rossi
- Department of Pediatrics, Unit of Pediatrics Pulmonology and Respiratory Endoscopy, G. Gaslini Hospital, Genoa, Italy
| |
Collapse
|
108
|
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:856954. [PMID: 35586625 PMCID: PMC9109619 DOI: 10.3389/fendo.2022.856954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bing Fu
- Department of Medical Imaging, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Haibo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Hongyi Cao
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Xiang Chen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu,
| |
Collapse
|
109
|
Abstract
COVID-19 brought a scientific revolution since its emergence in Wuhan, China, in December 2019. Initially, the SARS-CoV-2 virus came to attention through its effects on the respiratory system. However, its actions in many other organs also have been discovered almost daily. As enzymes are indispensable to uncountable biochemical reactions in the human body, it is not surprising that some enzymes are of relevance to COVID-19 pathophysiology. Past evidence from SARS-CoV and MERS-CoV outbreaks provided hints about the role of enzymes in SARS-CoV-2 infection. In this setting, ACE-2 is an enzyme of great importance since it is the cell entry receptor for SARS-CoV-2. Clinical data elucidate patterns of enzymatic alterations in COVID-19, which could be associated with organ damage, prognosis, and clinical complications. Further, viral mutations can create new disease behaviors, and these effects are related to the activity of enzymes. This review will discuss the main enzymes related to COVID-19, summarizing the findings on their role in viral entry mechanism, the consequences of their dysregulation, and the effects of SARS-CoV-2 mutations on them.
Collapse
|
110
|
Wang X, Xiang J, Huang G, Kang L, Yang G, Wu H, Jiang K, Liang Z, Yang S. Inhibition of Podocytes DPP4 Activity Is a Potential Mechanism of Lobeliae Chinensis Herba in Treating Diabetic Kidney Disease. Front Pharmacol 2021; 12:779652. [PMID: 34950037 PMCID: PMC8688925 DOI: 10.3389/fphar.2021.779652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and has become a serious public health problem worldwide. Dipeptidyl peptidase-4 (DPP4) inhibitors, an emerging drug for the treatment of diabetes, have been found to have renoprotective effects in addition to glucose-lowering effects and therefore have the potential to be a treatment modality for DKD. Lobeliae Chinensis Herba (LCH), a traditional Chinese herb widely used in the treatment of diabetes, has recently been found to have a hypoglycaemic mechanism related to the inhibition of DPP4. Firstly, analysis of single-cell sequencing data from mouse kidneys in the National Center for Biotechnology Information (NCBI) database revealed that DPP4 was specifically upregulated in DKD podocytes and was associated with podocyte proliferation. Subsequently, the network pharmacology approach was applied to the screening of compounds. Twelve LCH active ingredients targeting DPP4 were extracted from the Traditional Chinese Medicine System Pharmacology (TCMSP) database. In addition, these 12 compounds and DPP4 were molecularly docked to predict the probability of them affecting DPP4 activity. In vitro, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin were demonstrated to retard podocyte proliferation by inhibiting DPP4 activity and were the top five compounds predicted by molecular docking to be the most likely to affect DPP4 activity. The half maximal inhibitory concentration (IC50) of the five compounds for DPP4 activity were as follows. Acacetin Log IC50 = −8.349, 95%CI (−9.266, −7.265), Diosmtrin Log IC50 = −8.419, 95%CI (−8.889, −7.950), Log IC50 = −8.349, 95%CI (−9.266, −7.265), Methyl rosmarinate Log IC50 = −8.415, 95%CI (−8.751, −8.085), Kaempferol Log IC50 = −8.297, 95%CI (−9.001, −7.615), Quercetin Log IC50 = −8.864, 95%CI (−9.107, −8.615). Finally, Quercetin, Methyl rosmarinate, Kaempferol, Diosmetin and Acacetin qualified for pharmacokinetic and drug similarity screening and have the potential to be the most promising oral agents for the treatment of DKD.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guixiao Huang
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lin Kang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Guangyan Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Kewei Jiang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Shu Yang
- Department of Geriatrics, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
111
|
López-Cortés GI, Díaz-Alvarez L, Ortega E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front Immunol 2021; 12:742292. [PMID: 34887854 PMCID: PMC8650063 DOI: 10.3389/fimmu.2021.742292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, proteins with enzymatic activity have not been usually considered to carry out other functions different from catalyzing chemical reactions within or outside the cell. Nevertheless, in the last few years several reports have uncovered the participation of numerous enzymes in other processes, placing them in the category of moonlighting proteins. Some moonlighting enzymes have been shown to participate in complex processes such as cell adhesion. Cell adhesion plays a physiological role in multiple processes: it enables cells to establish close contact with one another, allowing communication; it is a key step during cell migration; it is also involved in tightly binding neighboring cells in tissues, etc. Importantly, cell adhesion is also of great importance in pathophysiological scenarios like migration and metastasis establishment of cancer cells. Cell adhesion is strictly regulated through numerous switches: proteins, glycoproteins and other components of the cell membrane. Recently, several cell membrane enzymes have been reported to participate in distinct steps of the cell adhesion process. Here, we review a variety of examples of membrane bound enzymes participating in adhesion of immune cells.
Collapse
Affiliation(s)
- Georgina I López-Cortés
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Díaz-Alvarez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Ortega
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
112
|
Tisi A, Zerti D, Genitti G, Vicentini MT, Baccante M, Flati V, Maccarone R. Characterization of SARS-CoV-2 Entry Factors' Expression in Corneal and Limbal Tissues of Adult Human Donors Aged from 58 to 85. J Ocul Pharmacol Ther 2021; 38:56-65. [PMID: 34889660 DOI: 10.1089/jop.2021.0085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Recent studies have shown the presence of SARS-CoV-2 entry factors on the ocular surface, identifying the eye as an additional entry route for the virus. Moreover, the coexpression of angiotensin-converting enzyme 2 (ACE2) with other SARS-CoV-2 entry factors [transmembrane protease serine 2 (TMPRSS2), transmembrane protease serine 4 (TMPRSS4), and dipeptidyl peptidase-4 (DPP4)] facilitates the virus infection. Methods: Here, we performed a study over 10 adult corneal and limbal tissues from human donors, both male and female between 58 and 85 years of age. Some of the main virus entry factors were analyzed and their expression was quantified and correlated with the age and sex of the donors through western blot. The receptors' localization was investigated through immunofluorescence. Results: Immunofluorescence confirmed the localization of ACE2 and TMPRSS2 on the ocular surface and showed, for the first time, the localization of TMPRSS4 and DPP4 in limbal and corneal epithelial superficial cells. The quantitative analysis showed that the expression of SARS-CoV-2 entry factors on corneal and limbal cells is likely to be modulated in an age-dependent manner, in agreement with the increased susceptibility to COVID-19 in the elderly. Moreover, we found a relationship between the expression of TMPRSS proteases with the activation state of limbal cells in 80-year-old donors. Conclusion: This study provides information on the expression of SARS-CoV-2 entry factors on the ocular surface of 10 adult human donors and is a first observation of a possible age-dependent modulation on corneal and limbal tissues. Our data pave the way to further investigate the susceptibility to the infection through the ocular surface in the elderly.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Germano Genitti
- UOSD Eye Bank of L'Aquila - C.R.R. for corneas donation and transplantation for Abruzzo and Molise regions, S. Salvatore Hospital, L'Aquila, Italy
| | - Maria Teresa Vicentini
- UOSD Eye Bank of L'Aquila - C.R.R. for corneas donation and transplantation for Abruzzo and Molise regions, S. Salvatore Hospital, L'Aquila, Italy
| | - Mariangela Baccante
- UOSD Eye Bank of L'Aquila - C.R.R. for corneas donation and transplantation for Abruzzo and Molise regions, S. Salvatore Hospital, L'Aquila, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
113
|
Xiang X, Lang M, Li Y, Zhao X, Sun H, Jiang W, Ni L, Song Y. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus vannamei) head. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:122990. [PMID: 34735973 DOI: 10.1016/j.jchromb.2021.122990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
DPP-IV plays a key role for regulation of glucose metabolism in the body. The object of this study was to obtain DPP-IV inhibitors from discarded but protein-rich Penaeus vannamei (P. vannamei) head, and to explore the potential mechanism between DPP-IV and its inhibitors. P. vannamei head protein was hydrolyzed by five food grade proteases, respectively. The animal protease hydrolysate showed the highest inhibitory active. Then the hydrolysate was sequentially separated by ultrafiltration, gel filtration chromatography and reversed phase high-performance liquid chromatography (RP-HPLC), the peptides sequences were identified by LC-MS/MS and four potential peptides YPGE, VPW, HPLY, YATP showed superior DPP-IV inhibitory activity. Meanwhile, molecular docking effectively explored their mechanism through formed hydrogen bonds and hydrophobic regions. The four peptides showed better DPP-IV inhibitory activity stability with heating treatment, pH (1-10) treatment, and in vitro gastrointestinal digestion. Our results demonstrated that the protein hydrolysate from discarded P. vannamei head can be considered as a promising natural source of DPP-IV inhibitor for helping to improve glycaemic control in Type 2 diabetes.
Collapse
Affiliation(s)
- Xi Xiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huimin Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiwei Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Ni
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
114
|
Magnusen AF, Rani R, McKay MA, Hatton SL, Nyamajenjere TC, Magnusen DNA, Köhl J, Grabowski GA, Pandey MK. C-X-C Motif Chemokine Ligand 9 and Its CXCR3 Receptor Are the Salt and Pepper for T Cells Trafficking in a Mouse Model of Gaucher Disease. Int J Mol Sci 2021; 22:ijms222312712. [PMID: 34884512 PMCID: PMC8657559 DOI: 10.3390/ijms222312712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid β-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Reena Rani
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Mary Ashley McKay
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Shelby Loraine Hatton
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Tsitsi Carol Nyamajenjere
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Daniel Nii Aryee Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (A.F.M.); (M.A.M.); (S.L.H.); (T.C.N.); (D.N.A.M.)
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany;
- Department of Pediatrics and Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Gregory Alex Grabowski
- Department of Molecular Genetics, Biochemistry and Microbiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
115
|
Daza-Arnedo R, Rico-Fontalvo JE, Pájaro-Galvis N, Leal-Martínez V, Abuabara-Franco E, Raad-Sarabia M, Montejo-Hernández J, Cardona-Blanco M, Cabrales-Juan J, Uparella-Gulfo I, Montiel LS. Dipeptidyl Peptidase-4 Inhibitors and Diabetic Kidney Disease: A Narrative Review. Kidney Med 2021; 3:1065-1073. [PMID: 34939016 PMCID: PMC8664739 DOI: 10.1016/j.xkme.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease is one of the most frequent complications in patients with diabetes mellitus and affects morbidity and mortality. The recent therapies include oral hypoglycemic drugs that, in addition to optimizing glycemic control and reducing the risk of hypoglycemia, may affect the development and progression of diabetic kidney disease; these novel therapies include inhibitors of the enzyme dipeptidyl peptidase 4 (DPP-4), a group of oral hypoglycemic therapeutic agents that act at the level of the incretin system. DPP-4 inhibitors show additional pleiotropic effects in in vitro models, reducing inflammation, fibrosis, and oxidative damage, further suggesting potential kidney protective effects. Although existing trials suggest a possible benefit in the progression of diabetic kidney disease, further studies are needed to demonstrate kidney-specific benefits of DPP-4 inhibitors.
Collapse
Affiliation(s)
- Rodrigo Daza-Arnedo
- Nuevo Hospital Bocagrande, Comité de Nefrodiabetes, Asociación Colombiana de Nefrología, Cartagena, Colombia
| | | | | | | | | | - María Raad-Sarabia
- Departamento de Medicina Interna, Universidad del Sinú, Cartagena, Colombia
| | | | | | | | | | | |
Collapse
|
116
|
Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, Tkachuk VA, Markov AG, Lehnert H, de Angelis MH, Rietzsch H, Rodionov RN, Khunti K, Hopkins D, Birkenfeld AL, Boehm B, Holt RIG, Skyler JS, DeVries JH, Renard E, Eckel RH, Alberti KGMM, Geloneze B, Chan JC, Mbanya JC, Onyegbutulem HC, Ramachandran A, Basit A, Hassanein M, Bewick G, Spinas GA, Beuschlein F, Landgraf R, Rubino F, Mingrone G, Bornstein SR. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol 2021; 9:786-798. [PMID: 34619105 PMCID: PMC8489878 DOI: 10.1016/s2213-8587(21)00244-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Up to 50% of the people who have died from COVID-19 had metabolic and vascular disorders. Notably, there are many direct links between COVID-19 and the metabolic and endocrine systems. Thus, not only are patients with metabolic dysfunction (eg, obesity, hypertension, non-alcoholic fatty liver disease, and diabetes) at an increased risk of developing severe COVID-19 but also infection with SARS-CoV-2 might lead to new-onset diabetes or aggravation of pre-existing metabolic disorders. In this Review, we provide an update on the mechanisms of how metabolic and endocrine disorders might predispose patients to develop severe COVID-19. Additionally, we update the practical recommendations and management of patients with COVID-19 and post-pandemic. Furthermore, we summarise new treatment options for patients with both COVID-19 and diabetes, and highlight current challenges in clinical management.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Konstantin Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander G Markov
- Department of General Physiology, St Petersburg State University, St Petersburg, Russia
| | | | - Martin Hrabě de Angelis
- German Center for Diabetes Research, Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hannes Rietzsch
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David Hopkins
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Andreas L Birkenfeld
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Bernhard Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, Netherlands; Profil Institute for Metabolic Research, Neuss, Germany
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bruno Geloneze
- Obesity and Comorbidities Research Center, Universidade de Campinas, Campinas, Brazil
| | - Juliana C Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong and Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaounde, Cameroon
| | - Henry C Onyegbutulem
- Endocrine, Diabetes and Metabolic Unit, Department of Internal Medicine, Nile University of Nigeria-Asokoro Hospital, Abuja, Nigeria
| | - Ambady Ramachandran
- India Diabetes Research Foundation, Dr A Ramachandran's Diabetes Hospitals, Chennai, India
| | - Abdul Basit
- Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Mohamed Hassanein
- Dubai Hospital, Dubai Health Authority and Gulf Medical University, Dubai, United Arab Emirates
| | - Gavin Bewick
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | | | - Francesco Rubino
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Bariatric and Metabolic Surgery, King's College Hospital, London, UK
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK.
| |
Collapse
|
117
|
Jin R, Ren H, Liao M, Shang J, Wang D, Li M, Liu N. A dipeptidyl peptidase IV inhibitory peptide relieves palmitic acid-induced endoplasmic reticulum stress in HepG2 cells independent of inhibiting dipeptidyl peptidase IV activity. Food Funct 2021; 12:10773-10782. [PMID: 34609396 DOI: 10.1039/d1fo02283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide VLATSGPG (VLA) is known to inhibit dipeptidyl peptidase IV (DPP-IV), although its mechanism in relieving endoplasmic reticulum (ER) stress is unclear. In this study, we found that treating HepG2 cells with 1.0 mM VLA reduced DPP-IV activity by 73.7 ± 4.8% without changing the DPP-IV mRNA expression level. In addition, 1.0 and 0.5 mM VLA alleviated palmitic acid (PA)-induced cell death and intracellular calcium imbalances. The levels of apoptosis-related proteins (caspase-3, caspase-9, and CHOP) were reduced by VLA treatment, which was presumed to be related to ER stress. Further studies confirmed that VLA alleviated PA-induced morphological damage to the ER and reduced the levels of the ER stress marker proteins (BIP, p-PERK, and p-IRE1α). VLA alleviated PA-induced ER stress in HepG2 cells independent of DPP-IV enzymatic activity inhibition. These findings have implications for developing novel treatment approaches for liver diseases caused by ER stress.
Collapse
Affiliation(s)
- Ritian Jin
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Haowei Ren
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Minhe Liao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Jiaqi Shang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.,College of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Key Lab of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.,Harbin Tengning Technology Co., Ltd, Harbin, 150010, China
| |
Collapse
|
118
|
Kang SM, Park JH. Pleiotropic Benefits of DPP-4 Inhibitors Beyond Glycemic Control. Clin Med Insights Endocrinol Diabetes 2021; 14:11795514211051698. [PMID: 34733107 PMCID: PMC8558587 DOI: 10.1177/11795514211051698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are oral anti-diabetic medications that block the activity of the ubiquitous enzyme DPP-4. Inhibition of this enzyme increases the level of circulating active glucagon-like peptide (GLP)-1 secreted from L-cells in the small intestine. GLP-1 increases the glucose level, dependent on insulin secretion from pancreatic β-cells; it also decreases the abnormally increased level of glucagon, eventually decreasing the blood glucose level in patients with type 2 diabetes. DPP-4 is involved in many physiological processes other than the degradation of GLP-1. Therefore, the inhibition of DPP-4 may have numerous effects beyond glucose control. In this article, we review the pleiotropic effects of DPP-4 inhibitors beyond glucose control, including their strong beneficial effects on the stress induced accelerated senescence of vascular cells, and the possible clinical implications of these effects.
Collapse
Affiliation(s)
- Seon Mee Kang
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jeong Hyun Park
- Department of Internal Medicine, College of Medicine, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
119
|
Jia Y, Cai S, Muhoza B, Qi B, Li Y. Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: aspects from structure-activity relationship and characterization methods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34652225 DOI: 10.1080/10408398.2021.1989659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.
Collapse
Affiliation(s)
- Yijia Jia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
120
|
Angiotensin I-converting enzyme, dipeptidyl peptidase-IV, and α-glucosidase inhibitory potential of hazelnut meal protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
121
|
Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem 2021; 46:116354. [PMID: 34428715 DOI: 10.1016/j.bmc.2021.116354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the highly prevalence disorder and increasing day by day worldwidely. T2DM is a metabolic disorder, which is characterized by deficiency in insulin or resistance to insulin and thus increases the glucose levels in the blood. Various approaches are there to treat diabetes but still there is no cure for this disease. DPP-4 inhibitor is a privileged target in the field of drug discovery and provides various opportunities in exploring this target for development of molecules as antidiabetic agents. DPP-4 acts by inhibiting the incretin action and thus decreases the level of blood glucose by imparting minimal side effects. Sitagliptin, vildagliptin, linagliptin etc. are the different DPP-4 based drugs approved throughout the world for the treatment of diabetes mellitus. Cyanopyrrolidines, triazolopiperazine amide, pyrrolidines are basic core nucleus present in various DPP-4 inhibitors and has potential effects. In the past few years, researchers had applied various approaches to synthesize potent DPP-4 inhibitors as antidiabetic agent without side effects like weight gain, cardiovascular risks, retinopathy etc. This review will also emphasize the recent strategies and rationale utilized by researchers for the development of DPP-4 inhibitors. This review also reveals about the various other approaches like molecular modelling, ligand based drug designing, high throughput screening etc. are used by the various research group for the development of potential DPP-4 inhibitors.
Collapse
Affiliation(s)
- Shubham Kumar
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana 142021, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India.
| |
Collapse
|
122
|
Takahashi R, Ishizawa T, Sato M, Inagaki Y, Takanka M, Kuriki Y, Kamiya M, Ushiku T, Urano Y, Hasegawa K. Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Front Oncol 2021; 11:714527. [PMID: 34490111 PMCID: PMC8417470 DOI: 10.3389/fonc.2021.714527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Radical resection is the only curative treatment for pancreatic cancer, which is a life-threatening disease. However, it is often not easy to accurately identify the extent of the tumor before and during surgery. Here we describe the development of a novel method to detect pancreatic tumors using a tumor-specific enzyme-activatable fluorescence probe. Methods Tumor and non-tumor lysate or small specimen collected from the resected specimen were selected to serve as the most appropriate fluorescence probe to distinguish cancer tissues from noncancerous tissues. The selected probe was sprayed onto the cut surface of the resected specimen of cancer tissue to acquire a fluorescence image. Next, we evaluated the ability of the probe to detect the tumor and calculated the tumor-to-background ratio (TBR) by comparing the fluorescence image with the pathological extent of the tumor. Finally, we searched for a tumor-specific enzyme that optimally activates the selected probe. Results Using a library comprising 309 unique fluorescence probes, we selected GP-HMRG as the most appropriate activatable fluorescence probe. We obtained eight fluorescence images of resected specimens, among which four approximated the pathological findings of the tumor, which achieved the highest TBR. Finally, dipeptidyl-peptidase IV (DPP-IV) or a DPP-IV-like enzyme was identified as the target enzyme. Conclusion This novel method may enable rapid and real-time visualization of pancreatic cancer through the enzymatic activities of cancer tissues.
Collapse
Affiliation(s)
- Ryugen Takahashi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masumitsu Sato
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mariko Takanka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
123
|
Dipeptidyl peptidase-4 (DPP4) inhibitor sitagliptin alleviates liver inflammation of diabetic mice by acting as a ROS scavenger and inhibiting the NFκB pathway. Cell Death Discov 2021; 7:236. [PMID: 34493714 PMCID: PMC8423797 DOI: 10.1038/s41420-021-00625-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
As a common chronic metabolic disease, the development of diabetes mellitus (DM) may also be accompanied by liver damage and inflammatory disorders. Sitagliptin is an inhibitor of dipeptidyl peptidase-4 (DPP4, also known as CD26), which is clinically used for DM treatment. However, the mechanism of sitagliptin’s efficiency in liver diseases is largely unknown. In this study, mice suffering from streptozotocin (STZ) exhibit elevated liver DPP4 expression and activity, as well as inflammatory and chronic liver injury phenotype, whereas specifically inhibiting the activity of DPP4 in mouse liver tissues and hepatocytes by sitagliptin contributes to decreased cytokines, oxidative stress, cell apoptosis, and inflammation in STZ-induced diabetic mice. Moreover, sitagliptin reduced TNFα or LPS-induced cellular reactive oxygen species (ROS) level, cell apoptosis, and protein expression in the NFκB signaling pathway in HepG2 cells or primary mouse hepatocytes. Altogether, our study confirms that sitagliptin may protect liver tissue by alleviating ROS production and NFκB signaling activation, providing a putative mechanism for preventing the development of diabetic liver disease.
Collapse
|
124
|
Akinbodewa AA, Odimayo MS, Ogundele OA, Ogunleye TO, Johnson OO, Lamidi OA, Akinmurele M, Oyebade OM. Covid-19 pandemic: chronicle of responses and experiences of the infection prevention and control committee at a tertiary hospital in southwest Nigeria. Afr Health Sci 2021; 21:1093-1099. [PMID: 35222571 PMCID: PMC8843299 DOI: 10.4314/ahs.v21i3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Since the advent of 2019-Corona virus Disease (COVID-19) in Nigeria in February 2020, the number of confirmed cases has risen astronomically to over 61,307 cases within 8 months with more than 812 healthcare workers infected and some recorded deaths within their ranks. Infection prevention and control is a key component in ensuring safety of healthcare workers in the hospital as healthcare-associated infection is one of the most common complications of healthcare management. Unbridled transmission of infection can lead to shortage of healthcare personnel, reduced system efficiency, increased morbidity and mortality among patients and in some instances, total collapse of healthcare delivery services. The Infection Prevention and Control Committee is a recognised group by the Centre for Disease Control and Prevention with their core programmes including drawing up activities, procedures and policies designed to achieve above-stated objectives before, during and after any disease outbreak, especially emerging and re-emerging ones such as the 2019 Coronavirus Disease. In this report, we highlight the roles played by the Infection Prevention and Control Committee of the University of Medical Sciences Teaching Hospital to prevent the spread of COVID-19 within and outside the hospital community and the lessons learned to date.
Collapse
Affiliation(s)
- Akinwumi Ayodeji Akinbodewa
- Kidney Care Centre, department of Medicine, University of Medical Sciences Teaching Hospital, Ondo State, Nigeria
| | - Michael Simidele Odimayo
- Department of Microbial Pathology, University of Medical Sciences Teaching Hospital, Ondo State, Nigeria
| | | | | | | | - Oluwakemi Abiola Lamidi
- Department of Dietetics and Nutrition, University of Medical Sciences Teaching Hospital, Ondo State, Nigeria
| | - Mathew Akinmurele
- Department of Nursing, University of Medical Sciences Teaching Hospital, Ondo State, Nigeria
| | | |
Collapse
|
125
|
Asfour HZ, Alhakamy NA, Eljaaly K, Alaofi AL, Tantawy MA, Hussein KS, Aldarmahi AA, Elfaky MA. Molecular docking studies of HIV TAT and sitagliptin nano-formula as potential therapeutic targeting SARS-CoV2 protease. J INDIAN CHEM SOC 2021. [PMCID: PMC8349443 DOI: 10.1016/j.jics.2021.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The outbreak of COVID-19 pandemic regarded as a major health/economic hazard. The importance of coming up with mechanisms for preventing or treating SARS-CoV-2infection has been felt across the world. This work aimed at examining the efficiency of Sitagliptin (SIT) and human immunodeficiency virus type 1 (HIV-1) trans-activator transcription peptide (TAT) against SARS-CoV-2 virus. 3CL-protease inhibition activity and docking studies were examined. According to the results, the prepared complex's formula was as follows 1: 1 SIT: TAT molar ratio, whereas zeta potential and particle size values were at 34.17 mV and 97.19 nm, respectively. This combination did exhibit its antiviral potentiality against SARS-CoV-2 via IC50 values of 9.083 5.415, and 16.14 μM for TAT, SIT-TAT, and SIT, respectively. In addition, the complex SIT-TAT showed a significant (P < 0.001) viral-3CL-protease inhibitory effect. This was further confirmed via in silico study. Molecular docking investigation has shown promising binding affinity of the formula components towards SARS-CoV-2 main protease (3-CL).
Collapse
|
126
|
Azu OO, Olojede SO, Lawal SK, Oseni SO, Rennie CO, Offo U, Naidu ECS. Novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection: Microbiologic perspectives and anatomic considerations for sanctuary sites. J Infect Public Health 2021; 14:1237-1246. [PMID: 34455307 PMCID: PMC8378066 DOI: 10.1016/j.jiph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction A significant chunk of global life – the economy, sports, aviation, academic, and entertainment activities – has significantly been affected by the ravaging outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) with devastating consequences on morbidity and mortality in many countries of the world. Methods This review utilized search engines such as google scholar, PubMed, ResearchGate, and web of science to retrieve articles and information using keywords like “Coronavirus”, “SARS-CoV-2”, “COVID-19”, “Origin of coronavirus and SARS-CoV-2”, “microbiology of coronavirus”, “microbiology of SARS-CoV-2”, COVID-19”, “Coronavirus reservoir sites”, “Anatomic sanctuary sites and SARS-CoV-2”, biological barriers and coronavirus”, biological barrier and SARS-CoV-2”. Results While this pandemic has caught the global scientific community at its lowest level of preparedness, it has inadvertently created a unified and wholesome approach towards developing potential vaccine (s) candidates by escalating clinical trial protocols in many countries of Europe, China and the United States. Interestingly, viral pathobiology continues to be an evolving aspect that potentially shows that the management of the current outbreak may largely depend on the discovery of a vaccine as the administration of known antiviral drugs are proving to offer some respite. Unfortunately, discontinuation and longtime administration of these drugs have been implicated in endocrine, reproductive and neurological disorders owing to the development of pathological lesions at anatomical sanctuary sites such as the brain and testis, as well as the presence of complex biological barriers that permit the entry of viruses but selective to the entrance of chemical substances and drugs. Conclusion This review focuses on the microbiologic perspectives and importance of anatomical sanctuary sites in the possible viral rebound or reinfection into the system and their implications in viral re-entry and development of reproductive and neurological disorders in COVID-19 patients.
Collapse
Affiliation(s)
- Onyemaechi O Azu
- Department of Anatomy, School of Medicine, University of Namibia, Private Bag, Windhoek, 13301, Namibia.
| | - Samuel O Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Sodiq K Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Saheed O Oseni
- Department of Biological Sciences, Florida Atlantic University, Davie, FL 33314, USA
| | - Carmen O Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Ugochukwu Offo
- Department of Pre-Clinical Sciences, University of Limpopo, South Africa
| | - Edwin C S Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| |
Collapse
|
127
|
Srivastava M, Hall D, Omoru OB, Gill HM, Smith S, Janga SC. Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components. Microorganisms 2021; 9:1794. [PMID: 34576690 PMCID: PMC8464733 DOI: 10.3390/microorganisms9091794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid evolution has led to a global health crisis. Increasing mutations across the SARS-CoV-2 genome have severely impacted the development of effective therapeutics and vaccines to combat the virus. However, the new SARS-CoV-2 variants and their evolutionary characteristics are not fully understood. Host cellular components such as the ACE2 receptor, RNA-binding proteins (RBPs), microRNAs, small nuclear RNA (snRNA), 18s rRNA, and the 7SL RNA component of the signal recognition particle (SRP) interact with various structural and non-structural proteins of the SARS-CoV-2. Several of these viral proteins are currently being examined for designing antiviral therapeutics. In this review, we discuss current advances in our understanding of various host cellular components targeted by the virus during SARS-CoV-2 infection. We also summarize the mutations across the SARS-CoV-2 genome that directs the evolution of new viral strains. Considering coronaviruses are rapidly evolving in humans, this enables them to escape therapeutic therapies and vaccine-induced immunity. In order to understand the virus's evolution, it is essential to study its mutational patterns and their impact on host cellular machinery. Finally, we present a comprehensive survey of currently available databases and tools to study viral-host interactions that stand as crucial resources for developing novel therapeutic strategies for combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Dwight Hall
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Okiemute Beatrice Omoru
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Hunter Mathias Gill
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Sarah Smith
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Informatics and Communications Technology Complex, 535 West Michigan Street, Indianapolis, IN 46202, USA; (M.S.); (D.H.); (O.B.O.); (H.M.G.); (S.S.)
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
128
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
129
|
Wang J, Zhang L, Qu Y, Yang Y, Cao T, Cao Y, Iqbal A, Qin W, Liu Y. Long-Wavelength Ratiometric Fluorescent Probe for the Early Diagnosis of Diabetes. Anal Chem 2021; 93:11461-11469. [PMID: 34369744 DOI: 10.1021/acs.analchem.1c01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetes is a metabolic disease caused by high blood sugar. Patients are often suffering from high blood pressure and arteriosclerosis, which may even evolve into liver disease, kidney disease, and other diabetic complications. Dipeptide peptidase IV (DPP-IV) plays an important role in regulating blood sugar levels and is one of the targets for the diagnosis and treatment of diabetes. Here, a long-wavelength ratiometric fluorescent probe DCDHFNH2-dpp4 for detecting DPP-IV was designed and synthesized. DCDHFNH2-dpp4 was used to detect DPP-IV in healthy, tumor-bearing, and diabetic mice, and only diabetic mice showed strong fluorescence signals. In organ imaging, it is found that DPP-IV is relatively enriched in the liver of diabetic mice. In addition, probe DCDHFNH2-dpp4 also exhibited a significant ratiometric fluorescence signal in the serum of diabetic mice. Therefore, the fluorescent probe DCDHFNH2-dpp4 has shown outstanding potential in the early diagnosis of diabetes, and DCDHFNH2-dpp4 is hopeful to be applied to actual clinical medicine.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yi Qu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Anam Iqbal
- Department of Chemistry, University of Baluchistan, 87300 Quetta, Pakistan
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| |
Collapse
|
130
|
Zhang J, Wu N, Shi D. The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini Rev Med Chem 2021; 21:803-815. [PMID: 33185160 DOI: 10.2174/1389557520666201113110406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. METHODOLOGY We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. RESULTS We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. CONCLUSION There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
131
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
132
|
Pranata R, Henrina J, Raffaello WM, Lawrensia S, Huang I. Diabetes and COVID-19: The past, the present, and the future. Metabolism 2021; 121:154814. [PMID: 34119537 PMCID: PMC8192264 DOI: 10.1016/j.metabol.2021.154814] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Diabetes, one of the most prevalent chronic diseases in the world, is strongly associated with a poor prognosis in COVID-19. Scrupulous blood sugar management is crucial, since the worse outcomes are closely associated with higher blood sugar levels in COVID-19 infection. Although recent observational studies showed that insulin was associated with mortality, it should not deter insulin use in hospitalized patients requiring tight glucose control. Back and forth dilemma in the past with regards to continue/discontinue certain medications used in diabetes have been mostly resolved. The initial fears of consequences related to continuing certain medications have been largely dispelled. COVID-19 also necessitates the transformation in diabetes care through the integration of technologies. Recent advances in health-related technologies, notably telemedicine and remote continuous glucose monitoring, have become essential in the management of diabetes during the pandemic. Today, these technologies have changed the landscape of medicine and become more important than ever. Being a high-risk population, patients with type 1 or type 2 diabetes, should be prioritized for vaccination. In the future, as the pandemic fades, the prevalence of non-communicable diseases is expected to rise due to lifestyle changes and medical issues/dilemma encountered during the pandemic.
Collapse
Affiliation(s)
- Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.
| | | | | | | | - Ian Huang
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
133
|
Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021; 13:1457. [PMID: 34452323 PMCID: PMC8402835 DOI: 10.3390/v13081457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
134
|
Bielka W, Przezak A, Pawlik A. Therapy of Type 2 Diabetes in Patients with SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:ijms22147605. [PMID: 34299225 PMCID: PMC8306903 DOI: 10.3390/ijms22147605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection poses an important clinical therapeutic problem, especially in patients with coexistent diseases such as type 2 diabetes. Potential pathogenetic links between COVID-19 and diabetes include inflammation, effects on glucose homeostasis, haemoglobin deoxygenation, altered immune status and activation of the renin-angiotensin-aldosterone system (RAAS). Moreover, drugs often used in the clinical care of diabetes (dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, metformin and insulin) may influence the course of SARS-CoV-2 infection, so it is very important to verify their effectiveness and safety. This review summarises the new advances in diabetes therapy and COVID-19 and provides clinical recommendations that are essential for medical doctors and for patients suffering from type 2 diabetes.
Collapse
|
135
|
Sanguedolce F, Zanelli M, Froio E, Bisagni A, Zizzo M, Ascani S, Stallone G, Netti S, Ranieri E, Falagario U, Carrieri G, Cormio L. Pathological diagnosis of Coronavirus-related nephropathy: insight from postmortem studies. Crit Rev Clin Lab Sci 2021; 58:563-575. [PMID: 34236278 DOI: 10.1080/10408363.2021.1944047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A novel coronavirus pneumonia first occurred in Wuhan, China in early December 2019; the causative agent was identified and named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World Health Organization (WHO), and the resulting disease termed coronavirus disease 2019 (COVID-19), according to the WHO coronavirus disease situation reports. This condition has spread rapidly all over the world and caused more than 125 million cases globally, with more than 2 million related deaths. Two previous outbreaks due to zoonotic coronaviruses have occurred in the last 20 years, namely the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), causing high morbidity and mortality in human populations upon crossing the species barriers. SARS-CoV-2, SARS-CoV, and MERS-CoV show several similarities in pathogenicity and clinical presentations, the latter ranging from asymptomatic infection to severe acute respiratory distress syndrome (ARDS) and multiorgan impairment. Acute kidney injury (AKI) has been commonly reported in patients with CoV infections; therefore, pathological analysis of renal parenchyma in these patients has been carried out in order to improve knowledge about underlying mechanisms. Viral infection has been demonstrated in the renal tubular epithelial cells by electron microscopy (EM), immunohistochemistry (IHC), and in situ hybridization (ISH), although with conflicting results. Light microscopy (LM) changes have been described in the renal parenchyma primarily in the form of acute renal tubular damage, possibly due to direct viral cytopathic effect and immune-mediated mechanisms such as cytokine storm syndrome. In this review, we describe and discuss the spectrum of histological, ultrastructural, and molecular findings in SARS-CoV, MERS-CoV, and SARS-CoV-2-related renal pathology obtained from postmortem studies, as well as intrinsic limitations and pitfalls of current diagnostic techniques.
Collapse
Affiliation(s)
| | - Magda Zanelli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Emilia, Italy
| | - Elisabetta Froio
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Emilia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, Terni, Italy
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Stefano Netti
- Clinical Pathology Unit, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology Unit, University of Foggia, Foggia, Italy
| | - Ugo Falagario
- Urology and Renal Transplantation Unit, University of Foggia, Foggia, Italy
| | - Giuseppe Carrieri
- Urology and Renal Transplantation Unit, University of Foggia, Foggia, Italy
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, University of Foggia, Foggia, Italy.,Department of Urology, Bonomo Teaching Hospital, Andria, Italy
| |
Collapse
|
136
|
Montoro-Molina S, Quesada A, O'Valle F, Morales NM, de Gracia MDC, Rodríguez-Gómez I, Osuna A, Wangensteen R, Vargas F. The Long-Term Study of Urinary Biomarkers of Renal Injury in Spontaneously Hypertensive Rats. Kidney Blood Press Res 2021; 46:502-513. [PMID: 34237745 DOI: 10.1159/000516843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The age-related increase in blood pressure in spontaneously hypertensive rats (SHRs) is associated to cardiac hypertrophy, heart failure, and renal injury. Here, we investigated for the first time the urinary enzymatic activities of glutamil aminopeptidase (GluAp), alanyl aminopeptidase (AlaAp), dipeptidyl peptidase-4 (DPP4), and Klotho urinary levels, proteins that are strongly expressed in the kidney, as early biomarkers of renal injury in SHRs. METHODS Male SHR and Wistar Kyoto (WKY) rats were studied from 2 to 8 months old. Systolic blood pressure (SBP), the heart rate (HR), metabolic variables, and urinary markers were measured monthly. At the end of the study, a histopathological evaluation of the kidney was performed. RESULTS Kidneys of SHR did not develop signs of relevant histopathological changes, but showed increased glomerular area and cellularity. Plasma creatinine was decreased, and creatinine clearance was augmented in SHR at the end of the study. Urinary excretion of Klotho was higher in SHR at 5 and 8 months old, whereas plasma Klotho levels were similar to WKY. GluAp, AlaAp, and DPP4 urinary activities were increased in SHR throughout the time-course study. A positive correlation between glomerular area and cellularity with creatinine clearance was observed. Urinary GluAp, AlaAp, DPP4, and Klotho showed positive correlations with SBP. CONCLUSIONS GluAp, AlaAp, DPP4, and Klotho in the urine are useful tools for the evaluation of renal damage at early stages, before the whole histopathological and biochemical manifestations of renal disease are established. Moreover, these observations may represent a novel and noninvasive diagnostic approach to assess the evolution of kidney function in hypertension and other chronic diseases.
Collapse
Affiliation(s)
| | - Andrés Quesada
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, Granada, Spain
| | - Francisco O'Valle
- Departamento de Anatomía Patológica e Instituto de Biomedicina Regenerativa (IBIMER), Facultad de Medicina, Granada, Spain
| | - Natividad Martín Morales
- Departamento de Anatomía Patológica e Instituto de Biomedicina Regenerativa (IBIMER), Facultad de Medicina, Granada, Spain
| | | | | | - Antonio Osuna
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | | | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain
- Instituto de Investigación Biosanitaria GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| |
Collapse
|
137
|
Bonora BM, Avogaro A, Fadini GP. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest 2021; 44:1379-1386. [PMID: 33512688 PMCID: PMC7845283 DOI: 10.1007/s40618-021-01515-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, becoming pandemic. Several studies have shown that diabetes mellitus (DM) is an independent risk factor that increases mortality and other adverse outcomes of coronavirus disease-19 (COVID-19). Studies have suggested that SARS-CoV-2 may bind dipeptidyl peptidase-4 (DPP4) for entering cells of the respiratory tract. Besides, DPP4 takes part in immune system regulation. Thus, DPP-4 inhibitors (DPP4i) may play a role against COVID-19. METHODS We focused on the impact of DPP4i treatment on COVID-19-related outcomes in people with DM. For this purpose, we conducted a systematic review and meta-analysis to summarize the existing evidence on this topic. RESULTS Retrospective observational studies provide inconsistent results on the association between use of DPP4i and outcomes of COVID-19. While two studies reported significantly lower mortality rates among patients with DM who received DPP4i versus those who did not, a series of other studies showed no effect of DPP4i or even worse outcomes. A meta-analysis of 7 studies yielded a neutral estimate of the risk ratio of COVID-19-related mortality among users of DPP4i (0.81; 95% CI 0.57-1.15). CONCLUSION In the absence of randomized controlled trials, observational research available so far provides inconclusive results and insufficient evidence to recommend use of DPP4i against COVID-19.
Collapse
Affiliation(s)
- B M Bonora
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - G P Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
138
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
139
|
Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun 2021; 12:3534. [PMID: 34112801 PMCID: PMC8192507 DOI: 10.1038/s41467-021-23886-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023] Open
Abstract
Metabolic diseases are associated with an increased risk of severe COVID-19 and conversely, new-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients. Here, we performed a comprehensive analysis of pancreatic autopsy tissue from COVID-19 patients using immunofluorescence, immunohistochemistry, RNA scope and electron microscopy and detected SARS-CoV-2 viral infiltration of beta-cells in all patients. Using SARS-CoV-2 pseudoviruses, we confirmed that isolated human islet cells are permissive to infection. In eleven COVID-19 patients, we examined the expression of ACE2, TMPRSS and other receptors and factors, such as DPP4, HMBG1 and NRP1, that might facilitate virus entry. Whereas 70% of the COVID-19 patients expressed ACE2 in the vasculature, only 30% displayed ACE2-expression in beta-cells. Even in the absence of manifest new-onset diabetes, necroptotic cell death, immune cell infiltration and SARS-CoV-2 viral infection of pancreatic beta-cells may contribute to varying degrees of metabolic dysregulation in patients with COVID-19. New-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients, however, the underlying mechanisms are not fully understood. Here, the authors show that SARS-CoV-2 is detectable in both endocrine and exocrine cells of the pancreata of patients with COVID-19.
Collapse
|
140
|
Ogawa Y, Akimoto Y, Ikemoto M, Goto Y, Ishikawa A, Ohta S, Takase Y, Kawakami H, Tsujimoto M, Yanoshita R. Stability of human salivary extracellular vesicles containing dipeptidyl peptidase IV under simulated gastrointestinal tract conditions. Biochem Biophys Rep 2021; 27:101034. [PMID: 34141904 PMCID: PMC8185177 DOI: 10.1016/j.bbrep.2021.101034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Background Extracellular vesicles (EVs) have been isolated from various sources, including primary and cultured cell lines and body fluids. Previous studies, including those conducted in our laboratory, have reported the stability of EVs under various storage conditions. Methods EVs from human whole saliva were separated via size-exclusion chromatography. To simulate the effects of gastric or intestinal fluids on the stability of EVs, pepsin or pancreatin was added to the samples. Additionally, to determine the effect of bile acids, sodium cholate was added. The samples were then subjected to western blotting, dynamic light scattering, and transmission electron microscopy analyses. In addition, the activity of dipeptidyl peptidase (DPP) IV retained in the samples was examined to monitor the stability of EVs. Results Under acidic conditions, with pepsin mimicking the milieu of the stomach, the EVs remained stable. However, they partially lost their membrane integrity in the presence of pancreatin and sodium cholate, indicating that they may be destabilized after passing through the duodenum. Although several associated proteins, such as mucin 5B and CD9 were degraded, DPP IV was stable, and its activity was retained under the simulated gastrointestinal conditions. Conclusion Our data indicate that although EVs can pass through the stomach without undergoing significant damage, they may be disrupted in the intestine to release their contents. The consistent delivery of active components such as DPP IV from EVs into the intestine might play a role in the efficient modulation of homeostasis of the signal transduction pathways occurring in the gastrointestinal tract. The morphology of EVs was retained after enzyme or sodium cholate treatment. Although EVs could pass through the stomach, they were disrupted in the intestine. DPP IV of EVs may remain intact following digestion and solubilization in the gastrointestinal tract.
Collapse
Key Words
- Alix, programmed cell death 6-interacting protein
- DLS, dynamic light scattering
- DPP IV, dipeptidyl peptidase IV
- Dipeptidyl peptidase IV
- EVs, extracellular vesicles
- Exosomes
- Extracellular vesicles
- Gastrointestinal condition
- Human whole saliva
- MCA, 4-methyl-coumaryl-7-amide
- PBS, phosphate buffered saline
- PLA2, phospholipase A2
- SD, standard deviation
- Stability
- TEM, transmission electron microscopic
- TSG101, tumor susceptibility gene 101
- WS, whole saliva
Collapse
Affiliation(s)
- Yuko Ogawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
- Corresponding author.
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Mamoru Ikemoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Anna Ishikawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Sakura Ohta
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Yumi Takase
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| | - Ryohei Yanoshita
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku, Tokyo, 164-8530, Japan
| |
Collapse
|
141
|
Voulalas G, Tsui J, Candilio L, Baker D. SARS-CoV-2 and Pre-existing Vascular Diseases: Guilt by Association? CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2021; 15:11795468211010705. [PMID: 34035654 PMCID: PMC8132081 DOI: 10.1177/11795468211010705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome coronavirus-2 has rapidly spread and emerged as a pandemic. Although evidence on its pathophysiology is growing, there are still issues that should be taken into consideration, including its effects on pre-existing peripheral vascular disease. The aim of this review is to describe the thrombotic and endothelial dysfunctions caused by SARS-CoV-2, assess if cardiovascular comorbidities render an individual susceptible to the infection and determine the course of pre-existing vascular diseases in infected individuals. A search through MEDLINE, PubMed and EMBASE was conducted and more than 260 articles were identified and 97 of them were reviewed; the rest were excluded because they were not related to the aim of this study. Hypertension, cardiovascular disease, diabetes mellitus and cerebrovascular diseases comprised 24.30% ± 16.23%, 13.29% ± 12.88%, 14.82% ± 7.57% and 10.82% ± 11.64% of the cohorts reviewed, respectively. Arterial and venous thrombotic complications rocketed up to 31% in severely infected individuals in some studies. We suggest that hypertension, cardiovascular diseases, diabetes and cerebrovascular diseases may render an individual susceptible to severe COVID-19 infection. Pre-existing vascular diseases are expected to deteriorate with SARS-CoV-2 infection as a consequence of its increased thrombotic burden and the development of endothelial dysfunction. COVID-19 has emerged only a few months ago and it is premature to predict the long-term effects to the vascular system. Its disturbances of the coagulation mechanisms and effects on vascular endothelium will likely provoke a surge of vascular complications in the coming months.
Collapse
Affiliation(s)
- Grigorios Voulalas
- Vascular Surgery Department, Royal Free London NHS Foundation Trust, London, UK
- Division of Surgery & Interventional Science, University College London, UK
| | - Janice Tsui
- Vascular Surgery Department, Royal Free London NHS Foundation Trust, London, UK
- Division of Surgery & Interventional Science, University College London, UK
| | - Luciano Candilio
- Cardiology Department, Royal Free London NHS Foundation Trust, London, UK
| | - Daryll Baker
- Vascular Surgery Department, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
142
|
Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol 2021; 4:547. [PMID: 33986452 PMCID: PMC8119460 DOI: 10.1038/s42003-021-02067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| |
Collapse
|
143
|
Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021; 13:nu13051624. [PMID: 34066103 PMCID: PMC8151766 DOI: 10.3390/nu13051624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) is a microalgae species with a remarkably high protein content that may potentially become a source of hypotensive and hypoglycemic peptides. In this study, C. pyrenoidosa proteins were extracted and hydrolyzed overnight with pepsin and trypsin with final degrees of hydrolysis of 18.7% and 35.5%, respectively. By LC-MS/MS, 47 valid peptides were identified in the peptic hydrolysate (CP) and 66 in the tryptic one (CT). At the concentration of 1.0 mg/mL, CP and CT hydrolysates inhibit in vitro the angiotensin-converting enzyme (ACE) activity by 84.2 ± 0.37% and 78.6 ± 1.7%, respectively, whereas, tested at cellular level at the concentration of 5.0 mg/mL, they reduce the ACE activity by 61.5 ± 7.7% and 69.9 ± 0.8%, respectively. At the concentration of 5.0 mg/mL, they decrease in vitro the DPP-IV activity by 63.7% and 69.6% and in Caco-2 cells by 38.4% and 42.5%, respectively. Short peptides (≤10 amino acids) were selected for investigating the potential interaction with ACE and DPP-IV by using molecular modeling approaches and four peptides were predicted to block both enzymes. Finally, the stability of these peptides was investigated against gastrointestinal digestion.
Collapse
|
144
|
Kawakita E, Koya D, Kanasaki K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers (Basel) 2021; 13:cancers13092191. [PMID: 34063285 PMCID: PMC8124456 DOI: 10.3390/cancers13092191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Dipeptidyl peptidase (DPP)-4 inhibitor is widely used for type 2 diabetes. Although DPP-4/CD26 has been recognized as both a suppressor and inducer in tumor biology due to its various functions, how DPP-4 inhibitor affects cancer progression in diabetic patients is still unknown. The aim of this review is to summarize one unfavorable aspect of DPP-4 inhibitor in cancer-bearing diabetic patients. Abstract DPP-4/CD26, a membrane-bound glycoprotein, is ubiquitously expressed and has diverse biological functions. Because of its enzymatic action, such as the degradation of incretin hormones, DPP-4/CD26 is recognized as the significant therapeutic target for type 2 diabetes (T2DM); DPP-4 inhibitors have been used as an anti-diabetic agent for a decade. The safety profile of DPP-4 inhibitors for a cardiovascular event in T2DM patients has been widely analyzed; however, a clear association between DPP-4 inhibitors and tumor biology is not yet established. Previous preclinical studies reported that DPP-4 suppression would impact tumor progression processes. With regard to this finding, we have shown that the DPP-4 inhibitor induces breast cancer metastasis and chemoresistance via an increase in its substrate C-X-C motif chemokine 12, and the consequent induction of epithelial-mesenchymal transition in the tumor. DPP-4/CD26 plays diverse pivotal roles beyond blood glucose control; thus, DPP-4 inhibitors can potentially impact cancer-bearing T2DM patients either favorably or unfavorably. In this review, we primarily focus on the possible undesirable effect of DPP-4 inhibition on tumor biology. Clinicians should note that the safety of DPP-4 inhibitors for diabetic patients with an existing cancer is an unresolved issue, and further mechanistic analysis is essential in this field.
Collapse
Affiliation(s)
- Emi Kawakita
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
- Correspondence: ; Tel.: +81-853-20-2183
| |
Collapse
|
145
|
Barchetta I, Ceccarelli V, Cimini FA, Barone E, Sentinelli F, Coluzzi M, Chiappetta C, Bertoccini L, Tramutola A, Labbadia G, Di Cristofano C, Silecchia G, Leonetti F, Cavallo MG. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J Endocrinol Invest 2021; 44:979-988. [PMID: 32852705 PMCID: PMC8049937 DOI: 10.1007/s40618-020-01392-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dipeptidyl peptidase 4 (DPP4) levels are associated to metabolic and cardiovascular diseases in humans; initial evidence reported a relationship between DPP4 and chronic liver diseases. Aim of this study was to investigate hepatic and systemic DPP4 levels/activity in relation to NAFLD/NASH in individuals with and without metabolic disease. METHODS We recruited fifty-two obese individuals undergoing bariatric surgery and intra-operative liver biopsy at Sapienza University, Rome, Italy. The association between DPP4 levels/activity and NAFLD was also evaluated in 126 non-obese individuals recruited in the same setting. RESULTS NAFLD patients had significantly higher circulating DPP4 activity than no-NAFLD in both the obese and non-obese cohorts; plasma DPP4 activity and levels linearly correlated with steatosis grade and inflammation at the liver biopsy. Hepatic DPP4 mRNA was not associated to either its circulating levels/activity or NAFLD. In the multivariate logistic regression analysis on all the study participants (n = 178), higher circulating DPP4 activity was associated with NAFLD independently of potential confounders with OR (95% CI): 3.5 (1.2-10.21), p = 0.022. CONCLUSIONS This study demonstrates the coexistence of increased plasma DPP4 levels and activity in NAFLD. Circulating DPP4 measurement may represent a novel cost-effective strategy for NAFLD/NASH risk stratification and a potential tool for monitoring disease's progression in established NAFLD.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Flavia A Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Sentinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariagrazia Coluzzi
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Giancarlo Labbadia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Maria G Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
146
|
Chung S, Kim GH. Use of Anti-Diabetic Agents in Non-Diabetic Kidney Disease: From Bench to Bedside. Life (Basel) 2021; 11:389. [PMID: 33923115 PMCID: PMC8146249 DOI: 10.3390/life11050389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
New drugs were recently developed to treat hyperglycemia in patients with type 2 diabetes mellitus (T2D). However, metformin remains the first-line anti-diabetic agent because of its cost-effectiveness. It has pleiotropic action that produces cardiovascular benefits, and it can be useful in diabetic nephropathy, although metformin-associated lactic acidosis is a hindrance to its use in patients with kidney failure. New anti-diabetic agents, including glucagon-like peptide-1 receptor (GLP-1R) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors, also produce cardiovascular or renal benefits in T2D patients. Their glucose-independent beneficial actions can lead to cardiorenal protection via hemodynamic stabilization and inflammatory modulation. Systemic hypertension is relieved by natriuresis and improved vascular dysfunction. Enhanced tubuloglomerular feedback can be restored by SGLT-2 inhibition, reducing glomerular hypertension. Patients with non-diabetic kidney disease might also benefit from those drugs because hypertension, proteinuria, oxidative stress, and inflammation are common factors in the progression of kidney disease, irrespective of the presence of diabetes. In various animal models of non-diabetic kidney disease, metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors were favorable to kidney morphology and function. They strikingly attenuated biomarkers of oxidative stress and inflammatory responses in diseased kidneys. However, whether those animal results translate to patients with non-diabetic kidney disease has yet to be evaluated. Considering the paucity of new agents to treat kidney disease and the minimal adverse effects of metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors, these anti-diabetic agents could be used in patients with non-diabetic kidney disease. This paper provides a rationale for clinical trials that apply metformin, GLP-1R agonists, DPP-4 inhibitors, and SGLT-2 inhibitors to non-diabetic kidney disease.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
147
|
Zavvar M, Kochak HE, Abdolmohammadi K, Rashidi N, Mokhtari M, Noorbakhsh F, Azadmanesh K, Gooshki ES, Fatahi Y, Azad TM, Jahangirifard A, Mousavi MJ, Masoumi E, Mirzaei HR, Gouya MM, Rezaei F, Nicknam MH. SARS-Cov-2 and COVID-19, Basic and Clinical Aspects of the Human Pandemic: A Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:665-675. [PMID: 34183916 PMCID: PMC8219633 DOI: 10.18502/ijph.v50i4.5991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the last two decades, we have witnessed three major epidemics of the coronavirus human disease namely, severe acute respiratory syndrome (SARS), Middle Eastern respiratory syndrome, and more recently an ongoing global pandemic of coronavirus disease 2019 (COVID-19). Iran, a country of nearly 84 million, in the Middle East, severely involved with the COVID-19 disease. A documented multidimensional approach to COVID-19 disease is therefore mandatory to provide a well-balanced platform for the concerned medical community in our county and beyond. In this review, we highlight the disease status in Iran and attempt to provide a multilateral view of the fundamental and clinical aspects of the disease including the clinical features of the confirmed cases, virology, pathogenesis, epidemiology, and laboratory methods needed for diagnosis.
Collapse
Affiliation(s)
- Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Emadi Kochak
- Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Abdolmohammadi
- Department of Medical Laboratory Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | - Nesa Rashidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Mokhtari
- Department of Medicine, Pulmonary & Critical Care Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Shamsi Gooshki
- Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Center, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Jahangirifard
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elham Masoumi
- Department of Medical Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Communicable Disease Control Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Farshid Rezaei
- Communicable Disease Control Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
148
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
149
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
150
|
Bradic J, Milosavljevic I, Bolevich S, Litvitskiy PF, Jeremic N, Bolevich S, Zivkovic V, Srejovic I, Jeremic J, Jovicic N, Mitrovic S, Jakovljevic V. Dipeptidyl peptidase 4 inhibitors attenuate cardiac ischaemia-reperfusion injury in rats with diabetes mellitus type 2. Clin Exp Pharmacol Physiol 2021; 48:575-584. [PMID: 33352623 DOI: 10.1111/1440-1681.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/11/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
The aim of our study was to assess and compare the effects of dipeptidyl peptidase 4 (DPP4) inhibitors, saxagliptin and sitagliptin, on metabolic control of disease and cardiac function in rats with diabetes mellitus type 2 (T2DM). This research would provide novel understanding into the potentially protective effects of DPP4 inhibitors in helping salvage of the heart exposed to ischaemia-reperfusion (I-R) injury. Forty-eight Wistar albino rats were randomly divided into four groups: CTRL, Control healthy group; T2DM, rats with T2DM; T2DM + Sit, rats with T2DM treated with 0.6 mg/kg of sitagliptin; T2DM + Sax, rats with T2DM treated with 0.45 mg/kg of saxagliptin for 3 weeks. At the end of the protocol, in vivo cardiac function was assessed by echocardiography, while in the blood samples glucose and insulin were determined. Additionally, ex vivo heart function was estimated on a model of I-R injury using Langendorff apparatus. Immunohistochemical analysis was used to determine the degree of myocardial apoptosis and necrosis, while DPP4 staining was performed to assess the cardiac DPP4 expression. Data were analyzed using a one-way analysis of variance (ANOVA) and the post hoc Bonferroni test for multiple comparisons. Improved glycoregulation was noticed in rats that received DPP4 inhibitors compared to untreated diabetic rats (P < .05). Moreover, better in vivo systolic function was observed in rats treated with both DPP4 inhibitors as evidenced by an increase in fractional shortening when compared to T2DM (P < .05). Most parameters of cardiac function in treated rats remained unaltered during reperfusion, thus suggesting that both drugs protected myocardium during flow restoration. Better effects on coronary circulation were achieved after sitagliptin application. Additionally, both DPP4 inhibitors showed similar potential to attenuate cardiac necrosis and apoptosis. Saxagliptin and sitagliptin might be efficient in preserving myocardial function and morphology in ex vivo induced I-R cardiac injury in rats with T2DM.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefani Bolevich
- Department of Pathophysiology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Peter F Litvitskiy
- Department of Pathophysiology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|