101
|
Abstract
The acquisition of a cell polarity is a crucial requirement for a number of cellular functions, including apoptosis. Cell polarization is an actin cytoskeleton-driven process, through a connection between actin and an increasing number of membrane proteins. The major actors in this connection are ezrin, radixin and moesin, a family of proteins with a high level of homology. Their structure includes an epitope that links to membrane proteins and the other that binds to the actin molecule. In this review we discuss recent data showing that the Fas linkage to the actin cytoskeleton is ezrin mediated and it is an essential requirement for susceptibility to the Fas-mediated apoptosis. The ezrin region responsible of Fas binding consists of 18 aminoacids mapped on the median lobe of the ezrin FERM domain. This binding is specific and of key importance in the control of cell homeostasis. Moreover, Fas-ezrin co-localization, ezrin phosphorylation and early acquisition of susceptibility to Fas-mediated apoptosis, may have a role in some human diseases in which programmed cell death seems to be a central pathogenetic mechanism, such as AIDS.
Collapse
Affiliation(s)
- S Fais
- Department of Drug Research and Evaluation, Pharmacogenetic, Drug Resistance and Experimental Therapeutic Section, Istituto Superiore di Sanità, Rome 00161, Italy.
| | | | | |
Collapse
|
102
|
Haas MA, Vickers JC, Dickson TC. Rho kinase activates ezrin-radixin-moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J Neurosci Res 2006; 85:34-46. [PMID: 17075902 DOI: 10.1002/jnr.21102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ezrin-radixin-moesin (ERM) family of proteins contribute to cytoskeletal processes underlying many vital cellular functions. Their previously elucidated roles in non-neuronal cells are an indication of their potential importance in CNS neurons. The specific mechanisms of their activation are unknown, but are likely to depend on factors such as the cell type and biological context. For ERM proteins to become active they must be phosphorylated at a specific C-terminal threonine residue. In non-neuronal cells, several kinases, including the Rho GTPase family member Rho kinase, have been identified as capable of phosphorylating the C-terminal threonine. In these experiments we have investigated specifically the potential role of Rho kinase mediated ERM activation in cortical neurons, utilizing a new pharmacologic inhibitor of Rho kinase and quantitative analysis of aspects of neuronal functions potentially mediated by ERM proteins. Rho kinase inhibition significantly suppressed aspects of neuronal development including neurite initiation and outgrowth, as well as growth cone morphology, with a concomitant loss of phosphorylated ERM immunolabeling in areas associated with neuronal growth. The ability of the Rho kinase inhibitor to decrease the amount of pERM protein was shown by immunoblotting. Post-injury responses were negatively affected by Rho kinase inhibition, namely by a significant decrease in the number of regenerative neurites. We investigated a novel role for ERM proteins in neuron migration using a post-injury motility assay, where Rho kinase inhibition resulted in significant and drastic reduction in neuron motility and phosphorylated ERM immunolabeling. Thus, Rho kinase is an important activator of ERMs in mediating specific neuronal functions.
Collapse
Affiliation(s)
- Matilda A Haas
- NeuroRepair Group, University of Tasmania, Hobart, Australia
| | | | | |
Collapse
|
103
|
Lan M, Kojima T, Murata M, Osanai M, Takano KI, Chiba H, Sawada N. Phosphorylation of ezrin enhances microvillus length via a p38 MAP-kinase pathway in an immortalized mouse hepatic cell line. Exp Cell Res 2005; 312:111-20. [PMID: 16274688 DOI: 10.1016/j.yexcr.2005.09.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 08/05/2005] [Accepted: 09/29/2005] [Indexed: 11/27/2022]
Abstract
The apical microvilli are closely related with the development and the maintenance of cell polarization, and the length of microvilli varies in a regular way among cell types. Ezrin, a member of the ezrin/radixin/moesin (ERM) family, seems to be involved in the formation and stabilization of the apical microvilli. We found that phosphorylation of ezrin caused elongation of microvilli via a p38 MAP-kinase signaling pathway in an immortalized mouse hepatic cell line. When, in the oncogenic Raf-1-transfected mouse hepatic cell line, epithelial to mesenchymal transition (EMT) indicated as down-regulation of E-cadherin and up-regulation of Snail occurred, loss of microvilli and down-regulation of ezrin but not radixin and moesin were also observed. In the Raf-1 transfectants treated with the MAP-kinase inhibitor PD98059 and the p38 MAP-kinase inhibitor SB203580, the numbers of microvilli and the expression of ezrin, E-cadherin and Snail were recovered. More interestingly, treatment with SB203580 induced elongation of microvilli and increased phosphorylation of ezrin (at Thr-567 and Tyr-353). Phosphorylated ezrin-positive dots were colocalized with actin-positive dots on the surface of some Raf-1 transfectants treated with SB203580. These results suggested that phosphorylation of ezrin via the p38 MAP-kinase signaling pathway might be involved in the formation of microvilli during development of epithelial cell polarization.
Collapse
Affiliation(s)
- Mengdong Lan
- Department of Pathology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
104
|
Barkhausen T, Krettek C, van Griensven M. L-selectin: adhesion, signalling and its importance in pathologic posttraumatic endotoxemia and non-septic inflammation. ACTA ACUST UNITED AC 2005; 57:39-52. [PMID: 16089318 DOI: 10.1016/j.etp.2005.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The leucocyte expressed surface-bound L-selectin belongs to the selectin family of adhesion molecules. It exhibits adhesive as well as signalling functions. Mainly, it is of importance in lymphocyte homing and in the extravasation of leucocytes into the surrounding tissue during inflammation. Acting in the initial step of the cell adhesion cascade, L-selectin is responsible for the rolling of leucocytes on endothelial layers. Therefore, L-selectin is thought to be an adequate target for pharmacological interventions. Beneath the discussion of the molecules' general features like molecule structure and its regulation, the review focuses firstly on L-selectin in the context of posttraumatic inflammatory disorders, and secondly on the importance of L-selectin specific signalling events.
Collapse
Affiliation(s)
- Tanja Barkhausen
- Experimental Trauma Surgery, Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | | | |
Collapse
|
105
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
106
|
Cant SH, Pitcher JA. G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 2005; 16:3088-99. [PMID: 15843435 PMCID: PMC1165394 DOI: 10.1091/mbc.e04-10-0877] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.
Collapse
Affiliation(s)
- Sarah H Cant
- MRC Laboratory for Molecular and Cellular Biology and Department of Pharmacology, University College London, London, WC1E 6BT United Kingdom
| | | |
Collapse
|
107
|
Zhang W, McIntosh AL, Xu H, Wu D, Gruninger T, Atshaves B, Liu JCS, Schroeder F. Structural analysis of sterol distributions in the plasma membrane of living cells. Biochemistry 2005; 44:2864-84. [PMID: 15723530 DOI: 10.1021/bi048172m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although plasma membrane (PM) cholesterol-rich and -poor domains have been isolated by subcellular fractionation, the real-time arrangement of cholesterol in such domains in living cells is still unclear. Therefore, dehydroergosterol (DHE), a naturally occurring fluorescent sterol, was incorporated into cultured L-cell fibroblasts. Two PM markers, the enhanced cyan fluorescent protein (ECFP-Mem) and 3'-dioctadecyloxacarbocyanine perchlorate [DiOC(18)(3)], were used to distinguish DHE localized at the PM of living cells. Spatial enrichment of DHE in the PM of living cells was visualized in real time by multiphoton laser scanning microscopy (MPLSM). Quantitative models and image-processing techniques were developed for statistical analysis of the distribution of DHE within the PM. The PM was resolved from the cytoplasm in a two-step process, and a smooth trajectory reference of the PM was refined by statistical regression and moments-based techniques. Thus, DHE intensities over the PM were measured following the major DHE intensity distributions. Spatial distributions of DHE within the PM were examined by a statistical inference technique, complete spatial randomness (CSR). For PM regions densely populated with DHE, the distributions of DHE exhibited statistical arrangements that were not spatial random (i.e., homogeneous Poisson process) or regular but, instead, exhibited strong cluster patterns. In effect, real-time MPLSM imaging data for the first time demonstrated that sterol enrichment occurred in clustered regions in the PM, consistent with the existence of cholesterol-rich domains in the plasma membrane of living cells.
Collapse
Affiliation(s)
- Weimin Zhang
- Computer Science Department, Texas A&M University, College Station, Texas 77843-3112, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Brown KL, Birkenhead D, Lai JCY, Li L, Li R, Johnson P. Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/moesin (ERM) proteins in myeloid cells. Exp Cell Res 2005; 303:400-14. [PMID: 15652352 DOI: 10.1016/j.yexcr.2004.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 10/08/2004] [Indexed: 11/28/2022]
Abstract
Proinflammatory cytokines such as TNF-alpha up-regulate the expression of the cell adhesion molecule, CD44, and induce hyaluronan (HA) binding in peripheral blood monocytes (PBM). Here we show that in PBM, TNF-alpha induced cytoskeletal rearrangement, increased threonine phosphorylation of ERM proteins, and induced the redistribution and colocalization of phospho-ERM proteins (P-ERM) with CD44. In the myeloid progenitor cell line, KG1a, hyaluronan binding occurred in the pseudopod where CD44, P-ERM, and F-actin were highly localized. Hyaluronan binding correlated with high expression of both CD44 and P-ERM clustered in a single pseudopod. Disruption of polymerized actin reduced hyaluronan binding in both PBM and KG1a cells and abolished CD44 clustering and the pseudopod in KG1a cells. The pseudopod was not required for the clustering of CD44, the colocalization with P-ERM, or hyaluronan binding. However, treatment with a kinase inhibitor abolished ERM phosphorylation and reduced hyaluronan binding. Furthermore, expression of CD44 lacking the putative ERM binding site resulted in reduced hyaluronan binding. Taken together, these data suggest that CD44-mediated hyaluronan binding in human myeloid cells is regulated by P-ERM and the actin cytoskeleton.
Collapse
Affiliation(s)
- Kelly L Brown
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Boulevard, Vancouver, B.C., Canada, V6T 1Z3
| | | | | | | | | | | |
Collapse
|
109
|
Pust S, Morrison H, Wehland J, Sechi AS, Herrlich P. Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO J 2005; 24:1287-300. [PMID: 15729356 PMCID: PMC556399 DOI: 10.1038/sj.emboj.7600595] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 02/02/2005] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell spread is a fundamental step in the infection cycle of Listeria monocytogenes that strictly depends on the formation of bacteria-induced protrusions. Since Listeria actin tails in the protrusions are tightly associated with the plasma membrane, we hypothesised that membrane-cytoskeleton linkers would be required for initiating and sustaining their formation and the subsequent cell-to-cell spread. We have found that ezrin, a member of the ezrin, radixin and moesin (ERM) family that functions as a key membrane-cytoskeleton linker, accumulates at Listeria protrusions. The ability of Listeria to induce protrusions and effectively spread between adjacent cells depends on the interaction of ERM proteins with both a membrane component such as CD44 and actin filaments. Interfering with either of these interactions or with ERM proteins phosphorylation not only reduces the number of protrusions but also alters their morphology, resulting in the formation of short and collapsed protrusions. As a consequence, Listeria cell-to-cell spread is severely impaired. Thus, ERM proteins are exploited by Listeria to escape the host immune response and to succeed in the development of the infection.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Braunschweig, Germany
- Present address: Albert-Ludwigs Universität Freiburg, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie I, Albertstraße 25, 79104 Freiburg, Germany
| | - Helen Morrison
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
- Institute of Molecular Biotechnology, Jena, Germany
| | - Jürgen Wehland
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Braunschweig, Germany
| | - Antonio S Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Braunschweig, Germany
- Present address: Institut für Biomedizinische Technologien—Zellbiologie, Universitätsklinikum Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH), Pauwelsstrasse 30, 52057 Aachen, Germany
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Mascheroder Weg 1, 38124 Braunschweig, Germany. Tel.: +49 531 6181241; Fax: +49 531 6181444; E-mail:
| | - Peter Herrlich
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
- Institute of Molecular Biotechnology, Jena, Germany
| |
Collapse
|
110
|
del Fresno C, Otero K, Gómez-García L, González-León MC, Soler-Ranger L, Fuentes-Prior P, Escoll P, Baos R, Caveda L, García F, Arnalich F, López-Collazo E. Tumor Cells Deactivate Human Monocytes by Up-Regulating IL-1 Receptor Associated Kinase-M Expression via CD44 and TLR4. THE JOURNAL OF IMMUNOLOGY 2005; 174:3032-40. [PMID: 15728517 DOI: 10.4049/jimmunol.174.5.3032] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although blood monocytes possess significant cytotoxic activity against tumor cells, tumor-infiltrating monocytes are commonly deactivated in cancer patients. Monocytes pre-exposed to tumor cells show significantly decreased expression levels of TNF-alpha, IL-12p40, and IL-1R-associated kinase (IRAK)-1. Activation of the Ser/Thr kinase IRAK-1 is an important event in several inflammatory processes. By contrast, another IRAK family member, IRAK-M, negatively regulates this pathway, and is up-regulated in cultures of endotoxin-tolerant monocytes and in monocytes from septic patients within the timeframe of tolerance. In this study, we show that IRAK-M expression is enhanced at the mRNA and protein level in human monocytes cultured in the presence of tumor cells. IRAK-M was induced in monocytes upon coculturing with different tumor cells, as well as by fixed tumor cells and medium supplemented with the supernatant from tumor cell cultures. Moreover, blood monocytes from patients with chronic myeloid leukemia and patients with metastasis also overexpressed IRAK-M. Low concentrations of hyaluronan, a cell surface glycosaminoglycan released by tumor cells, also up-regulated IRAK-M. The induction of IRAK-M by hyaluronan and tumor cells was abolished by incubation with anti-CD44 or anti-TLR4 blocking Abs. Furthermore, down-regulation of IRAK-M expression by small interfering RNAs specific for IRAK-M reinstates both TNF-alpha mRNA expression and protein production in human monocytes re-exposed to a tumor cell line. Altogether, our findings indicate that deactivation of human monocytes in the presence of tumor cells involves IRAK-M up-regulation, and this effect appears to be mediated by hyaluronan through the engagement of CD44 and TLR4.
Collapse
MESH Headings
- Adult
- Antibodies, Blocking/pharmacology
- Cell Communication/immunology
- Cell Line, Tumor
- Coculture Techniques
- Down-Regulation/immunology
- Gene Expression Regulation, Neoplastic/immunology
- HL-60 Cells
- HeLa Cells
- Humans
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/physiology
- Hyaluronic Acid/pharmacology
- Interleukin-1 Receptor-Associated Kinases
- Jurkat Cells
- Macrophage Activation/immunology
- Male
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Middle Aged
- Monocytes/immunology
- Monocytes/metabolism
- Protein Kinases/biosynthesis
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Receptors, Interleukin-1/biosynthesis
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Carlos del Fresno
- Research Unit, Department of Surgical Research, La Paz Hospital, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Meng Y, Kang S, So J, Reierstad S, Fishman DA. Translocation of Fas by LPA prevents ovarian cancer cells from anti-Fas-induced apoptosis. Gynecol Oncol 2005; 96:462-9. [PMID: 15661236 DOI: 10.1016/j.ygyno.2004.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Alterations in the expression of Fas have been demonstrated in various cancers as a mechanism for tumor cells to escape from immune surveillance. In this study, we observed the effect of lysophosphatidic acid (LPA) on Fas expression and function in ovarian cancer cells. METHODS Ovarian cancer cell lines were incubated with or without LPA and Fas cell surface presentations were detected by flow cytometry. Anti-Fas IgM was added for induction and analysis of apoptosis by flow cytometry. Cell lysis and subcellular fractions were probed for protein expression by Western blot. Cells were also stained with human anti-Fas Ab, followed with Rhodamine red-X-conjugated goat anti-mouse IgG, and immunofluorescence images were acquired on a Nikon digital camera. RESULTS Following treatment with LPA, ovarian cancer cells showed significant rapid reduction of Fas presentation on the cell surface. LPA protected ovarian cancer cells from anti-Fas-induced apoptosis. Cell lysis and subcellular fractionations proved that LPA treatment induced a translocation of Fas receptors, along with phosphorylated ezrin, from the membrane anchored to the actin cytoskeleton, to the cytosol. Translocation of the Fas receptor reduced Fas concentration in the membrane and may inhibit its clustering and internalization during early apoptosis induced by anti-Fas. DISC staining proved that LPA inhibited Fas receptor aggregation and caspase-8 activation at the membrane, which further inhibited caspase-3 and 7 activation in the cytosol. CONCLUSIONS Our studies suggest that LPA induces translocation of Fas from the cell membrane to the cytosol, which may provide a mechanism by which ovarian cancer cells evade FasL-bearing immune cells.
Collapse
Affiliation(s)
- Yuru Meng
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
112
|
Abstract
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Collapse
Affiliation(s)
- R Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
113
|
Abstract
Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.
Collapse
Affiliation(s)
- M Deckert
- INSERM Unit 576, Hôpital de l'Archet, BP3079, 06202 Nice, France.
| | | | | |
Collapse
|
114
|
Nijhara R, van Hennik PB, Gignac ML, Kruhlak MJ, Hordijk PL, Delon J, Shaw S. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:4985-93. [PMID: 15470041 DOI: 10.4049/jimmunol.173.8.4985] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent molecular mechanisms remain largely undefined. We demonstrate that Rac1 plays a fundamental role in chemokine-induced microvillar breakdown in human T lymphocytes. The supporting evidence includes: first, chemokine induces Rac1 activation within 5 s via a signaling pathway that involves Galphai. Second, constitutively active Rac1 mediates microvilli disintegration. Third, blocking Rac1 function by cell permeant C-terminal "Trojan" peptides corresponding to Rac1 (but not Rac2, Rho, or Cdc42) blocks microvillar loss induced by the chemokine stromal cell-derived factor 1alpha (SDF-1alpha). Furthermore, we demonstrate that the molecular mechanism of Rac1 action involves dephosphorylation-induced inactivation of the ezrin/radixin/moesin (ERM) family of actin regulators; such inactivation is known to detach the membrane from the underlying actin cytoskeleton, thereby facilitating disassembly of actin-based peripheral processes. Specifically, ERM dephosphorylation is induced by constitutively active Rac1 and stromal cell-derived factor 1alpha-induced ERM dephosphorylation is blocked by either the dominant negative Rac1 construct or by Rac1 C-terminal peptides. Importantly, the basic residues at the C terminus of Rac1 are critical to Rac1's participation in ERM dephosphorylation and in microvillar retraction. Together, these data elucidate new roles for Rac1 in early signal transduction and cytoskeletal rearrangement of T lymphocytes responding to chemokine.
Collapse
Affiliation(s)
- Ruchika Nijhara
- National Cancer Institute, Experimental Immunology Branch, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Kitajiri SI, Fukumoto K, Hata M, Sasaki H, Katsuno T, Nakagawa T, Ito J, Tsukita S, Tsukita S. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. ACTA ACUST UNITED AC 2004; 166:559-70. [PMID: 15314067 PMCID: PMC2172208 DOI: 10.1083/jcb.200402007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, radixin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx−/−) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset (∼2 wk), in the cochlea and vestibule of Rdx−/− mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx−/− mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx−/− mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx−/− mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins.
Collapse
Affiliation(s)
- Shin-ichiro Kitajiri
- Department of Cell Biology, Kyoto University Faculty of Medicine, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. ACTA ACUST UNITED AC 2004; 164:653-9. [PMID: 14993232 PMCID: PMC2172172 DOI: 10.1083/jcb.200307032] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ezrin, a membrane–actin cytoskeleton linker, which participates in epithelial cell morphogenesis, is held inactive in the cytoplasm through an intramolecular interaction. Phosphatidylinositol 4,5-bisphosphate (PIP2) binding and the phosphorylation of threonine 567 (T567) are involved in the activation process that unmasks both membrane and actin binding sites. Here, we demonstrate that ezrin binding to PIP2, through its NH2-terminal domain, is required for T567 phosphorylation and thus for the conformational activation of ezrin in vivo. Furthermore, we found that the T567D mutation mimicking T567 phosphorylation bypasses the need for PIP2 binding for unmasking both membrane and actin binding sites. However, PIP2 binding and T567 phosphorylation are both necessary for the correct apical localization of ezrin and for its role in epithelial cell morphogenesis. These results establish that PIP2 binding and T567 phosphorylation act sequentially to allow ezrin to exert its cellular functions.
Collapse
Affiliation(s)
- Bruno T Fievet
- Laboratoire de Morphogenèse et Signalisation Cellulaires, UMR144 CNRS, 26 Rue d'Ulm, Institut Curie, Paris, Cedex 05, 75248 France
| | | | | | | | | | | | | |
Collapse
|
117
|
Dard N, Louvet-Vallée S, Santa-Maria A, Maro B. Phosphorylation of ezrin on threonine T567 plays a crucial role during compaction in the mouse early embryo. Dev Biol 2004; 271:87-97. [PMID: 15196952 DOI: 10.1016/j.ydbio.2004.03.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 03/24/2004] [Accepted: 03/29/2004] [Indexed: 01/14/2023]
Abstract
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst.
Collapse
Affiliation(s)
- Nicolas Dard
- Laboratoire de Biologie Cellulaire du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, 9 Quai St-Bernard, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
118
|
Abstract
The ezrin/radixin/moesin (ERM) family of actin-binding proteins act both as linkers between the actin cytoskeleton and plasma membrane proteins and as signal transducers in responses involving cytoskeletal remodelling. The Rho family of GTPases also regulate cytoskeletal organisation, and several molecular pathways linking ERM proteins and Rho GTPases have been described. This review discusses recent findings on ERM protein function in leucocytes and how these may be integrated with Rho GTPase signalling.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
119
|
Yonemura S, Hirao-Minakuchi K, Nishimura Y. Rho localization in cells and tissues. Exp Cell Res 2004; 295:300-14. [PMID: 15093731 DOI: 10.1016/j.yexcr.2004.01.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 12/26/2003] [Indexed: 01/15/2023]
Abstract
Rho family small GTPases regulate cytoskeletal organization. Although their spatiotemporal activities appear to be important for cellular morphogenesis, there has been little characterization of the localization of Rho family GTPases in cells and tissues. Here we show precise localization of Rho subfamily proteins in mammalian cultured cells and tissues through evaluation of anti-Rho antibodies and fixation protocols. Although Rho is not a structural protein but functions as a switching molecule, it often localizes at several distinct domains or structures of cells. In cultured epithelial cells, Rho was highly accumulated at lateral membranes. However, in fibroblastic cells, Rho appeared to be distributed evenly in the cytoplasm. Rho concentration at the cleavage furrow at cytokinesis was generally observed. In A431 cells, Rho translocation from the cytoplasm to elongating microvilli at the apical membrane within 30 s after EGF stimulation was clearly demonstrated. Also, Myc- or GFP-tagged RhoA did not always reflect the localization of endogenous Rho, indicating a drawback of protein-tagging methods for localization research. In mouse tissues, Rho localization differed depending on cell type, probably reflecting the functional differences of each cell type.
Collapse
Affiliation(s)
- Shigenobu Yonemura
- Laboratory for Cellular Morphogenesis, RIKEN Center for Developmental Biology, Chuo, Kobe, Hyogo 650-0047, Japan.
| | | | | |
Collapse
|
120
|
Matsumoto H, Daikoku T, Wang H, Sato E, Dey SK. Differential Expression of Ezrin/Radixin/Moesin (ERM) and ERM-Associated Adhesion Molecules in the Blastocyst and Uterus Suggests Their Functions During Implantation1. Biol Reprod 2004; 70:729-36. [PMID: 14613898 DOI: 10.1095/biolreprod.103.022764] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5 the localization, especially of radixin and moesin, extended to the stroma surrounding the implantation chamber. With respect to ERM-associated adhesion molecules, while CD44 and ICAM-1 were exclusively localized in the stroma on Day 4, CD43 and ICAM-2 were localized to the epithelium. On Day 5, the localization of CD44 and ICAM-1 became highly concentrated in the antimesometrial stroma of the implantation chamber. The localization of CD43 and ICAM-2 remained mostly epithelial, although some stromal localization of CD43 was noted on Day 5. These results suggest that differential expression and distribution of ERM proteins and ERM-associated adhesion molecules are involved in the construction of the cellular architecture necessary for blastocyst activation and uterine receptivity leading to successful implantation.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
121
|
Surace EI, Haipek CA, Gutmann DH. Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004; 23:580-7. [PMID: 14724586 DOI: 10.1038/sj.onc.1207142] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurofibromatosis 2 (NF2) tumor suppressor gene product, merlin, belongs to the ezrin-radixin-moesin (ERM) subgroup of the Protein 4.1 family, which links cell surface glycoproteins to the actin cytoskeleton. Previous studies have suggested that phosphorylation of merlin, similar to other ERM proteins, may regulate its function. To determine whether merlin phosphorylation has functional consequences for merlin suppression of cell growth and motility, we generated doxycycline-regulatable RT4 schwannoma cell lines that inducibly express full-length merlin with mutations at two potential phosphorylation sites (amino-acid residues S518 and T576). Whereas a mutation at S518 that mimics constitutive phosphorylation (S518D) abrogates the ability of merlin to suppress cell growth and motility, the S518A merlin mutant, which mimics nonphosphorylated merlin, functions equivalently to wild-type merlin. Similar mutations involving T576, the analogous phosphorylation site in ERM proteins important for regulating their function, had no effect. In contrast to other functionally inactive missense merlin mutants, the regulated overexpression of S518D merlin resulted in dramatic changes in cell shape and the elaboration of filopodial extensions. These results provide the first direct demonstration that the S518D merlin mutation, which mimics merlin phosphorylation, impairs not only merlin growth and motility suppression but also leads to an acquisition of a novel phenotype previously ascribed to ERM proteins.
Collapse
Affiliation(s)
- Ezequiel I Surace
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
122
|
Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 2004; 447:549-65. [PMID: 12845533 DOI: 10.1007/s00424-003-1110-3] [Citation(s) in RCA: 485] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 05/09/2003] [Accepted: 05/12/2003] [Indexed: 12/01/2022]
Abstract
Sodium/proton antiporters or exchangers (NHE) are integral membrane proteins present in most, if not all, living organisms. In mammals, these transporters chiefly catalyze the electroneutral exchange of Na(+) and H(+) down their respective concentration gradients and are crucial for numerous physiological processes, ranging from the fine control of intracellular pH and cell volume to systemic electrolyte, acid-base and fluid volume homeostasis. NHE activity also facilitates the progression of other cellular events such as adhesion, migration, and proliferation. Thus far, eight distinct NHE genes (NHE1/SLC9A1-NHE8/SLC9A8) and several pseudogenes have been identified in the human genome. The functional genes encode proteins of varying primary sequence identity (25-70%), but share a common predicted secondary structure comprising 12 conserved membrane-spanning segments at the amino-terminus and a more divergent, cytoplasmically-oriented, carboxy-terminus. They show considerable heterogeneity in their patterns of tissue/cell expression and membrane localization. Functional studies have revealed further differences in their kinetic properties, sensitivity to pharmacological antagonists, and regulation by diverse hormonal and mechanical stimuli. Altered NHE activity has been linked to the pathogenesis of several diseases, including essential hypertension, congenital secretory diarrhea, diabetes, and tissue damage caused by ischemia/reperfusion. Further characterization of their functional properties should lead to a better understanding of their unique contributions to human health and disease.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, McIntyre Medical Science Bldg. 3655 Promenade Sir-William-Osler, H3G 1Y6, Montreal, Quebec, Canada.
| | | |
Collapse
|
123
|
Elliott BE, Qiao H, Louvard D, Arpin M. Co-operative effect of c-Src and ezrin in deregulation of cell-cell contacts and scattering of mammary carcinoma cells. J Cell Biochem 2004; 92:16-28. [PMID: 15095400 DOI: 10.1002/jcb.20033] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The non-receptor tyrosine kinase c-Src is activated in many human cancer types, and induces deregulation of cadherin-based cell-cell contacts and actin cytoskeleton. Because ezrin, a protein which cross-links the plasma membrane with the actin cytoskeleton, is often over-expressed in human cancers, and participates in cell adhesion, motility, and cell scattering, we therefore investigated whether c-Src co-operates with ezrin in regulating cell-cell contacts in a murine mammary carcinoma cell line, SP1. SP1 cells over-expressing wild type ezrin, or an activated c-Src mutant, formed loose aggregates which scattered spontaneously when plated on plastic. When wild type ezrin and activated c-Src were co-expressed, scattering was increased, cell-cell contacts disrupted, and cell aggregation prevented. Pre-treatment with the c-Src family kinase inhibitor PP2 partially restored aggregation of cells expressing activated c-Src and wild type ezrin, indicating that c-Src family kinases act co-operatively with ezrin in regulating cell-cell contacts. Furthermore, expression of a truncated NH2-terminal domain of ezrin, which has dominant negative function, blocked the cell scattering effect of activated c-Src and promoted formation of cohesive cell-cell contacts. Together, these results suggest co-operativity between c-Src and ezrin in deregulation of cell-cell contacts and enhancing scattering of mammary carcinoma cells.
Collapse
Affiliation(s)
- Bruce E Elliott
- Queen's University Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada K7L 3N6.
| | | | | | | |
Collapse
|
124
|
Brown MJ, Nijhara R, Hallam JA, Gignac M, Yamada KM, Erlandsen SL, Delon J, Kruhlak M, Shaw S. Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 2003; 102:3890-9. [PMID: 12907449 DOI: 10.1182/blood-2002-12-3807] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lymphocyte microvilli mediate initial rolling-adhesion along endothelium but are lost during transmigration from circulation to tissue. However, the mechanism for resorption of lymphocyte microvilli remains unexplored. We show that chemokine stimulation of human peripheral blood T (PBT) cells is sufficient to induce rapid resorption of microvilli. Microvilli in other cells are regulated by ezrin/radixin/moesin (ERM) proteins, which link the plasma membrane to the cortical F-actin cytoskeleton; maintenance of these linkages requires ERM activation, reflected by phosphorylation at a specific carboxy-terminal threonine residue. Carboxyphosphorylated-ERM (cpERM) proteins in resting PBT cells show a punctate peripheral distribution consistent with localization to microvilli. cpERM dephosphorylation begins within seconds of stimulation by chemokines (stromal derived factor 1 alpha [SDF-1 alpha] or secondary lymphoid tissue cytokine), and ERM proteins lose their punctate distribution with kinetics paralleling the loss of microvilli. The cpERM proteins are preferentially associated with the cytoskeleton at rest and this association is lost with chemokine-induced dephosphorylation. Transfection studies show that a dominant-negative ERM construct destroys microvilli, whereas a construct mimicking cpERM facilitates formation of microvilli, retards chemokine-induced loss of microvilli, and markedly impairs chemokine-induced polarization. Thus, chemokine induces rapid dephosphorylation and inactivation of cpERM, which may in turn facilitate 2 aspects of cytoskeletal reorganization involved in lymphocyte recruitment: loss of microvilli and polarization.
Collapse
Affiliation(s)
- Martin J Brown
- Human Immunology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bldg 10, Rm 4B36, 10 Center Dr, MSC 1360, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 2003; 29:541-9. [PMID: 14585264 DOI: 10.1016/s0305-7372(03)00106-3] [Citation(s) in RCA: 464] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proliferation, invasion and metastasis, drug resistance and apoptosis. Hypoxic conditions are often observed during the development of solid tumours and lead to intracellular and extracellular acidosis. Cellular acidosis has been shown to be a trigger in the early phase of apoptosis and leads to activation of endonucleases inducing DNA fragmentation. To avoid intracellular acidification under such conditions, pH regulators are thought to be up-regulated in tumour cells. Four major types of pH regulator have been identified: the proton pump, the sodium-proton exchanger family (NHE), the bicarbonate transporter family (BCT) and the monocarboxylate transporter family (MCT). Here, we describe the structure and function of pH regulators expressed in tumour tissue. Understanding pH regulation in tumour cells may provide new ways of inducing tumour-specific apoptosis, thus aiding cancer chemotherapy.
Collapse
Affiliation(s)
- Hiroto Izumi
- Department of Molecular Biology, University of Occupational and Environmental Health, School of medicine, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Zoltan-Jones A, Huang L, Ghatak S, Toole BP. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 2003; 278:45801-10. [PMID: 12954618 DOI: 10.1074/jbc.m308168200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During carcinoma progression, tumor cells often undergo changes similar (but not identical) to epithelialmesenchymal transitions in embryonic development. In this study, we demonstrate that experimental stimulation of hyaluronan synthesis in normal epithelial cells is sufficient to induce mesenchymal and transformed characteristics. Using recombinant adenoviral expression of hyaluronan synthase-2, we show that increased hyaluronan production promotes anchorage-independent growth and invasiveness, induces gelatinase production, and stimulates phosphoinositide 3-kinase/Akt pathway activity in phenotypically normal Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Cells infected with hyaluronan synthase-2 adenovirus also acquired mesenchymal characteristics, including up-regulation of vimentin, dispersion of cytokeratin, and loss of organized adhesion proteins at intercellular boundaries. Furthermore, we show that the transforming effects of two well described agents, hepatocyte growth factor (HGF) and beta-catenin, are dependent on hyaluronan-cell interactions. Perturbation of endogenous hyaluronan polymer interactions by treatment with hyaluronan oligomers is shown here to reverse the transforming effects of HGF and beta-catenin in Madin-Darby canine kidney and MCF-10A human mammary epithelial cells. Also, HGF and beta-catenin induced assembly of hyaluronan-dependent pericellular matrices similar to those surrounding mesenchymal cells. Thus, increased expression of hyaluronan is sufficient to induce epithelial-mesenchymal transition and acquisition of transformed properties in phenotypically normal epithelial cells.
Collapse
Affiliation(s)
- Alexandra Zoltan-Jones
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
127
|
Modarressi MH, Behnam B, Cheng M, Taylor KE, Wolfe J, van der Hoorn FA. Tsga10 encodes a 65-kilodalton protein that is processed to the 27-kilodalton fibrous sheath protein. Biol Reprod 2003; 70:608-15. [PMID: 14585816 PMCID: PMC3158800 DOI: 10.1095/biolreprod.103.021170] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We had previously reported the isolation of the testis-specific human gene Tsga10, which is not expressed in testes from two infertile patients. To study its role and function, we cloned the mouse homologue Mtsga10. Mtsga10 localizes to mouse chromosome 1, band B. This region is syntenic with human chromosome 2q11.2, where Tsga10 is located. We demonstrate that Mtsga10 mRNA is expressed in testis, but not in other adult tissues, and in several human fetal tissues and primary tumors. We uncovered that different species use different first exons and, consequently, different promoters. Using several antibodies, we discovered that, in mouse testis, Mtsga10 encodes a 65-kDa spermatid protein that appears to be processed to a 27-kDa protein of the fibrous sheath, a major sperm tail structure, in mature spermatozoa. Mtsga10 protein contains a putative myosin/Ezrin/radixin/moesin (ERM) domain. Transfection of fibroblasts with GFP-Mtsga10 fusion protein results in formation of short, thick filaments and deletion of the myosin/ERM domain abolished filament formation. Our results suggest the possibility that Tsga10 plays a role in the sperm tail fibrous sheath.
Collapse
Affiliation(s)
- Mohammad H. Modarressi
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada T2N 4N1
| | - Babak Behnam
- Biology Department, University College London, London, United Kingdom
| | - Min Cheng
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada T2N 4N1
| | - Kay E. Taylor
- Biology Department, University College London, London, United Kingdom
| | - Jonathan Wolfe
- Biology Department, University College London, London, United Kingdom
| | - Frans A. van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada T2N 4N1
- Correspondence: Frans A. van der Hoorn, Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1. FAX: 403 283 8727;
| |
Collapse
|
128
|
Cho JY, Chain BM, Vives J, Horejsi V, Katz DR. Regulation of CD43-induced U937 homotypic aggregation. Exp Cell Res 2003; 290:155-67. [PMID: 14516796 DOI: 10.1016/s0014-4827(03)00322-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD43 (leukosialin, sialophorin), a prominent component of the hemopoietic cell surface, has an enigmatic role in cell-cell interaction. The observation that CD43 ligation triggers homotypic aggregation of monoblastoid U937 cells has permitted analysis of this: CD43-induced aggregation was distinguishable from CD29- (also known as beta1 integrin) or CD98- (also known as 4F2, or fusion-related protein 1) induced aggregation, with different energy requirements and with partial dependence on beta2 integrins. Previous studies have focused on the role of CD43 ligation in tyrosine phosphorylation. However, in the homotypic adhesion assay, although there is initial tyrosine phosphorylation, protein tyrosine kinase inhibitors did not block aggregation. Therefore, other signaling pathways were examined. CD43 ligation induced protein tyrosine dephosphorylation, and protein tyrosine phosphatase inhibitors blocked aggregation. Activation of MAP kinases was not necessary. Cytoskeletal inhibitors amplified aggregation. Protein kinase C (PKC) inhibitors amplified aggregation, implicating PKC as a negative regulator. CD43 ligation up-regulated surface adhesion molecules and enhanced CD29- and CD98-induced aggregation. Thus, CD43 participation in cell-cell adhesion is under stringent control, involving both surface events and several different intracellular signaling pathways, acting together to regulate the process. These mechanisms add a further dimension to the potential role of CD43 in tissue immune responses.
Collapse
Affiliation(s)
- Jae Youl Cho
- Department of Immunology of Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 6JF, UK
| | | | | | | | | |
Collapse
|
129
|
Zhou R, Cao X, Watson C, Miao Y, Guo Z, Forte JG, Yao X. Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation. J Biol Chem 2003; 278:35651-9. [PMID: 12840026 DOI: 10.1074/jbc.m303416200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastric ezrin was initially identified as a phosphoprotein associated with parietal cell activation. To explore the nature of ezrin phosphorylation, proteins from resting and secreting gastric glands were subjected to two-dimensional SDS-PAGE. Histamine triggers acid secretion and a series of acidic isoforms of ezrin on two-dimensional SDS-PAGE. Mass spectrometric analysis of these acidic ezrin spots induced by stimulation suggests that Ser66 is phosphorylated. To determine whether Ser66 is a substrate of protein kinase A (PKA), recombinant proteins of ezrin, both wild type and S66A mutant, were incubated with the catalytic subunit of PKA and [32P]ATP. Incorporation of 32P into wild type but not the mutant ezrin verified that Ser66 is a substrate of PKA. In addition, expression of S66A mutant ezrin in cultured parietal cells attenuates the dilation of apical vacuolar membrane associated with stimulation by histamine, indicating that PKA-mediated phosphorylation of ezrin is necessary for acid secretion. In fact, expression of phosphorylation-like S66D mutant in parietal cells mimics histamine-stimulated apical vacuole remodeling. Further examination of H,K-ATPase distribution revealed a blockade of stimulation-induced proton pump mobilization in S66A but not S66D ezrin-expressing parietal cells. These data suggest that PKA-mediated phosphorylation of ezrin plays an important role in mediating the remodeling of the apical membrane cytoskeleton associated with acid secretion in parietal cells.
Collapse
Affiliation(s)
- Rihong Zhou
- Laboratory of Cell Dynamics, School of Life Science, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | |
Collapse
|
130
|
Lauwaet T, Oliveira MJ, Callewaert B, De Bruyne G, Saelens X, Ankri S, Vandenabeele P, Mirelman D, Mareel M, Leroy A. Proteolysis of enteric cell villin by Entamoeba histolytica cysteine proteinases. J Biol Chem 2003; 278:22650-6. [PMID: 12690119 DOI: 10.1074/jbc.m300142200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Invasive microorganisms efface enteric microvilli to establish intimate contact with the apical surface of enterocytes. To understand the molecular basis of this effacement in amebic colitis, we seeded Entamoeba histolytica trophozoites on top of differentiated human Caco-2 cell layers. Western blots of detergent lysates from such cocultures showed proteolysis of the actin-bundling protein villin within 1 min of direct contact of living trophozoites with enterocytes. Mixtures of separately prepared lysates excluded detergent colysis as the cause of villin proteolysis. Caspases were not responsible as evidenced by the lack of degradation of specific substrates and the failure of a specific caspase inhibitor to prevent villin proteolysis. A crucial role for amebic cysteine proteinases was shown by prevention of villin proteolysis and associated microvillar alterations through the treatment of trophozoites before coculture with synthetic inhibitors that completely blocked amebic cysteine proteinase activity on zymograms. Moreover, trophozoites of amebic strains pSA8 and SAW760 with strongly reduced cysteine proteinase activity showed a reduced proteolysis of villin in coculture with enteric cells. Salmonella typhimurium and enteropathogenic Escherichia coli disturb microvilli without villin proteolysis, indicating that the latter is not a consequence of the disturbance of microvilli. In conclusion, villin proteolysis is an early event in the molecular cross-talk between enterocytes and amebic trophozoites, causing a disturbance of microvilli.
Collapse
Affiliation(s)
- Tineke Lauwaet
- Laboratory of Experimental Cancerology, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Koltzscher M, Neumann C, König S, Gerke V. Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P. Mol Biol Cell 2003; 14:2372-84. [PMID: 12808036 PMCID: PMC194886 DOI: 10.1091/mbc.e02-09-0553] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.
Collapse
Affiliation(s)
- Max Koltzscher
- Institute for Medical Biochemistry, University of Muenster, Germany
| | | | | | | |
Collapse
|
132
|
Gamulescu MA, Seifert K, Tingart M, Falet H, Hoffmeister KM. Platelet moesin interacts with PECAM-1 (CD31). Platelets 2003; 14:211-7. [PMID: 12850829 DOI: 10.1080/0953710031000118830] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Platelet activation results information of filopodia and cell spreading by extension of lamellae. Moesin is a member of the ezrin/radixin/moesin (ERM) family of proteins, which localize in cell extensions like filopodia and function as cross-linkers between the actin cytoskeleton and the plasma membrane. Here we investigated whether the adhesion molecule PECAM-1 (CD31) is a membrane-binding partner for moesin in platelets. Our data show that moesin co-immunoprecipitated with PECAM-1 in lysates from thrombin-stimulated, but not resting platelets. Furthermore, PECAM-1 co-localized with moesin at the cell periphery and in filopodia of glass-activated platelets. Our observations suggest that moesin may play a role in platelet adhesion, linking PECAM-1 with the actin cytoskeleton.
Collapse
Affiliation(s)
- Maria-Andreea Gamulescu
- Department of Cardiology and Pneumology, Faculty of Medicine, University of Technology, Aachen, Germany
| | | | | | | | | |
Collapse
|
133
|
Pujuguet P, Del Maestro L, Gautreau A, Louvard D, Arpin M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol Biol Cell 2003; 14:2181-91. [PMID: 12802084 PMCID: PMC165106 DOI: 10.1091/mbc.e02-07-0410] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ezrin, a membrane cytoskeleton linker, is involved in cellular functions, including epithelial cell morphogenesis and adhesion. A mutant form of ezrin, ezrin T567D, maintains the protein in an open conformation, which when expressed in Madin-Darby canine kidney cells causes extensive formation of lamellipodia and altered cell-cell contacts at low cell density. Furthermore, these cells do not form tubules when grown in a collagen type I matrix. While measuring the activity of Rho family GTPases, we found that Rac1, but not RhoA or Cdc 42, is activated in ezrin T567D-expressing cells, compared with cells expressing wild-type ezrin. Together with Rac1 activation, we observed an accumulation of E-cadherin in intracellular compartments and a concomitant decrease in the level of E-cadherin present at the plasma membrane. This effect could be reversed with a dominant negative form of Rac1, N17Rac1. We show that after a calcium switch, the delivery of E-cadherin from an internalized pool to the plasma membrane is greatly delayed in ezrin T567D-producing cells. In confluent cells, ezrin T567D production decreases the rate of E-cadherin internalization. Our results identify a new role for ezrin in cell adhesion through the activation of the GTPase Rac1 and the trafficking of E-cadherin to the plasma membrane.
Collapse
Affiliation(s)
- Philippe Pujuguet
- Unité Mixte de Recherche 144 Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris, France
| | | | | | | | | |
Collapse
|
134
|
Fais S, Malorni W. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interactions. J Leukoc Biol 2003; 73:556-63. [PMID: 12714569 DOI: 10.1189/jlb.1102568] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The acquisition of a cell polarity is a crucial requirement for migration, activation, and apoptosis of leukocytes. The polarization of leukocytes involves the formation of two distinct poles: the leading edge--the attachment cell site to the substrate allowing directional movements of the cell--and on the opposite side, the uropod--mostly involved in cell-to-cell interaction and in a variety of leukocyte activities including activation and apoptosis. However, the uropod takes shape in neutrophils, monocytes, and natural killer cells, and the formation of this cell protrusion seems to exert an important role in immune interactions. In fact, the polarization sites of leukocytes are involved in a complex cross-talk between cells and extracellular matrix components, and a number of receptors and counter-receptors crowd in the contact sites to allow efficient cell-to-cell or cell-substrate interaction. The membrane/cytoskeleton interaction plays a crucial role in tuning these activities and in "predisposing" leukocytes to their function through the acquisition of a polarized phenotype. This review is focused on the mechanisms underlying the formation of the leukocyte uropod, the role of cytoskeleton in defining its structure and function, and the involvement of the uropod in the complex interplay between immune cells.
Collapse
Affiliation(s)
- Stefano Fais
- Laboratory of Immunology, Istituto Superiore di Sanità, Rome, Italy.
| | | |
Collapse
|
135
|
Martin TA, Harrison G, Mansel RE, Jiang WG. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 2003; 46:165-86. [PMID: 12711360 DOI: 10.1016/s1040-8428(02)00172-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD44 is a cell adhesion molecule that was traditionally known as 'homing receptor'. This molecule is known to interact with the ezrin family (ERM family) members and form a complex that plays diverse roles within both normal and abnormal cells, particularly cancer cells. CD44 and ezrin and their respective complex have properties suggesting that they may be important in the process of tumour-endothelium interactions, cell migrations, cell adhesion, tumour progression and metastasis. This article reviews the role of CD44, ezrin family and the CD44/ezrin complex in cancer cells and their clinical impact in patients with cancer.
Collapse
Affiliation(s)
- Tracey A Martin
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff, S. Wales CF14 4XN, UK.
| | | | | | | |
Collapse
|
136
|
Alberti I, Bernard G, Rouquette-Jazdanian AK, Pelassy C, Pourtein M, Aussel C, Bernard A. CD99 isoforms expression dictates T cell functional outcomes. FASEB J 2002; 16:1946-8. [PMID: 12368226 DOI: 10.1096/fj.02-0049fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD99, a unique integral membrane protein present on the surface of all human T cells, has previously been shown to regulate cell function and fate. In peripheral T cells, it triggers immediate activation of alpha4b1 integrin and cell arrest on inflamed vascular endothelium, whereas it mediates an apoptotic signal in double-positive thymocytes undergoing the selection process. Two isoforms of CD99 exist, a long form corresponding to the full-length protein and a short form harboring a deletion in the intracytoplasmic segment. Here, we show that while peripheral T cells display exclusive expression of the long form, double-positive thymocytes express both isoforms. Moreover, differential expression of these two CD99 molecules can lead to distinct functional outcomes. Expression of the long form in a CD99-deficient Jurkat T cell line is sufficient to promote CD99-induced cell adhesion, whereas coexpression of the two isoforms is required to trigger T-cell death. When coexpressed, the two proteins form covalent heterodimers, which locate within glycosphingolipidic rafts and induce sphingomyelin degradation. Cholesterol depletion experiments show that this localization is required for the induction of apoptosis. Thus, the surface expression pattern of CD99 isoforms determines T-cell functional outcomes.
Collapse
Affiliation(s)
- Isabelle Alberti
- INSERM U343 et Laboratoire d'Immunologie, Université de Nice-Sophia Antipolis, France
| | | | | | | | | | | | | |
Collapse
|
137
|
Cullinan P, Sperling AI, Burkhardt JK. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol Rev 2002; 189:111-22. [PMID: 12445269 DOI: 10.1034/j.1600-065x.2002.18910.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
While much interest has focused on the finding that T cell-antigen presenting cell (APC) interaction induces the recruitment of proteins to the immunological synapse (IS), we have recently discovered that APC binding induces the formation of a novel protein complex distal to the site of T-cell receptor ligation. This 'distal pole complex' (DPC) is important for appropriate T-cell activation, functioning either to remove proteins from the synapse or as a signaling complex in its own right. The first component of the DPC to be identified was CD43, a cell-surface mucin that has been proposed to function as a negative regulator of T-cell signaling. CD43 movement was found to depend on ezrin and moesin, members of the ERM family, which serve to link CD43 and other cargo molecules to the actin cytoskeleton. ERM proteins interact with several other important surface receptors and cytoplasmic signaling molecules, some of which we have identified as additional components of the DPC. Disruption of the DPC leaves early T-cell activation events intact but affects cytokine expression. Here, we review what is currently known about the formation and function of the DPC and speculate on how this novel protein complex serves to facilitate T-cell activation.
Collapse
Affiliation(s)
- Patrick Cullinan
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
138
|
Gartzke J, Lange K. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 2002; 283:C1333-46. [PMID: 12372794 DOI: 10.1152/ajpcell.00167.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Collapse
Affiliation(s)
- Joachim Gartzke
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany.
| | | |
Collapse
|
139
|
Urzainqui A, Serrador JM, Viedma F, Yáñez-Mó M, Rodríguez A, Corbí AL, Alonso-Lebrero JL, Luque A, Deckert M, Vázquez J, Sánchez-Madrid F. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 2002; 17:401-12. [PMID: 12387735 DOI: 10.1016/s1074-7613(02)00420-x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
P-selectin glycoprotein ligand 1 (PSGL-1) is a leukocyte adhesion molecule involved in cell tether and rolling on activated endothelium. Our work shows that PSGL-1 associates with Syk. This association is mediated by the actin-linking proteins moesin and ezrin, which directly interact with Syk in an ITAM-dependent manner. PSGL-1 engagement induces tyrosine phosphorylation of Syk and SRE-dependent transcriptional activity. Treatment of cells with the Syk inhibitor piceatannol and overexpression of either a Syk dead kinase mutant or an ITAM-mutated moesin abrogated PSGL-1-induced transcriptional activation. These data unveil a new functional role for the ERMs (ezrin/radixin/moesin) as adaptor molecules in the interactions of adhesion receptors and intracellular tyrosine kinases and show that PSGL-1 is a signaling molecule in leukocytes.
Collapse
Affiliation(s)
- Ana Urzainqui
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Coscoy S, Waharte F, Gautreau A, Martin M, Louvard D, Mangeat P, Arpin M, Amblard F. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc Natl Acad Sci U S A 2002; 99:12813-8. [PMID: 12271120 PMCID: PMC130542 DOI: 10.1073/pnas.192084599] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ezrin plays a key role in coupling signal transduction to cortical cell organization. This actin-membrane linker undergoes a series of conformational changes that modulate its interactions with various partners and its localization in membrane or cytosolic pools. Its mobility and exchange rates within and between these two pools were assessed by two-photon fluorescence recovery after photobleaching in epithelial cell microvilli. Analysis of ezrin mutants with an altered actin-binding site revealed three ezrin membrane states of different mobilities and exchange properties, reflecting sequential association with membrane components and F-actin in the context of a fast overall turnover.
Collapse
Affiliation(s)
- Sylvie Coscoy
- Laboratoires de Physico-Chimie,Unité Mixte de Recherche 168 and Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 26, Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CAG, Sodek J. Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res 2002; 17:1486-97. [PMID: 12162503 DOI: 10.1359/jbmr.2002.17.8.1486] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although osteopontin (OPN) is recognized generally as a secreted protein, an intracellular form of osteopontin (iOPN), associated with the CD44 complex, has been identified in migrating fibroblastic cells. Because both OPN and CD44 are expressed at high levels in osteoclasts, we have used double immunofluorescence analysis and confocal microscopy to determine whether colocalization of these proteins has functional significance in the formation and activity of osteoclasts. Analysis of rat bone marrow-derived osteoclasts revealed strong surface staining for CD44 and beta1- and beta3-integrins, whereas little or no staining for OPN or bone sialoprotein (BSP) was observed in nonpermeabilized cells. In permeabilized perfusion osteoclasts and multinucleated osteoclasts, staining for OPN and CD44 was prominent in cell processes, including filopodia and pseudopodia. Confocal microscopy revealed a high degree of colocalization of OPN with CD44 in motile osteoclasts. In cells treated with cycloheximide (CHX), perinuclear staining for OPN and BSP was lost, but iOPN staining was retained within cell processes. In osteoclasts generated from the OPN-null and CD44-null mice, cell spreading and protrusion of pseudopodia were reduced and cell fusion was impaired. Moreover, osteoclast motility and resorptive activity were significantly compromised. Although the area resorbed by OPN-null osteoclasts could be rescued partially by exogenous OPN, the resorption depth was not affected. These studies have identified an intracellular form of OPN, colocalizing with CD44 in cell processes, that appears to function in the formation and activity of osteoclasts.
Collapse
Affiliation(s)
- K Suzuki
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
142
|
Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002; 157:1233-45. [PMID: 12082081 PMCID: PMC2173557 DOI: 10.1083/jcb.200112126] [Citation(s) in RCA: 459] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ezrin, radixin, and moesin (ERM) regulate cortical morphogenesis and cell adhesion by connecting membrane adhesion receptors to the actin-based cytoskeleton. We have studied the interaction of moesin and ezrin with the vascular cell adhesion molecule (VCAM)-1 during leukocyte adhesion and transendothelial migration (TEM). VCAM-1 interacted directly with moesin and ezrin in vitro, and all of these molecules colocalized at the apical surface of endothelium. Dynamic assessment of this interaction in living cells showed that both VCAM-1 and moesin were involved in lymphoblast adhesion and spreading on the endothelium, whereas only moesin participated in TEM, following the same distribution pattern as ICAM-1. During leukocyte adhesion in static or under flow conditions, VCAM-1, ICAM-1, and activated moesin and ezrin clustered in an endothelial actin-rich docking structure that anchored and partially embraced the leukocyte containing other cytoskeletal components such as alpha-actinin, vinculin, and VASP. Phosphoinositides and the Rho/p160 ROCK pathway, which participate in the activation of ERM proteins, were involved in the generation and maintenance of the anchoring structure. These results provide the first characterization of an endothelial docking structure that plays a key role in the firm adhesion of leukocytes to the endothelium during inflammation.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Snapp KR, Heitzig CE, Kansas GS. Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood 2002; 99:4494-502. [PMID: 12036880 DOI: 10.1182/blood.v99.12.4494] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) serves as the leukocyte ligand for P-selectin, and many of the structural features of its ectodomain required for interactions with P-selectin have been uncovered. In contrast, the function of the highly conserved PSGL-1 cytoplasmic domain has not been explored. Stable transfectants expressing similar levels of either wild-type PSGL-1 or truncated PSGL-1 in which only 4 cytoplasmic residues were retained (designated PSGL-1 Delta cyto), were analyzed. Transfectants expressing full-length PSGL-1 rolled well on P-selectin. In contrast, rolling was almost completely absent in cells transfected with PSGL-1 Delta cyto, even at low shear. Importantly, cells expressing truncated PSGL-1 were able to bind soluble P-selectin and to bind COS cells overexpressing P-selectin, demonstrating that the P-selectin binding site on the PSGL-1 Delta cyto transfectants was intact and was capable of recognizing P-selectin. Impaired rolling by PSGL-1 Delta cyto transfectants was not due to alterations in subcellular localization because both wild-type and truncated PSGL-1 had similar surface distributions on K562 transfectants. Treatment of cells expressing native PSGL-1 with actin cytoskeletal toxins inhibited adhesion in a dose-dependent way. PSGL-1 was associated with the actin cytoskeleton, and this interaction was greatly impaired in PSGL-1 Delta cyto- expressing cells. The PSGL-1 cytoplasmic domain interacted selectively with the ezrin/radixin/moesin (ERM) protein moesin, but not with other ERM proteins or several other cytoskeletal linker proteins. Pharmacologic disruption of interactions between moesin and F-actin in cells expressing PSGL-1 resulted in a dose-dependent inhibition of rolling on P-selectin. Thus, attachment of PSGL-1 to the leukocyte cortical cytoskeleton is essential for leukocyte rolling on P-selectin.
Collapse
Affiliation(s)
- Karen R Snapp
- Department of Microbiology/Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
144
|
Hoe NP, Ireland RM, DeLeo FR, Gowen BB, Dorward DW, Voyich JM, Liu M, Burns EH, Culnan DM, Bretscher A, Musser JM. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc Natl Acad Sci U S A 2002; 99:7646-51. [PMID: 12032337 PMCID: PMC124310 DOI: 10.1073/pnas.112039899] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.
Collapse
Affiliation(s)
- Nancy P Hoe
- Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Nassif X, Bourdoulous S, Eugène E, Couraud PO. How do extracellular pathogens cross the blood-brain barrier? Trends Microbiol 2002; 10:227-32. [PMID: 11973156 DOI: 10.1016/s0966-842x(02)02349-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial invasion of the meninges can occur as a consequence of bloodstream invasion by some bacterial pathogens. Bacteria enter the central nervous system following a direct interaction with the luminal side of the cerebral endothelium, which constitutes the blood-brain barrier. To breach the barriers protecting the brain, extracellular pathogens must cross a monolayer of tight junction-expressing endothelial or epithelial cells. The limited number of pathogens capable of crossing these tight barriers and invading the meninges suggests that they display very specific attributes. For Neisseria meningitidis, type IV pili have been identified as being essential for meningeal invasion and it is believed other, as-yet-unidentified factors are also involved.
Collapse
Affiliation(s)
- Xavier Nassif
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, Université Paris V, 156 Rue de Vaugirard, 75015 Paris, France.
| | | | | | | |
Collapse
|
146
|
Serrador JM, Vicente-Manzanares M, Calvo J, Barreiro O, Montoya MC, Schwartz-Albiez R, Furthmayr H, Lozano F, Sánchez-Madrid F. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J Biol Chem 2002; 277:10400-9. [PMID: 11784723 DOI: 10.1074/jbc.m110694200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intercellular adhesion molecule 3 (ICAM-3) is a leukocyte-specific receptor involved in primary immune responses. We have investigated the interaction between ICAM-3 and ezrin/radixin/moesin (ERM) proteins and its role in LFA-1-induced cell-cell interactions and membrane positioning of ICAM-3 in polarized migrating lymphocytes. Protein-protein binding assays demonstrated a phosphatidylinositol 4,5-bisphosphate-induced association between ICAM-3 and the amino-terminal domain of ERM proteins. This interaction was not essential for the binding of ICAM-3 to LFA-1. Dynamic fluorescence videomicroscopy studies of cells demonstrated that moesin and ICAM-3 coordinately redistribute on the plasma membrane during lymphocyte migration. Furthermore, overexpression of the amino-terminal domain of moesin, which lacks the consensus moesin actin-binding site, caused the subcellular mislocalization of ICAM-3. A CD4 chimerical protein containing the cytoplasmic tail of ICAM-3 was targeted to the trailing edge. Point mutation of Ser(487), Ser(489), and Ser(496) to alanine in the juxtamembrane region of ICAM-3 significantly impaired both ERM binding and polarization of ICAM-3. ERM-directed polarization of ICAM-3 was also impaired by phosphorylation-like mutation of Ser(487) and Ser(489), but not of Ser(496). Our results underscore the key role of specific serine residues within the cytoplasmic region of ICAM-3 for its ERM-directed positioning at the trailing edge of motile lymphocytes.
Collapse
Affiliation(s)
- Juan M Serrador
- Servicio de Inmunologia, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Eugène E, Hoffmann I, Pujol C, Couraud PO, Bourdoulous S, Nassif X. Microvilli-like structures are associated with the internalization of virulent capsulatedNeisseria meningitidisinto vascular endothelial cells. J Cell Sci 2002; 115:1231-41. [PMID: 11884522 DOI: 10.1242/jcs.115.6.1231] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens are internalized into non-phagocytic cells either by a zipper mechanism involving a direct contact between a bacterial ligand and a cellular receptor or a trigger mechanism secondary to the formation of membrane ruffles. Here we show that internalization of capsulated Neisseria meningitidis within endothelial cells following type IV pilus-mediated adhesion is associated with the formation of cellular protrusions at the site of bacterial attachment. These protrusions, like microvilli, are highly enriched in ezrin and moesin, two members of the ERM(ezrin/radixin/moesin) family, whereas vinculin and paxillin are absent. ERM-binding transmembrane proteins, such as CD44, and cortical actin polymerization colocalized within these membrane protrusions. Expression of dominant-negative ezrin largely prevented cortical actin polymerization, thus confirming the role of this molecule in bacteria-induced cytoskeletal modifications. Moreover, using selective inhibitors and dominant-negative mutants of the Rho family GTPases, we show that bacteria-induced actin polymerization required the activation of both Rho and Cdc42 but not of Rac1. Whereas GTPase inhibition dramatically reduced actin polymerization at the site of bacterial attachment, ezrin recruitment was not affected, indicating that bacterial adhesion promotes ezrin recruitment independently of the activity of the Rho-GTPases. Furthermore, GTPase inhibition largely reduced N. meningitidis entry into endothelial cells without affecting adhesion. We thus propose that following pilus-mediated adhesion, capsulated N. meningitidis recruit ERM-binding transmembrane proteins, as well as ezrin and moesin, and that both Rho and Cdc42 are critical for the subsequent cytoskeletal modifications responsible for the formation of microvilli-like cellular protrusions and bacterial internalization.
Collapse
Affiliation(s)
- Emmanuel Eugène
- INSERM U411, Faculté de Médecine Necker-Enfants Malades, Université René Descartes, Paris, France. CNRS UPR 415, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
148
|
Gautreau A, Louvard D, Arpin M. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 2002; 14:104-9. [PMID: 11792551 DOI: 10.1016/s0955-0674(01)00300-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ERM (ezrin, radixin and moesin) family of proteins are linkers that tether actin microfilaments to the plasma membrane. Merlin, the NF2 tumor suppressor gene product, is highly homologous to ERM proteins. In ERM proteins and merlin, interdomain binding promotes auto-inhibition and homo-oligomerization or hetero-oligomerization. Recent studies have revealed that ERM proteins transduce growth signals, and have shed new light on how merlin links cell growth to the cytoskeleton.
Collapse
Affiliation(s)
- Alexis Gautreau
- UMR 144 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | | | | |
Collapse
|
149
|
Ivetic A, Deka J, Ridley A, Ager A. The cytoplasmic tail of L-selectin interacts with members of the Ezrin-Radixin-Moesin (ERM) family of proteins: cell activation-dependent binding of Moesin but not Ezrin. J Biol Chem 2002; 277:2321-9. [PMID: 11706008 DOI: 10.1074/jbc.m109460200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-selectin regulates the recruitment of naive lymphocytes from the bloodstream to secondary lymphoid organs, mediating their initial capture and subsequent rolling along high endothelial cell surface-expressed ligands in peripheral lymph nodes. In vivo, distribution of L-selectin and cell surface levels determine the tethering efficiency and rolling velocity of leukocytes, respectively. Treatment of naive lymphocytes with phorbol myristate acetate (PMA) induces rapid ectodomain proteolytic down-regulation (shedding) of surface L-selectin via a protein kinase C (PKC)-dependent pathway. In an attempt to isolate proteins that are involved in regulating L-selectin expression, an affinity column was constructed using the 17-amino acid cytoplasmic tail of L-selectin. Affinity purification of extracts from lymphocytes, pre-treated with or without PMA, allowed identification of proteins that interact with the affinity column under one condition but not the other. By using this approach, members of the Ezrin-Radixin-Moesin family of proteins were found to interact specifically with the cytoplasmic tail of L-selectin. Moesin from PMA-stimulated lymphocytes, but not from unstimulated lymphocytes, bound to L-selectin tail. In contrast, ezrin from unstimulated or PMA-stimulated lymphocytes associated with L-selectin tail with equal affinity. Furthermore, the PKC inhibitor Ro 31-8220 significantly reduced the interaction of moesin, but not ezrin, with L-selectin. Alanine mutations of membrane-proximal basic amino acid residues in the cytoplasmic domain of L-selectin identified arginine 357 as a critical residue for both ezrin and moesin interaction. Finally, BIAcore affinity analysis confirmed that N-terminal moesin interacts specifically with L-selectin cytoplasmic tail, with relatively high affinity (K(d) approximately 40 nm). Based on these findings, although moesin and ezrin bind to a similar region of the cytoplasmic tail of L-selectin, moesin binding is dependent on PKC activation, which suggests that ezrin and moesin are regulated differently in lymphocytes.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Divisions of Cellular Immunology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
150
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|