101
|
Bonacina F, Da Dalt L, Catapano AL, Norata GD. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Mol Aspects Med 2020; 77:100918. [PMID: 33032828 PMCID: PMC7534736 DOI: 10.1016/j.mam.2020.100918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming is a physiological cellular adaptation to intracellular and extracellular stimuli that couples to cell polarization and function in multiple cellular subsets. Pathological conditions associated to nutrients overload, such as dyslipidaemia, may disturb cellular metabolic homeostasis and, in turn, affect cellular response and activation, thus contributing to disease progression. At the vascular/immune interface, the site of atherosclerotic plaque development, many of these changes occur. Here, an intimate interaction between endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and immune cells, mainly monocytes/macrophages and lymphocytes, dictates physiological versus pathological response. Furthermore, atherogenic stimuli trigger metabolic adaptations both at systemic and cellular level that affect the EC layer barrier integrity, VSMC proliferation and migration, monocyte infiltration, macrophage polarization, lymphocyte T and B activation. Rewiring cellular metabolism by repurposing “metabolic drugs” might represent a pharmacological approach to modulate cell activation at the vascular immune interface thus contributing to control the immunometabolic response in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - L Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - A L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCSS Multimedica, Milan, Italy.
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS, Ospedale Bassini, Cinisello Balsamo, Italy.
| |
Collapse
|
102
|
Engler-Chiurazzi EB, Monaghan KL, Wan ECK, Ren X. Role of B cells and the aging brain in stroke recovery and treatment. GeroScience 2020; 42:1199-1216. [PMID: 32767220 PMCID: PMC7525651 DOI: 10.1007/s11357-020-00242-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
As mitigation of brain aging continues to be a key public health priority, a wholistic and comprehensive consideration of the aging body has identified immunosenescence as a potential contributor to age-related brain injury and disease. Importantly, the nervous and immune systems engage in bidirectional communication and can exert profound influence on each other. Emerging evidence supports numerous impacts of innate, inflammatory immune responses and adaptive T cell-mediated immunity in neurological function and diseased or injured brain states, such as stroke. Indeed, a growing body of evidence supports key impacts of brain-resident immune cell activation and peripheral immune infiltration in both the post-stroke acute injury phase and the long-term recovery period. As such, modulation of the immune system is an attractive strategy for novel therapeutic interventions for a devastating age-related brain injury for which there are few readily available neuroprotective treatments or neurorestorative approaches. However, the role of B cells in the context of brain function, and specifically in response to stroke, has not been thoroughly elucidated and remains controversial, leaving our understanding of neuroimmune interactions incomplete. Importantly, emerging evidence suggests that B cells are not pathogenic contributors to stroke injury, and in fact may facilitate functional recovery, supporting their potential value as novel therapeutic targets. By summarizing the current knowledge of the role of B cells in stroke pathology and recovery and interpreting their role in the context of their interactions with other immune cells as well as the immunosenescence cascades that alter their function in aged populations, this review supports an increased understanding of the complex interplay between the nervous and immune systems in the context of brain aging, injury, and disease.
Collapse
Affiliation(s)
- E. B. Engler-Chiurazzi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - K. L. Monaghan
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - E. C. K. Wan
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - X. Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
103
|
Kostopoulou M, Nikolopoulos D, Parodis I, Bertsias G. Cardiovascular Disease in Systemic Lupus Erythematosus: Recent Data on Epidemiology, Risk Factors and Prevention. Curr Vasc Pharmacol 2020; 18:549-565. [DOI: 10.2174/1570161118666191227101636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is associated with increased risk for accelerated atherosclerosis
and cardiovascular (CV) events including coronary heart disease, cerebrovascular and peripheral
artery disease. CV events occur both early and late during the disease course, with younger
patients being at much higher risk than age-matched counterparts. The risk cannot be fully accounted for
by the increased prevalence of traditional atherosclerotic factors and may be due to pathophysiologic
intermediates such as type I interferons and other inflammatory cytokines, oxidative stress, activated
granulocytes and production of extracellular chromatin traps, antiphospholipid and other autoantibodies
causing dysfunction of lipoproteins, altogether resulting in endothelial injury and pro-atherogenic
dyslipidaemia. These mechanisms may be further aggravated by chronic intake of prednisone (even at
doses <7.5 mg/day), whereas immunomodulatory drugs, especially hydroxychloroquine, may exert antiatherogenic
properties. To date, there is a paucity of randomized studies regarding the effectiveness of
preventative strategies and pharmacological interventions specifically in patients with SLE. Nevertheless,
both the European League Against Rheumatism recommendations and extrapolated evidence from
the general population emphasize that SLE patients should undergo regular monitoring for atherosclerotic
risk factors and calculation of the 10-year CV risk. Risk stratification should include diseaserelated
factors and accordingly, general (lifestyle modifications/smoking cessation, antihypertensive and
statin treatment, low-dose aspirin in selected cases) and SLE-specific (control of disease activity, minimization
of glucocorticoids, use of hydroxychloroquine) preventive measures be applied as appropriate.
Further studies will be required regarding the use of non-invasive tools and biomarkers for CV assessment
and of risk-lowering strategies tailored to SLE.
Collapse
Affiliation(s)
- Myrto Kostopoulou
- 4th Department of Internal Medicine, Attikon University Hospital, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dionysis Nikolopoulos
- 4th Department of Internal Medicine, Attikon University Hospital, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - George Bertsias
- Department of Rheumatology, Clinical Rheumatology and Allergy, University of Crete Medical School, Iraklio, Greece
| |
Collapse
|
104
|
Nus M, Basatemur G, Galan M, Cros-Brunsó L, Zhao TX, Masters L, Harrison J, Figg N, Tsiantoulas D, Geissmann F, Binder CJ, Sage AP, Mallat Z. NR4A1 Deletion in Marginal Zone B Cells Exacerbates Atherosclerosis in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2598-2604. [PMID: 32907369 PMCID: PMC7571845 DOI: 10.1161/atvbaha.120.314607] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis.
Collapse
Affiliation(s)
- Meritxell Nus
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.).,CIBER de Enfermedades Cardiovasculares, Spain (M.N., M.G.)
| | - Gemma Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Maria Galan
- CIBER de Enfermedades Cardiovasculares, Spain (M.N., M.G.).,Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (M.G.)
| | - Laia Cros-Brunsó
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Leanne Masters
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - James Harrison
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Nichola Figg
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Austria (D.T., C.J.B.)
| | | | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (D.T., C.J.B.)
| | - Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (M.N., G.B., L.C.-B., T.X.Z., L.M., J.H., N.F., A.P.S., Z.M.)
| |
Collapse
|
105
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J Mol Med (Berl) 2020; 98:1235-1244. [PMID: 32737524 PMCID: PMC7447622 DOI: 10.1007/s00109-020-01936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex disease involving several different cell types and their molecular products. Recent studies have revealed that atherosclerosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells. However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis. Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development, centered on a pathological humoral immune response between commensal microbes and activated subpopulations of substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis. Under high-fat and high-calorie conditions, signals driven by the intestinal microbiota via the TLR signaling pathway cause B2 cells in the spleen to become functionally active and activated B2 cells then modify responses such as antibody production (generation of active antibodies IgG and IgG3), thereby contributing to the development of atherosclerosis. On the other hand, intestinal microbiota also resulted in recruitment and ectopic activation of B2 cells via the TLR signaling pathway in perivascular adipose tissue (PVAT), and, subsequently, an increase in circulating IgG and IgG3 led to the enhanced disease development. This is a potential link between microbiota alterations and B cells in the context of atherosclerosis. ![]()
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.,Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing, Jiangsu, China
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
106
|
Shikatani EA, Besla R, Ensan S, Upadhye A, Khyzha N, Li A, Emoto T, Chiu F, Degousee N, Moreau JM, Perry HM, Thayaparan D, Cheng HS, Pacheco S, Smyth D, Noyan H, Zavitz CCJ, Bauer CMT, Hilgendorf I, Libby P, Swirski FK, Gommerman JL, Fish JE, Stampfli MR, Cybulsky MI, Rubin BB, Paige CJ, Bender TP, McNamara CA, Husain M, Robbins CS. c-Myb Exacerbates Atherosclerosis through Regulation of Protective IgM-Producing Antibody-Secreting Cells. Cell Rep 2020; 27:2304-2312.e6. [PMID: 31116977 DOI: 10.1016/j.celrep.2019.04.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 03/09/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mechanisms that govern transcriptional regulation of inflammation in atherosclerosis remain largely unknown. Here, we identify the nuclear transcription factor c-Myb as an important mediator of atherosclerotic disease in mice. Atherosclerosis-prone animals fed a diet high in cholesterol exhibit increased levels of c-Myb in the bone marrow. Use of mice that either harbor a c-Myb hypomorphic allele or where c-Myb has been preferentially deleted in B cell lineages revealed that c-Myb potentiates atherosclerosis directly through its effects on B lymphocytes. Reduced c-Myb activity prevents the expansion of atherogenic B2 cells yet associates with increased numbers of IgM-producing antibody-secreting cells (IgM-ASCs) and elevated levels of atheroprotective oxidized low-density lipoprotein (OxLDL)-specific IgM antibodies. Transcriptional profiling revealed that c-Myb has a limited effect on B cell function but is integral in maintaining B cell progenitor populations in the bone marrow. Thus, targeted disruption of c-Myb beneficially modulates the complex biology of B cells in cardiovascular disease.
Collapse
Affiliation(s)
- Eric A Shikatani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Rickvinder Besla
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada.
| | - Sherine Ensan
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Aditi Upadhye
- Division of Cardiology, Robert Berne Cardiovascular Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadiya Khyzha
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Angela Li
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Takuo Emoto
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Felix Chiu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Norbert Degousee
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Joshua M Moreau
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Heather M Perry
- Division of Cardiology, Robert Berne Cardiovascular Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Danya Thayaparan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S148, Canada
| | - Henry S Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Shaun Pacheco
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - David Smyth
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Hossein Noyan
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Caleb C J Zavitz
- Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Carla M T Bauer
- Hoffmann-La Roche, pRED, Pharma Research & Early Development, DTA Inflammation, Nutley, NJ 07110, USA
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Martin R Stampfli
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S148, Canada
| | - Myron I Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada; Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada
| | - Barry B Rubin
- Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada
| | - Christopher J Paige
- Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2M9, Canada
| | - Timothy P Bender
- Division of Cardiology, Robert Berne Cardiovascular Center, University of Virginia, Charlottesville, VA 22908, USA; Beirne B. Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Coleen A McNamara
- Division of Cardiology, Robert Berne Cardiovascular Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Mansoor Husain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2M9, Canada; Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada; McEwen Centre for Regenerative Medicine, Toronto, ON, Canada
| | - Clinton S Robbins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S1A1, Canada; Toronto General Research Institute, University Health Network, Toronto, ON M5G1L7, Canada; Peter Munk Cardiac Centre, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
107
|
Mangge H, Prüller F, Schnedl W, Renner W, Almer G. Beyond Macrophages and T Cells: B Cells and Immunoglobulins Determine the Fate of the Atherosclerotic Plaque. Int J Mol Sci 2020; 21:ijms21114082. [PMID: 32521607 PMCID: PMC7312004 DOI: 10.3390/ijms21114082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) leading to myocardial infarction and stroke remains worldwide the main cause for mortality. Vulnerable atherosclerotic plaques are responsible for these life-threatening clinical endpoints. Atherosclerosis is a chronic, complex, inflammatory disease with interactions between metabolic dysfunction, dyslipidemia, disturbed microbiome, infectious triggers, vascular, and immune cells. Undoubtedly, the immune response is a most important piece of the pathological puzzle in AS. Although macrophages and T cells have been the focus of research in recent years, B cells producing antibodies and regulating T and natural killer (NKT) cell activation are more important than formerly thought. New results show that the B cells exert a prominent role with atherogenic and protective facets mediated by distinct B cell subsets and different immunoglobulin effects. These new insights come, amongst others, from observations of the effects of innovative B cell targeted therapies in autoimmune diseases like systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). These diseases associate with AS, and the beneficial side effects of B cell subset depleting (modifying) therapies on atherosclerotic concomitant disease, have been observed. Moreover, the CANTOS study (NCT01327846) showed impressive results of immune-mediated inflammation as a new promising target of action for the fight against atherosclerotic endpoints. This review will reflect the putative role of B cells in AS in an attempt to connect observations from animal models with the small spectrum of the thus far available human data. We will also discuss the clinical therapeutic potency of B cell modulations on the process of AS.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
- Correspondence: ; Tel.: +43-664-3373531
| | - Florian Prüller
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Wolfgang Schnedl
- Department of Internal Medicine, Practice for General Internal Medicine, 8600 Bruck/Mur, Austria;
| | - Wilfried Renner
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| |
Collapse
|
108
|
Sato-Okabayashi Y, Isoda K, Heissig B, Kadoguchi T, Akita K, Kitamura K, Shimada K, Hattori K, Daida H. Low-dose oral cyclophosphamide therapy reduces atherosclerosis progression by decreasing inflammatory cells in a murine model of atherosclerosis. IJC HEART & VASCULATURE 2020; 28:100529. [PMID: 32577494 PMCID: PMC7300380 DOI: 10.1016/j.ijcha.2020.100529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/09/2023]
Abstract
Background Atherosclerosis is a chronic inflammatory disease responsible for most cases of heart disease and stroke in Western countries. The cytotoxic drug cyclophosphamide (CPA) can modulate immune functions, and it has therefore been used to treat patients with autoimmune diseases. Extension of survival of patients with severe atherosclerosis has been reported after CPA treatment, but the underlying mechanism is still poorly understood. Methods and results We have investigated the effects of CPA in a murine model of atherosclerosis. Continuous oral administration of low-dose CPA (20 mg/kg/day) prevented atherosclerosis in apolipoprotein E-deficient (apoE-/-) mice fed with a high fat diet. After 12 weeks, CPA treatment delayed progression of atherosclerosis in the mice (9.92% vs 3.32%, P < 0.05, n = 7) and reduced the macrophage content of plaques (1.228 vs 0.2975 mm2, P < 0.001). Flow cytometry (FACS) showed that, in peripheral blood and spleen cells, the numbers of B cells and inflammatory T cells (Th1 cells) decreased, and inflammatory monocytes also decreased. However, there were no differences in the bone marrow cells between the two groups. The mRNA levels in the aorta showed significantly decreased inflammatory cytokine (interleukin-6) (P < 0.05), and tended to increase anti-inflammatory cytokine (argininase-1), but no significant differences between the two groups. High dose CPA has cardiotoxicity, but the dose used in this study did not show significant cardiotoxicity. Conclusions The results demonstrate that oral treatment with CPA inhibits initiation and progression of atherosclerosis in the apoE-/- mouse model through immunomodulatory effects on lymphoid and inflammatory cells.
Collapse
Affiliation(s)
- Yayoi Sato-Okabayashi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Beate Heissig
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Akita
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenichi Kitamura
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
109
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
110
|
Duncan SE, Gao S, Sarhene M, Coffie JW, Linhua D, Bao X, Jing Z, Li S, Guo R, Su J, Fan G. Macrophage Activities in Myocardial Infarction and Heart Failure. Cardiol Res Pract 2020; 2020:4375127. [PMID: 32377427 PMCID: PMC7193281 DOI: 10.1155/2020/4375127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heart diseases remain the major cause of death worldwide. Advances in pharmacological and biomedical management have resulted in an increasing proportion of patients surviving acute heart failure (HF). However, many survivors of HF in the early stages end up increasing the disease to chronic HF (CHF). HF is an established frequent complication of myocardial infarction (MI), and numerous influences including persistent myocardial ischemia, shocked myocardium, ventricular remodeling, infarct size, and mechanical impairments, as well as hibernating myocardium trigger the development of left ventricular systolic dysfunction following MI. Macrophage population is active in inflammatory process, yet the clear understanding of the causative roles for these macrophage cells in HF development and progression is actually incomplete. Long ago, it was thought that macrophages are of importance in the heart after MI. Also, though inflammation is as a result of adverse HF in patients, but despite the fact that broad immunosuppression therapeutic target has been used in various clinical trials, no positive results have showed up, but rather, the focus on proinflammatory cytokines has proved more benefits in patients with HF. Therefore, in this review, we discuss the recent findings and new development about macrophage activations in HF, its role in the healthy heart, and some therapeutic targets for myocardial repair. We have a strong believe that there is a need to give maximum attention to cardiac resident macrophages due to the fact that they perform various tasks in wound healing, self-renewal of the heart, and tissue remodeling. Currently, it has been discovered that the study of macrophages goes far beyond its phagocytotic roles. If researchers in future confirm that macrophages play a vital role in the heart, they can be therapeutically targeted for cardiac healing.
Collapse
Affiliation(s)
- Sophia Esi Duncan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Michael Sarhene
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Joel Wake Coffie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Deng Linhua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Xingru Bao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhang Jing
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Su
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| |
Collapse
|
111
|
Taghizadeh E, Taheri F, Gheibi Hayat SM, Montecucco F, Carbone F, Rostami D, Montazeri A, Sahebkar A. The atherogenic role of immune cells in familial hypercholesterolemia. IUBMB Life 2020; 72:782-789. [PMID: 31633867 DOI: 10.1002/iub.2179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipoprotein metabolism that mainly occurs due to mutations in the low-density lipoprotein receptor gene and is characterized by increased levels of low-density lipoprotein cholesterol, leading to accelerated atherogenesis and premature coronary heart disease. Both innate and adaptive immune responses, which mainly include monocytes, macrophages, neutrophils, T lymphocytes, and B lymphocytes, have been shown to play a key role for the initiation and progression of atherogenesis in the general population. In FH patients, these immune cells have been suggested to play specific pro-atherosclerotic activities, from the initial leukocyte recruitment to plaque rupture. In fact, the accumulation of cholesterol crystals and oxLDL in the vessels in FH patients is particularly high, with consequent abnormal mobilization of immune cells and secretion of various pro-inflammatory and chemokines. In addition, cholesterol accumulation in immune cells is exaggerated with chronic exposure to relevant pro-atherosclerotic triggers. The topics considered in this review may provide a more specific focus on the immune system alterations in FH and open new insights toward immune cells as potential therapeutic targets in FH.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Ardalan Montazeri
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
112
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
113
|
Low frequency of IL-10 + B cells in patients with atherosclerosis is related with inflammatory condition. Heliyon 2020; 6:e03441. [PMID: 32154409 PMCID: PMC7057201 DOI: 10.1016/j.heliyon.2020.e03441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/11/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aims B cells involvement in animal models of atherosclerosis has been unequivocally established. However, the role of these cells in patients with atherosclerosis is almost unknown. Besides the production of antibodies, B cells can also exhibit regulatory functions mainly through IL-10. Here, we characterized human B cell subsets, their production of IL-10 in patients with atherosclerosis and their potential association with inflammation. Methods Patients with confirmed atherosclerotic events and controls with low cardiovascular risk were included. B cells subsets were determined in mononuclear cells (PBMC) using flow cytometry. PBMC were cultured ex vivo (5 h) and in vitro (48 h) to determine IL-10+ B cells and in some cases TNF-α+ and IFN-γ+ CD4+ T cells. The inflammatory state of the participants was determined through high sensitivity C reactive protein levels. Results Increase in percentage and number of plasmablasts was observed in patients with atherosclerosis compared with controls. A decreased frequency of IL-10+ B cells was observed in patients, both in ex vivo and in vitro cultures. This decrease was detected in transitional, memory, and plasmablast subsets. Interestingly, the reduction of IL-10+ B cells negatively and significantly correlated with the inflammatory condition of the studied subjects and associated with an increased frequency of TNF-α+ and IFN-γ+ CD4+ T cells. The blockade of IL-10R did not show further effect in T cells activation. Conclusions There is an association between the inflammatory state and a reduction of IL-10+ B cells that could contribute to the development of atherosclerosis.
Collapse
|
114
|
Centa M, Jin H, Hofste L, Hellberg S, Busch A, Baumgartner R, Verzaal NJ, Lind Enoksson S, Perisic Matic L, Boddul SV, Atzler D, Li DY, Sun C, Hansson GK, Ketelhuth DFJ, Hedin U, Wermeling F, Lutgens E, Binder CJ, Maegdesfessel L, Malin SG. Germinal Center-Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation 2020; 139:2466-2482. [PMID: 30894016 DOI: 10.1161/circulationaha.118.038534] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Atherosclerosis progression is modulated by interactions with the adaptive immune system. Humoral immunity can help protect against atherosclerosis formation; however, the existence, origin, and function of putative atherogenic antibodies are controversial. How such atherosclerosis-promoting antibodies could affect the specific composition and stability of plaques, as well as the vasculature generally, remains unknown. METHODS We addressed the overall contribution of antibodies to atherosclerosis plaque formation, composition, and stability in vivo (1) with mice that displayed a general loss of antibodies, (2) with mice that had selectively ablated germinal center-derived IgG production, or (3) through interruption of T-B-cell interactions and further studied the effects of antibody deficiency on the aorta by transcriptomics. RESULTS Here, we demonstrate that atherosclerosis-prone mice with attenuated plasma cell function manifest reduced plaque burden, indicating that antibodies promote atherosclerotic lesion size. However, the composition of the plaque was altered in antibody-deficient mice, with an increase in lipid content and decreases in smooth muscle cells and macrophages, resulting in an experimentally validated vulnerable plaque phenotype. Furthermore, IgG antibodies enhanced smooth muscle cell proliferation in vitro in an Fc receptor-dependent manner, and antibody-deficient mice had decreased neointimal hyperplasia formation in vivo. These IgG antibodies were shown to be derived from germinal centers, and mice genetically deficient for germinal center formation had strongly reduced atherosclerosis plaque formation. mRNA sequencing of aortas revealed that antibodies are required for the sufficient expression of multiple signal-induced and growth-promoting transcription factors and that aortas undergo large-scale metabolic reprograming in their absence. Using an elastase model, we demonstrated that absence of IgG results in an increased severity of aneurysm formation. CONCLUSIONS We propose that germinal center-derived IgG antibodies promote the size and stability of atherosclerosis plaques, through promoting arterial smooth muscle cell proliferation and maintaining the molecular identity of the aorta. These results could have implications for therapies that target B cells or B-T-cell interactions because the loss of humoral immunity leads to a smaller but less stable plaque phenotype.
Collapse
Affiliation(s)
- Monica Centa
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jin
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Hofste
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sanna Hellberg
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Albert Busch
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Roland Baumgartner
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nienke J Verzaal
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sara Lind Enoksson
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Perisic Matic
- Molecular Medicine and Surgery (L.P.M., U.H.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (L.P.M., U.H.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sanjay V Boddul
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dorothee Atzler
- Walther Straub Institute of Pharmacology and Toxicology, Medical Faculty, Ludwig-Maximilians-Universtät Munich (D.A.).,Institute for Cardiovascular Prevention, University Hospital Munich, Ludwig Maximilians University (D.A., E.L.)
| | - Daniel Y Li
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Changyan Sun
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Göran K Hansson
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Molecular Medicine and Surgery (L.P.M., U.H.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine (L.P.M., U.H.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, University Hospital Munich, Ludwig Maximilians University (D.A., E.L.).,Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands (E.L.)
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna (C.J.B.).,Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Lars Maegdesfessel
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Technical University Munich, Department of Vascular and Endovascular Surgery and DZHK Partner Site, Germany (L.M.)
| | - Stephen G Malin
- Departments of Medicine and Center for Molecular Medicine (M.C., H.J., L.H., S.H., A.B., R.B., N.J.V., S.L.E., S.V.B, D.Y.L., C.S., G.K.H., D.F.J.K., F.W., L.M., S.G.M.), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
115
|
Sun Y, Li L, Wu Y, Yang K. PD-1/PD-L1 in cardiovascular disease. Clin Chim Acta 2020; 505:26-30. [PMID: 32084380 DOI: 10.1016/j.cca.2020.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
The PD-1/PD-L1 coinhibitory pathway has critical roles in the immune response and autoimmunity via the regulation of T cell activity. Excessive activity and high expression of this pathway suppresses the function of T cells and immunity. Recent research has indicated that tumour cells express high levels of PD-L1, which has an immunosuppressive effect and can result in treatment failure. Anti-PD-L1 or anti-PD-1 agents have well-established beneficial effects on mortality and quality of life in cancer patients. Based on the regulatory effects and therapeutic value of the PD-1/PD-L1 pathway in malignant disorders, we propose that it also regulates cell immunity and in CHD and atherosclerosis. Low expression level of PD-1/ PD-L1 or anti-PD-1/PD-L1 therapy accelerates the immune processes in CHD and aggravates disease according to numerous studies. A few studies have provided strong evidence that changes in the expression levels of PD-1 or PD-L1 can alter the degree of inflammation and the state of coronary plaques in atherosclerosis. In this review, we summarise the alterations of the PD-1/PD-L1 pathway and discuss its role in CHD.
Collapse
Affiliation(s)
- YunFeng Sun
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - Liang Li
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - YaWei Wu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - KePing Yang
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China; Department of Cardiology, Jingzhou Central Hospital, 434020 Jingzhou City, Hubei Province, China.
| |
Collapse
|
116
|
Douna H, Amersfoort J, Schaftenaar FH, Kröner MJ, Kiss MG, Slütter B, Depuydt MAC, Bernabé Kleijn MNA, Wezel A, Smeets HJ, Yagita H, Binder CJ, Bot I, van Puijvelde GHM, Kuiper J, Foks AC. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res 2020; 116:295-305. [PMID: 31150053 DOI: 10.1093/cvr/cvz129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS The immune system is strongly involved in atherosclerosis and immune regulation generally leads to attenuated atherosclerosis. B- and T-lymphocyte attenuator (BTLA) is a novel co-receptor that negatively regulates the activation of B and T cells; however, there have been no reports of BTLA and its function in atherosclerosis or cardiovascular disease (CVD). We aimed to assess the dominant BTLA expressing leucocyte in CVD patients and to investigate whether BTLA has a functional role in experimental atherosclerosis. METHODS AND RESULTS We show that BTLA is primarily expressed on B cells in CVD patients and follicular B2 cells in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. We treated Ldlr-/- mice that were fed a western-type diet (WTD) with phosphate-buffered saline, an isotype antibody, or an agonistic BTLA antibody (3C10) for 6 weeks. We report here that the agonistic BTLA antibody significantly attenuated atherosclerosis. This was associated with a strong reduction in follicular B2 cells, while regulatory B and T cells were increased. The BTLA antibody showed similar immunomodulating effects in a progression study in which Ldlr-/- mice were fed a WTD for 10 weeks before receiving antibody treatment. Most importantly, BTLA stimulation enhanced collagen content, a feature of stable lesions, in pre-existing lesions. CONCLUSION Stimulation of the BTLA pathway in Ldlr-/- mice reduces initial lesion development and increases collagen content of established lesions, presumably by shifting the balance between atherogenic follicular B cells and atheroprotective B cells and directing CD4+ T cells towards regulatory T cells. We provide the first evidence that BTLA is a very promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hidde Douna
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacob Amersfoort
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Bram Slütter
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Anouk Wezel
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, HMC Westeinde, The Hague, The Netherlands
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - I Bot
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijs H M van Puijvelde
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
117
|
Kyaw T, Toh BH, Bobik A. Evolving BAFF targeted therapies for preventing acute myocardial infarctions and ischemic strokes. Expert Opin Ther Targets 2020; 24:7-12. [DOI: 10.1080/14728222.2020.1708325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
118
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A, Kyaw T. B Cell and CD4 T Cell Interactions Promote Development of Atherosclerosis. Front Immunol 2020; 10:3046. [PMID: 31998318 PMCID: PMC6965321 DOI: 10.3389/fimmu.2019.03046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (μ) heavy chain (μMT) in ApoE−/− mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic μMT−/− ApoE−/− mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient μMT−/− ApoE−/− mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into μMT−/− ApoE−/− mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
119
|
Farias‐Itao DS, Pasqualucci CA, Nishizawa A, da Silva LFF, Campos FM, Bittencourt MS, da Silva KCS, Leite REP, Grinberg LT, Ferretti‐Rebustini REDL, Jacob‐Filho W, Suemoto CK. B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are Associated With Coronary Atherosclerosis: An Autopsy Study. J Am Heart Assoc 2019; 8:e013793. [PMID: 31818216 PMCID: PMC6951066 DOI: 10.1161/jaha.119.013793] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Macrophages and T lymphocytes in the perivascular adipose tissue (PvAT) were previously linked to coronary artery disease. However, the role of these cells and B lymphocytes in the human PvAT adjacent to unstable atherosclerotic plaques has not been investigated. Moreover, previous studies were inconclusive on whether PvAT inflammation was restricted to the surroundings of the atheroma plaque. Methods and Results Coronary arteries were freshly dissected with the surrounding PvAT. Atherosclerotic plaques were classified according to the internationally accepted anatomopathological criteria. Immune cells in the PvAT were detected using immunohistochemistry and then quantified. We used linear and logistic regressions with robust standard errors, adjusted for possible confounding factors. In 246 atherosclerotic plaques (205 stable and 41 unstable plaques) from 82 participants (mean age=69.0±14.4 years; 50% men), the percentage of arterial obstruction was positively correlated with the densities of CD68+ macrophages (P=0.003) and CD20+ B lymphocytes (P=0.03) in the periplaque PvAT. The number of cells was greater in the periplaque PvAT than in the distal PvAT (macrophages, P<0.001; B lymphocytes, P=0.04). In addition, the density of macrophages in the periplaque PvAT was greater in the presence of unstable plaques (P=0.03) and was also greater near unstable plaques than in the distal PvAT (P=0.001). CD3+ T lymphocytes were not associated with percentage of obstruction and stable/unstable plaque composition. Conclusions The density of CD20+ B lymphocytes and CD68+ macrophages in periplaque PvAT was increased with plaque size, and the CD68+ macrophages were greater near unstable atherosclerotic plaques than near stable lesions. This inflammation was more intense in the periplaque PvAT than in the PvAT distal to the atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | - Aline Nishizawa
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | | | - Márcio Sommer Bittencourt
- Center for Clinical and Epidemiological Research and Division of Internal MedicineUniversity HospitalUniversity of São PauloBrazil
- Preventive Medicine Center and Cardiology ProgramHospital Israelita Albert EinsteinSão PauloBrazil
| | | | - Renata Elaine Paraízo Leite
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Lea Tenenholz Grinberg
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Department of Neurology, Memory and Aging CenterUniversity of CaliforniaSan FranciscoSan Francisco, CA
| | - Renata Eloah de Lucena Ferretti‐Rebustini
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Medical‐Surgical Nursing DepartmentUniversity of São Paulo School of NursingSão PauloBrazil
| | - Wilson Jacob‐Filho
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Claudia Kimie Suemoto
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
120
|
Sahputra R, Ruckerl D, Couper KN, Muller W, Else KJ. The Essential Role Played by B Cells in Supporting Protective Immunity Against Trichuris muris Infection Is by Controlling the Th1/Th2 Balance in the Mesenteric Lymph Nodes and Depends on Host Genetic Background. Front Immunol 2019; 10:2842. [PMID: 31921120 PMCID: PMC6915098 DOI: 10.3389/fimmu.2019.02842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
How B cells contribute to protective immunity against parasitic nematodes remains unclear, with their importance as accessory cells underexplored. In this study, anti-CD20 monoclonal antibody (α-CD20 mAb)-mediated depletion of B cells from C57BL/6 mice revealed an important role for B cells in supporting Th2 immune responses and thus expulsion of Trichuris muris (T. muris). C57BL/6 mice normally mount mixed Th1/Th2 immune responses to T. muris and expel the parasite by the third week post infection. However, B cell-depleted C57BL/6 had significantly reduced Th2-type cytokines post infection and failed to expel the parasite. IFN-γ production in the MLN of C57BL/6 mice receiving α-CD20 mAb treatment was not affected, collectively resulting in an overall change in Th1/Th2 balance in favor of Th1. Further, the expression of IFN-γ and IFN-γ-induced genes at the effector site, the gut, was significantly increased in the absence of B cells. Interestingly, and in complete contrast, BALB/c mice, which mount strongly polarized Th2 immune responses, rather than mixed Th1/Th2 immune responses, were still able to expel T. muris in the absence of B cells. We thus hypothesized that the B cell plays a critical role in enabling strong Th2 responses in the context of mixed Th1/Th2 settings, with the role becoming redundant in highly Th2 polarized environments. In support of this, neutralization of IFN-γ in B cell depleted C57BL/6 restored resistance against T. muris infection. Thus, our data suggest an important role of B cells in supporting Th2-type immune responses in mixed IFN-γ-rich Th1/Th2 settings.
Collapse
Affiliation(s)
- Rinal Sahputra
- Division of Infection, Immunity and Respiratory Medicine, Lydia Becker Institute for Immunology, The University of Manchester, Manchester, United Kingdom
| | | | | | | | - Kathryn J. Else
- Division of Infection, Immunity and Respiratory Medicine, Lydia Becker Institute for Immunology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
121
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
122
|
Kim DG, Lee J, Seo WJ, Lee JG, Kim BS, Kim MS, Kim SI, Kim YS, Huh KH. Rituximab protects against development of atherosclerotic cardiovascular disease after kidney transplantation: a propensity-matched study. Sci Rep 2019; 9:16475. [PMID: 31712593 PMCID: PMC6848081 DOI: 10.1038/s41598-019-52942-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Recent studies have implicated B cells in atherosclerosis and have verified the atheroprotective effect of rituximab. Rituximab is widely used for desensitization in ABO-incompatible or crossmatch-positive kidney transplantation (KT). Using a single-center KT database, we performed propensity-matched analysis to investigate the association between rituximab and posttransplant atherosclerotic cardiovascular disease (ASCVD). Among 1299 eligible patients, 239 given rituximab induction were matched with 401 controls in a 1:2 propensity score matching process. The cumulative rate of ASCVD during 8 years of follow-up was significantly lower in rituximab-treated patients, compared with matched controls (3.7% vs. 11.2%; P = 0.012). However, all-cause mortality did not differ by group (2.9% vs. 4%; P = 0.943). In multivariable Cox analysis, rituximab proved independently protective of ASCVD (hazard ratio = 0.34, 95% confidence interval: 0.14–0.83). The lower risk of ASCVD seen with rituximab induction reached significance only in patient subsets of diabetes mellitus, pretransplant dialysis, or older age (>50 years). Rituximab induction confers a lower risk of ASCVD during the posttransplant period. This atheroprotective effect appears particularly beneficial in patients whose risk of ASCVD is heightened.
Collapse
Affiliation(s)
- Deok Gie Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Juhan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Seo
- Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Seun Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea. .,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
123
|
Knutsson A, Björkbacka H, Dunér P, Engström G, Binder CJ, Nilsson AH, Nilsson J. Associations of Interleukin-5 With Plaque Development and Cardiovascular Events. JACC Basic Transl Sci 2019; 4:891-902. [PMID: 31909299 PMCID: PMC6939009 DOI: 10.1016/j.jacbts.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Experimental studies have suggested an atheroprotective role of interleukin (IL)-5 through the stimulation of natural immunoglobulin M antibody expression. In the present study we show that there are no associations between baseline levels of IL-5 and risk for development of coronary events or stroke during a 15.7 ± 6.3 years follow-up of 696 subjects randomly sampled from the Malmö Diet and Cancer study. However, presence of a plaque at the carotid bifurcation was associated with lower IL-5 and IL-5 deficiency resulted in increased plaque development at sites of oscillatory blood flow in Apoe -/- mice suggesting a protective role for IL-5 in plaque development.
Collapse
Affiliation(s)
- Anki Knutsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
124
|
Inflammation and TGF-β Signaling Differ between Abdominal Aneurysms and Occlusive Disease. J Cardiovasc Dev Dis 2019; 6:jcdd6040038. [PMID: 31683995 PMCID: PMC6955744 DOI: 10.3390/jcdd6040038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysms (AAA), are usually asymptomatic until rupture causes fatal bleeding, posing a major vascular health problem. AAAs are associated with advanced age, male gender, and cardiovascular risk factors (e.g. hypertension and smoking). Strikingly, AAA and AOD (arterial occlusive disease) patients have a similar atherosclerotic burden, yet develop either arterial dilatation or occlusion, respectively. The molecular mechanisms underlying this diversion are yet unknown. As this knowledge could improve AAA treatment strategies, we aimed to identify genes and signaling pathways involved. We compared RNA expression profiles of abdominal aortic AAA and AOD patient samples. Based on differential gene expression profiles, we selected a gene set that could serve as blood biomarker or as pharmacological intervention target for AAA. In this AAA gene list we identified previously AAA-associated genes COL11A1, ADIPOQ, and LPL, thus validating our approach as well as novel genes; CXCL13, SLC7A5, FDC-SP not previously linked to aneurysmal disease. Pathway analysis revealed overrepresentation of significantly altered immune-related pathways between AAA and AOD. Additionally, we found bone morphogenetic protein (BMP) signaling inhibition simultaneous with activation of transforming growth factor β (TGF-β) signaling associated with AAA. Concluding our gene expression profiling approach identifies novel genes and an interplay between BMP and TGF-β signaling regulation specifically for AAA.
Collapse
|
125
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
126
|
Gisterå A, Klement ML, Polyzos KA, Mailer RKW, Duhlin A, Karlsson MCI, Ketelhuth DFJ, Hansson GK. Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation 2019; 138:2513-2526. [PMID: 29997115 PMCID: PMC6254780 DOI: 10.1161/circulationaha.118.034076] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Atherosclerotic cardiovascular disease is a chronic inflammatory process initiated when cholesterol-carrying low-density lipoprotein (LDL) is retained in the arterial wall. CD4+ T cells, some of which recognize peptide components of LDL as antigen, are recruited to the forming lesion, resulting in T-cell activation. Although these T cells are thought to be proatherogenic, LDL immunization reduces disease in experimental animals. These seemingly contradictory findings have hampered the development of immune-based cardiovascular therapy. The present study was designed to clarify how activation of LDL-reactive T cells impacts on metabolism and vascular pathobiology. Methods: We have developed a T-cell receptor–transgenic mouse model to characterize the effects of immune reactions against LDL. Through adoptive cell transfers and cross-breeding to hypercholesterolemic mice expressing the antigenic human LDL protein apolipoprotein B-100, we evaluate the effects on atherosclerosis. Results: A subpopulation of LDL-reactive T cells survived clonal selection in the thymus, developed into T follicular helper cells in lymphoid tissues on antigen recognition, and promoted B-cell activation. This led to production of anti-LDL immunoglobulin G antibodies that enhanced LDL clearance through immune complex formation. Furthermore, the cellular immune response to LDL was associated with increased cholesterol excretion in feces and with reduced vascular inflammation. Conclusions: These data show that anti-LDL immunoreactivity evokes 3 atheroprotective mechanisms: antibody-dependent LDL clearance, increased cholesterol excretion, and reduced vascular inflammation.
Collapse
Affiliation(s)
- Anton Gisterå
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Maria L Klement
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden.,Department of Immunotechnology, Lund University, Sweden (M.L.K.)
| | - Konstantinos A Polyzos
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Reiner K W Mailer
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.W.M.)
| | - Amanda Duhlin
- Department of Microbiology, Tumor and Cell Biology (A.D., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology (A.D., M.C.I.K.), Karolinska Institutet, Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden
| | - Göran K Hansson
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital (A.G., M.L.K., K.A.P., R.K.W.M., D.F.J.K., G.K.H.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
127
|
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States and worldwide. The most common cause of cardiovascular disease is atherosclerosis, or formation of fatty plaques in the arteries. Low-density lipoprotein (LDL), termed "bad cholesterol", is a large molecule comprised of many proteins as well as lipids including cholesterol, phospholipids, and triglycerides. Circulating levels of LDL are directly associated with atherosclerosis disease severity. Once thought to simply be caused by passive retention of LDL in the vasculature, atherosclerosis studies over the past 40-50 years have uncovered a much more complex mechanism. It has now become well established that within the vasculature, LDL can undergo many different types of oxidative modifications such as esterification and lipid peroxidation. The resulting oxidized LDL (oxLDL) has been found to have antigenic potential and contribute heavily to atherosclerosis associated inflammation, activating both innate and adaptive immunity. This review discusses the many proposed mechanisms by which oxidized LDL modulates inflammatory responses and how this might modulate atherosclerosis.
Collapse
Affiliation(s)
- Jillian P Rhoads
- Department of Medicine, Division of Rheumatology, Vanderbilt Medical Center, Nashville, TN 37232
| | - Amy S Major
- Department of Medicine, Division of Rheumatology, Vanderbilt Medical Center, Nashville, TN 37232; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
128
|
Porsch F, Binder CJ. Impact of B-Cell–Targeted Therapies on Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1705-1714. [DOI: 10.1161/atvbaha.119.311996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by many immune cell subsets, including B cells. Therefore, targeting the inflammatory component of cardiovascular disease represents a promising therapeutic strategy. In the past years, immunotherapy has revolutionized the treatment of autoimmunity and cancer. Many of these clinically used strategies target B cells. Given the multifaceted role of B cells in atherogenesis, it is conceivable that B-cell–directed therapies can modulate disease development. Here, we review clinically available B-cell–targeted therapies and the possible benefits or detrimental effects on cardiovascular disease.
Collapse
Affiliation(s)
- Florentina Porsch
- From the Department for Laboratory Medicine, Medical University of Vienna, Austria (F.P., C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (F.P., C.J.B.)
| | - Christoph J. Binder
- From the Department for Laboratory Medicine, Medical University of Vienna, Austria (F.P., C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (F.P., C.J.B.)
| |
Collapse
|
129
|
Ait-Oufella H, Libby P, Tedgui A. Anticytokine Immune Therapy and Atherothrombotic Cardiovascular Risk. Arterioscler Thromb Vasc Biol 2019; 39:1510-1519. [PMID: 31294625 PMCID: PMC6681658 DOI: 10.1161/atvbaha.119.311998] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Accumulating observations in humans and animals indicate that inflammation plays a key role in atherosclerosis development and subsequent complications. Moreover, the use of loss- or gain-of-function genetically modified, atherosclerosis-prone mice has provided strong experimental evidence for a causal role of innate and adaptive immunity in atherosclerosis and has revealed the pathogenic activity of proinflammatory cytokines, including TNF (tumor necrosis factor)-α, IL (interleukin)-1β, IL-6, and IL-18, and the atheroprotective effect of anti-inflammatory cytokines, including IL-10 and TGF-β. For the past 15 years, treatments using monoclonal antibodies specifically targeting cytokines, commonly referred as biological therapies, have transformed the treatment of chronic inflammatory diseases, such as rheumatoid arthritis or psoriasis, both conditions associated with increased cardiovascular risk. Analyzing the impact of anticytokine therapies on the cardiovascular outcomes of patients with chronic inflammatory diseases provides insight into the clinical relevance of experimental data on the role of inflammation in atherothrombotic cardiovascular diseases. CANTOS (Canakinumab Antiinflammatory Thrombosis Outcome Study) provided the first evidence that targeting inflammation in humans with atherosclerosis could improve clinical outcomes. Treatment with the anti-IL-1β antibody canakinumab significantly reduced recurrent cardiovascular events in individuals with stable coronary artery disease well-treated with standard-of-care measures. Other clinical studies support the protective effects of treatment with anti-TNF-α and anti-IL-6 receptor monoclonal antibodies on cardiovascular risk. Blockade of the IL-23/IL-17 axis, however, warrants caution as a cardiovascular intervention. Targeting this pathway has improved psoriasis but may augment cardiovascular risk in certain patients. Thus, careful consideration of the cardiovascular risk profile may influence the choice of the most appropriate treatment for patients with chronic inflammatory diseases.Visual Overview: An online visual overview is available for this article.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris
Cardiovascular Research Center, Paris, France
- Service de Réanimation Médicale,
Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Peter Libby
- Brigham and Women’s Hospital, Harvard Medical
School, Boston, Massachusetts, United States of America
| | - Alain Tedgui
- Université de Paris, Inserm U970, Paris
Cardiovascular Research Center, Paris, France
| |
Collapse
|
130
|
Bagchi-Chakraborty J, Francis A, Bray T, Masters L, Tsiantoulas D, Nus M, Harrison J, Broekhuizen M, Leggat J, Clatworthy MR, Espéli M, Smith KG, Binder CJ, Mallat Z, Sage AP. B Cell Fcγ Receptor IIb Modulates Atherosclerosis in Male and Female Mice by Controlling Adaptive Germinal Center and Innate B-1-Cell Responses. Arterioscler Thromb Vasc Biol 2019; 39:1379-1389. [PMID: 31092015 PMCID: PMC6636804 DOI: 10.1161/atvbaha.118.312272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/22/2019] [Indexed: 02/02/2023]
Abstract
Objective- Investigate the impact of modulating B cell FcγRIIb (Fcγ receptor IIb) expression on atherosclerosis. Approach and Results- Western diet-induced atherosclerosis was assessed in Ldlr-/- or Apoe-/- mice with B cell-specific overexpression of FcγRIIb or with an FcγRIIb promoter mutation that alters FcγRIIb expression in germinal center (GC) B cells. In males, overexpression of FcγRIIb on B cells severely reduced activated, class switched B cell responses, as indicated by reductions in GC B cells, plasma cells, and serum IgG but not IgM antibodies. Male mice overexpressing FcγRIIb developed less atherosclerosis, suggesting a pathogenic role for GC B cell IgG responses. In support of this hypothesis, male mice with a promoter polymorphism-driven reduction in FcγRIIb on GC B cells but not plasma cells have a converse phenotype of enhanced GC responses and IgG2c antibodies and enhanced atherosclerosis. IgG2c significantly enhanced TNF (tumor necrosis factor) secretion by CD11b+ CD11c+ cells expressing the high-affinity receptor FcγRIV. In females, overexpression of FcγRIIb on B cells not only reduced GC B cell responses but also substantially reduced B-1 cells and IgM antibodies, which translated into acceleration of atherosclerosis. Promoter-driven reduction in FcγRIIb did not alter GC B cell responses in females and, therefore, had no impact on atherosclerosis. Conclusions- B cell FcγRIIb differentially alters proatherogenic adaptive GC B cell and atheroprotective innate B-1 responses in male and female mice fed a western diet. Our results highlight the importance of a better understanding and ability to selectively target B cell responses in future immunotherapeutic approaches against human cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Jayashree Bagchi-Chakraborty
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Anna Francis
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Toni Bray
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Leanne Masters
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Dimitrios Tsiantoulas
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Meritxell Nus
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - James Harrison
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Michelle Broekhuizen
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Jennifer Leggat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Marion Espéli
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France (M.E.)
| | - Kenneth G.C. Smith
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria (C.J.B.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (C.J.B.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
- Division of Immunology (M.R.C., K.G.C.S., Z.M.), Department of Medicine, University of Cambridge, United Kingdom
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, France (Z.M.)
| | - Andrew P. Sage
- From the Division of Cardiovascular Medicine (J.B.-C., A.F., T.B., L.M., D.T., M.N., J.H., M.B., J.L., Z.M., A.P.S.), Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
131
|
Arakawa K, Ishigami T, Nakai-Sugiyama M, Chen L, Doi H, Kino T, Minegishi S, Saigoh-Teranaka S, Sasaki-Nakashima R, Hibi K, Kimura K, Tamura K. Lubiprostone as a potential therapeutic agent to improve intestinal permeability and prevent the development of atherosclerosis in apolipoprotein E-deficient mice. PLoS One 2019; 14:e0218096. [PMID: 31206525 PMCID: PMC6576757 DOI: 10.1371/journal.pone.0218096] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
The interaction between atherosclerosis and commensal microbes through leaky gut syndrome (LGS), which is characterized by impaired intestinal permeability and the introduction of undesired pathogens into the body, has not been fully elucidated. Our aim was to investigate the potential role of a ClC-2 chloride channel activator, lubiprostone, which is reported to have beneficial effects on LGS, in the development of atherosclerosis in apolipoprotein E–deficient (ApoE-/-) mice. After a 15-week feeding period of a Western diet (WD), ApoE-/- mice were treated with a Western-type diet (WD) alone or WD with oral supplementation of lubiprostone for 10 weeks. This feeding protocol was followed by experimental evaluation of LGS and atherosclerotic lesions in the aorta. In mice with lubiprostone, in vivo translocation of orally administered 4-kDa FITC-dextran was significantly improved, and RNA expression of the epithelial tight junction proteins, Zo-1 and occludin, was significantly up-regulated in the ileum, compared to the WD alone group, suggesting a possible reversal of WD-induced intestinal barrier dysfunction. As a result, WD-induced exacerbation of atherosclerotic lesion formation was reduced by 69% in longitudinally opened aortas and 26% in aortic root regions. In addition, there was a significant decrease in circulating immunoglobulin level, followed by an attenuation of inflammatory responses in the perivascular adipose tissue, as evidenced by reduced expression of pro-inflammatory cytokines and chemokines. Lubiprostone attenuates atherosclerosis by ameliorating LGS-induced inflammation through the restoration of the intestinal barrier. These findings raise the possibility of targeting LGS for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Kentaro Arakawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
- * E-mail:
| | - Michiko Nakai-Sugiyama
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Lin Chen
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Hiroshi Doi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Tabito Kino
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Sae Saigoh-Teranaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Rie Sasaki-Nakashima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, Kanagawa, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, School of Medicine, Kanagawa, Japan
| |
Collapse
|
132
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
133
|
Koulouri V, Koutsilieris M, Mavragani CP. B cells and atherosclerosis in systemic lupus erythematosus. Expert Rev Clin Immunol 2019; 15:417-429. [DOI: 10.1080/1744666x.2019.1571411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vasiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P. Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
134
|
Williams JW, Elvington A, Kessler S, Wohltmann M, Wu GF, Randolph GJ. B Cell-Mediated Antigen Presentation through MHC Class II Is Dispensable for Atherosclerosis Progression. Immunohorizons 2019; 3:37-44. [PMID: 31356175 PMCID: PMC6999615 DOI: 10.4049/immunohorizons.1800015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Depletion of B cells attenuates plaque development and modulates T cell responses in mouse models of atherosclerosis, suggesting that Ag presentation by B cells may promote disease progression. Thus, we set out to determine the role of B cell-mediated MHC class II (MHC II) Ag presentation during atherosclerotic plaque development. We developed murine conditional MHC II deletion and expression systems under control of the B cell-restricted CD19 promoter in an experimental model of atherosclerosis. Mice lacking MHC II expression only on B cells exhibited systemic shifts in germinal center and marginal zone B cell populations, leading to a reduced Ab response compared with littermate control animals. However, all populations were present and normal cholesterol uptake was detected in the plasma following high-fat diet treatment. In a second model, in which conditional expression of MHC II is limited only to B cells, showed similar overall cellularity characteristics compared with mice with complete MHC II deficiency. High-fat diet feeding showed no major changes in atherosclerotic plaque size or plaque cellular content in either conditional deletion or conditional expression approaches, compared with control animals. By testing the necessity and sufficiency of MHC II on B cells in the progression of atherosclerosis, we determine that MHC II on B cells does not directly regulate lesion development in murine models.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Skyler Kessler
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Mary Wohltmann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
135
|
Rattik S, Mantani PT, Yao Mattisson I, Ljungcrantz I, Sundius L, Björkbacka H, Terrinoni M, Lebens M, Holmgren J, Nilsson J, Wigren M, Nordin Fredrikson G. B cells treated with CTB-p210 acquire a regulatory phenotype in vitro and reduce atherosclerosis in apolipoprotein E deficient mice. Vascul Pharmacol 2018; 111:54-61. [DOI: 10.1016/j.vph.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/11/2023]
|
136
|
Age (autoimmunity) associated B cells (ABCs) and their relatives. Curr Opin Immunol 2018; 55:75-80. [DOI: 10.1016/j.coi.2018.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
137
|
Mitchell RN. When More Is Less. Circulation 2018; 138:2527-2529. [PMID: 30571358 DOI: 10.1161/circulationaha.118.036650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
138
|
Tsiantoulas D, Sage AP, Göderle L, Ozsvar-Kozma M, Murphy D, Porsch F, Pasterkamp G, Menche J, Schneider P, Mallat Z, Binder CJ. B Cell-Activating Factor Neutralization Aggravates Atherosclerosis. Circulation 2018; 138:2263-2273. [PMID: 29858401 PMCID: PMC6181204 DOI: 10.1161/circulationaha.117.032790] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (heart attacks and strokes) is the major cause of death globally and is caused by the buildup of a plaque in the arterial wall. Genomic data showed that the B cell-activating factor (BAFF) receptor pathway, which is specifically essential for the survival of conventional B lymphocytes (B-2 cells), is a key driver of coronary heart disease. Deletion or antibody-mediated blockade of BAFF receptor ablates B-2 cells and decreases experimental atherosclerosis. Anti-BAFF immunotherapy is approved for treatment of autoimmune systemic lupus erythematosus, and can therefore be expected to limit their associated cardiovascular risk. However, direct effects of anti-BAFF immunotherapy on atherosclerosis remain unknown. METHODS To investigate the effect of BAFF neutralization in atherosclerosis, the authors treated Apoe-/- and Ldlr-/- mice with a well-characterized blocking anti-BAFF antibody. Moreover, to investigate the mechanism by which BAFF impacts atherosclerosis, the authors studied atherosclerosis-prone mice that lack the alternative receptor for BAFF: transmembrane activator and calcium modulator and cyclophilin ligand interactor. RESULTS The authors demonstrate here that anti-BAFF antibody treatment increased atherosclerosis in mice, despite efficient depletion of mature B-2 cells, suggesting a unique mechanism of action. Indeed, myeloid cell-specific deletion of transmembrane activator and calcium modulator and cyclophilin ligand interactor also results in increased atherosclerosis, while B cell-specific transmembrane activator and calcium modulator and cyclophilin ligand interactor deletion had no effect. Mechanistically, BAFF-transmembrane activator and calcium modulator and cyclophilin ligand interactor signaling represses macrophage IRF7-dependent (but not NF-κB-dependent) Toll-like receptor 9 responses including proatherogenic CXCL10 production. CONCLUSIONS These data identify a novel B cell-independent anti-inflammatory role for BAFF in atherosclerosis and may have important clinical implications.
Collapse
Affiliation(s)
- Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna (D.T., L.G., M.O.-K., F.P., C.J.B.),CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| | - Andrew P. Sage
- Division of Cardiovascular Medicine, University of Cambridge, UK (A.P.S., D.M., Z.M.)
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna (D.T., L.G., M.O.-K., F.P., C.J.B.),CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna (D.T., L.G., M.O.-K., F.P., C.J.B.),CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| | - Deirdre Murphy
- Division of Cardiovascular Medicine, University of Cambridge, UK (A.P.S., D.M., Z.M.)
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna (D.T., L.G., M.O.-K., F.P., C.J.B.),CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| | | | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland (P.S.)
| | - Ziad Mallat
- Division of Cardiovascular Medicine, University of Cambridge, UK (A.P.S., D.M., Z.M.).,Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center (PARCC), Paris, France (Z.M.)
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna (D.T., L.G., M.O.-K., F.P., C.J.B.),CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (D.T., L.G., M.O.-K., F.P., J.M., C.J.B.)
| |
Collapse
|
139
|
|
140
|
Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin 2018; 39:1249-1258. [PMID: 29323337 DOI: 10.1038/aps.2017.140] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is an autoimmune disease caused by self- and non-self-antigens contributing to excessive activation of T and B cell immune responses. These responses further aggravate vascular infiammation and promote progression of atherosclerosis and vulnerability to plaques via releasing pro-infiammatory cytokines. Regulatory T cells (Tregs) as the major immunoregulatory cells, in particular, induce and maintain immune homeostasis and tolerance by suppressing the immune responses of various cells such as T and B cells, natural killer (NK) cells, monocytes, and dendritic cells (DCs), as well as by secreting inhibitory cytokines interleukin (IL)-10, IL-35 and transcription growth factor β (TGF-β) in both physiological and pathological states. Numerous evidence demonstrates that reduced numbers and dysfunction of Treg may be involveved in atherosclerosis pathogenesis. Increasing or restoring the numbers and improving the immunosuppressive capacity of Tregs may serve as a fundamental immunotherapy to treat atherosclerotic cardiovascular diseases. In this article, we briefiy present current knowledge of Treg subsets, summarize the relationship between Tregs and atherosclerosis development, and discuss the possibilities of regulating Tregs for prevention of atherosclerosis pathogenesis and enhancement of plaque stability. Although the exact molecular mechanisms of Treg-mediated protection against atherosclerosis remain to be elucidated, the strategies for targeting the regulation of Tregs may provide specific and significant approaches for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
|
141
|
Ponnusamy T, Venkatachala SK, Ramanjappa M, Kakkar VV, Mundkur LA. Inverse association of ApoB and HSP60 antibodies with coronary artery disease in Indian population. HEART ASIA 2018; 10:e011018. [PMID: 30018661 DOI: 10.1136/heartasia-2018-011018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Objective Atherosclerosis is an autoimmune condition and the underlying cause of coronary artery disease (CAD). Circulating antibodies to self-antigens can have a pathogenic or protective function in atherosclerosis. The objective of the study was to understand the association of autoantibody levels with CAD and its correlation with circulating immune cells. Methods We assessed antigen concentration and antibodies to apolipoprotein B (ApoB) and heat shock protein (HSP)60 by ELISA in 252 acute coronary syndromes (ACS), 112 patients with stable angina (SA) and 203 healthy controls from Indian population. T cells in peripheral blood mononuclear cells (PBMC) were enumerated by flow cytometry. Cytokine concentrations were measured by multiplex assay. Results IgG and IgM antibodies to ApoB and HSP60 proteins were significantly lower in patients with ACS while only IgG levels to ApoB were lower in patients with SA, compared with control. Subjects in the highest tertile of antibodies showed significantly lower OR for ACS (IgG 0.52, 95% CI 0.31 to 0.88, p=0.02 and IgM 0.58, 95% CI 0.34 to 0.98, p=0.04), ApoB100 (IgG 0.52, 95% CI 0.31 to 0.88, p=0.02 and IgM 0.58, 95% CI 0.34 to 0.99, p=0.04) and HSP60, respectively. Interestingly, T helper 17 (TH17) cells showed an inverse relationship with ApoB and HSP60 IgG antibodies (r2=-0.17, p<0.001 and r2=-0.20, p<0.001, respectively), while interleukin 17 concentrations were negatively correlated with IgM antibodies to the proteins. Conclusion This study shows that higher antibodies to ApoB and HSP60 proteins are less often associated with ACS and that these antibodies are inversely associated with inflammatory Th17 cells.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| | | | | | - Vijay V Kakkar
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| | - Lakshmi A Mundkur
- Mary and Gary Western and Tata Molecular Immunology Unit, Thrombosis Research Institute, Manipal University, Bangalore, India
| |
Collapse
|
142
|
Khambhati J, Engels M, Allard-Ratick M, Sandesara PB, Quyyumi AA, Sperling L. Immunotherapy for the prevention of atherosclerotic cardiovascular disease: Promise and possibilities. Atherosclerosis 2018; 276:1-9. [PMID: 30006321 DOI: 10.1016/j.atherosclerosis.2018.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease remains the leading cause of death worldwide with coronary atherosclerotic heart disease being the largest contributor. The mechanisms behind the presence and progression of atherosclerosis remain an area of intense scientific focus. Immune dysregulation and inflammation are key contributors to the development of an atherosclerotic plaque and its progression to acute coronary syndromes. Increased circulating levels of biomarkers of systemic inflammation including hsCRP are correlated with a higher cardiovascular risk. Targeting specific inflammatory pathways implicated in atherosclerotic plaque formation is an exciting area of ongoing research. Target specific therapies directed at pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and CCL2 have demonstrated slowing in the progression of atherosclerosis in animal models and improved cardiovascular outcomes in human subjects. Most notably, treatment with the monoclonal antibody canakinumab, which directly targets and neutralizes IL-1β, was recently shown to be associated with reduced risk of adverse cardiovascular events compared to placebo in a randomized, placebo-controlled trial. Several other therapies including colchicine, methotrexate and leukotriene inhibitors demonstrate the potential for lowering cardiovascular risk through immunomodulation, though further studies are needed. Understanding the role of inflammation in atherosclerosis and the development of targeted immunotherapies continues to be an evolving area of research that is rapidly becoming clinically relevant for the 21st century cardiac patient.
Collapse
Affiliation(s)
- Jay Khambhati
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Marc Engels
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Marc Allard-Ratick
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Pratik B Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurence Sperling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
143
|
Tsay GJ, Zouali M. The Interplay Between Innate-Like B Cells and Other Cell Types in Autoimmunity. Front Immunol 2018; 9:1064. [PMID: 29868023 PMCID: PMC5964140 DOI: 10.3389/fimmu.2018.01064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Studies performed in animal models and in humans indicate that the innate arm of the immune system provides an essential role in the initial protection against potential insults and in maintaining tolerance to self-antigens. In the B cell compartment, several subsets engage in both adaptive and innate functions. Whereas B cell subsets are recognized to play important roles in autoimmune diseases, understanding the intricacies of their effector functions remains challenging. In addition to B-1a cells and marginal zone B cells, the B cell compartment comprises other B cells with innate-like functions, including innate response activator B cells, T-bet positive B cells, natural killer-like B cells, IL-17-producing B cells, and human self-reactive VH4-34-expressing B cells. Herein, we summarize the functions of recently described B cell populations that can exert innate-like roles in both animal models and humans. We also highlight the importance of the cross talk between innate-like B cells and other adaptive and innate branches of the immune system in various autoimmune and inflammatory diseases. In as much as innate immunity seems to be important in resolving inflammation, it is possible that targeting certain innate-like B cell subsets could represent a novel therapeutic approach for inducing resolution of inflammation of autoimmune and inflammatory responses.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- INSERM, U1132, Paris, France.,Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
144
|
Meier LA, Binstadt BA. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front Immunol 2018; 9:911. [PMID: 29755478 PMCID: PMC5934424 DOI: 10.3389/fimmu.2018.00911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and resulting tissue damage underlie the vast majority of acquired cardiovascular disease (CVD), a general term encompassing a widely diverse array of conditions. Both innate and adaptive immune mechanisms contribute to chronic inflammation in CVD. Although maladies, such as atherosclerosis and cardiac fibrosis, are commonly conceptualized as disorders of inflammation, the cellular and molecular mechanisms that promote inflammation during the natural history of these diseases in human patients are not fully defined. Autoantibodies (AAbs) with specificity to self-derived epitopes accompany many forms of CVD in humans. Both adaptive/induced iAAbs (generated following cognate antigen encounter) and also autoantigen-reactive natural antibodies (produced independently of infection and in the absence of T cell help) have been demonstrated to modulate the natural history of multiple forms of CVD including atherosclerosis (atherosclerotic cardiovascular disease), dilated cardiomyopathy, and valvular heart disease. Despite the breadth of experimental evidence for the role of AAbs in CVD, there is a lack of consensus regarding their specific functions, primarily due to disparate conclusions reached, even when similar approaches and experimental models are used. In this review, we seek to summarize the current understanding of AAb function in CVD through critical assessment of the clinical and experimental evidence in this field. We additionally highlight the difficulty in translating observations made in animal models to human physiology and disease and provide a summary of unresolved questions that are critical to address in future studies.
Collapse
Affiliation(s)
- Lee A Meier
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bryce A Binstadt
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
145
|
Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol 2018; 107:S1537-1891(17)30464-0. [PMID: 29684642 DOI: 10.1016/j.vph.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/03/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the large and medium-size arteries characterized by the subendothelial accumulation of cholesterol, immune cells, and extracellular matrix. At the early onset of atherogenesis, endothelial dysfunction takes place. Atherogenesis is further triggered by the accumulation of cholesterol-carrying low-density lipoproteins, which acquire properties of damage-associated molecular patterns and thereby trigger an inflammatory response. Following activation of the innate immune response, mainly governed by monocytes and macrophages, the adaptive immune response is started which further promotes atherosclerotic plaque formation. In this review, an overview is given describing the role of damage-associated molecular patterns, NLRP3 inflammasome activation, and innate and adaptive immune cells in the atherogenesis process.
Collapse
Affiliation(s)
- Kapka Miteva
- Department of Biomedical Sciences, Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
146
|
Li B, Li W, Li X, Zhou H. Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Curr Pharm Des 2018; 23:1216-1227. [PMID: 28034355 PMCID: PMC6302344 DOI: 10.2174/1381612822666161230142931] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Over the past two decades, the viewpoint of atherosclerosis has been replaced gradually by a lipid-driven, chronic, low-grade inflammatory disease of the arterial wall. Current treatment of atherosclerosis is focused on limiting its risk factors, such as hyperlipidemia or hypertension. However, treatment targeting the inflammatory nature of atherosclerosis is still very limited and deserves further attention to fight atherosclerosis successfully. Here, we review the current development of inflammation and atherosclerosis to discuss novel insights and potential targets in atherosclerosis, and to address drug discovery based on anti-inflammatory strategy in atherosclerotic disease.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Weihong Li
- Assisted Reproductive Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Hong Zhou
- Department of Pharmacology, College of Pharamacy, The Third Military Medical University, P.O. Box: 400038, Chongqing. China
| |
Collapse
|
147
|
Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun Rev 2018; 17:366-375. [DOI: 10.1016/j.autrev.2017.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
148
|
Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, McNamara CA, Kronenberg M, Crotty S, Thomas MJ, Sorci-Thomas MG, Hedrick CC. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 2018; 9:1095. [PMID: 29545616 PMCID: PMC5854619 DOI: 10.1038/s41467-018-03493-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here we show that during atherogenesis Treg cells lose Foxp3 expression and their immunosuppressive function, leading to the conversion of a fraction of these cells into T follicular helper (Tfh) cells. We show that Tfh cells are pro-atherogenic and that their depletion reduces atherosclerosis. Mechanistically, the conversion of Treg cells to Tfh cells correlates with reduced expression of IL-2Rα and pSTAT5 levels and increased expression of IL-6Rα. In vitro, incubation of naive T cells with oxLDL prevents their differentiation into Treg cells. Furthermore, injection of lipid-free Apolipoprotein AI (ApoAI) into ApoE−/− mice reduces intracellular cholesterol levels in Treg cells and prevents their conversion into Tfh cells. Together our results suggest that ApoAI, the main protein in high-density lipoprotein particles, modulates the cellular fate of Treg cells and thus influences the immune response during atherosclerosis. Regulatory T (Treg) cells contribute to the anti-inflammatory response during atherogenesis. Here Gaddis et al. show that Apolipoprotein AI prevents the conversion of Treg cells into pro-atherogenic T follicular helper cells, and thus regulates the immune response during atherogenesis.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Chantel McSkimming
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Veronica Romines
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Angela M Taylor
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Coleen A McNamara
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mary G Sorci-Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.,Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, 9200W. Wisconsin Ave., Milwaukee, WI, 53226, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| |
Collapse
|
149
|
Schmitz C, Noels H, El Bounkari O, Straussfeld E, Megens RTA, Sternkopf M, Alampour-Rajabi S, Krammer C, Tilstam PV, Gerdes N, Bürger C, Kapurniotu A, Bucala R, Jankowski J, Weber C, Bernhagen J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis. FASEB J 2018. [PMID: 29543531 DOI: 10.1096/fj.201800058r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory cytokine macrophage migration-inhibitory factor (MIF) promotes atherosclerosis via lesional monocyte and T-cell recruitment. B cells have emerged as important components in atherogenesis, but the interaction between MIF and B cells in atherogenesis is unknown. Here, we investigated the atherosclerotic phenotype of Mif-gene deletion in Apoe-/- mice. Apoe-/- Mif-/- mice fed a Western diet exhibited strongly reduced atherosclerotic lesions in brachiocephalic artery (BC) and abdominal aorta compared with controls. This phenotype was accompanied by reduced circulating B cells. Flow cytometry revealed a B-cell developmental defect with increased premature and immature B-cell counts in bone marrow (BM) of Apoe-/- Mif-/- mice and diminished B-cell numbers in spleen. This finding was linked with a decreased expression of Baff-R and differentiation-driving transcription factors at the immature B-cell stage, whereas peritoneal B cells exhibited unchanged CD80 and CD86 expression but vastly decreased CD9 and elevated CD23 levels, indicating that the developmental block favors the generation of immature, egressing, and reactive B cells. Mif deficiency did not affect absolute B-cell numbers in the vessel wall but favored a relative increase of B cells in the atheroprone BC region and the appearance of periadventitial B-cell-rich clusters. Of note, Mif-/- mice exhibited a significant increase in oxidized low-density lipoprotein (oxLDL)-specific antibodies after the injection of oxLDL, indicating that Mif deficiency is associated with higher sensitivity of B cells against natural-occurring antigens such as oxLDL. Importantly, Apoe-/- mice adoptively transplanted with Apoe-/-Mif-/- BM showed reduced peripheral B cells compared with Apoe-/- BM transplantation but no atheroprotection in the BC; also, whereas there was a selective increase in atheroprotective IgM-anti-oxLDL-antibodies in global Mif deficiency, BM-specific Mif deficiency also led to elevated proatherogenic anti-oxLDL-IgG. Together, these findings reveal a novel link between MIF and B cells in atherogenesis. Protection from atherosclerosis by Mif deficiency is associated with enhanced B-cell hypersensitivity, which in global but not BM-restricted Mif deficiency favors an atheroprotective autoantibody profile in atherosclerotic mice. Targeting MIF may induce protective B-cell responses in atherosclerosis.-Schmitz, C., Noels, H., El Bounkari, O., Straussfeld, E., Megens, R. T. A., Sternkopf, M., Alampour-Rajabi, S., Krammer, C., Tilstam, P. V., Gerdes, N., Bürger, C., Kapurniotu, A., Bucala, R., Jankowski, J., Weber, C., Bernhagen, J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis.
Collapse
Affiliation(s)
- Corinna Schmitz
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Straussfeld
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Christine Krammer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Pathricia V Tilstam
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Richard Bucala
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and.,SyNergy Excellence Cluster, Munich, Germany
| |
Collapse
|
150
|
Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D. Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res 2018; 122:1675-1688. [PMID: 29545366 DOI: 10.1161/circresaha.117.312513] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/24/2022]
Abstract
RATIONALE Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.
Collapse
Affiliation(s)
- Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Erik Ehinger
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Melanie Vassallo
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Konrad Buscher
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Kouji Kobiyama
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.)
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany (E.V., A.-E.S.)
| | | | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.)
| | - Akula Bala Pramod
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Amlan K Ghosh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Nathaly Anto Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.)
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.).,Department of Bioengineering, University of California, San Diego (K.L.)
| | - Dennis Wolf
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany (C.C., A.Z.) .,From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., E.E., M.V., K.B., H.Q.D., K.K., A.A.J.H., A.B.P., A.K.G., C.C.H., K.L., D.W.).,Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.).,the Faculty of Medicine, University of Freiburg, Germany (N.A.M., N.H., I.H., A.Z., D.W.)
| |
Collapse
|