101
|
Hylander BL, Repasky EA. Thermoneutrality, Mice, and Cancer: A Heated Opinion. Trends Cancer 2016; 2:166-175. [PMID: 28741570 DOI: 10.1016/j.trecan.2016.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
The 'mild' cold stress caused by standard sub-thermoneutral housing temperatures used for laboratory mice in research institutes is sufficient to significantly bias conclusions drawn from murine models of several human diseases. We review the data leading to this conclusion, discuss the implications for research and suggest ways to reduce problems in reproducibility and experimental transparency caused by this housing variable. We have found that these cool temperatures suppress endogenous immune responses, skewing tumor growth data and the severity of graft versus host disease, and also increase the therapeutic resistance of tumors. Owing to the potential for ambient temperature to affect energy homeostasis as well as adrenergic stress, both of which could contribute to biased outcomes in murine cancer models, housing temperature should be reported in all publications and considered as a potential source of variability in results between laboratories. Researchers and regulatory agencies should work together to determine whether changes in housing parameters would enhance the use of mouse models in cancer research, as well as for other diseases. Finally, for many years agencies such as the National Cancer Institute (NCI) have encouraged the development of newer and more sophisticated mouse models for cancer research, but we believe that, without an appreciation of how basic murine physiology is affected by ambient temperature, even data from these models is likely to be compromised.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA
| | - Elizabeth A Repasky
- Roswell Park Cancer Institute, Department of Immunology, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| |
Collapse
|
102
|
Vandal M, White PJ, Tournissac M, Tremblay C, St-Amour I, Drouin-Ouellet J, Bousquet M, Traversy MT, Planel E, Marette A, Calon F. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease. Neurobiol Aging 2016; 43:47-57. [PMID: 27255814 DOI: 10.1016/j.neurobiolaging.2016.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Philip J White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, NC, USA; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Marine Tournissac
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Isabelle St-Amour
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Département de Recherche et Développement, Héma-Québec, Québec, Québec, Canada
| | - Janelle Drouin-Ouellet
- Faculté de medicine, Université Laval, Québec, Québec, Canada; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Melanie Bousquet
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marie-Thérèse Traversy
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada
| | - Andre Marette
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Frederic Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
103
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|
104
|
Tian XY, Ganeshan K, Hong C, Nguyen KD, Qiu Y, Kim J, Tangirala RK, Tontonoz P, Tonotonoz P, Chawla A. Thermoneutral Housing Accelerates Metabolic Inflammation to Potentiate Atherosclerosis but Not Insulin Resistance. Cell Metab 2016; 23:165-78. [PMID: 26549485 PMCID: PMC4715491 DOI: 10.1016/j.cmet.2015.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/19/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022]
Abstract
Chronic, low-grade inflammation triggered by excess intake of dietary lipids has been proposed to contribute to the pathogenesis of metabolic disorders, such as obesity, insulin resistance, type 2 diabetes, and atherosclerosis. Although considerable evidence supports a causal association between inflammation and metabolic diseases, most tests of this link have been performed in cold-stressed mice that are housed below their thermoneutral zone. We report here that thermoneutral housing of mice has a profound effect on the development of metabolic inflammation, insulin resistance, and atherosclerosis. Mice housed at thermoneutrality develop metabolic inflammation in adipose tissue and in the vasculature at an accelerated rate. Unexpectedly, this increased inflammatory response contributes to the progression of atherosclerosis but not insulin resistance. These findings not only suggest that metabolic inflammation can be uncoupled from obesity-associated insulin resistance, but also point to how thermal stress might limit our ability to faithfully model human diseases in mice.
Collapse
Affiliation(s)
- Xiao Yu Tian
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kirthana Ganeshan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Khoa D Nguyen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yifu Qiu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rajendra K Tangirala
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Peter Tonotonoz
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Physiology and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
105
|
Karp CL, Wilson CB, Stuart LM. Tuberculosis vaccines: barriers and prospects on the quest for a transformative tool. Immunol Rev 2015; 264:363-81. [PMID: 25703572 PMCID: PMC4368410 DOI: 10.1111/imr.12270] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The road to a more efficacious vaccine that could be a truly transformative tool for decreasing tuberculosis morbidity and mortality, along with Mycobacterium tuberculosis transmission, is quite daunting. Despite this, there are reasons for optimism. Abetted by better conceptual clarity, clear acknowledgment of the degree of our current immunobiological ignorance, the availability of powerful new tools for dissecting the immunopathogenesis of human tuberculosis, the generation of more creative diversity in tuberculosis vaccine concepts, the development of better fit-for-purpose animal models, and the potential of more pragmatic approaches to the clinical testing of vaccine candidates, the field has promise for delivering novel tools for dealing with this worldwide scourge of poverty.
Collapse
Affiliation(s)
- Christopher L Karp
- Discovery and Translational Sciences, Global Health, The Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | | |
Collapse
|
106
|
Sandhu MA, Zaib A, Anjum MS, Qayyum M. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna (Sturnus tristis). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2015; 59:1607-1613. [PMID: 25663442 DOI: 10.1007/s00484-015-0967-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/27/2014] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Common myna (Sturnus tristis) is a bird indigenous to the Indian subcontinent that has invaded many parts of the world. At the onset of our investigation, we hypothesized that the immunological profile of myna makes it resistant to harsh/new environmental conditions. In order to test this hypothesis, a number of 40 mynas were caught and divided into two groups, i.e., 7 and 25 °C for 14 days. To determine the effect of cold stress, cell mediated and humoral immune responses were assessed. The macrophage engulfment percentage was significantly (P < 0.05) higher at 25 °C rather than 7 °C either co-incubated with opsonized or unopsonized sheep red blood cells (SRBC). Macrophage engulfment/cell and nitric oxide production behaved in a similar manner. However, splenic cells plaque formation, heterophil to lymphocyte (H/L) ratio, and serum IgM or IgG production remained non-significant. There was a significant increase of IgG antibody production after a second immunization by SRBC. To the best of our knowledge, these findings have never been reported in the progression of this bird's invasion in frosty areas of the world. The results revealed a strengthened humoral immune response of myna and made this bird suitable for invasion in the areas of harsh conditions.
Collapse
Affiliation(s)
- Mansur A Sandhu
- Department of Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Anila Zaib
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad S Anjum
- Department of Poultry Science, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Mazhar Qayyum
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
107
|
Helppi J, Schreier D, Naumann R, Zierau O. Mouse reproductive fitness is maintained up to an ambient temperature of 28℃ when housed in individually-ventilated cages. Lab Anim 2015; 50:254-63. [PMID: 26462500 DOI: 10.1177/0023677215611564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Production of genetically-modified mice is strongly dependent on environmental conditions. Mice are commonly housed at 22℃, which is significantly lower than their thermoneutral zone. But, when given a choice, mice often seem to prefer higher ambient temperatures. In the current study we investigated the effect of higher ambient temperature on the production of transgenic mice, with emphasis on embryo and sperm yield and quality. Mice (C57BL/6JOlaHsd) were housed under four different ambient temperatures (22, 25, 28 and 30℃). Female mice were superovulated, and mated with males. As indicators for reproductive fitness, the success of the mating was observed, including embryo yield and quality, as well as sperm count, motility and progressivity. Female mice were found to produce high amounts of high quality embryos from 22 to 28℃. Sperm count dropped continuously from 22 to 30℃, but sperm motility and progressivity remained high from 22 to 28℃. We conclude that mice can be housed at significantly higher temperatures than is commonly recommended without compromising embryo production and quality, or sperm quality. These results could lead to fundamental changes in how mouse facilities are built and operated - especially in warmer climates whereby energy consumption and therefore costs could be significantly reduced.
Collapse
Affiliation(s)
- J Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - D Schreier
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - R Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - O Zierau
- Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
108
|
Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM. Translating animal model research: does it matter that our rodents are cold? Physiology (Bethesda) 2015; 29:413-20. [PMID: 25362635 DOI: 10.1152/physiol.00029.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Does it matter that rodents used as preclinical models of human biology are routinely housed below their thermoneutral zone? We compile evidence showing that such rodents are cold-stressed, hypermetabolic, hypertensive, sleep-deprived, obesity-resistant, fever-resistant, aging-resistant, and tumor-prone compared with mice housed at thermoneutrality. The same genotype of mouse has a very different phenotype and response to physiological or pharmacological intervention when raised below or at thermoneutrality.
Collapse
Affiliation(s)
- Shane K Maloney
- School of Anatomy Physiology and Human Biology, The University of Western Australia, Stirling Highway, Crawley, Australia; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Duncan Mitchell
- School of Anatomy Physiology and Human Biology, The University of Western Australia, Stirling Highway, Crawley, Australia; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Christopher Gordon
- Toxicity Assessment Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; and
| | - J Michael Overton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
109
|
Repasky EA, Evans SS, Dewhirst MW. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 2015; 1:210-6. [PMID: 24490177 DOI: 10.1158/2326-6066.cir-13-0118] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A major goal of cancer immunology is to stimulate the generation of long-lasting, tumor antigen-specific immune responses that recognize and destroy tumor cells. This article discusses advances in thermal medicine with the potential to improve cancer immunotherapy. Accumulating evidence indicates that survival benefits are accorded to individuals who achieve an increase in body temperature (i.e. fever) following infection. Furthermore, accumulating evidence indicates that physiological responses to hyperthermia impact the tumor microenvironment through temperature-sensitive check-points that regulate tumor vascular perfusion, lymphocyte trafficking, inflammatory cytokine expression, tumor metabolism, and innate and adaptive immune function. Nevertheless, the influence of thermal stimuli on the immune system, particularly the antitum or immune response, remains incompletely understood. In fact, temperature is still rarely considered as a critical variable in experimental immunology. We suggest that more attention should be directed to the role of temperature in the regulation of the immune response and that thermal therapy should be tested in conjunction with immunotherapy as a multi-functional adjuvant that modulates the dynamics of the tumor microenvironment.
Collapse
Affiliation(s)
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo NY
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center Durham, NC 27710
| |
Collapse
|
110
|
Foster J, Mauger AR, Chrismas BCR, Thomasson K, Taylor L. Is prostaglandin E2 (PGE2) involved in the thermogenic response to environmental cooling in healthy humans? Med Hypotheses 2015; 85:607-11. [PMID: 26253311 DOI: 10.1016/j.mehy.2015.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 12/12/2022]
Abstract
Prostaglandin E2 (PGE2) is an eicosanoid derived from cyclooxygenase, an enzyme responsible for the cyclisation and oxygenation of arachidonic acid. In response to bacterial infection, PGE2 binds to EP3 receptors on a population of GABAergic neurons in the pre-optic area. Activation of the EP3 receptor decreases the intracellular cyclic adenosine monophosphate (cAMP) concentrations of these neurons, and the resulting dis-inhibition activates spinal motor outputs responsible for shivering thermogenesis, tachycardia, and brown adipose tissue activation. These involuntary responses increase core body temperature to varying degrees depending on the magnitude of infection; an immune response which is crucial for the survival of the host. However, evidence in animal and human models, primarily through the use of cyclooxygenase inhibitors (which block the production of PGE2), suggests that PGE2 may also be an important molecule for the defence of core temperature against body cooling and cold stress (in the absence of fever). In this paper, evidence within human and animal models is discussed which supports the hypothesis that the eicosanoid PGE2 has a role in maintaining human core temperature during environmental cooling. Given that over-the-counter PGE2 inhibiting drugs [i.e. Non-Steroidal Anti Inflammatory Drugs (NSAIDS)] are frequently used worldwide, it is possible that the use of such medication during environmental cooling could impair one's ability to thermoregulate. Support for such findings could have major implications in the pathology of hypothermia, thus, we suggest that future researchers investigate this specific hypothesis in vivo, using healthy human models. Suggestions for the implementation of such experiments are provided in the present work.
Collapse
Affiliation(s)
- Josh Foster
- Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences, University of Bedfordshire, Bedford, UK
| | - Alexis R Mauger
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Bryna C R Chrismas
- Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences, University of Bedfordshire, Bedford, UK
| | - Katie Thomasson
- Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences, University of Bedfordshire, Bedford, UK
| | - Lee Taylor
- Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences, University of Bedfordshire, Bedford, UK.
| |
Collapse
|
111
|
Eng JWL, Reed CB, Kokolus KM, Repasky EA. Housing temperature influences the pattern of heat shock protein induction in mice following mild whole body hyperthermia. Int J Hyperthermia 2015; 30:540-6. [PMID: 25430986 DOI: 10.3109/02656736.2014.981300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Researchers studying the murine response to stress generally use mice housed under standard, nationally mandated conditions as controls. Few investigators are concerned whether basic physical aspects of mouse housing could be an additional source of stress, capable of influencing the subsequent impact of an experimentally applied stressor. We have recently become aware of the potential for housing conditions to impact important physiological and immunological properties in mice. MATERIALS AND METHODS Here we sought to determine whether housing mice at standard temperature (ST; 22 °C) vs. thermoneutral temperature (TT; 30 °C) influences baseline expression of heat shock proteins (HSPs) and their typical induction following a whole body heating. RESULTS There were no significant differences in baseline expression of HSPs at ST and TT. However, in several cases, the induction of Hsp70, Hsp110 and Hsp90 in tissues of mice maintained at ST was greater than at TT following 6 h of heating (which elevated core body temperature to 39.5 °C). This loss of HSP induction was also seen when mice housed at ST were treated with propranolol, a β-adrenergic receptor antagonist, used clinically to treat hypertension and stress. CONCLUSIONS Taken together, these data show that housing temperature significantly influences the expression of HSPs in mice after whole body heating and thus should be considered when stress responses are studied in mice.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York , USA
| | | | | | | |
Collapse
|
112
|
Hawkins P, Armstrong R, Boden T, Garside P, Knight K, Lilley E, Seed M, Wilkinson M, Williams RO. Applying refinement to the use of mice and rats in rheumatoid arthritis research. Inflammopharmacology 2015; 23:131-50. [PMID: 26168847 PMCID: PMC4508365 DOI: 10.1007/s10787-015-0241-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research.
Collapse
Affiliation(s)
- Penny Hawkins
- Research Animals Department, RSPCA, Wilberforce Way, Southwater, West Sussex, RH13 9RS, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
BACKGROUND Current understanding of the onset of inflammatory bowel diseases relies heavily on data derived from animal models of colitis. However, the omission of information concerning the method used makes the interpretation of studies difficult or impossible. We assessed the current quality of methods reporting in 4 animal models of colitis that are used to inform clinical research into inflammatory bowel disease: dextran sulfate sodium, interleukin-10, CD45RB T cell transfer, and 2,4,6-trinitrobenzene sulfonic acid (TNBS). METHODS We performed a systematic review based on PRISMA guidelines, using a PubMed search (2000-2014) to obtain publications that used a microarray to describe gene expression in colitic tissue. Methods reporting quality was scored against a checklist of essential and desirable criteria. RESULTS Fifty-eight articles were identified and included in this review (29 dextran sulfate sodium, 15 interleukin-10, 5 T cell transfer, and 16 TNBS; some articles use more than 1 colitis model). A mean of 81.7% (SD = ±7.038) of criteria were reported across all models. Only 1 of the 58 articles reported all essential criteria on our checklist. Animal age, gender, housing conditions, and mortality/morbidity were all poorly reported. CONCLUSIONS Failure to include all essential criteria is a cause for concern; this failure can have large impact on the quality and replicability of published colitis experiments. We recommend adoption of our checklist as a requirement for publication to improve the quality, comparability, and standardization of colitis studies and will make interpretation and translation of data to human disease more reliable.
Collapse
|
114
|
Dudele A, Rasmussen GM, Mayntz D, Malte H, Lund S, Wang T. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice. Physiol Rep 2015; 3:3/5/e12396. [PMID: 25991720 PMCID: PMC4463826 DOI: 10.14814/phy2.12396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific.
Collapse
Affiliation(s)
- Anete Dudele
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Gitte Marie Rasmussen
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - David Mayntz
- Research and Innovation, VIA University College, Aarhus, Denmark
| | - Hans Malte
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Sten Lund
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tobias Wang
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
115
|
Menalled L, Brunner D. Animal models of Huntington's disease for translation to the clinic: best practices. Mov Disord 2015; 29:1375-90. [PMID: 25216369 DOI: 10.1002/mds.26006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
Mouse models of Huntington's disease (HD) recapitulate many aspects of the human disease. These genetically modified mice are powerful tools that are used not only to examine the pathogenesis of the disease, but also to assess the efficacy of potential new treatments. Disappointingly, in the past few years we have seen the success of potential therapies in animal studies, subsequently followed by failure in clinical trials. We discuss here a number of factors that influence the translatability of findings from the preclinical to the clinical realm. In particular, we discuss issues related to sample size, reporting of information regarding experimental protocols and mouse models, assignment to experimental groups, incorporation of cognitive measures for early phases of the disease, environmental enrichment, surrogate measures for survival, and the use of more than one HD mouse model. Although it is reasonable to question the appropriateness of the animal models used, we argue that it is more parsimonious to assume that improvements in experimental design and publication of negative results will lead to improved translatability to the clinic and insights about HD pathophysiology.
Collapse
|
116
|
Maher RL, Barbash SM, Lynch DV, Swoap SJ. Group housing and nest building only slightly ameliorate the cold stress of typical housing in female C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1070-9. [PMID: 25876655 DOI: 10.1152/ajpregu.00407.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/09/2015] [Indexed: 12/23/2022]
Abstract
Huddling and nest building are two methods of behavioral thermoregulation used by mice under cold stress. In the laboratory, mice are typically housed at an ambient temperature (Ta) of 20°C, well below the lower end of their thermoneutral zone. We tested the hypothesis that the thermoregulatory benefits of huddling and nest building at a Ta of 20°C would ameliorate this cold stress compared with being singly housed at 20°C as assessed by heart rate (HR), blood pressure (BP), triiodothyronine (T3), brown adipose (BAT) expression of Elovl3 mRNA, and BAT lipid content. A series of experiments using C57BL/6J female mice exposed to 20°C in the presence or absence of nesting material and/or cage mates was used to test this hypothesis. Mice showed large differences in HR, BP, shivering, and core body temperature (Tb) when comparing singly housed mice at 20°C and 30°C, but only a modest reduction in HR with the inclusion of cage mates or bedding. However, group housing and/or nesting at 20°C decreased T3 levels compared with singly housed mice at 20°C. Singly housed mice at 20°C had a 22-fold higher level of BAT Elovl3 mRNA expression and a significantly lower triacylglycerol (TAG) content of BAT compared with singly housed mice at 30°C. Group housing at 20°C led to blunted changes in both Elovl3 mRNA and TAG levels. These findings suggest that huddling and nest building have a limited effect to ameliorate the cold stress associated with housing at 20°C.
Collapse
Affiliation(s)
- Rebecca L Maher
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Shayna M Barbash
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Daniel V Lynch
- Department of Biology, Williams College, Williamstown, Massachusetts
| | - Steven J Swoap
- Department of Biology, Williams College, Williamstown, Massachusetts
| |
Collapse
|
117
|
Vollmer LL, Schmeltzer SN, Ahlbrand R, Sah R. A potential role for the acid-sensing T cell death associated gene-8 (TDAG8) receptor in depression-like behavior. Physiol Behav 2015; 150:78-82. [PMID: 25770699 DOI: 10.1016/j.physbeh.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 01/13/2023]
Abstract
Inflammation has been suggested to contribute to the pathophysiology of depression. The T cell death associated gene-8 (TDAG8) receptor is a proton-sensing G-protein-coupled receptor (GPCR) expressed on immune cells in both the CNS and periphery. Previous work has shown modulation of inflammation by the TDAG8 receptor, with pro-inflammatory responses reported in the central nervous system (CNS). Given the link between depression and inflammation, the aim of the present study was to investigate the role of TDAG8 in depression relevant behaviors. Mice deficient in TDAG8 (TDAG8(-/-)) were tested in the forced swim test (FST) and sucrose preference paradigm. TDAG8 deficiency resulted in significant attenuation of immobility in the FST as compared to wild type TDAG8 (TDAG8(+/+)) mice. These differences were not due to alterations in motor activity evoked by TDAG8 deficiency as TDAG8(+/+) and TDAG8(-/-) mice displayed similar activity in the home cage or in a novel context. TDAG8(-/-) mice showed significantly higher consumption of sucrose compared to wild type mice although sucrose preference was not significantly different between genotypes. Collectively, our results support the involvement of the TDAG8 receptor in behavioral response relevant to depression. Further investigation is required to validate TDAG8 as a novel target linking inflammation and depression.
Collapse
Affiliation(s)
- Lauren Larke Vollmer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, United States.
| | - Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, United States
| | - Rebecca Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, United States; VA Medical Centre, Cincinnati, OH 45237, United States
| |
Collapse
|
118
|
Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat Commun 2015; 6:6426. [PMID: 25756236 DOI: 10.1038/ncomms7426] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/28/2015] [Indexed: 01/04/2023] Open
Abstract
Cancer research relies heavily on murine models for evaluating the anti-tumour efficacy of therapies. Here we show that the sensitivity of several pancreatic tumour models to cytotoxic therapies is significantly increased when mice are housed at a thermoneutral ambient temperature of 30 °C compared with the standard temperature of 22 °C. Further, we find that baseline levels of norepinephrine as well as the levels of several anti-apoptotic molecules are elevated in tumours from mice housed at 22 °C. The sensitivity of tumours to cytotoxic therapies is also enhanced by administering a β-adrenergic receptor antagonist to mice housed at 22 °C. These data demonstrate that standard housing causes a degree of cold stress sufficient to impact the signalling pathways related to tumour-cell survival and affect the outcome of pre-clinical experiments. Furthermore, these data highlight the significant role of host physiological factors in regulating the sensitivity of tumours to therapy.
Collapse
|
119
|
Abstract
Many preclinical studies in critical care medicine and related disciplines rely on hypothesis-driven research in mice. The underlying premise posits that mice sufficiently emulate numerous pathophysiologic alterations produced by trauma/sepsis and can serve as an experimental platform for answering clinically relevant questions. Recently, the lay press severely criticized the translational relevance of mouse models in critical care medicine. A series of provocative editorials were elicited by a highly publicized research report in the Proceedings of the National Academy of Sciences (PNAS; February 2013), which identified an unrecognized gene expression profile mismatch between human and murine leukocytes following burn/trauma/endotoxemia. Based on their data, the authors concluded that mouse models of trauma/inflammation are unsuitable for studying corresponding human conditions. We believe this conclusion was not justified. In conjunction with resulting negative commentary in the popular press, it can seriously jeopardize future basic research in critical care medicine. We will address some limitations of that PNAS report to provide a framework for discussing its conclusions and attempt to present a balanced summary of strengths/weaknesses of use of mouse models. While many investigators agree that animal research is a central component for improved patient outcomes, it is important to acknowledge known limitations in clinical translation from mouse to man. The scientific community is responsible to discuss valid limitations without overinterpretation. Hopefully, a balanced view of the strengths/weaknesses of using animals for trauma/endotoxemia/critical care research will not result in hasty discount of the clear need for using animals to advance treatment of critically ill patients.
Collapse
|
120
|
Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes (Lond) 2014; 39:791-7. [PMID: 25349057 DOI: 10.1038/ijo.2014.187] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Obesity-related cancers represent public health burdens of the first order. Nevertheless, suitable mouse models to unravel molecular mechanisms linking obesity to human cancer are still not available. One translational model is the immunocompromised Foxn1 (winged-helix/forkead transcription factor) nude mouse transplanted with human tumor xenografts. However, most xenograft studies are conducted in nude mice on an in-bred BALB/c background that entails protection from diet-induced obesity. To overcome such resistance to obesity and its sequelae, we here propose the dual strategy of utilizing Foxn1 nude mice on a C57BL/6 background and housing them at their thermoneutral zone. METHODS C57BL/6 nude and corresponding wild-type mice, housed at 23 or 33 °C, were subjected to either low-fat diet or high-fat diet (HFD). Energy expenditure, locomotor activity, body core temperature, respiratory quotient as well as food and water intake were analyzed using indirect calorimetry. Immune function at different housing temperatures was assessed by using an in vivo cytokine capture assay. RESULTS Our data clearly demonstrate that conventional housing protects C57BL/6 nude mice from HFD-induced obesity, potentially via increased energy expenditure. In contrast, HFD-fed C57BL/6 nude mice housed at thermoneutral conditions develop adiposity, increased hepatic triglyceride accumulation, adipose tissue inflammation and glucose intolerance. Moreover, increased circulating levels of lipopolysaccharide-driven cytokines suggest a greatly enhanced immune response in C57BL/6 nude mice housed at thermoneutrality. CONCLUSION Our data reveals mild cold stress as a major modulator for energy and body weight homeostasis as well as immune function in C57BL/6 nude mice. Adjusting housing temperatures to the thermoneutral zone may ultimately be key to successfully study growth and progression of human tumors in a diet-induced obese environment.
Collapse
|
121
|
Eng JWL, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 2014; 63:1115-28. [PMID: 25307152 DOI: 10.1007/s00262-014-1617-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/27/2014] [Indexed: 02/06/2023]
Abstract
Long conserved mechanisms maintain homeostasis in living creatures in response to a variety of stresses. However, continuous exposure to stress can result in unabated production of stress hormones, especially catecholamines, which can have detrimental health effects. While the long-term effects of chronic stress have well-known physiological consequences, recent discoveries have revealed that stress may affect therapeutic efficacy in cancer. Growing epidemiological evidence reveals strong correlations between progression-free and long-term survival and β-blocker usage in cancer patients. In this review, we summarize the current understanding of how the catecholamines, epinephrine and norepinephrine, affect cancer cell survival and tumor progression. We also highlight new data exploring the potential contributions of stress to immunosuppression in the tumor microenvironment and the implications of these findings for the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
Sepsis, a common and potentially fatal systemic illness, is triggered by microbial infection and often leads to impaired function of the lungs, kidneys or other vital organs. Since the early 1980s, a large number of therapeutic agents for the treatment of sepsis have been evaluated in randomized controlled clinical trials. With few exceptions, the results from these trials have been disappointing, and no specific therapeutic agent is currently approved for the treatment of sepsis. To improve upon this dismal record, investigators will need to identify more suitable therapeutic targets, improve their approaches for selecting candidate compounds for clinical development and adopt better designs for clinical trials.
Collapse
Affiliation(s)
- Mitchell P Fink
- Departments of Surgery and Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, 10833 Le Conte Avenue, 72-160 CHS, Los Angeles California 90095, USA
| | - H Shaw Warren
- Infectious Disease Units, Departments of Pediatrics and Medicine, Massachusetts General Hospital East, 149 13th Street, Fifth Floor, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
123
|
Kasza I, Suh Y, Wollny D, Clark RJ, Roopra A, Colman RJ, MacDougald OA, Shedd TA, Nelson DW, Yen MI, Yen CLE, Alexander CM. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet 2014; 10:e1004514. [PMID: 25101993 PMCID: PMC4125098 DOI: 10.1371/journal.pgen.1004514] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology. All mammals strive to maintain a fixed body temperature, and do so using a remarkable array of different strategies, which vary depending upon the degree of cold challenge. Physiologists many decades ago observed that a fat layer right underneath the epidermis (and above the dermal muscle layer) thickens in response to colder ambient temperatures. This “intradermal fat” provided insulation within days of climate changes. We have found that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for intradermal fat expansion in response to cold exposure. This is a highly specific phenotype not shared by other adipocytes. When intradermal fat is absent, mice do not adapt normally to cold stress, and show altered systemic physiologies, including increased brown adipose tissue thermogenesis and hyper-activation of a stress checkpoint (p38α), designed to protect the body against mutagenic and oxidative stressors. The phenotypes associated with loss of Sdc1 function are reversed when mice are housed in warm temperatures, where defense of body temperature is not required. This study is the first to show that intradermal fat can be genetically regulated, with systemic effects on physiology.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yewseok Suh
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Damian Wollny
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rod J. Clark
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy A. Shedd
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David W. Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
124
|
Messmer MN, Kokolus KM, Eng JWL, Abrams SI, Repasky EA. Mild cold-stress depresses immune responses: Implications for cancer models involving laboratory mice. Bioessays 2014; 36:884-91. [PMID: 25066924 DOI: 10.1002/bies.201400066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physiologically accurate mouse models of cancer are critical in the pre-clinical development of novel cancer therapies. However, current standardized animal-housing temperatures elicit chronic cold-associated stress in mice, which is further increased in the presence of tumor. This cold-stress significantly impacts experimental outcomes. Data from our lab and others suggest standard housing fundamentally alters murine physiology, and this can produce altered immune baselines in tumor and other disease models. Researchers may thus underestimate the efficacy of therapies that are benefitted by immune responses. A potential mediator, norepinephrine, also underlies stress pathways common in mice and humans. Therefore, research into mechanisms connecting cold-stress and norepinephrine signaling with immune depression in mice could highlight new combination therapies for humans to simultaneously target stress while stimulating anti-tumor immunity.
Collapse
Affiliation(s)
- Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
125
|
Goldgof M, Xiao C, Chanturiya T, Jou W, Gavrilova O, Reitman ML. The chemical uncoupler 2,4-dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality. J Biol Chem 2014; 289:19341-50. [PMID: 24872412 DOI: 10.1074/jbc.m114.568204] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The chemical uncoupler 2,4-dinitrophenol (DNP) was an effective and widely used weight loss drug in the early 1930s. However, the physiology of DNP has not been studied in detail because toxicity, including hyperthermia and death, reduced interest in the clinical use of chemical uncouplers. To investigate DNP action, mice fed a high fat diet and housed at 30 °C (to minimize facultative thermogenesis) were treated with 800 mg/liter DNP in drinking water. DNP treatment increased energy expenditure by ∼ 17%, but did not change food intake. DNP-treated mice weighed 26% less than controls after 2 months of treatment due to decreased fat mass, without a change in lean mass. DNP improved glucose tolerance and reduced hepatic steatosis without observed toxicity. DNP treatment also reduced circulating T3 and T4 levels, Ucp1 expression, and brown adipose tissue activity, demonstrating that DNP-mediated heat generation substituted for brown adipose tissue thermogenesis. At 22 °C, a typical vivarium temperature that is below thermoneutrality, DNP treatment had no effect on body weight, adiposity, or glucose homeostasis. Thus, environmental temperature should be considered when assessing an anti-obesity drug in mice, particularly agents acting on energy expenditure. Furthermore, the beneficial effects of DNP suggest that chemical uncouplers deserve further investigation for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
| | - Cuiying Xiao
- From the Diabetes, Endocrinology, and Obesity Branch and
| | - Tatyana Chanturiya
- the Mouse Metabolism Core, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - William Jou
- the Mouse Metabolism Core, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Oksana Gavrilova
- the Mouse Metabolism Core, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Marc L Reitman
- From the Diabetes, Endocrinology, and Obesity Branch and
| |
Collapse
|
126
|
Fink MP. HMGB1 as a drug target in staphylococcal pneumonia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:131. [PMID: 25029244 PMCID: PMC4057072 DOI: 10.1186/cc13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High mobility group box (HMGB)1 is a small DNA-binding protein. In the nucleus, HMGB1 plays a role in gene expression and DNA replication. When it is released or secreted into the extracellular milieu, HMGB1 functions as a pro-inflammatory cytokine-like mediator. Recently reported data support the view that treatment with a neutralizing anti-HMGB1 antibody ameliorated pulmonary damage in a murine model of pneumonia caused by a pathogenic strain of Staphylococcus aureus. These findings suggest that HMGB1 may be an important drug target as scientists, clinical investigators and pharmaceutical companies seek to develop better agents for the treatment of staphylococcal pneumonia. Unfortunately, however, encouraging results from murine models of human disease often fail to translate into positive findings in clinical trials. Thus, before moving from pre-clinical into clinical studies, it may be prudent to validate and extend the recent experimental findings by carrying out additional studies, using a large animal model of pneumonia.
Collapse
|
127
|
Kokolus KM, Spangler HM, Povinelli BJ, Farren MR, Lee KP, Repasky EA. Stressful presentations: mild cold stress in laboratory mice influences phenotype of dendritic cells in naïve and tumor-bearing mice. Front Immunol 2014; 5:23. [PMID: 24575090 PMCID: PMC3918933 DOI: 10.3389/fimmu.2014.00023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 01/07/2023] Open
Abstract
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.
Collapse
Affiliation(s)
- Kathleen M Kokolus
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Haley M Spangler
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | | | - Matthew R Farren
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | | |
Collapse
|
128
|
Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci U S A 2013; 110:20176-81. [PMID: 24248371 DOI: 10.1073/pnas.1304291110] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We show here that fundamental aspects of antitumor immunity in mice are significantly influenced by ambient housing temperature. Standard housing temperature for laboratory mice in research facilities is mandated to be between 20-26 °C; however, these subthermoneutral temperatures cause mild chronic cold stress, activating thermogenesis to maintain normal body temperature. When stress is alleviated by housing at thermoneutral ambient temperature (30-31 °C), we observe a striking reduction in tumor formation, growth rate and metastasis. This improved control of tumor growth is dependent upon the adaptive immune system. We observe significantly increased numbers of antigen-specific CD8(+) T lymphocytes and CD8(+) T cells with an activated phenotype in the tumor microenvironment at thermoneutrality. At the same time there is a significant reduction in numbers of immunosuppressive MDSCs and regulatory T lymphocytes. Notably, in temperature preference studies, tumor-bearing mice select a higher ambient temperature than non-tumor-bearing mice, suggesting that tumor-bearing mice experience a greater degree of cold-stress. Overall, our data raise the hypothesis that suppression of antitumor immunity is an outcome of cold stress-induced thermogenesis. Therefore, the common approach of studying immunity against tumors in mice housed only at standard room temperature may be limiting our understanding of the full potential of the antitumor immune response.
Collapse
|
129
|
Hoevenaars FPM, Bekkenkamp-Grovenstein M, Janssen RJRJ, Heil SG, Bunschoten A, Hoek-van den Hil EF, Snaas-Alders S, Teerds K, van Schothorst EM, Keijer J. Thermoneutrality results in prominent diet-induced body weight differences in C57BL/6J mice, not paralleled by diet-induced metabolic differences. Mol Nutr Food Res 2013; 58:799-807. [PMID: 24243645 DOI: 10.1002/mnfr.201300285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022]
Abstract
SCOPE Mice are usually housed at 20-24 °C. At thermoneutrality (28 °C) larger diet-induced differences in obesity are seen. We tested whether this leads to large differences in metabolic health parameters. METHODS AND RESULTS We performed a 14-wk dietary intervention in C57BL/6J mice at 28 °C and assessed adiposity and metabolic health parameters for a semipurified low fat (10 energy%) diet and a moderate high fat (30 energy%) diet. A large and significant diet-induced differential increase in body weight, adipose tissue mass, adipocyte size, serum leptin level, and, to some extent, cholesterol level was observed. No adipose tissue inflammation was seen. No differential effect of the diets on serum glucose, free fatty acids, triacylglycerides, insulin, adiponectin, resistin, PAI-1, MMP-9, sVCAM-1, sICAM-1, sE-selectin, IL-6, ApoE, fibrinogen levels, or HOMA index was observed. Also in muscle no differential effect on mitochondrial density, mitochondrial respiratory control ratio, or mRNA expression of metabolic genes was found. Finally, in liver no differential effect on weight, triacylglycerides level, aconitase/citrate synthase activity ratio was seen. CONCLUSION Low fat diet and moderate high fat diet induce prominent body weight differences at thermoneutrality, which is not paralleled by metabolic differences. Our data rather suggest that thermoneutrality alters metabolic homeostasis.
Collapse
|
130
|
Abstract
Molecular mechanisms guiding naïve T helper cell differentiation into functionally specified effector cells are intensively studied. The rapidly growing knowledge is mainly achieved by using mouse cells or disease models. Comparatively exiguous data is gathered from human primary cells although they provide the "ultimate model" for immunology in man, have been exploited in many original studies paving the way for the field, and can be analyzed more easily than ever with the help of modern technology and methods. As usage of mouse models is unavoidable in translational research, parallel human and mouse studies should be performed to assure the relevancy of the hypothesis created during the basic research. In this review, we give an overview on the status of the studies conducted with human primary cells aiming at elucidating the mechanisms instructing the priming of T helper cell subtypes. The special emphasis is given to the recent high-throughput studies. In addition, by comparing the human and mouse studies we intend to point out the regulatory mechanisms and questions which are lacking examination with human primary cells.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | | |
Collapse
|
131
|
O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in tuberculosis. Annu Rev Immunol 2013; 31:475-527. [PMID: 23516984 DOI: 10.1146/annurev-immunol-032712-095939] [Citation(s) in RCA: 952] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are 9 million cases of active tuberculosis reported annually; however, an estimated one-third of the world's population is infected with Mycobacterium tuberculosis and remains asymptomatic. Of these latent individuals, only 5-10% will develop active tuberculosis disease in their lifetime. CD4(+) T cells, as well as the cytokines IL-12, IFN-γ, and TNF, are critical in the control of Mycobacterium tuberculosis infection, but the host factors that determine why some individuals are protected from infection while others go on to develop disease are unclear. Genetic factors of the host and of the pathogen itself may be associated with an increased risk of patients developing active tuberculosis. This review aims to summarize what we know about the immune response in tuberculosis, in human disease, and in a range of experimental models, all of which are essential to advancing our mechanistic knowledge base of the host-pathogen interactions that influence disease outcome.
Collapse
Affiliation(s)
- Anne O'Garra
- Division of Immunoregulation, MRC National Institute for Medical Research, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
132
|
Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 190:6329-39. [PMID: 23686480 DOI: 10.4049/jimmunol.1300100] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that is the cause of a severe pneumonia in humans called Legionnaires' disease. A key feature of L. pneumophila pathogenesis is the rapid influx of neutrophils into the lungs, which occurs in response to signaling via the IL-1R. Two distinct cytokines, IL-1α and IL-1β, can stimulate the type I IL-1R. IL-1β is produced upon activation of cytosolic sensors called inflammasomes that detect L. pneumophila in vitro and in vivo. Surprisingly, we find no essential role for IL-1β in neutrophil recruitment to the lungs in response to L. pneumophila. Instead, we show that IL-1α is a critical initiator of neutrophil recruitment to the lungs of L. pneumophila-infected mice. We find that neutrophil recruitment in response to virulent L. pneumophila requires the production of IL-1α specifically by hematopoietic cells. In contrast to IL-1β, the innate signaling pathways that lead to the production of IL-1α in response to L. pneumophila remain poorly defined. In particular, although we confirm a role for inflammasomes for initiation of IL-1β signaling in vivo, we find no essential role for inflammasomes in production of IL-1α. Instead, we propose that a novel host pathway, perhaps involving inhibition of host protein synthesis, is responsible for IL-1α production in response to virulent L. pneumophila. Our results establish IL-1α as a critical initiator of the inflammatory response to L. pneumophila in vivo and point to an important role for IL-1α in providing an alternative to inflammasome-mediated immune responses in vivo.
Collapse
Affiliation(s)
- Kevin C Barry
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
133
|
Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice. Mol Metab 2013; 2:171-83. [PMID: 24049732 DOI: 10.1016/j.molmet.2013.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 12/26/2022] Open
Abstract
Alterations in the gut microbiota have been proposed to modify the development and maintenance of obesity and its sequelae. Definition of underlying mechanisms has lagged, although the ability of commensal gut microbes to drive pathways involved in inflammation and metabolism has generated compelling, testable hypotheses. We studied C57BL/6 mice from two vendors that differ in their obesogenic response and in their colonization by specific members of the gut microbiota having well-described roles in regulating gut immune responses. We confirmed the presence of robust differences in weight gain in mice from these different vendors during high fat diet stress. However, neither specific, highly divergent members of the gut microbiota (Lactobacillus murinus, segmented filamentous bacteria) nor the horizontally transmissible gut microbiota were found to be responsible. Constitutive differences in locomotor activity were observed, however. These data underscore the importance of selecting appropriate controls in this widely used model of human obesity.
Collapse
|
134
|
Diabetic cardiac autonomic neuropathy: insights from animal models. Auton Neurosci 2013; 177:74-80. [PMID: 23562143 DOI: 10.1016/j.autneu.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022]
Abstract
Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used.
Collapse
|
135
|
Speakman JR. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations. Front Physiol 2013; 4:34. [PMID: 23504620 PMCID: PMC3596737 DOI: 10.3389/fphys.2013.00034] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
The mouse is one of the most important model organisms for understanding human genetic function and disease. This includes characterization of the factors that influence energy expenditure and dysregulation of energy balance leading to obesity and its sequelae. Measuring energy metabolism in the mouse presents a challenge because the animals are small, and in this respect it presents similar challenges to measuring energy demands in many other species of small mammal. This paper considers some theoretical, practical, and analytical considerations to be considered when measuring energy expenditure in mice. Theoretically total daily energy expenditure is comprised of several different components: basal or resting expenditure, physical activity, thermoregulation, and the thermic effect of food. Energy expenditure in mice is normally measured using open flow indirect calorimetry apparatus. Two types of system are available – one of which involves a single small Spartan chamber linked to a single analyzer, which is ideal for measuring the individual components of energy demand. The other type of system involves a large chamber which mimics the home cage environment and is generally configured with several chambers/analyzer. These latter systems are ideal for measuring total daily energy expenditure but at present do not allow accurate decomposition of the total expenditure into its components. The greatest analytical challenge for mouse expenditure data is how to account for body size differences between individuals. This has been a matter of some discussion for at least 120 years. The statistically most appropriate approach is to use analysis of covariance with individual aspects of body composition as independent predictors.
Collapse
Affiliation(s)
- John R Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing, China ; Institute of Biological and Environmental Sciences, University of Aberdeen Aberdeen, Scotland, UK
| |
Collapse
|
136
|
Jun JC, Shin MK, Yao Q, Devera R, Fonti-Bevans S, Polotsky VY. Thermoneutrality modifies the impact of hypoxia on lipid metabolism. Am J Physiol Endocrinol Metab 2013; 304:E424-35. [PMID: 23249698 PMCID: PMC3566502 DOI: 10.1152/ajpendo.00515.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia has been shown to rapidly increase triglycerides in mice by decreasing plasma lipoprotein clearance. However, the usual temperature of hypoxic exposure is below thermoneutrality for mice, which may increase thermogenesis and energy requirements, resulting in higher tissue lipid uptake. We hypothesize that decreased lipid clearance and ensuing hyperlipidemia are caused by hypoxic suppression of metabolism at cold temperatures and, therefore, would not occur at thermoneutrality. Twelve-week-old, male C57BL6/J mice were exposed to 6 h of 10% O₂ at the usual temperature (22°C) or thermoneutrality (30°C). Acclimation to 22°C increased lipid uptake in the heart, lungs, and brown adipose tissue, resulting in lower plasma triglyceride and cholesterol levels. At this temperature, hypoxia attenuated lipid uptake in most tissues, thereby raising plasma triglycerides and LDL cholesterol. Thermoneutrality decreased tissue lipid uptake, and hypoxia did not cause a further reduction in lipid uptake in any organs. Consequently, hypoxia at thermoneutrality did not affect plasma triglyceride levels. Unexpectedly, plasma HDL cholesterol increased. The effect of hypoxia on white adipose tissue lipolysis was also modified by temperature. Independent of temperature, hypoxia increased heart rate and glucose and decreased activity, body temperature, and glucose sensitivity. Our study underscores the importance of ambient temperature for hypoxia research, especially in studies of lipid metabolism.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
137
|
|
138
|
Speakman JR, Keijer J. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab 2012; 2:5-9. [PMID: 24024125 DOI: 10.1016/j.molmet.2012.10.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 11/30/2022] Open
Abstract
It has been argued that mice should be housed at 30 °C to best mimic the thermal conditions experienced by humans, and that the current practice of housing mice at 20-22 °C impairs the suitability of mice as a model for human physiology and disease. In the current paper we challenge this notion. First, we show that humans routinely occupy environments about 3 °C below their lower critical temperature (T lc), which when lightly clothed is about 23 °C. Second, we review the data for the T lc of mice. Mouse T lc is dependent on body weight and about 26-28 °C for adult mice weighing >25 g. The equivalent temperature to that normally experienced by humans for most single housed adult mice is therefore 23-25 °C. Group housing or providing the mice with bedding and nesting material might lower this to about 20-22 °C, close to current standard practice.
Collapse
Affiliation(s)
- John R Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, People's Republic of China ; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | | |
Collapse
|
139
|
Ravussin Y, LeDuc CA, Watanabe K, Leibel RL. Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr Comp Physiol 2012; 303:R438-48. [PMID: 22761182 DOI: 10.1152/ajpregu.00092.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed previously that, at ambient room temperature (22°C), mice maintained at 20% below their initial body weight by calorie restriction expend energy at a rate below that which can be accounted for by the decrease of fat and fat-free mass. Food-restricted rodents may become torpid at subthermoneutral temperatures, a possible confounding factor when using mice as human models in obesity research. We examined the bioenergetic, hormonal, and behavioral responses to maintenance of a 20% body weight reduction in singly housed C57BL/6J +/+ and Lep(ob) mice housed at both 22°C and 30°C. Weight-reduced high-fat-fed diet mice (HFD-WR) showed similar quantitative reductions in energy expenditure-adjusted for body mass and composition-at both 22°C and 30°C: -1.4 kcal/24 h and -1.6 kcal/24 h below predicted, respectively, and neither group entered torpor. In contrast, weight-reduced Lep(ob) mice (OB-WR) housed at 22°C became torpid in the late lights-off period (0200-0500) but did not when housed at 30°C. These studies indicate that mice with an intact leptin axis display similar decreases in "absolute" energy expenditure in response to weight reduction at both 22°C and 30°C ambient temperature. More importantly, the "percent" decrease in total energy expenditure observed in the HFD-WR compared with AL mice is much greater at 30°C (-19%) than at 22°C (-10%). Basal energy expenditure demands are ∼45% lower in mice housed at 30°C vs. 22°C, since the mice housed at thermoneutrality do not allocate extra energy for heat production. The higher total energy expenditure of mice housed at 22°C due to these increased thermogenic demands may mask physiologically relevant changes in energy expenditure showing that ambient temperature must be carefully considered when quantifying energy metabolism in both rodents and humans.
Collapse
Affiliation(s)
- Yann Ravussin
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | | | |
Collapse
|
140
|
Karp CL. Unstressing intemperate models: how cold stress undermines mouse modeling. J Biophys Biochem Cytol 2012. [DOI: 10.1083/jcb1976oia9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|