101
|
Abstract
Mass spectrometry imaging (MSI) is a label-free molecular imaging technique allowing an untargeted detection of a broad range of biomolecules and xenobiotics. MSI enables imaging of the spatial distribution of proteins, peptides, lipids and metabolites from a wide range of samples. To date, this technique is commonly applied to tissue sections in cancer diagnostics and biomarker development, but also molecular histology in general. Advances in the methodology and bioinformatics improved the resolution of MS images below the single cell level and increased the flexibility of the workflow. However, MSI-based research in virology is just starting to gain momentum and its full potential has not been exploited yet. In this review, we discuss the main applications of MSI in virology. We review important aspects of matrix-assisted laser desorption/ionization (MALDI) MSI, the most widely used MSI technique in virology. In addition, we summarize relevant literature on MSI studies that aim to unravel virus-host interactions and virus pathogenesis, to elucidate antiviral drug kinetics and to improve current viral disease diagnostics. Collectively, these studies strongly improve our general understanding of virus-induced changes in the proteome, metabolome and metabolite distribution in host tissues of humans, animals and plants upon infection. Furthermore, latest MSI research provided important insights into the drug distribution and distribution kinetics, especially in antiretroviral research. Finally, MSI-based investigations of oncogenic viruses greatly increased our knowledge on tumor mass signatures and facilitated the identification of cancer biomarkers.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
102
|
Cui X, Zhou R, Huang C, Zhang R, Wang J, Zhang Y, Ding J, Li X, Zhou J, Cen S. Identification of Theaflavin-3,3'-Digallate as a Novel Zika Virus Protease Inhibitor. Front Pharmacol 2020; 11:514313. [PMID: 33192499 PMCID: PMC7609463 DOI: 10.3389/fphar.2020.514313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence indicates that Zika virus (ZIKV) is closely related to neurological disorders such as microcephaly and Guillain-Barré syndrome. There are currently no effective vaccines and FDA-approved inhibitors against ZIKV infection. The flaviviral heterodimeric serine protease NS2B-NS3 plays an essential role in ZIKV maturation and replication, thus becoming a promising target in anti-ZIKV therapy. Herein, we developed a fluorescence-based screening assay to search for inhibitors targeting the ZIKV NS2B-NS3 protease (ZIKVpro), and identified theaflavin-3,3’-digallate (ZP10), a natural active compound derived from black tea, as a potent ZIKV protease inhibitor in vitro (IC50 = 2.3 μM). ZP10 exhibited dose-dependent inhibitory effect on ZIKV replication (EC50 = 7.65 μM). Western blot analysis suggested that ZP10 inhibited the cleavage processing of viral polyprotein precursor in cells either infected with ZIKV or expressing minimal self-cleaving proteinase NS2B-3 protease, resulting in inhibition of virus growth. Moreover, ZP10 was showed to directly bind to ZIKVpro, and a docking model further revealed that ZP10 interacted with several critical residues at the proteolytic cavity of the ZIKVpro. This study highlights that ZP10 has anti-ZIKV potency through ZIKVpro inhibition, which indicates its potential application in anti-ZIKV therapy.
Collapse
Affiliation(s)
- Xiangling Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Chenchao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.,CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China.,Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.,CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
103
|
Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207449. [PMID: 33050329 PMCID: PMC7589928 DOI: 10.3390/ijms21207449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumors remain incurable diseases. Although much effort has been devoted to improving patient outcome, multiple factors such as the high tumor heterogeneity, the strong tumor-induced immunosuppressive microenvironment, and the low mutational burden make the treatment of these tumors especially challenging. Thus, novel therapeutic strategies are urgent. Oncolytic viruses (OVs) are biotherapeutics that have been selected or engineered to infect and selectively kill cancer cells. Increasingly, preclinical and clinical studies demonstrate the ability of OVs to recruit T cells and induce durable immune responses against both virus and tumor, transforming a “cold” tumor microenvironment into a “hot” environment. Besides promising clinical results as a monotherapy, OVs can be powerfully combined with other cancer therapies, helping to overcome critical barriers through the creation of synergistic effects in the fight against brain cancer. Although many questions remain to be answered to fully exploit the therapeutic potential of OVs, oncolytic virotherapy will clearly be part of future treatments for patients with malignant brain tumors.
Collapse
|
104
|
Crane AT, Chrostek MR, Krishna VD, Shiao M, Toman NG, Pearce CM, Tran SK, Sipe CJ, Guo W, Voth JP, Vaid S, Xie H, Lu WC, Swanson W, Grande AW, Schleiss MR, Bierle CJ, Cheeran MCJ, Low WC. Zika virus-based immunotherapy enhances long-term survival of rodents with brain tumors through upregulation of memory T-cells. PLoS One 2020; 15:e0232858. [PMID: 33002018 PMCID: PMC7529292 DOI: 10.1371/journal.pone.0232858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023] Open
Abstract
Zika virus (ZIKV) exhibits a tropism for brain tumor cells and has been used as an oncolytic virus to target brain tumors in mice with modest effects on extending median survival. Recent studies have highlighted the potential for combining virotherapy and immunotherapy to target cancer. We postulated that ZIKV could be used as an adjuvant to enhance the long-term survival of mice with malignant glioblastoma and generate memory T-cells capable of providing long-term immunity against cancer remission. To test this hypothesis mice bearing malignant intracranial GL261 tumors were subcutaneously vaccinated with irradiated GL261 cells previously infected with the ZIKV. Mice also received intracranial injections of live ZIKV, irradiation attenuated ZIKV, or irradiated GL261 cells previously infected with ZIKV. Long-term survivors were rechallenged with a second intracranial tumor to examine their immune response and look for the establishment of protective memory T-cells. Mice with subcutaneous vaccination plus intracranial irradiation attenuated ZIKV or intracranial irradiated GL261 cells previously infected with ZIKV exhibited the greatest extensions to overall survival. Flow cytometry analysis of immune cells within the brains of long-term surviving mice after tumor rechallenge revealed an increase in the number of T-cells, including CD4+ and tissue-resident effector/ effector memory CD4+ T-cells, in comparison to long-term survivors that were mock-rechallenged, and in comparison to naïve untreated mice challenged with intracranial gliomas. These results suggest that ZIKV can serve as an adjuvant to subcutaneous tumor vaccines that enhance long-term survival and generate protective tissue-resident memory CD4+ T-cells.
Collapse
Affiliation(s)
- Andrew T. Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew R. Chrostek
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Nikolas G. Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Clairice M. Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Sarah K. Tran
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Christopher J. Sipe
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Winston Guo
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Joseph P. Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Shivanshi Vaid
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Will Swanson
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Craig J. Bierle
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Maxim C-J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States of America
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
105
|
Fontes-Garfias CR, Baker CK, Shi PY. Reverse genetic approaches for the development of Zika vaccines and therapeutics. Curr Opin Virol 2020; 44:7-15. [PMID: 32563700 PMCID: PMC9373025 DOI: 10.1016/j.coviro.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
In 2015-2016, the little known Zika virus (ZIKV) caused an epidemic, in which it became recognized as a unique human pathogen associated with a range of devastating congenital abnormalities collectively categorized as congenital Zika syndrome (CZS). In adults, the virus can trigger the autoimmune disorder Guillain-Barré syndrome (GBS), characterized by ascending paralysis. In February 2016, the World Health Organization (WHO) declared ZIKV to be a Public Health Emergency of International Concern. The global public health problem prompted academia, industry, and governments worldwide to initiate development of an effective vaccine to prevent another ZIKV epidemic that would put millions at risk. The development of reverse genetic systems for the study and manipulation of RNA viral genomes has revolutionized the field of virology, providing platforms for vaccine and antiviral development. In this review, we discuss the impact of reverse genetic systems on the rapid progress of ZIKV vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
- Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Coleman K Baker
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
106
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
107
|
Kim DS. Cancer stem cell plasticity in glioblastoma multiforme: a perspective on future directions in oncolytic virotherapy. Future Oncol 2020; 16:2251-2264. [PMID: 32744059 DOI: 10.2217/fon-2019-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that a rare population of stem-like cells underpin tumorigenesis. Oncolytic viruses (OVs) demonstrate novel mechanisms of targeting the elusive CSCs with greater selectivity - promising therapeutic potential against solid tumors such as glioblastoma (GBM) that are resistant to conventional treatment. In general, OVs have failed to translate the efficacy from bench to bedside. The success of OVs rely on the hypothesis that eliminating CSCs is key to preventing recurrence. However, newly emerging evidence of CSC plasticity challenge this hypothesis by proposing that the CSC pool can be regenerated from non-CSCs post-treatment. We review this evidence surrounding the CSC hypothesis to propose an original perspective on why several advanced OVs may be failing to reflect their true potential in clinical trials. We argue that preventing non-CSC to CSC dedifferentiation may be critical to achieving long-term treatment efficacy in future OV clinical trials.
Collapse
Affiliation(s)
- David S Kim
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford OX1 1DP, United Kingdom
| |
Collapse
|
108
|
Abstract
OPINION STATEMENT Malignant gliomas remain a challenging cancer to treat due to limitations in both therapeutic and efficacious options. Tumor treating fields (TTFields) have emerged as a novel, locoregional, antineoplastic treatment modality with favorable efficacy and safety being demonstrated in the most aggressive type of malignant gliomas, glioblastoma (GBM). In 2 large randomized, controlled phase 3 trials, the addition of TTFields was associated with increased overall survival when combined with adjuvant temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM (ndGBM) and comparable overall survival compared with standard chemotherapy in patients with recurrent GBM (rGBM). TTFields target cancer cells by several mechanisms of action (MoA) including suppression of proliferation, migration and invasion, disruption of DNA repair and angiogenesis, antimitotic effects, and induction of apoptosis and immunogenic cell death. Having several MoAs makes TTFields an attractive modality to combine with standard, salvage, and novel treatment regimens (e.g., radiotherapy, chemotherapy, and immunotherapy). Treatment within the field of malignant gliomas is evolving to emphasize combinatorial approaches that work synergistically to improve patient outcomes. Here, we review the current use of TTFields in GBM, discuss MOA and treatment delivery, and consider the potential for its wider adoption in other gliomas.
Collapse
|
109
|
Vazquez C, Jurado KA. Playing Favorites: Integrin αvβ5 Mediates Preferential Zika Infection of Neural Stem Cells. Cell Stem Cell 2020; 26:133-135. [PMID: 32032522 DOI: 10.1016/j.stem.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The molecular basis dictating specificity of Zika virus infection in neural stem cells (NSCs) remains elusive. Two recent papers in Cell Stem Cell (Zhu et al., 2020) and Cell Reports (Wang et al., 2020) identify integrin αvβ5 as an internalization factor that increases susceptibility in NSCs and glioblastoma stem cells.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
110
|
Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol 2020; 111:4-14. [PMID: 32561297 DOI: 10.1016/j.semcdb.2020.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
111
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
112
|
Trus I, Berube N, Jiang P, Rak J, Gerdts V, Karniychuk U. Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells. Viruses 2020; 12:v12050579. [PMID: 32466170 PMCID: PMC7290362 DOI: 10.3390/v12050579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
We studied whether cytosine phosphate–guanine (CpG) recoding in a viral genome may provide oncolytic candidates with reduced infection kinetics in nonmalignant brain cells, but with high virulence in glioblastoma stem cells (GSCs). As a model, we used well-characterized CpG-recoded Zika virus vaccine candidates that previously showed genetic stability and safety in animal models. In vitro, one of the CpG-recoded Zika virus variants had reduced infection kinetics in nonmalignant brain cells but high infectivity and oncolytic activity in GSCs as represented by reduced cell proliferation. The recoded virus also efficiently replicated in GSC-derived tumors in ovo with a significant reduction of tumor growth. We also showed that some GSCs may be resistant to Zika virus oncolytic activity, emphasizing the need for personalized oncolytic therapy or a strategy to overcome resistance in GSCs. Collectively, we demonstrated the potential of the CpG recoding approach for oncolytic virus development that encourages further research towards a better understanding of host–tumor–CpG-recoded virus interactions.
Collapse
Affiliation(s)
- Ivan Trus
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
| | - Nathalie Berube
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA;
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, Montreal, QC H3H 2R9, Canada;
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (I.T.); (N.B.); (V.G.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Correspondence:
| |
Collapse
|
113
|
Souza GAPD, Salvador EA, de Oliveira FR, Cotta Malaquias LC, Abrahão JS, Leomil Coelho LF. An in silico integrative protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. Virus Res 2020; 284:197986. [PMID: 32339536 DOI: 10.1016/j.virusres.2020.197986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
The pathogenesis of an emerging virus disease is a difficult task due to lack of scientific data about the emerging virus during outbreak threats. Several biological aspects should be studied faster, such as virus replication and dissemination, immune responses to this emerging virus on susceptible host and specially the virus pathogenesis. Integrative in silico transcriptome analysis is a promising approach for understanding biological events in complex diseases. In this study, we propose an in silico protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. To validate our protocol, the emerging arbovirus Zika virus (ZIKV) was chosen as a target micro-organism. First, an integrative transcriptome data from neural cells infected with ZIKV was used to identify shared differentially expressed genes (DEGs). The DEGs were used to identify the potential candidate genes and pathways in ZIKV pathogenesis through gene enrichment analysis and protein‑protein interaction network construction. Thirty DEGs (24 upregulated and 6 downregulated) were identified in all ZIKV-infected cells, primarily associated with endoplasmic reticulum stress and DNA replication pathways. Some of these genes and pathways had biological functions linked to neurogenesis and/or apoptosis, confirming the potential of this protocol to find key genes and pathways involved on disease pathogenesis. Moreover, the proposed in silico protocol performed anintegrated analysis that is able to predict and identify putative biomarkers from different transcriptome data. These biomarkers could be useful to understand virus disease pathogenesis and also help the identification of candidate antiviral drugs.
Collapse
Affiliation(s)
- Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ezequiel Aparecido Salvador
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Fernanda Roza de Oliveira
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Jonatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
114
|
Wang Q, Yang M, Zhang Y, Zhong L, Zheng X. Novel Combination Oncolytic Adenoviral Gene Therapy Armed with Dm-dNK and CD40L for Breast Cancer. Curr Gene Ther 2020; 19:54-65. [PMID: 30848201 DOI: 10.2174/1566523219666190307094713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Both Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) suicide gene therapy and exogenous CD40 ligand (CD40L)-CD40 interaction in cancer via conditionally replicating adenovirus can selectively kill tumors without damaging normal tissues. OBJECTIVE To further improve the cancer killing effect, we investigated the therapeutic effect of combined cancer gene therapy based on a selective oncolytic adenovirus vector containing Dm-dNK suicide gene and exogenous CD40L on breast carcinoma cells in vitro and in vivo. METHODS A series of conditionally replicating adenoviruses using adenovirus vector P74 were generated: P74-dNK, P74-CD40L (expressing Dm-dNK or CD40L respectively), and P74-dNK-CD40L (expressing combined Dm-dNK and CD40L). Breast cancer cell lines (MDA-MB-231, MCF-7) and non-tumor cell line (MRC5) were treated with adenovirus and cytotoxicity determined by MTT assay, and apoptosis assessed by flow cytometry after 72h. We also assessed in vivo cell killing efficiency using a mouse xenograft model with MDA-MB-231 cells. RESULTS AND DISCUSSION Co-expression of Dm-dNK and CD40L reduced cell proliferation of MDAMB- 231 or MCF7 cancer cells, and induced more apoptosis in TERT and CD40 positive cancer cells, but not normal MRC5 cells. Significant reduction in tumor volume was also seen in combined treatment arms as compared to any single treatment. CONCLUSION Our data suggest enhanced, selective tumor cell killing using combined gene therapy with conditionally replicating adenovirus containing Dm-dNK suicide gene and exogenous CD40 ligation (CD40L-CD40).
Collapse
Affiliation(s)
- Qiuli Wang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Muwen Yang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ye Zhang
- Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Li Zhong
- Hebei University College of Life Sciences, Baoding, Hebei, China.,College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xinyu Zheng
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.,Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
115
|
Zikavirus prME Envelope Pseudotyped Human Immunodeficiency Virus Type-1 as a Novel Tool for Glioblastoma-Directed Virotherapy. Cancers (Basel) 2020; 12:cancers12041000. [PMID: 32325703 PMCID: PMC7226176 DOI: 10.3390/cancers12041000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme is the most lethal type of brain tumor that is not yet curable owing to its frequent resurgence after surgery. Resistance is mainly caused by the presence of a subpopulation of tumor cells, the glioma stem cells (GSCs), which are highly resistant to radiation and chemotherapy. In 2015, Zikavirus (ZIKV)-induced microcephaly emerged in newborns, indicating that ZIKV has a specific neurotropism. Accordingly, an oncolytic tropism for infecting GSCs was demonstrated in a murine tumor model. Like other flaviviruses, ZIKV is enveloped by two proteins, prM and E. The pME expression plasmid along with the HIV-1 vector pNL Luc AM generated prME pseudotyped viral particles. Four different prME envelopes, Z1 to Z4, were cloned, and the corresponding pseudotypes, Z1- to Z4-HIVluc, produced by this two-plasmid system, were tested for entry efficiency using Vero-B4 cells. The most efficient pseudotype, Z1-HIVluc, also infected glioma-derived cell lines U87 and 86HG39. The pseudotype system was then extended by using a three-plasmid system including pME-Z1, the HIV-1 packaging plasmid psPAX2, and the lentiviral vector pLenti-luciferase-P2A-Neo. The corresponding pseudotype, designated Z1-LENTIluc, also infected U87 and 86HG39 cells. Altogether, a pseudotyped virus especially targeting glioma-derived cells might be a promising candidate for a prospective glioblastoma-directed virotherapy.
Collapse
|
116
|
Zhang YN, Wang SB, Song SS, Hu PY, Zhou YC, Mou YP, Mou XZ. Recent advances in targeting cancer stem cells using oncolytic viruses. Biotechnol Lett 2020; 42:865-874. [DOI: 10.1007/s10529-020-02857-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
|
117
|
Kaid C, Madi RADS, Astray R, Goulart E, Caires-Junior LC, Mitsugi TG, Moreno ACR, Castro-Amarante MF, Pereira LR, Porchia BFMM, de Andrade TO, Landini V, Sanches DS, Pires CG, Tanioka RKO, Pereira MCL, Barbosa IN, Massoco CO, Ferreira LCDS, Okamoto OK, Zatz M. Safety, Tumor Reduction, and Clinical Impact of Zika Virus Injection in Dogs with Advanced-Stage Brain Tumors. Mol Ther 2020; 28:1276-1286. [PMID: 32220305 PMCID: PMC7210722 DOI: 10.1016/j.ymthe.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022] Open
Abstract
Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.
Collapse
Affiliation(s)
- Carolini Kaid
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | | | | | - Ernesto Goulart
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Luiz Carlos Caires-Junior
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Thiago Giove Mitsugi
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Ana Carolina Ramos Moreno
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Maria Fernanda Castro-Amarante
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Thais Oliveira de Andrade
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Vivian Landini
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | | | | | | | - Marcia C L Pereira
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Igor Neves Barbosa
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil
| | - Cristina O Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Oswaldo Keith Okamoto
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, São Paulo 05652- 900, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center (HUG-CEL) Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo 055080-090, Brazil.
| |
Collapse
|
118
|
Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med 2020; 14:160-184. [PMID: 32146606 PMCID: PMC7101593 DOI: 10.1007/s11684-020-0750-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
Collapse
|
119
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
120
|
Wang H, Xu T, Huang Q, Jin W, Chen J. Immunotherapy for Malignant Glioma: Current Status and Future Directions. Trends Pharmacol Sci 2020; 41:123-138. [PMID: 31973881 DOI: 10.1016/j.tips.2019.12.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Glioma is the most common intracranial primary malignancy, with limited treatment options and a poor overall survival (OS). Immunotherapy has been used successfully in various cancers, leading to the development of similar therapies that activate the patient's immune system to eliminate glioma. In this review, we introduce the diverse immunotherapeutic approaches available for treating glioma, highlighting the successes and challenges resulting from current clinical trials. Additionally, we emphasize the effect of multiple clinical factors on immunotherapy to help optimize individualized treatment regimens. Finally, we also highlight several novel concepts and technologies that could be used to design new and/or improve existing immunotherapies. Such approaches will delineate a new blueprint for glioma treatment.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Qilin Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China; Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan 430070, PR China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Center for Translational Medicine, The Affiliated Hospital of Guilin Medical University, Guilin 541004, PR China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
121
|
Zhu Z, Mesci P, Bernatchez JA, Gimple RC, Wang X, Schafer ST, Wettersten HI, Beck S, Clark AE, Wu Q, Prager BC, Kim LJY, Dhanwani R, Sharma S, Garancher A, Weis SM, Mack SC, Negraes PD, Trujillo CA, Penalva LO, Feng J, Lan Z, Zhang R, Wessel AW, Dhawan S, Diamond MS, Chen CC, Wechsler-Reya RJ, Gage FH, Hu H, Siqueira-Neto JL, Muotri AR, Cheresh DA, Rich JN. Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin α vβ 5 Axis. Cell Stem Cell 2020; 26:187-204.e10. [PMID: 31956038 DOI: 10.1016/j.stem.2019.11.016] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/10/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
Zika virus (ZIKV) causes microcephaly by killing neural precursor cells (NPCs) and other brain cells. ZIKV also displays therapeutic oncolytic activity against glioblastoma (GBM) stem cells (GSCs). Here we demonstrate that ZIKV preferentially infected and killed GSCs and stem-like cells in medulloblastoma and ependymoma in a SOX2-dependent manner. Targeting SOX2 severely attenuated ZIKV infection, in contrast to AXL. As mechanisms of SOX2-mediated ZIKV infection, we identified inverse expression of antiviral interferon response genes (ISGs) and positive correlation with integrin αv (ITGAV). ZIKV infection was disrupted by genetic targeting of ITGAV or its binding partner ITGB5 and by an antibody specific for integrin αvβ5. ZIKV selectively eliminated GSCs from species-matched human mature cerebral organoids and GBM surgical specimens, which was reversed by integrin αvβ5 inhibition. Collectively, our studies identify integrin αvβ5 as a functional cancer stem cell marker essential for GBM maintenance and ZIKV infection, providing potential brain tumor therapy.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Pinar Mesci
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pediatrics, Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA
| | - Jean A Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xiuxing Wang
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiromi I Wettersten
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sungjun Beck
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alex E Clark
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Briana C Prager
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Leo J Y Kim
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rekha Dhanwani
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sonia Sharma
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Alexandra Garancher
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sara M Weis
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Stephen C Mack
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Priscilla D Negraes
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pediatrics, Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA
| | - Cleber A Trujillo
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pediatrics, Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA
| | - Luiz O Penalva
- Children's Cancer Research Institute - UTHSCSA, San Antonio, TX 78229, USA
| | - Jing Feng
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Zhou Lan
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Rong Zhang
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Alex W Wessel
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - Jair L Siqueira-Neto
- Department of Cellular and Molecular Medicine, Stem Cell Program, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA.
| | - Alysson R Muotri
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Pediatrics, Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA 92307, USA.
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California School of Medicine, San Diego, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
122
|
Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, Li W, Furnari F, Rana TM. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep 2020; 30:969-983.e4. [PMID: 31956073 PMCID: PMC7293422 DOI: 10.1016/j.celrep.2019.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
We perform a CRISPR-Cas9 genome-wide screen in glioblastoma stem cells and identify integrin αvβ5 as an internalization factor for Zika virus (ZIKV). Expression of αvβ5 is correlated with ZIKV susceptibility in various cells and tropism in developing human cerebral cortex. A blocking antibody against integrin αvβ5, but not αvβ3, efficiently inhibits ZIKV infection. ZIKV binds to cells but fails to internalize when treated with integrin αvβ5-blocking antibody. αvβ5 directly binds to ZIKV virions and activates focal adhesion kinase, which is required for ZIKV infection. Finally, αvβ5 blocking antibody or two inhibitors, SB273005 and cilengitide, reduces ZIKV infection and alleviates ZIKV-induced pathology in human neural stem cells and in mouse brain. Altogether, our findings identify integrin αvβ5 as an internalization factor for ZIKV, providing a promising therapeutic target, as well as two drug candidates for prophylactic use or treatments for ZIKV infections. Wang et al. show that Zika virus (ZIKV) uses integrin αvβ5 to infect neural stem cells. ZIKV infection can be inhibited by αvβ5 blocking antibody or inhibitors, SB273005 and cilengitide, in human neural stem cells and in mouse brain, providing drug candidates for prophylactic use or treatments for ZIKV infections.
Collapse
Affiliation(s)
- Shaobo Wang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Gianluigi Lichinchi
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Edwin H Yau
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Frank Furnari
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
123
|
Li Z, Li F, Ma C, Xu C, Pan Z. Advancement of clinical therapeutic research on glioma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_18_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
124
|
The Propagation and Quantification of Two Emerging Oncolytic Viruses: Vesicular Stomatitis (VSV) and Zika (ZIKV). Methods Mol Biol 2019. [PMID: 31776931 DOI: 10.1007/978-1-0716-0203-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Developments in genetic engineering have allowed researchers and clinicians to begin harnessing viruses to target and kill cancer cells, either through direct lysis or through recruitment of antiviral immune responses. Two powerful viruses in the fight against cancer are the single-stranded RNA viruses vesicular stomatitis virus and Zika virus. Here, we describe methods to propagate and titer these two viruses. We also describe a simple cell-killing assay to begin testing modified viruses for increased potential killing of glioblastoma cells.
Collapse
|
125
|
Su KY, Balasubramaniam VRMT. Zika Virus as Oncolytic Therapy for Brain Cancer: Myth or Reality? Front Microbiol 2019; 10:2715. [PMID: 31824472 PMCID: PMC6879458 DOI: 10.3389/fmicb.2019.02715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
Collapse
Affiliation(s)
- Kar Yan Su
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
126
|
Sutarjono B. Can We Better Understand How Zika Leads to Microcephaly? A Systematic Review of the Effects of the Zika Virus on Human Brain Organoids. J Infect Dis 2019; 219:734-745. [PMID: 30256965 DOI: 10.1093/infdis/jiy572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The innovative human brain organoid model represents a unique opportunity to better understand the genesis of congenital brain abnormalities, particularly microcephaly, caused by Zika virus (ZIKV) infection during early pregnancy. METHODS A systematic review was conducted to investigate how ZIKV leads to microcephaly in a novel experimental model that mimics early brain development. Studies were gathered by searching MEDLINE/Pubmed, LILACS, and LiSSa for reports on effects of ZIKV infection on human brain organoids. From 146 identified papers, 13 articles were selected for review. RESULTS This review found that ZIKV of African, Latin American, and Asian lineages caused productive replication after 72 hours, preferentially infected neural progenitor cells over mature neurons, reduced both cell populations, and caused premature differentiation. Limited data involving only African and Latin American lineages showed a reduction in populations of proliferating cells and intermediate cells, and overall decreased viability. Furthermore, all 3 lineages caused heightened apoptosis and reduced organoid size. CONCLUSIONS This review concludes that, in organoids, ZIKV causes productive replication, infects neural progenitor cells over mature neurons, decreases both populations, causes premature differentiation, induces apoptosis, and reduces size.
Collapse
Affiliation(s)
- Bayu Sutarjono
- Saba University School of Medicine, Devens, Massachusetts
| |
Collapse
|
127
|
Molecular signatures associated with prostate cancer cell line (PC-3) exposure to inactivated Zika virus. Sci Rep 2019; 9:15351. [PMID: 31653965 PMCID: PMC6814752 DOI: 10.1038/s41598-019-51954-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of Zika virus (ZIKV) infection associated with microcephaly cases has elicited much research on the mechanisms involved in ZIKV-host cell interactions. It has been described that Zika virus impairs cell growth, raising a hypothesis about its oncolytic potential against cancer cells. ZIKV tumor cell growth inhibition was later confirmed for glioblastoma. It was also demonstrated that an inactivated ZIKV prototype (ZVp) based on bacterial outer membrane vesicles has antiproliferative activity upon other cancer cell lines, such as PC-3 prostate cancer cell. This study aims at understanding the pathways that might be involved with the antiproliferative effect of Zika virus against prostate cancer cells. A metabolomic approach based on high-resolution mass spectrometry analysis led to the identification of 21 statistically relevant markers of PC-3 cells treated with ZVp. The markers were associated with metabolic alterations that trigger lipid remodeling, endoplasmic reticulum stress, inflammatory mediators, as well as disrupted porphyrin and folate metabolism. These findings highlight molecular signatures of ZVp-induced response that may be involved on cellular pathways triggered by its antiproliferative effect. To our knowledge, this is the first reported metabolomic assessment of ZIKV effect on prostate cancer cells, a promising topic for further research.
Collapse
|
128
|
Affiliation(s)
- Xuping Xie
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
129
|
de Oliveira DN, Lima EO, Melo CFOR, Delafiori J, Guerreiro TM, Rodrigues RGM, Morishita KN, Silveira C, Muraro SP, de Souza GF, Vieira A, Silva A, Batista RF, Doriqui MJR, Sousa PS, Milanez GP, Proença-Módena JL, Cavalcanti DP, Catharino RR. Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development. Sci Rep 2019; 9:13606. [PMID: 31541139 PMCID: PMC6754385 DOI: 10.1038/s41598-019-49796-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/24/2019] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) has emerged as one of the most medically relevant viral infections of the past decades; the devastating effects of this virus over the developing brain are a major matter of concern during pregnancy. Although the connection with congenital malformations are well documented, the mechanisms by which ZIKV reach the central nervous system (CNS) and the causes of impaired cortical growth in affected fetuses need to be better addressed. We performed a non-invasive, metabolomics-based screening of saliva from infants with congenital Zika syndrome (CZS), born from mothers that were infected with ZIKV during pregnancy. We were able to identify three biomarkers that suggest that this population suffered from an important inflammatory process; with the detection of mediators associated with glial activation, we propose that microcephaly is a product of immune response to the virus, as well as excitotoxicity mechanisms, which remain ongoing even after birth.
Collapse
Affiliation(s)
- Diogo N de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Estela O Lima
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Carlos F O R Melo
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Tatiane M Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rafael G M Rodrigues
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Karen N Morishita
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cynthia Silveira
- Medical Genetics Department, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Stéfanie Primon Muraro
- Emerging Viruses Study Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Gabriela Fabiano de Souza
- Emerging Viruses Study Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Aline Vieira
- Emerging Viruses Study Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Antônio Silva
- Public Health Department, Universidade Federal do Maranhão, São Luís, Brazil
| | - Rosângela F Batista
- Public Health Department, Universidade Federal do Maranhão, São Luís, Brazil
| | - Maria J R Doriqui
- Public Health Department, Universidade Federal do Maranhão, São Luís, Brazil
| | - Patricia S Sousa
- Public Health Department, Universidade Federal do Maranhão, São Luís, Brazil
| | - Guilherme P Milanez
- Emerging Viruses Study Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Biology Institute, University of Campinas, Campinas, Brazil
| | - José L Proença-Módena
- Emerging Viruses Study Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Denise P Cavalcanti
- Medical Genetics Department, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.
| |
Collapse
|
130
|
Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1409582. [PMID: 31531178 PMCID: PMC6720866 DOI: 10.1155/2019/1409582] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Oxidative stress is induced once the balance of generation and neutralization of reactive oxygen species (ROS) is broken in the cell, and it plays crucial roles in a variety of natural and diseased processes. Infections of Flaviviridae viruses trigger oxidative stress, which affects both the cellular metabolism and the life cycle of the viruses. Oxidative stress associated with specific viral proteins, experimental culture systems, and patient infections, as well as its correlations with the viral pathogenesis attracts much research attention. In this review, we primarily focus on hepatitis C virus (HCV), dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) as representatives of Flaviviridae viruses and we summarize the mechanisms involved in the relevance of oxidative stress for virus-associated pathogenesis. We discuss the current understanding of the pathogenic mechanisms of oxidative stress induced by Flaviviridae viruses and highlight the relevance of autophagy and DNA damage in the life cycle of viruses. Understanding the crosstalk between viral infection and oxidative stress-induced molecular events may offer new avenues for antiviral therapeutics.
Collapse
|
131
|
Chesnut M, Muñoz LS, Harris G, Freeman D, Gama L, Pardo CA, Pamies D. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front Cell Infect Microbiol 2019; 9:223. [PMID: 31338335 PMCID: PMC6629778 DOI: 10.3389/fcimb.2019.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Mosquito-borne flaviviruses can cause disease in the nervous system, resulting in a significant burden of morbidity and mortality. Disease models are necessary to understand neuropathogenesis and identify potential therapeutics and vaccines. Non-human primates have been used extensively but present major challenges. Advances have also been made toward the development of humanized mouse models, but these models still do not fully represent human pathophysiology. Recent developments in stem cell technology and cell culture techniques have allowed the development of more physiologically relevant human cell-based models. In silico modeling has also allowed researchers to identify and predict transmission patterns and discover potential vaccine and therapeutic candidates. This review summarizes the research on in vitro and in silico models used to study three mosquito-borne flaviviruses that cause neurological disease in humans: West Nile, Dengue, and Zika. We also propose a roadmap for 21st century research on mosquito-borne flavivirus neuropathogenesis, prevention, and treatment.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura S. Muñoz
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georgina Harris
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Carlos A. Pardo
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Neuroviruses Emerging in the Americas Study, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
132
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
133
|
Zika virus NS5 protein inhibits cell growth and invasion of glioma. Biochem Biophys Res Commun 2019; 516:515-520. [PMID: 31230744 DOI: 10.1016/j.bbrc.2019.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 02/05/2023]
Abstract
Glioma is the most common primary brain tumor with high mortality. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. Oncolytic viral therapy for glioma has developed as an exciting therapeutic method in recent years. Zika virus, a member of flavivirus family, has oncolytic activity against glioma cells but the mechanism is unknown. Here, we aimed to determine which viral protein might play a critical role in mitigating glioma cell growth. We examined the tumor suppressor function of four nonstructural proteins NS1, NS3, NS4B and NS5 in human glioma cell line U87. As a result, we found that only NS5 significantly inhibited proliferation, migration and invasion of U87 cells. Moreover, expression of NS5 suppressed tumorigenicity of mouse GL261 glioma cell in vivo. Our findings provide some clues for further exploration of oncolytic Zika virus in the treatment of glioma.
Collapse
|
134
|
Xu D, Li C, Qin CF, Xu Z. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 2019; 6:459-479. [PMID: 31206355 DOI: 10.1146/annurev-virology-092818-015740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The circulation of Zika virus (ZIKV) in nearly 80 countries and territories poses a significant global threat to public health. ZIKV is causally linked to severe developmental defects in the brain, recognized as congenital Zika syndrome (CZS), which includes microcephaly and other serious congenital neurological complications. Since the World Health Organization declared the ZIKV outbreak a public health emergency of international concern, remarkable progress has been made in the generation of different ZIKV infection animal models to gain insight into cellular targets and pathogenesis and to explore the associated underlying mechanisms. Here we focus on summarizing our current understanding of the effects of ZIKV on mammalian brain development in different developmental stages and discuss the potential underlying mechanisms of ZIKV-induced CZS, as well as future perspectives.
Collapse
Affiliation(s)
- Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China;
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
135
|
Abstract
Glioblastoma ranks among the most lethal of all human cancers. Glioblastomas display striking cellular heterogeneity, with stem-like glioblastoma stem cells (GSCs) at the apex. Although the original identification of GSCs dates back more than a decade, the purification and characterization of GSCs remains challenging. Despite these challenges, the evidence that GSCs play important roles in tumor growth and response to therapy has grown. Like normal stem cells, GSCs are functionally defined and distinguished from their differentiated tumor progeny at core transcriptional, epigenetic, and metabolic regulatory levels, suggesting that no single therapeutic modality will be universally effective against a heterogenous GSC population. Glioblastomas induce a systemic immunosuppression with mixed responses to oncoimmunologic modalities, suggesting the potential for augmentation of response with a deeper consideration of GSCs. Unfortunately, the GSC literature has been complicated by frequent use of inferior cell lines and a lack of proper functional analyses. Collectively, glioblastoma offers a reliable cancer to study cancer stem cells to better model the human disease and inform improved biologic understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, California 92037, USA
| |
Collapse
|
136
|
Bernatchez JA, Coste M, Beck S, Wells GA, Luna LA, Clark AE, Zhu Z, Hecht D, Rich JN, Sohl CD, Purse BW, Siqueira-Neto JL. Activity of Selected Nucleoside Analogue ProTides against Zika Virus in Human Neural Stem Cells. Viruses 2019; 11:v11040365. [PMID: 31010044 PMCID: PMC6521205 DOI: 10.3390/v11040365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/27/2023] Open
Abstract
Zika virus (ZIKV), an emerging flavivirus that causes neurodevelopmental impairment to fetuses and has been linked to Guillain-Barré syndrome continues to threaten global health due to the absence of targeted prophylaxis or treatment. Nucleoside analogues are good examples of efficient anti-viral inhibitors, and prodrug strategies using phosphate masking groups (ProTides) have been employed to improve the bioavailability of ribonucleoside analogues. Here, we synthesized and tested a small library of 13 ProTides against ZIKV in human neural stem cells. Strong activity was observed for 2′-C-methyluridine and 2′-C-ethynyluridine ProTides with an aryloxyl phosphoramidate masking group. Substitution of a 2-(methylthio) ethyl phosphoramidate for the aryloxyl phosphoramidate ProTide group of 2′-C-methyluridine completely abolished antiviral activity of the compound. The aryloxyl phosphoramidate ProTide of 2′-C-methyluridine outperformed the hepatitis C virus (HCV) drug sofosbuvir in suppression of viral titers and protection from cytopathic effect, while the former compound’s triphosphate active metabolite was better incorporated by purified ZIKV NS5 polymerase over time. These findings suggest both a nucleobase and ProTide group bias for the anti-ZIKV activity of nucleoside analogue ProTides in a disease-relevant cell model.
Collapse
Affiliation(s)
- Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael Coste
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Sungjun Beck
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Lucas A Luna
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Alex E Clark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Zhe Zhu
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - David Hecht
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
- Department of Chemistry, Southwestern College, Chula Vista, CA 91910, USA.
| | - Jeremy N Rich
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Regenerative Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | - Byron W Purse
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
- The Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
137
|
Kerstetter-Fogle A, Shukla S, Wang C, Beiss V, Harris PLR, Sloan AE, Steinmetz NF. Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers (Basel) 2019; 11:cancers11040515. [PMID: 30974896 PMCID: PMC6521079 DOI: 10.3390/cancers11040515] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite aggressive multi-modality treatment with surgery, radiation and chemotherapies, malignant glioma inevitably recurs and has dismal survival rates. Recent progress in immunotherapy has led to a resurgence of interest, and immunotherapies are being investigated for treatment of glioma. However, the unique brain anatomy and a highly immunosuppressive glioma microenvironment pose significant challenges to achieving efficacy. Thus, there is a critical need for assessment of next-generation immunotherapies for glioma. In this study, we have investigated the efficacy of the nanoparticle platform technology based on plant-derived Cowpea mosaic virus like particles (empty CPMV or eCPMV) to instigate a potent immune response against intracranial glioma. CPMV immunotherapy has been shown to efficiently reverse the immunosuppressive tumor microenvironments in pre-clinical murine models of dermal melanoma and metastatic melanoma, metastatic breast cancer, intraperitoneal ovarian cancer and in canine patients with oral melanoma. In the present study, we demonstrate that in situ administration of CPMV immunotherapy in the setting of glioma can effectively recruit unique subset of effector innate and adaptive immune cells to the brain parenchyma while reducing immune suppressive cellular population, leading to regression of intracranial glioma. The in situ CPMV nanoparticle vaccine offers a potent yet safe and localized immunotherapy for intracranial glioma.
Collapse
Affiliation(s)
- Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Peggy L R Harris
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- University Hospitals-Cleveland Medical Center & the Seidman Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
138
|
Crupi MJF, Bell JC, Singaravelu R. Concise Review: Targeting Cancer Stem Cells and Their Supporting Niche Using Oncolytic Viruses. Stem Cells 2019; 37:716-723. [PMID: 30875126 DOI: 10.1002/stem.3004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Cancer stem cells (CSCs) have the capacity to self-renew and differentiate to give rise to heterogenous cancer cell lineages in solid tumors. These CSC populations are associated with metastasis, tumor relapse, and resistance to conventional anticancer therapies. Here, we focus on the use of oncolytic viruses (OVs) to target CSCs as well as the OV-driven interferon production in the tumor microenvironment (TME) that can repress CSC properties. We explore the ability of OVs to deliver combinations of immune-modulating therapeutic transgenes, such as immune checkpoint inhibitor antibodies. In particular, we highlight the advantages of virally encoded bi-specific T cell engagers (BiTEs) to not only target cell-surface markers on CSCs, but also tumor-associated antigens on contributing components of the surrounding TME and other cancer cells. We also highlight the crucial role of combination anticancer treatments, evidenced by synergy of OV-delivered BiTEs and chimeric-antigen receptor T cell therapy. Stem Cells 2019;37:716-723.
Collapse
Affiliation(s)
- Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
139
|
Fleming N. Offbeat approaches to cancer research. Nature 2019; 567:S27-S29. [PMID: 30918392 DOI: 10.1038/d41586-019-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
140
|
Iannolo G, Sciuto MR, Cuscino N, Pallini R, Douradinha B, Ricci Vitiani L, De Maria R, Conaldi PG. Zika virus infection induces MiR34c expression in glioblastoma stem cells: new perspectives for brain tumor treatments. Cell Death Dis 2019; 10:263. [PMID: 30890698 PMCID: PMC6425033 DOI: 10.1038/s41419-019-1499-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is a flavivirus with a marked effect on fetal nervous system development. ZIKV treatment has recently been found to also have a benefit against glioblastoma, a highly aggressive brain tumor with a poor prognosis. The reported data do not completely explain the mechanism beyond this effect. Nevertheless, in the majority of the cases no adverse effect has been found in healthy adult humans. In this study, we characterized the ZIKV infection mechanism on glioblastoma stem cells, which are considered responsible for the tumor progression and resistance to conventional therapies. Moreover, we explain why the action of this virus is directed to the stem cells in the nervous system counterpart. Our results confirm the effectiveness of ZIKV treatment against glioblastoma, indicating novel molecular targets that can be introduced for more powerful therapies.
Collapse
Affiliation(s)
- Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy.
| | - Maria Rita Sciuto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Cuscino
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| | - Roberto Pallini
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Bruno Douradinha
- Regenerative Medicine and Immunology Unit, Ri.MED Foundation at IRCCS ISMETT, Palermo, Italy
| | - Lucia Ricci Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Palermo, Italy
| |
Collapse
|
141
|
RNA Viruses as Tools in Gene Therapy and Vaccine Development. Genes (Basel) 2019; 10:genes10030189. [PMID: 30832256 PMCID: PMC6471356 DOI: 10.3390/genes10030189] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and even progression-free survival.
Collapse
|
142
|
Martikainen M, Essand M. Virus-Based Immunotherapy of Glioblastoma. Cancers (Basel) 2019; 11:E186. [PMID: 30764570 PMCID: PMC6407011 DOI: 10.3390/cancers11020186] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.
Collapse
Affiliation(s)
- Miika Martikainen
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | - Magnus Essand
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
143
|
Svyatchenko VA, Razumov IA, Protopopova EV, Demina AV, Solovieva OI, Zavjalov EL, Loktev VB. Zika virus has an oncolytic activity against human glioblastoma U87 cells. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is a highly lethal brain cancer. Virotherapy with the use of oncolytic viruses has since recently been regarded as a promising approach for the clinic treatment of human glioblastomas. The purpose of this work was to perform a primary evaluation of the Zika virus as a potential oncolytic agent against glioblastomas.In vitroexperiments showed that the Zika virus strain MR 766 is able to selectively infect and lyse neoplastic cells of the human glioblastoma cell line U87 MG. The selectivity index (SI, the ratio of infectious titer for tumor cells to titer on normal untransformed cells) was 2·102. The selectivity of the replicative activity of Zika virus in relation to U87 MG glioblastoma cells was additionally confrmed by indirect immunofluorescence. Using the model of immunodefcient SCID mice with subcutaneous xenografts of human glioblastoma U87 MG, a strong antitumor activity of the Zika virus under a course (daily for 4 days) of intratumoral administration of 5·105 TCID50 of Zika virus was shown. Treatment with Zika virus resulted in more than a 10fold reduction in mean volumes of tumors. The tumor growth inhibition index was 92.63 %. Recurrences (metastases) of tumor regrowth were not registered within 64 days of observation. This result demonstrated the prospect of further indepth studies of the Zika virus as a potential oncolytic agent against human glioblastomas.
Collapse
Affiliation(s)
| | - I. A. Razumov
- State Research Center of Virology and Biotechnology “Vector”; Institute of Cytology and Genetics, SB RAS
| | | | - A. V. Demina
- State Research Center of Virology and Biotechnology “Vector”
| | | | | | - V. B. Loktev
- State Research Center of Virology and Biotechnology “Vector”; Institute of Cytology and Genetics, SB RAS
| |
Collapse
|
144
|
Dabaja MZ, Lima EDO, de Oliveira DN, Guerreiro TM, Melo CFOR, Morishita KN, Lancellotti M, Ruiz ALTG, Goulart G, Duarte DA, Catharino RR. Metabolic alterations induced by attenuated Zika virus in glioblastoma cells. Cell Biosci 2018. [DOI: 10.1186/s13578-018-0243-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
145
|
Liu Q, Lü L, Sun H, Zhang J, Ma W, Zhang T. [Effect of serum on the differentiation of neural stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:223-227. [PMID: 29806416 DOI: 10.7507/1002-1892.201710113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective To investigate the effect of serum on the differentiation of neural stem cells. Methods The neural stem cells were isolated from the embryonic hippocampus tissues of Sprague Dawley rats at 14 day of pregnancy. After culturing and passaging, the 3rd generation cells were identified by immunocytochemical staining. Then, the cells were divided into 3 groups according to the concentrations of fetal bovine serum (FBS) used in the differentiation cell culture medium: 5% (group A), 1% (group B), 0 (group C), respectively. The other components of the culture media in 3 groups were the same. Cell viability was determined by using the Live/Dead cell staining at 8 days; the expressions of glial cell marker [glial fibrillary acidic protein (GFAP)] and neuronal marker (β-Ⅲ Tubulin) were determined and analyzed by immunocytochemical staining and real-time fluorescent PCR at 4 and 8 days of culture. Results Based on cell morphology and immunocytochemical staining, neural stem cells were identified. Cells were growing well with no death in all groups. With decreasing FBS concentration, the expression of GFAP was significantly decreased on both protein and mRNA level, whereas the expression of β-Ⅲ Tubulin was evidently increased. The staining of each group at 8 days was more obvious than that at 4 days. There were significant differences in mRNA expressions of GFAP and β-Ⅲ Tubulin at 4 and 8 days between groups ( P<0.05). Conclusion Serum can promote the differentiation of neural stem cells into glial cells. At the same time, it inhibits the differentiation of neural stem cells into neurons, the lower the serum concentration, the smaller the effect.
Collapse
Affiliation(s)
- Qingxi Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Lihui Lü
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China
| | - He Sun
- Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Jinhua Zhang
- Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;College of Biotechnology, Qilu Institute of Technology, Jinan Shandong, 250200,
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457,
| |
Collapse
|
146
|
Abstract
Glioblastoma (GBM) is the deadliest type of brain tumor, and glioma stem cells (GSCs) contribute to tumor recurrence and therapeutic resistance. Thus, an oncolytic virus targeting GSCs may be useful for improving GBM treatment. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, we investigated the safety and efficacy of a live attenuated ZIKV vaccine candidate (ZIKV-LAV) for the treatment of human GBM in a GSC-derived orthotopic model. Intracerebral injection of ZIKV-LAV into mice caused no neurological symptoms or behavioral abnormalities. The neurovirulence of ZIKV-LAV was more attenuated than that of the licensed Japanese encephalitis virus LAV 14-14-2, underlining the superior safety of ZIKV-LAV for potential GBM treatment. Importantly, ZIKV-LAV significantly reduced intracerebral tumor growth and prolonged animal survival by selectively killing GSCs within the tumor. Mechanistically, ZIKV infection elicited antiviral immunity, inflammation, and GSC apoptosis. Together, these results further support the clinical development of ZIKV-LAV for GBM therapy.IMPORTANCE Glioblastoma (GBM), the deadliest type of brain tumor, is currently incurable because of its high recurrence rate after traditional treatments, including surgery to remove the main part of the tumor and radiation and chemotherapy to target residual tumor cells. These treatments fail mainly due to the presence of a cell subpopulation called glioma stem cells (GSCs), which are resistant to radiation and chemotherapy and capable of self-renewal and tumorigenicity. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, we tested a live attenuated ZIKV vaccine candidate (ZIKV-LAV) for the treatment of human GBM in a human GSC-derived orthotopic model. Our results showed that ZIKV-LAV retained good efficacy against glioblastoma by selectively killing GSCs within the tumor. In addition, ZIKV-LAV exhibited an excellent safety profile upon intracerebral injection into the treated animals. The good balance between the safety of ZIKV-LAV and its efficacy against human GSCs suggests that it is a potential candidate for combination with the current treatment regimen for GBM therapy.
Collapse
|
147
|
Khaiboullina S, Uppal T, Martynova E, Rizvanov A, Baranwal M, Verma SC. History of ZIKV Infections in India and Management of Disease Outbreaks. Front Microbiol 2018; 9:2126. [PMID: 30258421 PMCID: PMC6145147 DOI: 10.3389/fmicb.2018.02126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus infection endemic in multiple countries spread from Asia, Africa to the Americas and Europe. Previously known to cause rare and fairly benign human infections, ZIKV has become a major international public health emergency after being linked to unexpected neurological complications, that includes fetal brain damage/death and microcephaly in babies born to infected mothers and Guillain-Barre syndrome (GBS) in adults. It appears that a single genetic mutation in the ZIKV genome, likely acquired during explosive ZIKV outbreak in French Polynesia (2013), made virus causing mild disease to target fetus brain. The Aedes mosquitoes are found to be the main carrier of ZIKV, passing the virus to humans. Originally isolated from patients in Africa in 1954 (African lineage), virus disseminated to Southeast Asia (Asian lineage), establishing new endemic foci, including one in India. Numerous cases of ZIKV infection have been reported in several locations in India and neighboring countries like Pakistan and Bangladesh since mid of the last century, suggesting that the virus reached this part of Asia soon after it was first discovered in Uganda in 1947. Although, the exact means by which ZIKV was introduced to India remains unknown, it appears that the ZIKV strain circulating in India possibly belongs to the "Asian lineage," which has not yet been associated with microcephaly and other neurological disorders. However, there still exists a threat that the contemporary ZIKV virulent strain from South America, carrying a mutation can return to Asia, posing a potential crisis to newborns and adult patients. Currently there is no specific vaccine or antiviral medication to combat ZIKV infection, thus, vector control and continuous monitoring of potential ZIKV exposure is essential to prevent the devastating consequences similar to the ones experienced in Brazil. However, the major obstacle faced by Indian healthcare agencies is that most cases of ZIKV infection have been reported in rural areas that lack access to rapid diagnosis of infection. In this review, we attempt to present a comprehensive analysis of what is currently known about the ZIKV infection in India and the neighboring countries.
Collapse
Affiliation(s)
- Svetalana Khaiboullina
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States.,Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Timsy Uppal
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Ekaterina Martynova
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Subhash C Verma
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
148
|
Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and bystander macrophages. Proc Natl Acad Sci U S A 2018; 115:E9172-E9181. [PMID: 30206152 PMCID: PMC6166801 DOI: 10.1073/pnas.1807690115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interpretation of genome-wide investigations of host–pathogen interactions are often obscured by analyses of mixed populations of infected and uninfected cells. Thus, we developed a system whereby we simultaneously characterize and compare genome-wide transcriptional and epigenetic changes in pure populations of virally infected and neighboring uninfected cells to identify viral-regulated host responses. Using patient-derived unmodified Zika viruses (ZIKV) infecting primary human macrophages, we reveal that ZIKV suppresses host transcription by multiple mechanisms. ZIKV infection causes both targeted suppression of type I interferon responses and general suppression by reducing RNA polymerase II protein levels and DNA occupancy. Simultaneous evaluation of transcriptomic and epigenetic features of infected and uninfected cells provides a powerful method for identifying coincident evolution of dominant proviral or antiviral mechanisms. Genome-wide investigations of host–pathogen interactions are often limited by analyses of mixed populations of infected and uninfected cells, which lower sensitivity and accuracy. To overcome these obstacles and identify key mechanisms by which Zika virus (ZIKV) manipulates host responses, we developed a system that enables simultaneous characterization of genome-wide transcriptional and epigenetic changes in ZIKV-infected and neighboring uninfected primary human macrophages. We demonstrate that transcriptional responses in ZIKV-infected macrophages differed radically from those in uninfected neighbors and that studying the cell population as a whole produces misleading results. Notably, the uninfected population of macrophages exhibits the most rapid and extensive changes in gene expression, related to type I IFN signaling. In contrast, infected macrophages exhibit a delayed and attenuated transcriptional response distinguished by preferential expression of IFNB1 at late time points. Biochemical and genomic studies of infected macrophages indicate that ZIKV infection causes both a targeted defect in the type I IFN response due to degradation of STAT2 and reduces RNA polymerase II protein levels and DNA occupancy, particularly at genes required for macrophage identity. Simultaneous evaluation of transcriptomic and epigenetic features of infected and uninfected macrophages thereby reveals the coincident evolution of dominant proviral or antiviral mechanisms, respectively, that determine the outcome of ZIKV exposure.
Collapse
|
149
|
Kloker LD, Yurttas C, Lauer UM. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother 2018; 7:79-93. [PMID: 30234074 PMCID: PMC6130269 DOI: 10.2147/ov.s165479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic virotherapy constitutes an upcoming alternative treatment option for a broad spectrum of cancer entities. However, despite great research efforts, there is still only a single US Food and Drug Administration/European Medicines Agency-approved oncolytic virus available for clinical use. One reason for that is the gap between promising preclinical data and limited clinical success. Since oncolytic viruses are biological agents, they might require more realistic in vitro tumor models than common monolayer tumor cell cultures to provide meaningful predictive preclinical evaluation results. For more realistic invitro tumor models, three-dimensional tumor cell-culture systems can be employed in preclinical virotherapy research. This review provides an overview of spheroid and hydrogel tumor cell cultures, organotypic tumor-tissue slices, organotypic raft cultures, and tumor organoids utilized in the context of oncolytic virotherapy. Furthermore, we also discuss advantages, disadvantages, techniques, and difficulties of these three-dimensional tumor cell-culture systems when applied specifically in virotherapy research.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany, .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
150
|
The emergence of Zika virus and its new clinical syndromes. Nature 2018; 560:573-581. [PMID: 30158602 DOI: 10.1038/s41586-018-0446-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022]
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has emerged as a global health threat because of its potential to generate explosive epidemics and ability to cause congenital disease in the context of infection during pregnancy. Whereas much is known about the biology of related flaviviruses, the unique features of ZIKV pathogenesis, including infection of the fetus, persistence in immune-privileged sites and sexual transmission, have presented new challenges. The rapid development of cell culture and animal models has facilitated a new appreciation of ZIKV biology. This knowledge has created opportunities for the development of countermeasures, including multiple ZIKV vaccine candidates, which are advancing through clinical trials. Here we describe the recent advances that have led to a new understanding of the causes and consequences of the ZIKV epidemic.
Collapse
|