101
|
Abstract
Organelle inheritance is one of several processes that occur during cell division. Recent studies on yeast vacuole inheritance have indicated rules that probably apply to most organelle-inheritance pathways. They have uncovered a molecular mechanism for membrane-cargo transport that is partially conserved from yeast to humans. They have also shown that the transport complex, which is composed of a molecular motor and its receptor, regulates the destination and timing of vacuole movement and might coordinate organelle movement with several other organelle functions.
Collapse
Affiliation(s)
- Lois S Weisman
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
102
|
Abstract
In mouse melanocytes, myosin Va is recruited onto the surface of melanosomes by a receptor complex containing Rab27a that is present in the melanosome membrane and melanophilin (Mlp), which links myosin Va to Rab27a. In this study, we show that Mlp is also a microtubule plus end-tracking protein or +TIP. Moreover, myosin Va tracks the plus end in a Mlp-dependent manner. Data showing that overexpression and short inhibitory RNA knockdown of the +TIP EB1 have opposite effects on Mlp-microtubule interaction, that Mlp interacts directly with EB1, and that deletion from Mlp of a region similar to one in the adenomatous polyposis coli protein involved in EB1 binding blocks Mlp's ability to plus end track argue that Mlp tracks the plus end indirectly [corrected] by hitchhiking on EB1. These results identify a novel +TIP and indicate that vertebrate cells possess a +TIP complex that is similar to the Myo2p-Kar9p-Bim1p complex in yeast. We suggest that the +TIP complex identified in this study may serve to focus the transfer of melanosomes from microtubules to actin at the microtubule plus end.
Collapse
Affiliation(s)
- Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
103
|
Johnson JL, Pacquelet S, Lane WS, Eam B, Catz SD. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation. Traffic 2005; 6:667-81. [PMID: 15998322 DOI: 10.1111/j.1600-0854.2005.00308.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
104
|
Abstract
Small GTPases of the Rab family control timing of vesicle fusion. Fusion of two vesicles can only occur when they have been brought into close contact. Transport by microtubule- or actin-based motor proteins will facilitate this process in vivo. Ideally, transport and vesicle fusion are linked activities. Active, GTP-bound Rab proteins dock on specific compartments and are therefore perfect candidates to control transport of the different compartments. Recently, a number of Rab proteins were identified that control motor protein recruitment to their specific target membranes. By cycling through inactive and active states, Rab proteins are able to control motor protein-mediated transport and subsequent fusion of intracellular structures in both spatial and timed manners.
Collapse
Affiliation(s)
- Ingrid Jordens
- Department of Tumor Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
105
|
Yang Y, Kovács M, Xu Q, Anderson JB, Sellers JR. Myosin VIIB from Drosophila is a high duty ratio motor. J Biol Chem 2005; 280:32061-8. [PMID: 16055438 DOI: 10.1074/jbc.m506765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin VII is an unconventional myosin widely expressed in organisms ranging from amoebae to mammals that has been shown to play vital roles in cell adhesion and phagocytosis. Here we present the first study of the mechanism of action of a myosin VII isoform. We have expressed a truncated single-headed Drosophila myosin VIIB construct in the baculovirus-Sf9 system that bound calmodulin light chains. By using steady-state and transient kinetic methods, we showed that myosin VIIB exhibits a fast release of phosphate and a slower, rate-limiting ADP release from actomyosin. As a result, myosin VIIB will be predominantly strongly bound to actin during steady-state ATP hydrolysis (its duty ratio will be at least 80%). This kinetic pattern is in many respects similar to that of the single-molecule vesicle transporters myosin V and VI. The enzymatic properties of myosin VIIB provide a kinetic basis for processivity upon possible dimerization via the C-terminal domains of the heavy chain. Our experiments also revealed conformational heterogeneity of the actomyosin VIIB complex in the absence of nucleotide.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | | | |
Collapse
|
106
|
Tóth J, Kovács M, Wang F, Nyitray L, Sellers JR. Myosin V from Drosophila reveals diversity of motor mechanisms within the myosin V family. J Biol Chem 2005; 280:30594-603. [PMID: 15980429 DOI: 10.1074/jbc.m505209200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin V is the best characterized vesicle transporter in vertebrates, but it has been unknown as to whether all members of the myosin V family share a common, evolutionarily conserved mechanism of action. Here we show that myosin V from Drosophila has a strikingly different motor mechanism from that of vertebrate myosin Va, and it is a nonprocessive, ensemble motor. Our steady-state and transient kinetic measurements on single-headed constructs reveal that a single Drosophila myosin V molecule spends most of its mechanochemical cycle time detached from actin, therefore it has to function in processive units that comprise several molecules. Accordingly, in in vitro motility assays, double-headed Drosophila myosin V requires high surface concentrations to exhibit a continuous translocation of actin filaments. Our comparison between vertebrate and fly myosin V demonstrates that the well preserved function of myosin V motors in cytoplasmic transport can be accomplished by markedly different underlying mechanisms.
Collapse
Affiliation(s)
- Judit Tóth
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1762, USA
| | | | | | | | | |
Collapse
|
107
|
Varadi A, Tsuboi T, Rutter GA. Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 2005; 16:2670-80. [PMID: 15788565 PMCID: PMC1142415 DOI: 10.1091/mbc.e04-11-1001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/07/2005] [Accepted: 03/14/2005] [Indexed: 11/11/2022] Open
Abstract
The role of unconventional myosins in neuroendocrine cells is not fully understood, with involvement suggested in the movement of both secretory vesicles and mitochondria. Here, we demonstrate colocalization of myosin Va (MyoVa) with insulin in pancreatic beta-cells and show that MyoVa copurifies with insulin in density gradients and with the vesicle marker phogrin-enhanced green fluorescent protein upon fluorescence-activated sorting of vesicles. By contrast, MyoVa immunoreactivity was poorly colocalized with mitochondrial or other markers. Demonstrating an important role for MyoVa in the recruitment of secretory vesicles to the cell surface, a reduction of MyoVa protein levels achieved by RNA interference caused a significant decrease in glucose- or depolarization-stimulated insulin secretion. Similarly, expression of the dominant-negative-acting globular tail domain of MyoVa decreased by approximately 50% the number of vesicles docked at the plasma membrane and by 87% the number of depolarization-stimulated exocytotic events detected by total internal reflection fluorescence microscopy. We conclude that MyoVa-driven movements of vesicles along the cortical actin network are essential for the terminal stages of regulated exocytosis in beta-cells.
Collapse
Affiliation(s)
- Aniko Varadi
- Henry Wellcome Laboratories for Integrated Cell Signalling, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
108
|
Fischer J, Weide T, Barnekow A. The MICAL proteins and rab1: a possible link to the cytoskeleton? Biochem Biophys Res Commun 2005; 328:415-23. [PMID: 15694364 DOI: 10.1016/j.bbrc.2004.12.182] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/21/2022]
Abstract
The small GTPase rab1 plays a role in vesicle trafficking between ER and the Golgi complex. Recently, MICAL-1 was identified as new rab1 interacting protein. In this study, we show an interaction between two additional members of the MICAL family and rab1 in a yeast two-hybrid approach and GST pulldown experiments. We present data about the previously uncharacterized MICAL-3 concerning tissue distribution, size, and cellular localization. Furthermore, we investigated the connection between MICAL proteins and the cytoskeleton. Using the microtubule depolymerizing drug nocodazole we detected a link between MICAL-1 and -3, and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Julia Fischer
- Department of Experimental Tumorbiology, University of Muenster, Badestr. 9, D-48149 Muenster, Germany
| | | | | |
Collapse
|
109
|
Li XD, Ikebe R, Ikebe M. Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va. J Biol Chem 2005; 280:17815-22. [PMID: 15760894 DOI: 10.1074/jbc.m413295200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is known that melanophilin is a myosin Va-targeting molecule that links myosin Va and the cargo vesicles in cells. Here we found that melanophilin directly activates the actin-activated ATPase activity of myosin Va and thus its motor activity. The actin-activated ATPase activity of the melanocyte-type myosin Va having exon-F was significantly activated by melanophilin by 4-fold. Although Rab27a binds to myosin Va/melanophilin complex, it did not affect the melanophilin-induced activation of myosin Va. Deletion of the C-terminal actin binding domain and N-terminal Rab binding domain of melanophilin resulted in no change in the activation of the ATPase by melanophilin, indicating that the myosin Va binding domain (MBD) is sufficient for the activation of myosin Va. Among MBDs, the interaction of MBD-2 with exon-F of myosin Va is critical for the binding of myosin Va and melanophilin, whereas MBD-1 interacting with the globular tail of myosin Va plays a more significant role in the activation of myosin Va ATPase activity. This is the first demonstration that the binding of the cargo molecule directly activates myosin motor activity. The present finding raises the idea that myosin motors are switched upon their binding to the cargo molecules, thus avoiding the waste of ATP consumption.
Collapse
Affiliation(s)
- Xiang-Dong Li
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
110
|
Snyder GE, Sakamoto T, Hammer JA, Sellers JR, Selvin PR. Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys J 2005; 87:1776-83. [PMID: 15345556 PMCID: PMC1304582 DOI: 10.1529/biophysj.103.036897] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin V is a homodimeric motor protein involved in trafficking of vesicles in the cell. It walks bipedally along actin filaments, moving cargo approximately 37 nm per step. We have measured the step size of individual myosin heads by fusing an enhanced green fluorescent protein (eGFP) to the N-terminus of one head of the myosin dimer and following the motion with nanometer precision and subsecond resolution. We find the average step size to be 74.1 nm with 9.4 nm (SD) and 0.3 nm (SE). Our measurements demonstrate nanometer localization of single eGFPs, confirm the hand-over-hand model of myosin V procession, and when combined with previous data, suggest that there is a kink in the leading lever arm in the waiting state of myosin V. This kink, or "telemark skier" configuration, may cause strain, which, when released, leads to the powerstroke of myosin, throwing the rear head forward and leading to unidirectional motion.
Collapse
Affiliation(s)
- Gregory E Snyder
- Physics Department and Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
111
|
Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2005; 20:559-91. [PMID: 15473852 DOI: 10.1146/annurev.cellbio.20.010403.103108] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
112
|
McNeil EL, Tacelosky D, Basciano P, Biallas B, Williams R, Damiani P, Deacon S, Fox C, Stewart B, Petruzzi N, Osborn C, Klinger K, Sellers JR, Smith CK. Actin-dependent motility of melanosomes from fish retinal pigment epithelial (RPE) cells investigated using in vitro motility assays. ACTA ACUST UNITED AC 2005; 58:71-82. [PMID: 15083529 DOI: 10.1002/cm.10179] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Melanosomes (pigment granules) within retinal pigment epithelial (RPE) cells of fish and amphibians undergo massive migrations in response to light conditions to control light flux to the retina. Previous research has shown that melanosome motility within apical projections of dissociated fish RPE cells requires an intact actin cytoskeleton, but the mechanisms and motors involved in melanosome transport in RPE have not been identified. Two in vitro motility assays, the Nitella assay and the sliding filament assay, were used to characterize actin-dependent motor activity of RPE melanosomes. Melanosomes applied to dissected filets of the Characean alga, Nitella, moved along actin cables at a mean rate of 2 microm/min, similar to the rate of melanosome motility in dissociated, cultured RPE cells. Path lengths of motile melanosomes ranged from 9 to 37 microm. Melanosome motility in the sliding filament assay was much more variable, ranging from 0.4-33 microm/min; 70% of velocities ranged from 1-15 microm/min. Latex beads coated with skeletal muscle myosin II and added to Nitella filets moved in the same direction as RPE melanosomes, indicating that the motility is barbed-end directed. Immunoblotting using antibodies against myosin VIIa and rab27a revealed that both proteins are enriched on melanosome membranes, suggesting that they could play a role in melanosome transport within apical projections of fish RPE.
Collapse
Affiliation(s)
- E L McNeil
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kuroda TS, Fukuda M. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 2004; 6:1195-203. [PMID: 15543135 DOI: 10.1038/ncb1197] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/19/2004] [Indexed: 12/16/2022]
Abstract
The synaptotagmin-like protein (Slp) family is implicated in regulating Rab27A-mediated membrane transport, but how it might do this is unknown. Here we report that Slp2-a, a previously uncharacterized Rab27A-binding protein in melanocytes, controls melanosome distribution in the cell periphery and regulates the morphology of melanocytes. Slp2-a is the most abundantly expressed of the Slp- and Slac2-family proteins in melanocytes and colocalizes with Rab27A on melanosomes. Knockdown of endogenous Slp2-a protein by small-interfering RNAs (siRNAs) markedly reduced the number of melanosomes in the cell periphery of mouse melanocytes ('peripheral dilution'). Expression of siRNA-resistant Slp2-a (Slp2-a(SR)) rescued the peripheral dilution of melanosomes induced by Slp2-a siRNAs, but Slp2-a(SR) mutants, which failed to interact with either phospholipids or Rab27A, did not. Loss of Slp2-a protein also induced a change in melanocyte morphology, from their normal elongated shape to a more rounded shape, which depended on the phospholipid-binding activity of Slp2-a, but not on its Rab27A-binding activity. By contrast, knockdown of Slac2-a (also called melanophilin), another Rab27A-binding protein in melanocytes, caused perinuclear aggregation of melanosomes alone without altering cell shape. These results reveal the differential and sequential roles of Rab27A-binding proteins in melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Taruho S Kuroda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
114
|
Westbroek W, Lambert J, De Schepper S, Kleta R, Van Den Bossche K, Seabra MC, Huizing M, Mommaas M, Naeyaert JM. Rab27b is Up-Regulated in Human Griscelli Syndrome Type II Melanocytes and Linked to the Actin Cytoskeleton via Exon F-Myosin Va Transcripts. ACTA ACUST UNITED AC 2004; 17:498-505. [PMID: 15357836 DOI: 10.1111/j.1600-0749.2004.00173.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with the autosomal recessive Griscelli-Pruniéras syndrome type II are immunologically impaired and have an unusual silvery-grey hypopigmented colour of scalp hair, eyelashes and eyebrows but no noteworthy pigmentary abnormalities of the skin. In most Griscelli patients, the RAB27A gene, which encodes a small GTPase that is associated with the melanosome membrane in melanocytes, is mutated. Here we discuss a genomic RAB27A deletion found in a 21-month-old Moroccan Griscelli patient. Additionally, we provide evidence that the loss of functional Rab27a in melanocytes of this Griscelli patient is partially compensated by the up-regulation of Rab27b, a homologue of Rab27a. By real-time quantitative PCR and western blot analysis, we found that Rab27b mRNA and protein, expressed at low levels in normal human melanocytes, is significantly up-regulated in melanocytes derived from this patient. Our immunofluorescence and yeast two-hybrid screening studies reveal that Rab27b can form a tripartite complex on the melanosome membrane with Melanophilin, a Rab27a effector, and protein products of Myosin Va transcripts that contain exon F. Our data suggest that up-regulated Rab27b in melanocytes of the Griscelli patient can partially take over the function of Rab27a, which could explain the fact that this patient had an evenly pigmented skin and was able to tan.
Collapse
Affiliation(s)
- Wendy Westbroek
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Weigert R, Yeung AC, Li J, Donaldson JG. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol Biol Cell 2004; 15:3758-70. [PMID: 15181155 PMCID: PMC491835 DOI: 10.1091/mbc.e04-04-0342] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.
Collapse
Affiliation(s)
- Roberto Weigert
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8017, USA
| | | | | | | |
Collapse
|
116
|
Gaskins E, Gilk S, DeVore N, Mann T, Ward G, Beckers C. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. ACTA ACUST UNITED AC 2004; 165:383-93. [PMID: 15123738 PMCID: PMC2172186 DOI: 10.1083/jcb.200311137] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apicomplexan parasites exhibit a unique form of substrate-dependent motility, gliding motility, which is essential during their invasion of host cells and during their spread between host cells. This process is dependent on actin filaments and myosin that are both located between the plasma membrane and two underlying membranes of the inner membrane complex. We have identified a protein complex in the apicomplexan parasite Toxoplasma gondii that contains the class XIV myosin required for gliding motility, TgMyoA, its associated light chain, TgMLC1, and two novel proteins, TgGAP45 and TgGAP50. We have localized this complex to the inner membrane complex of Toxoplasma, where it is anchored in the membrane by TgGAP50, an integral membrane glycoprotein. Assembly of the protein complex is spatially controlled and occurs in two stages. These results provide the first molecular description of an integral membrane protein as a specific receptor for a myosin motor, and further our understanding of the motile apparatus underlying gliding motility in apicomplexan parasites.
Collapse
Affiliation(s)
- Elizabeth Gaskins
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, 108 Taylor Hall, CB# 7090, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
117
|
Fukuda M, Itoh T. Slac2-a/Melanophilin Contains Multiple PEST-like Sequences That Are Highly Sensitive to Proteolysis. J Biol Chem 2004. [DOI: 10.1074/jbc.m401791200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
118
|
Abstract
Melanosomes are lysosome-related organelles within which melanin pigment is synthesized. The molecular motors that allow these organelles to move within melanocytes have been the subject of intense study in several organisms. In mammals, melanosomes travel bi-directionally along microtubule tracks. The anterograde movement, i.e., towards microtubule plus-ends at the periphery, is accomplished by proteins of the kinesin superfamily, whereas the retrograde movement, i.e., towards microtubule minus-ends at the cell center, is achieved by dynein and dynein-associated proteins. At the periphery, melanosomes interact with the actin cytoskeleton via a tripartite complex formed by the small GTPase Rab27a, melanophilin and myosin Va, an actin-based motor. This interaction is essential for the maintenance of a dispersed state of the melanosomes, as shown by the perinuclear clustering of organelles in mutants in any of the referred proteins. In the retinal pigment epithelium, a similar complex formed by Rab27a, a melanophilin homolog called MyRIP and myosin VIIa is probably responsible for the tethering of melanosomes to the actin cytoskeleton. The coordination of motor activities is still poorly characterized, although some models have emerged in recent years and are discussed here. Unraveling regulatory mechanisms responsible for melanosome motility in pigmented cells will provide general insights into organelles dynamics within eukaryotic cells.
Collapse
Affiliation(s)
- Duarte C Barral
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
119
|
Brown JR, Stafford P, Langford GM. Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse. ACTA ACUST UNITED AC 2004; 58:175-88. [PMID: 14704950 DOI: 10.1002/neu.10317] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myosin-V is a versatile motor involved in short-range axonal/dendritic transport of vesicles in the actin-rich cortex and synaptic regions of nerve cells. It binds to several different kinds of neuronal vesicles by its globular tail domain but the mechanism by which it is recruited to these vesicles is not known. In this study, we used an in vitro motility assay derived from axoplasm of the squid giant axon to study the effects of the globular tail domain on the transport of neuronal vesicles. We found that the globular tail fragment of myosin-V inhibited actin-based vesicle transport by displacing native myosin-V and binding to vesicles. The globular tail domain pulled down kinesin, a known binding partner of myosin-V, in affinity isolation experiments. These data confirmed earlier evidence that kinesin and myosin-V interact to form a hetero-motor complex. The formation of a kinesin/myosin-V hetero-motor complex on vesicles is thought to facilitate the coordination of long-range movement on microtubules and short-range movement on actin filaments. The direct interaction of motors from both filament systems may represent the mechanism by which the transition of vesicles from microtubules to actin filaments is regulated. These results are the first demonstration that the recombinant tail of myosin-V inhibits vesicle transport in an in vitro motility assay. Future experiments are designed to determine the functional significance of the interaction between myosin-V and kinesin and to identify other proteins that bind to the globular tail domain of myosin-V.
Collapse
Affiliation(s)
- Jeremiah R Brown
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
120
|
Nascimento AA, Roland JT, Gelfand VI. Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol 2004; 19:469-91. [PMID: 14570578 DOI: 10.1146/annurev.cellbio.19.111401.092937] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic organisms rely on intracellular transport to position organelles and other components within their cells. Pigment cells provide an excellent model to study organelle transport as they specialize in the translocation of pigment granules in response to defined chemical signals. Pigment cells of lower vertebrates have traditionally been used as a model for these studies because these cells transport pigment organelles in a highly coordinated fashion, are easily cultured and transfected, are ideal for microsurgery, and are good for biochemical experiments, including in vitro analysis of organelle motility. Many important properties of organelle transport, for example, the requirement of two cytoskeletal filaments (actin and microtubules), the motor proteins involved, and the mechanisms of their regulation and interactions, have been studied using pigment cells of lower vertebrates. Genetic studies of mouse melanocytes allowed the discovery of essential elements involved in organelle transport including the myosin-Va motor and its receptor and adaptor molecules on the organelle surface. Future studies of pigment cells will contribute to our understanding of issues such as the cooperation among multiple motor proteins and the mechanisms of regulation of microtubule motors.
Collapse
Affiliation(s)
- Alexandra A Nascimento
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
121
|
Fukuda M, Kuroda TS. Missense mutations in the globular tail of myosin-Va indilutemice partially impair binding of Slac2-a/melanophilin. J Cell Sci 2004; 117:583-91. [PMID: 14730011 DOI: 10.1242/jcs.00891] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The well-known coat-color mutant mouse dilute exhibits a defect in melanosome transport, and although various mutations in the myosin-Va gene, which encodes an actin-based motor protein, have been identified in dilute mice, why missense mutations in the globular tail of myosin-Va, a putative cargo-binding site, cause the dilute phenotype (i.e. lighter coat color) has never been elucidated. In this study we discovered that missense mutations (I1510N, M1513K and D1519G) in the globular tail (GT) of myosin-Va partially impair the binding of Slac2-a/melanophilin, a linker protein between myosin-Va and Rab27A on the melanosome. The myosin-Va-GT-binding site in Slac2-a was mapped to the region (amino acids 147-240) adjacent to the N-terminal Rab27A-binding site, but it is distinct from the myosin-Va-exon-F-binding site (amino acids 320-406). The myosin-Va-GT·Slac2-a interaction was much weaker than the myosin-Va-exon-F·Slac2-a interaction. The missense mutations in the GT found in dilute mice abrogated only the myosin-Va-GT·Slac2-a interaction and had no effect on the myosin-Va-exon-F·Slac2-a interaction. We further showed that expression of green fluorescence protein-tagged Slac2-a lacking the myosin-Va-GT-binding site (ΔGT), but not the wild-type Slac2-a, severely inhibits melanosome transport in melan-a cells, especially at the melanosome transfer step from microtubles to actin filaments (i.e. perinuclear aggregation of melanosomes). On the basis of our findings, we propose that myosin-Va interacts with Slac2-a·Rab27A complex on the melanosome via two distinct domains, both of which are essential for melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
122
|
Abstract
Neurons require long-distance microtubule-based transport systems to ferry vital cellular cargoes and signals between cell bodies and axonal or dendritic terminals. Considerable progress has been made on developing a molecular understanding of these processes and how they are integrated into normal neuronal functions. Recent work also suggests that these transport systems may fail early in the pathogenesis of a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lawrence S B Goldstein
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
123
|
Chen Y, Guo X, Deng FM, Liang FX, Sun W, Ren M, Izumi T, Sabatini DD, Sun TT, Kreibich G. Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes. Proc Natl Acad Sci U S A 2003; 100:14012-7. [PMID: 14625374 PMCID: PMC283537 DOI: 10.1073/pnas.2436350100] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The terminally differentiated umbrella cells of bladder epithelium contain unique cytoplasmic organelles, the fusiform vesicles, which deliver preassembled crystalline arrays of uroplakin proteins to the apical cell surface of urothelial umbrella cells. We have investigated the possible role of Rab proteins in this delivery process, and found Rab27b to be expressed at an extraordinary high level (0.1% of total protein) in urothelium, whereas Rab27b levels were greatly reduced (to <5% of normal urothelium) in cultured urothelial cells, which synthesized only small amounts of uroplakins and failed to form fusiform vesicles. Immuno-electron microscopy showed that Rab27b was associated with the cytoplasmic face of the fusiform vesicles, but not with that of the apical plasma membrane. The association of Rab27b with fusiform vesicles and its differentiation-dependent expression suggest that this Rab protein plays a role in regulating the delivery of fusiform vesicles to the apical plasma membrane of umbrella cells.
Collapse
Affiliation(s)
- Yanru Chen
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
DeSelm CJ, Brown JR, Lu R, Langford GM. Rab-GDI inhibits myosin V-dependent vesicle transport in squid giant axon. THE BIOLOGICAL BULLETIN 2003; 205:190-191. [PMID: 14583523 DOI: 10.2307/1543246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
125
|
Hirokawa N, Takemura R. Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci 2003; 28:558-65. [PMID: 14559185 DOI: 10.1016/j.tibs.2003.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have revealed that kinesin, dynein and myosin each form large superfamilies and participate in many different intracellular transport systems. Importantly, these motor proteins play significant roles in the pathogenesis of a variety of diseases. Studies using knockout mice for kinesin KIF1B have led to the identification of the cause of a human hereditary neuropathy, Charcot-Marie-Tooth disease type 2A. The function of members of the dynein superfamily whose existence has previously only been confirmed through genome databases, has been revealed by studies of immotile cilia syndrome. Unconventional myosins have been shown to function in the inner-ear cells by examination of hereditary human hearing impairment and studies using mouse models. In addition, some diseases are caused by mutations, not in the motor itself, but in the proteins associated with the motor proteins. Here, we discuss the relationship of these motor proteins and how they contribute to disease in molecular terms.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | |
Collapse
|
126
|
Abstract
Color loci in mammals are those genetic loci in which mutations can affect pigmentation of the hair, skin, and/or eyes. In the mouse, over 800 phenotypic alleles are now known, at 127 identified color loci. As the number of color loci passed 100 only recently, we celebrate this 'century' with an overview of these loci, especially the 59 that have been cloned and sequenced. These fall into a number of functional groups representing melanocyte development and differentiation, melanosomal components, organelle biogenesis, organelle transport, control of pigment-type switching, and some systemic effects. A human ortholog has been identified in all cases, and the majority of these human genes are found to be loci for human disorders, often affecting other body systems as well as pigmentation. We expect that a significant number of color loci remain to be identified. Nonetheless, the large number known already provide a treasury of resources for reconstruction of the mechanisms, at the subcellular, cellular and tissue levels, that produce a functional pigmentary system and contribute to the normal development and functioning of many other organ systems. The mutant mice also provide valuable models for the study of human disease.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Department of Basic Medical Sciences, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
127
|
Negroiu G, Dwek RA, Petrescu SM. The inhibition of early N-glycan processing targets TRP-2 to degradation in B16 melanoma cells. J Biol Chem 2003; 278:27035-42. [PMID: 12719423 DOI: 10.1074/jbc.m303167200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosinase-related protein-2 (TRP-2) is a DOPAchrome tautomerase catalyzing a distal step in the melanin synthesis pathway. Similar to the other two melanogenic enzymes belonging to the TRP gene family, tyrosinase and TRP-1, TRP-2 is expressed in melanocytes and melanoma cells. Despite the increasing evidence of its efficiency as a melanoma antigen, little is known about the maturation and intracellular trafficking of TRP-2. Here we show that TRP-2 is mainly distributed in the TGN of melanoma cells instead of being confined solely to melanosomes. This, together with the plasma membrane occasional localization observed by immunofluorescence, suggest the TRP-2 participation in a recycling pathway, which could include or not the melanosomes. Using pulse-chase experiments we show that the TRP-2 polypeptide folds in the endoplasmic reticulum (ER) in the presence of calnexin, until it reaches a dithiothreitol-resistant conformation enabling its ER exit to the Golgi. If N-glycosylation inhibitors prevent the association with calnexin, the TRP-2 nascent chain undergoes an accelerated degradation process. This process is delayed in the presence of proteasomal inhibitors, indicating that the misfolded chain is retro-translocated from the ER into the cytosol and degraded in proteasomes. This is a rare example in which calnexin although indispensable for the nascent chain folding is not required for its targeting to degradation. Therefore TRP-2 may prove to be a good model to document the calnexin-independent retro-translocation process of proteasomally degraded proteins. Clearly, TRP-2 has a distinct maturation pathway from tyrosinase and TRP-1 and possibly a second regulatory function within the cell.
Collapse
Affiliation(s)
- Gabriela Negroiu
- Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 77700 Bucharest, Romania
| | | | | |
Collapse
|
128
|
Abstract
Cytotoxic T lymphocytes and natural killer cells kill their targets by secreting specialized granules that contain potent cytotoxic molecules. Through the study of rare immunodeficiency diseases in which this granule pathway of killing is impaired, proteins such as Rab27a have been identified as components of the secretory machinery of these killer cells. Recent evidence suggests that the destruction of activated lymphocytes through granule-mediated killing may be an important mechanism of immunological homeostasis. Although the process by which this occurs is not yet known, it is possible that events taking place at the immunological synapse may render the killer cell susceptible to fratricidal attack by other killer cells.
Collapse
|
129
|
Gomes AQ, Ali BR, Ramalho JS, Godfrey RF, Barral DC, Hume AN, Seabra MC. Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol Biol Cell 2003; 14:1882-1899. [PMID: 12802062 PMCID: PMC165084 DOI: 10.1091/mbc.e02-10-0639] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2002] [Revised: 12/23/2002] [Accepted: 01/23/2003] [Indexed: 02/05/2023] Open
Abstract
Rab GTPases are regulators of membrane traffic. Rabs specifically associate with target membranes via the attachment of (usually) two geranylgeranyl groups in a reaction involving Rab escort protein and Rab geranylgeranyl transferase. In contrast, related GTPases are singly prenylated by CAAX prenyl transferases. We report that di-geranylgeranyl modification is important for targeting of Rab5a and Rab27a to endosomes and melanosomes, respectively. Transient expression of EGFP-Rab5 mutants containing two prenylatable cysteines (CGC, CC, CCQNI, and CCA) in HeLa cells did not affect endosomal targeting or function, whereas mono-cysteine mutants (CSLG, CVLL, or CVIM) were mistargeted to the endoplasmic reticulum (ER) and were nonfunctional. Similarly, Rab27aCVLL mutant is also mistargeted to the ER and transgenic expression on a Rab27a null background (Rab27aash) did not rescue the coat color phenotype, suggesting that Rab27aCVLL is not functional in vivo. CAAX prenyl transferase inhibition and temperature-shift experiments further suggest that Rabs, singly or doubly modified are recruited to membranes via a Rab escort protein/Rab geranylgeranyl transferase-dependent mechanism that is distinct from the insertion of CAAX-containing GTPases. Finally, we show that both singly and doubly modified Rabs are extracted from membranes by RabGDIalpha and propose that the mistargeting of Rabs to the ER results from loss of targeting information.
Collapse
Affiliation(s)
- Anita Q Gomes
- Cell and Molecular Biology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
130
|
Bahadoran P, Busca R, Chiaverini C, Westbroek W, Lambert J, Bille K, Valony G, Fukuda M, Naeyaert JM, Ortonne JP, Ballotti R. Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J Biol Chem 2003; 278:11386-92. [PMID: 12531900 DOI: 10.1074/jbc.m211996200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab27a plays a pivotal role in the transport of melanosomes to dendrite tips of melanocytes and mutations in RAB27A, which impair melanosome transport cause the pigmentary dilution and the immune deficiency found in several patients with Griscelli syndrome (GS). Interestingly, three GS patients present single homozygous missense mutations in RAB27A, leading to W73G, L130P, and A152P transitions that affect highly conserved residues among Rab proteins. However, the functional consequences of these mutations have not been studied. In the present report, we evaluated the effect of overexpression of these mutants on melanosome, melanophilin, and myosin-Va localization in B16 melanoma cells. Then we studied several key parameters for Rab27a function, including GTP binding and interaction with melanophilin/myosin-Va complex, which links melanosomes to the actin network. Our results showed that Rab27a-L130P cannot bind GTP, does not interact with melanophilin, and consequently cannot allow melanosome transport on the actin filaments. Interestingly, Rab27a-W73G binds GTP but does not interact with melanophilin. Thus, Rab27a-W73G cannot support the actin-dependent melanosome transport. Finally, Rab27a-A152P binds both GTP and melanophilin. However, Rab27a-A152P does not allow melanosome transport and acts as a dominant negative mutant, because its overexpression, in B16 melanoma cells, mimics a GS phenotype. Hence, the interaction of Rab27a with melanophilin/myosin-Va is not sufficient to ensure a correct melanosome transport. Our results pointed to an unexpected complexity of Rab27a function and open the way to the search for new Rab27a effectors or regulators that control the transport of Rab27a-dependent vesicles.
Collapse
Affiliation(s)
- Philippe Bahadoran
- INSERM U385, Biologie et Physiopathologie de la Peau, Faculté de Médecine, Avenue de Valombrose, 06107, Nice cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Ishikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS. Identification of an organelle-specific myosin V receptor. J Cell Biol 2003; 160:887-97. [PMID: 12642614 PMCID: PMC2173761 DOI: 10.1083/jcb.200210139] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p-Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times.
Collapse
Affiliation(s)
- Kuniko Ishikawa
- Dept. of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
132
|
Westbroek W, Lambert J, Bahadoran P, Busca R, Herteleer MC, Smit N, Mommaas M, Ballotti R, Naeyaert JM. Interactions of human Myosin Va isoforms, endogenously expressed in human melanocytes, are tightly regulated by the tail domain. J Invest Dermatol 2003; 120:465-75. [PMID: 12603861 DOI: 10.1046/j.1523-1747.2003.12068.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary human epidermal melanocytes express six endogenous isoforms of the human actin-associated myosin Va motor protein, involved in organelle transport. As isoforms containing exon F are most abundant in melanocytes, we hypothesized that these isoforms probably have a melanocyte-specific function. To uncover the biologic role of the six isoforms we introduced enhanced green fluorescent protein (eGFP)-myosin Va tail constructs in human melanocytes. We found that the medial tail, undergoing alternative splicing, has to be expressed in combination with the globular tail in order to obtain clear colocalization with organelles. Our data show that isoforms lacking exon F but containing exon D are associated with vesicles near the Golgi area. Myosin Va isoforms containing exon F are able to colocalize with and influence melanosome distribution by indirect interaction with rab27a and direct interaction with melanophilin. These results indicate that the myosin Va medial tail domain provides the globular tail domain with organelle-interacting specificity.
Collapse
Affiliation(s)
- Wendy Westbroek
- Department of Dermatology, Ghent University Hospital, B-Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Bahadoran P, Ballotti R, Ortonne JP. Hypomelanosis, immunity, central nervous system: no more "and", not the end. Am J Med Genet A 2003; 116A:334-7. [PMID: 12522786 DOI: 10.1002/ajmg.a.10066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philippe Bahadoran
- Department of Clinical Dermatology and INSERM 385 Research Unit, University of Nice-Sophia Antipolis, Nice, France.
| | | | | |
Collapse
|
134
|
Zhang Q, Zhao B, Li W, Oiso N, Novak EK, Rusiniak ME, Gautam R, Chintala S, O'Brien EP, Zhang Y, Roe BA, Elliott RW, Eicher EM, Liang P, Kratz C, Legius E, Spritz RA, O'Sullivan TN, Copeland NG, Jenkins NA, Swank RT. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat Genet 2003; 33:145-53. [PMID: 12548288 DOI: 10.1038/ng1087] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 01/03/2003] [Indexed: 11/09/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.
Collapse
MESH Headings
- Adaptor Protein Complex 3
- Adaptor Protein Complex beta Subunits
- Adaptor Proteins, Vesicular Transport
- Adult
- Amino Acid Sequence
- Animals
- COS Cells
- Child, Preschool
- Chlorocebus aethiops
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, P1 Bacteriophage/genetics
- Disease Models, Animal
- Drosophila Proteins
- Female
- Hermanski-Pudlak Syndrome/genetics
- Hermanski-Pudlak Syndrome/metabolism
- Hermanski-Pudlak Syndrome/pathology
- Humans
- Insect Proteins/genetics
- Male
- Melanosomes/genetics
- Membrane Proteins/genetics
- Membrane Transport Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Molecular Sequence Data
- Mutation/genetics
- Oligopeptides
- Peptides/immunology
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proteins/genetics
- Proto-Oncogene Proteins c-myc/immunology
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Qing Zhang
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Meyers JM, Prekeris R. Formation of mutually exclusive Rab11 complexes with members of the family of Rab11-interacting proteins regulates Rab11 endocytic targeting and function. J Biol Chem 2002; 277:49003-10. [PMID: 12376546 DOI: 10.1074/jbc.m205728200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several Rabs, including Rab11, regulate the traffic and sorting of proteins in the endosomal pathway. Recently, six novel Rab11 family interacting proteins (FIPs) were identified. Although they share little overall sequence homology, all FIPs contain a conserved Rab11-binding domain. Here we investigate the role of FIPs as Rab11-targeting proteins and show that the Rab11-binding domain assumes an alpha-helical structure, with the conserved residues forming a hydrophobic Rab11-binding patch. This hydrophobic patch mediates the formation of mutually exclusive complexes between Rab11 and various members of FIP protein family. Furthermore, the formation of Rab11/FIP complexes regulates Rab11 localization by recruiting it to distinct endocytic compartments. Thus, we propose that Rab11/FIP complexes serve as targeting patches, regulating Rab11 localization and recruitment of additional cellular factors to different endocytic compartments.
Collapse
Affiliation(s)
- Jennifer M Meyers
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
136
|
Purcell TJ, Morris C, Spudich JA, Sweeney HL. Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 2002; 99:14159-64. [PMID: 12386339 PMCID: PMC137854 DOI: 10.1073/pnas.182539599] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin V is a two-headed molecular motor that binds six light chains per heavy chain, which creates unusually long lever arms. This motor moves processively along its actin track in discrete 36-nm steps. Our model is that one head of the two-headed myosin V tightly binds to actin and swings its long lever arm through a large angle, providing a stroke. We created single-headed constructs with different-size lever arms and show that stroke size is proportional to lever arm length. In a two-headed molecule, the stroke provides the directional bias, after which the unbound head diffuses to find its binding site, 36 nm forward. Our two-headed construct with all six light chains per head reconstitutes the 36-nm processive step seen in tissue-purified myosin V. Two-headed myosin V molecules with only four light chains per head are still processive, but their step size is reduced to 24 nm. A further reduction in the length of the lever arms to one light chain per head results in a motor that is unable to walk processively. This motor produces single small approximately 6-nm strokes, and ATPase and pyrene actin quench measurements show that only one of the heads of this dimer rapidly binds to actin for a given binding event. These data show that for myosin V with its normal proximal tail domain, both heads and a long lever arm are required for large, processive steps.
Collapse
Affiliation(s)
- Thomas J Purcell
- Department of Biochemistry, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
137
|
Fukuda M. Synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a critical determinant of GTP-dependent specific binding to Rab27A. J Biol Chem 2002; 277:40118-24. [PMID: 12189142 DOI: 10.1074/jbc.m205765200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal synaptotagmin-like protein (Slp) homology domain (SHD) of the Slp and Slac2 families has recently been identified as a specific Rab27A-binding domain (Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 9212-9218; Fukuda, M., Kuroda, T. S., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 12432-12436). The SHD consists of two conserved alpha-helical regions (SHD1 and SHD2) that are often separated by two zinc finger motifs. However, the structural basis of Rab27A recognition by the SHD (i.e. involvement of each region (SHD1, zinc finger motifs, and SHD2) in Rab27A recognition and critical residue(s) for Rab27A/SHD interaction) had never been elucidated. In this study, systematic deletion analysis and Ala-based site-directed mutagenesis showed that SHD1 of Slac2-a/melanophilin alone is both necessary and sufficient for high affinity specific recognition of the GTP-bound form of Rab27A. By contrast, the zinc finger motifs and SHD2 are not an autonomous Rab27A-binding site and seem to be important for stabilization of the structure of the SHD or higher affinity Rab27A binding. In addition, chimeric analysis of Rab3A and Rab27A showed that the specific sequence of the switch II region of Rab27 isoforms (especially Leu-84, Phe-88, and Asp-91 of Rab27A), which is not conserved in the Rab3 or Rab8 isoforms, is essential for recognition by the Slac2-a SHD. Based on these findings, I propose that SHD1 of the Slp and Slac2 families be referred to as RBD27 (Rab-binding domain specific for Rab27 isoforms).
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
138
|
Abstract
Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation.
Collapse
Affiliation(s)
- Glynis Scott
- Department Dermatology, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
139
|
Brown JR, Peacock-Villada EM, Langford GM. Globular tail fragment of myosin-V displaces vesicle-associated motor and blocks vesicle transport in squid nerve cell extracts. THE BIOLOGICAL BULLETIN 2002; 203:210-211. [PMID: 12414582 DOI: 10.2307/1543401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Jeremiah R Brown
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|