101
|
Phillip V, Steiner JM, Algül H. Early phase of acute pancreatitis: Assessment and management. World J Gastrointest Pathophysiol 2014; 5:158-168. [PMID: 25133018 PMCID: PMC4133515 DOI: 10.4291/wjgp.v5.i3.158] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a potentially life-threatening disease with a wide spectrum of severity. The overall mortality of AP is approximately 5%. According to the revised Atlanta classification system, AP can be classified as mild, moderate, or severe. Severe AP often takes a clinical course with two phases, an early and a late phase, which should both be considered separately. In this review article, we first discuss general aspects of AP, including incidence, pathophysiology, etiology, and grading of severity, then focus on the assessment of patients with suspected AP, including diagnosis and risk stratification, followed by the management of AP during the early phase, with special emphasis on fluid therapy, pain management, nutrition, and antibiotic prophylaxis.
Collapse
|
102
|
Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2014; 2:26. [PMID: 25147785 PMCID: PMC4123607 DOI: 10.3389/fbioe.2014.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/31/2023] Open
Abstract
Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist. A pitfall in the field is that these systems are applied without a targeted strategy with varying degrees of success as a consequence. In the current review, the different properties of alginate-based systems are reviewed in view of future application in humans. The use of allogeneic and xenogeneic islet sources are discussed with acknowledging the different degrees of immune protection the encapsulation system should supply. Also issues such as oxygen supply and the role of danger associated molecular patterns (DAMPS) in immune activation are being reviewed. A common property of the encapsulation systems is that alginates for medical application should have an extreme high degree of purity and lack pathogen-associated molecular patterns (PAMPs) to avoid activation of the recipient’s immune system. Up to now, non-inflammatory alginates are only produced on a lab-scale and are not yet commercially available. This is a major pitfall on the route to human application. Also the lack of predictive pre-clinical models is a burden. The principle differences between relevant innate and adaptive immune responses in humans and other species are reviewed. Especially, the extreme differences between the immune system of non-human primates and humans are cumbersome as non-human primates may not be predictive of the immune responses in humans, as opposed to the popular belief of regulatory agencies. Current insight is that although the technology is versatile major research efforts are required for identifying the mechanical, immunological, and physico-chemical requirements that alginate-based capsules should meet for successful human application.
Collapse
Affiliation(s)
- Genaro Alberto Paredes Juárez
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Milica Spasojevic
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Groningen , Netherlands
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
103
|
Sandholm J, Selander KS. Toll-like receptor 9 in breast cancer. Front Immunol 2014; 5:330. [PMID: 25101078 PMCID: PMC4105583 DOI: 10.3389/fimmu.2014.00330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system. DNA recognition via TLR9 results in an inflammatory reaction, which eventually also activates a Th1-biased adaptive immune attack. In addition to cells of the immune system, TLR9 mRNA and protein are also widely expressed in breast cancer cell lines and in clinical breast cancer specimens. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. In the studies conducted so far, tumor TLR9 expression has been shown to have prognostic significance only in patients that have triple-negative breast cancer (TNBC). Specifically, high tumor TLR9 expression predicts good prognosis among TNBC patients. Pre-clinical studies suggest that TLR9 expression may affect tumor immunophenotype and contribute to the immunogenic benefit of chemotherapy. In this review, we discuss the possible contribution of tumor TLR9 to the pathogenesis and treatment responses in breast cancer.
Collapse
Affiliation(s)
- Jouko Sandholm
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , Turku , Finland
| | - Katri S Selander
- Department of Pathology, Lapland Central Hospital , Rovaniemi , Finland ; Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Cancer Center, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
104
|
Uchida M, Ito T, Nakamura T, Hijioka M, Igarashi H, Oono T, Kato M, Nakamura K, Suzuki K, Takayanagi R, Jensen RT. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist. Pancreas 2014; 43:708-719. [PMID: 24681877 PMCID: PMC4315317 DOI: 10.1097/mpa.0000000000000109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. METHODS CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. RESULTS In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CONCLUSIONS CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.
Collapse
Affiliation(s)
- Masahiko Uchida
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Taichi Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Masayuki Hijioka
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Koichi Suzuki
- Department of Leprosy Research Center, National Institute of Infectious Diseases, Tokyo Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Robert T. Jensen
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
105
|
Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014; 146:1763-74. [PMID: 24657625 PMCID: PMC4104305 DOI: 10.1053/j.gastro.2014.03.014] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome induces inflammation in response to organ injury, but little is known about its regulation. Toll-like receptors (TLRs) provide the first signal required for activation of the inflammasome and stimulate aerobic glycolysis to generate lactate. We examined whether lactate and the lactate receptor, Gi-protein-coupled receptor 81 (GPR81), regulate TLR induction of signal 1 and limit inflammasome activation and organ injury. METHODS Primary mouse macrophages and human monocytes were incubated with TLR4 agonists and lactate and assayed for levels of pro-interleukin (IL)1β, NLRP3, and caspase-1 (CASP1); release of IL1β; and activation of nuclear factor-κB (NF-κB) and caspase-1. Small interfering RNAs were used to reduce levels of GPR81 and arrestin β-2 (ARRB2), and an NF-κB luciferase reporter transgene was transfected in RAW 264.7 cells. Cell lysates were analyzed by immunoprecipitation with an antibody against GPR81. Acute hepatitis was induced in C56BL/6N mice by administration of lipopolysaccharide and D-galactosamine. Acute pancreatitis was induced by administration of lipopolysaccharide and cerulein. Some mice were given intraperitoneal injections of sodium lactate or small interfering RNA against Gpr81. Activation of NF-κB in tissue macrophages was assessed in mice that expressed a reporter transgene. RESULTS In macrophages and monocytes, increasing concentrations of lactate reduced TLR4-mediated induction of Il1B, Nlrp3, and Casp1; activation of NF-κB; release of IL1β; and cleavage of CASP1. GPR81 and ARRB2 physically interacted and were required for these effects. The administration of lactate reduced inflammation and organ injury in mice with immune hepatitis; this reduction required Gpr81 dependence in vivo. Lactate also prevented activation of NF-κB in macrophages of mice, and, when given after injury, reduced the severity of acute pancreatitis and acute liver injury. CONCLUSIONS Lactate negatively regulates TLR induction of the NLRP3 inflammasome and production of IL1β, via ARRB2 and GPR81. Lactate could be a promising immunomodulatory therapy for patients with acute organ injury.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, New Haven, CT, 06520 USA
| | - Ahmad Farooq
- Section of Digestive Diseases, Yale University, New Haven, CT, 06520 USA
| | - Ayaz Ghani
- Section of Digestive Diseases, Yale University, New Haven, CT, 06520 USA
| | - Fred Gorelick
- Section of Digestive Diseases, Yale University, New Haven, CT, 06520 USA,Section of Digestive Diseases, Department of Veterans Affairs Connecticut Healthcare, West Haven CT, 06516 USA
| | - Wajahat Zafar Mehal
- Section of Digestive Diseases, Yale University, New Haven, Connecticut; Section of Digestive Diseases, Department of Veterans Affairs Connecticut Healthcare, West Haven, Connecticut.
| |
Collapse
|
106
|
Fisetin attenuates cerulein-induced acute pancreatitis through down regulation of JNK and NF-κB signaling pathways. Eur J Pharmacol 2014; 737:149-58. [PMID: 24861022 DOI: 10.1016/j.ejphar.2014.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
Abstract
Acute pancreatitis (AP) is a complicated disease which is largely undiscovered. Fisetin, a natural flavonoid from fruits and vegetables, has been shown to have anti-inflammatory, antioxidant, and anti-cancer activities in various disease models. However, the effects of fisetin on AP have not been determined. Pre- and post- treatment of mice with fisetin reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (pancreatic weight to body weight ratio, amylase, lipase, and myeloperoxidase activity) and production of inflammatory cytokines. In pancreatic acinar cells, fisetin also inhibited cell death and production of inflammatory cytokines. In addition, fisetin inhibited activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB in vivo and in vitro. In conclusion, these results suggest that fisetin exhibits anti-inflammatory effect on AP and could be a beneficial agent in the treatment of AP and its pulmonary complications.
Collapse
|
107
|
Tiwari RL, Singh V, Singh A, Rana M, Verma A, Kothari N, Kohli M, Bogra J, Dikshit M, Barthwal MK. PKCδ-IRAK1 axis regulates oxidized LDL-induced IL-1β production in monocytes. J Lipid Res 2014; 55:1226-44. [PMID: 24792928 DOI: 10.1194/jlr.m045658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.
Collapse
Affiliation(s)
- Rajiv Lochan Tiwari
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Vishal Singh
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Ankita Singh
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Minakshi Rana
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Anupam Verma
- Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Nikhil Kothari
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Monica Kohli
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Jaishri Bogra
- Department of Anaesthesia, King George's Medical University, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
108
|
Charrier A, Chen R, Kemper S, Brigstock DR. Regulation of pancreatic inflammation by connective tissue growth factor (CTGF/CCN2). Immunology 2014; 141:564-76. [PMID: 24754049 DOI: 10.1111/imm.12215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pancreatitis is caused by long-term heavy alcohol consumption, which results in injury and death of pancreatic acinar cells (PAC). The PAC play a pivotal role in mediating early inflammatory responses but the underlying mechanisms remain poorly understood. Treatment of C57BL/6 mice with ethanol and cerulein resulted in increased staining for acinar interleukin- 1b (IL-1b), chemokine (C-C motif) ligand 3 (CCL3), or connective tissue growth factor (CTGF/CCN2) by Day 16 and this was associated with increased infiltration of F4/80-positive macrophages and increased expression of pancreatic CTGF/CCN2 mRNA. Compared with wild-type Swiss Webster mice, ethanol treatment of pan-green fluorescent protein (GFP)-CTGF/CCN2 transgenic mice caused enhanced acinar staining for GFP or CTGF/CCN2 and a significant increase in pancreatic infiltration of F4/80-positive macrophages or NIMP-R14-positive neutrophils. Treatment of primary mouse PAC or the rat AR42J PAC line with ethanol or CTGF/CCN2 resulted in enhanced expression of IL-1b or CCL3. Conditioned medium from CTGF/CCN2-treated AR42J cells induced chemotaxis in NR8383 macrophages and this response was abrogated in a dose dependent manner by addition of BX471, an inhibitor of chemokine (C-C motif) receptor 1. These results reveal that acinar CTGF/CCN2 plays a novel role in alcohol-induced inflammatory processes in the pancreas by increasing infiltration of macrophages and neutrophils and increasing acinar production of inflammatory mediators such as IL-1b or CCL3. The early production of CTGF/CCN2 by PAC to drive inflammation is distinct from its previously reported production by pancreatic stellate cells to drive fibrosis at later stages of pancreatic injury.
Collapse
MESH Headings
- Acinar Cells/immunology
- Acinar Cells/metabolism
- Acinar Cells/pathology
- Animals
- Antigens, Differentiation/metabolism
- Biomarkers/metabolism
- Cell Line
- Ceruletide
- Chemokine CCL3/metabolism
- Chemotaxis
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Culture Media, Conditioned/metabolism
- Disease Models, Animal
- Ethanol
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Inflammation Mediators/metabolism
- Interleukin-1beta/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils/immunology
- Neutrophils/metabolism
- Pancreas, Exocrine/immunology
- Pancreas, Exocrine/metabolism
- Pancreas, Exocrine/pathology
- Pancreatitis, Alcoholic/chemically induced
- Pancreatitis, Alcoholic/genetics
- Pancreatitis, Alcoholic/immunology
- Pancreatitis, Alcoholic/metabolism
- Pancreatitis, Alcoholic/pathology
- Pancreatitis, Chronic/chemically induced
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/immunology
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Primary Cell Culture
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Receptors, CCR1/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Up-Regulation
Collapse
|
109
|
Camara-Lemarroy CR. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: Beyond ischemia-reperfusion injury. World J Gastroenterol 2014; 20:3572-3581. [PMID: 24707140 PMCID: PMC3974524 DOI: 10.3748/wjg.v20.i13.3572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions.
Collapse
|
110
|
Sang G, Du JM, Chen YY, Chen YB, Chen JX, Chen YC. Plasma copeptin levels are associated with prognosis of severe acute pancreatitis. Peptides 2014; 51:4-8. [PMID: 24184419 DOI: 10.1016/j.peptides.2013.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 02/05/2023]
Abstract
Copeptin reflects the individual stress level, and is correlated with outcomes of critical illness. This study was designed to evaluate its relationship with disease severity, local complications, organ failure and mortality of severe acute pancreatitis (SAP). Seventy-eight SAP patients and 78 sex- and age-matched healthy individuals were recruited. Plasma samples were obtained on admission from SAP patients and at study entry from healthy individuals. Copeptin concentration was determined using enzyme-linked immunosorbent assay. Plasma copeptin level was obviously higher in patients than in healthy individuals, was identified as an independent predictor of local complications, organ failure and in-hospital mortality, was highly associated with traditional predictors of disease severity and mortality including the Acute Physiology and Chronic Health Care Evaluation II score, Ranson score, multiple organ dysfunction score, sequential organ failure assessment score, and predicted local complications, organ failure, and in-hospital mortality of SAP patients with high areas under receiver operating characteristic curve. Furthermore, its predictive value was similar to the traditional predictors'. However, it could not improve these traditional predictors' predictive values. Therefore, increased plasma copeptin level is associated with disease severity and identified as a novel prognostic marker of local complications, organ failure and mortality after SAP.
Collapse
Affiliation(s)
- Gao Sang
- Department of Paediatrics, Tongde Hospital Zhejiang Chinese Medical University, 234 Gucui Road, Hangzhou 310012, China
| | - Jian-Min Du
- Department of Paediatrics, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Yong-Yi Chen
- Department of Traditional Chinese Internal Medicine, Tongde Hospital Zhejiang Chinese Medical University, 234 Gucui Road, Hangzhou 310012, China.
| | - Yang-Bo Chen
- Intensive Care Unit, Tongde Hospital Zhejiang Chinese Medical University, 234 Gucui Road, Hangzhou 310012, China
| | - Jun-Xian Chen
- Department of Gastroenterology, Tongde Hospital Zhejiang Chinese Medical University, 234 Gucui Road, Hangzhou 310012, China
| | - Yong-Can Chen
- Department of Gastroenterology, Tongde Hospital Zhejiang Chinese Medical University, 234 Gucui Road, Hangzhou 310012, China
| |
Collapse
|
111
|
Nakamura T, Ito T, Uchida M, Hijioka M, Igarashi H, Oono T, Kato M, Nakamura K, Suzuki K, Jensen RT, Takayanagi R. PSCs and GLP-1R: occurrence in normal pancreas, acute/chronic pancreatitis and effect of their activation by a GLP-1R agonist. J Transl Med 2014; 94:63-78. [PMID: 24217090 PMCID: PMC3879597 DOI: 10.1038/labinvest.2013.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022] Open
Abstract
There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term glucagon-like peptide-1 (GLP-1) analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells are well studied; however, there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can have an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute pancreatitis (AP)/chronic pancreatitis (CP), and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. GLP-1 receptor (GLP-1R) expression/localization in normal pancreas and pancreatitis (AP/CP) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP-1R expression and effects of GLP-1 analog on activated PSCs was examined with real-time PCR, MTS assays and western blotting. In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in AP or CP, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the extracellular signal-regulated kinase pathway mediated the PSCs proliferation. GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in AP/CP. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas.
Collapse
Affiliation(s)
- Taichi Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masahiko Uchida
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masayuki Hijioka
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Koichi Suzuki
- Department of Leprosy Research Center, National Institute of Infectious Diseases, Tokyo Japan
| | - Robert T. Jensen
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
112
|
Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest 2013; 124:437-47. [PMID: 24334457 DOI: 10.1172/jci71362] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
The protective role of hemeoxygenase-1 (HO-1) in various inflammatory conditions is mediated in part by its products, carbon monoxide (CO) and biliverdin. Here we investigated a therapeutic role for CO and CO-primed cells in acute pancreatitis (AP). In a mouse model of AP, treatment with CO-releasing molecule-2 (CORM-2) decreased mortality, pancreatic damage, and lung injury. CORM-2 decreased systemic inflammatory cytokines, suppressed systemic and pancreatic macrophage TNF-α secretion, and inhibited macrophage TLR4 receptor complex expression. In both human and mouse cells, CORM-2 inhibited endogenous and exogenous ligand-dependent TLR4 activation, which indicates that CORM-2 could be therapeutic for both early and late stages of AP, which involve sterile- and endotoxin-mediated inflammation, respectively. Mice engrafted with TLR4-deficient hematopoietic cells were protected against caerulein-induced AP. In the absence of leukocyte TLR4 expression, CORM-2 did not confer additional protection, which indicates that CORM-2-dependent effects are mediated via suppression of macrophage TLR4 activation. We determined that CO was directly responsible for the protective effects of CORM-2 in AP, as inactive forms of CORM-2 were ineffective. Importantly, adoptive transfer of CORM-2-primed cells reduced AP. Such a therapeutic approach would translate the beneficial effects of CO-based therapies, avoiding CO- or CO-RM-mediated toxicities in AP and a wide range of diseases.
Collapse
|
113
|
Tuomela J, Sandholm J, Kaakinen M, Patel A, Kauppila JH, Ilvesaro J, Chen D, Harris KW, Graves D, Selander KS. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res Treat 2013; 142:477-87. [PMID: 24212717 DOI: 10.1007/s10549-013-2762-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Abstract
TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple-negative, human MDA-MB-231 breast cancer cells stably expressing control, or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy.
Collapse
Affiliation(s)
- Johanna Tuomela
- Division of Hematology-Oncology, Department of Medicine, University of Alabama at Birmingham, SHEL 514, 1825 University Blvd, Birmingham, AL, 35294-3300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
KOBAYASHI HIROSHI, HIGASHIURA YUMI, SHIGETOMI HIROSHI, KAJIHARA HIROTAKA. Pathogenesis of endometriosis: The role of initial infection and subsequent sterile inflammation (Review). Mol Med Rep 2013; 9:9-15. [DOI: 10.3892/mmr.2013.1755] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/14/2013] [Indexed: 11/05/2022] Open
|
115
|
Ni J, Hu G, Xiong J, Shen J, Shen J, Yang L, Tang M, Zhao Y, Ying G, Yu G, Hu Y, Xing M, Wan R, Wang X. Involvement of interleukin-17A in pancreatic damage in rat experimental acute necrotizing pancreatitis. Inflammation 2013; 36:53-65. [PMID: 22990529 DOI: 10.1007/s10753-012-9519-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-17A is a proinflammatory cytokine, which has recently attracted much interest due to its pathogenic role in various inflammatory conditions such as ischemia/reperfusion injury, chronic inflammation, and autoimmune diseases, but the role of IL-17A in acute pancreatitis remains unclear. This study aimed to investigate the role of IL-17A in experimental acute necrotizing pancreatitis (ANP). We analyzed the expression of IL-17A during the pathogenesis of ANP in vivo induced by 3 % sodium taurocholate (NaTc), by microarray test, quantitative real-time PCR, Western blotting, enzyme-linked immunosorbent assay, and immunohistochemistry. The effects of IL-17A on pancreatic acinar cells and pancreatic stellate cells (PSCs) were further investigated in vitro using recombinant rat IL-17A (rIL-17A). Expression of IL-17A was significantly increased following experimental acute pancreatitis. In addition, rIL-17A induced rat pancreatic acinar cell necrosis and promoted expression of several target genes, including IL-6, IL-1β, CXCL1, CXCL2, and CXCL5, in acinar cells and PSCs. These findings suggest that IL-17A may be involved in pancreatic damage by regulating the expression of inflammatory cytokines and chemokines during experimental acute pancreatitis.
Collapse
Affiliation(s)
- Jianbo Ni
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144:1199-209.e4. [PMID: 23622129 PMCID: PMC3786712 DOI: 10.1053/j.gastro.2013.02.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/05/2013] [Accepted: 02/13/2013] [Indexed: 12/11/2022]
Abstract
Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.
Collapse
Affiliation(s)
- Ilya Gukovsky
- Veterans Affairs Greater Los Angeles Healthcare System, California, USA
| | | | | | | | | |
Collapse
|
117
|
Vaz J, Akbarshahi H, Andersson R. Controversial role of toll-like receptors in acute pancreatitis. World J Gastroenterol 2013; 19:616-630. [PMID: 23431068 PMCID: PMC3574587 DOI: 10.3748/wjg.v19.i5.616] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common clinical condition with an incidence of about 300 or more patients per million annually. About 10%-15% of patients will develop severe acute pancreatitis (SAP) and of those, 10%-30% may die due to SAP-associated complications. Despite the improvements done in the diagnosis and management of AP, the mortality rate has not significantly declined during the last decades. Toll-like receptors (TLRs) are pattern-recognition receptors that seem to play a major role in the development of numerous diseases, which make these molecules attractive as potential therapeutic targets. TLRs are involved in the development of the systemic inflammatory response syndrome, a potentially lethal complication in SAP. In the present review, we explore the current knowledge about the role of different TLRs that have been described associated with AP. The main candidate for targeting seems to be TLR4, which recognizes numerous damage-associated molecular patterns related to AP. TLR2 has also been linked with AP, but there are only limited studies that exclusively studied its role in AP. There is also data suggesting that TLR9 may play a role in AP.
Collapse
|