101
|
Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:287-98. [PMID: 25516570 DOI: 10.1093/pcp/pcu195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Present address: Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yasuyuki Suda
- RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan Present address: Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Samantha Vernhettes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
102
|
Saucedo-García M, Gavilanes-Ruíz M, Arce-Cervantes O. Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:55. [PMID: 25763001 PMCID: PMC4327526 DOI: 10.3389/fpls.2015.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/21/2015] [Indexed: 05/03/2023]
Abstract
Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
- *Correspondence: Mariana Saucedo-García, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario S/N Km 1, Tulancingo, Hidalgo C.P. 43600, México e-mail:
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Arce-Cervantes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| |
Collapse
|
103
|
Zhang Q, Xiao S. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate. FRONTIERS IN PLANT SCIENCE 2015; 6:387. [PMID: 26074946 PMCID: PMC4446532 DOI: 10.3389/fpls.2015.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/14/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA) is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA), and phosphatidylinositol 4-phosphate (PI4P), and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS) generation and SA accumulation during defense activation.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandRockville, MD, USA
- *Correspondence: Shunyuan Xiao, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, USA
| |
Collapse
|
104
|
Antignani V, Klocko AL, Bak G, Chandrasekaran SD, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. THE PLANT CELL 2015; 27:243-61. [PMID: 25634989 PMCID: PMC4330583 DOI: 10.1105/tpc.114.134262] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 05/19/2023]
Abstract
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.
Collapse
Affiliation(s)
- Vincenzo Antignani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amy L Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suma D Chandrasekaran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taylor Dunivin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
105
|
Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ. Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. PLANT & CELL PHYSIOLOGY 2014; 55:1873-83. [PMID: 25149227 DOI: 10.1093/pcp/pcu116] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The heat stress response is an important adaptation, enabling plants to survive challenging environmental conditions. Our previous work demonstrated that Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 9 (AtPLC9) plays an important role in thermotolerance. During prolonged heat treatment, mutants of AtPLC3 showed decreased heat resistance. We observed no obvious phenotypic differences between plc3 mutants and wild type (WT) seedlings under normal growth conditions, but after heat shock, the plc3 seedlings displayed a decline in thermotolerance compared with WT, and also showed a 40-50% decrease in survival rate and chlorophyll contents. Expression of AtPLC3 in plc3 mutants rescued the heat-sensitive phenotype; the AtPLC3-overexpressing lines also exhibited much higher heat resistance than WT and vector-only controls. The double mutants of plc3 and plc9 displayed increased sensitivity to heat stress, compared with either single mutant. In transgenic lines containing a AtPLC3:GUS promoter fusion, GUS staining showed that AtPLC3 expresses in all tissues, except anthers and young root tips. Using the Ca(2+)-sensitive fluorescent probe Fluo-3/AM and aequorin reconstitution, we showed that plc3 mutants show a reduction in the heat-induced Ca(2+) increase. The expression of HSP genes (HSP18.2, HSP25.3, HSP70-1 and HSP83) was down-regulated in plc3 mutants and up-regulated in AtPLC3-overexpressing lines after heat shock. These results indicated that AtPLC3 also plays a role in thermotolerance in Arabidopsis, and that AtPLC3 and AtPLC9 function additionally to each other.
Collapse
Affiliation(s)
- Kang Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, China Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, China Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Yu-Liang Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, China Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, China Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, China Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, China Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Ren-Gang Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Da-Ye Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, China Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, China Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Shu-Zhi Zheng
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei 050024, China Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei 050024, China Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
106
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|
107
|
Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. ANNALS OF BOTANY 2014; 114:1049-57. [PMID: 24769536 PMCID: PMC4195552 DOI: 10.1093/aob/mcu055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/26/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls. SCOPE The eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.
Collapse
Affiliation(s)
- Praveen Krishnamoorthy
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Clara Sanchez-Rodriguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ingo Heilmann
- Martin-Luther-University Halle-Wittenberg, Institute for Biochemistry, Department of Cellular Biochemistry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
108
|
Mikami K. Structural divergence and loss of phosphoinositide-specific phospholipase C signaling components during the evolution of the green plant lineage: implications from structural characteristics of algal components. FRONTIERS IN PLANT SCIENCE 2014; 5:380. [PMID: 25140171 PMCID: PMC4122161 DOI: 10.3389/fpls.2014.00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 05/03/2023]
Affiliation(s)
- Koji Mikami
- Division of Marine Life Science, Genetics and Genomics, Faculty of Fisheries Sciences, Hokkaido UniversityHakodate, Japan
| |
Collapse
|
109
|
Serrazina S, Dias FV, Malhó R. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization. THE NEW PHYTOLOGIST 2014; 203:784-93. [PMID: 24807078 DOI: 10.1111/nph.12836] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
In yeast and animal cells, phosphatidylinositol-3-monophosphate 5-kinases produce phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) and have been implicated in endomembrane trafficking and pH control in the vacuole. In plants, PtdIns(3,5)P2 is synthesized by the Fab1 family, four orthologs of which exist in Arabidopsis: FAB1A and FAB1B, both from the PIKfyve/Fab1 family; FAB1C and FAB1D, both without a PIKfyve domain and of unclear role. Using a reverse genetics and cell biology approach, we investigated the function of the Arabidopsis genes encoding FAB1B and FAB1D, both highly expressed in pollen. Pollen viability, germination and tube morphology were not significantly affected in homozygous mutant plants. In vivo, mutant pollen fertilized ovules leading to normal seeds and siliques. The same result was obtained when mutant ovules were fertilized with wild-type pollen. Double mutant pollen for the two genes was able to fertilize and develop plants no different from the wild-type. At the cellular level, fab1b and fab1d pollen tubes were found to exhibit perturbations in membrane recycling, vacuolar acidification and decreased production of reactive oxygen species (ROS). Subcellular imaging of FAB1B-GFP revealed that the protein localized to the endomembrane compartment, whereas FAB1D-GFP localized mostly to the cytosol and sperm cells. These results were discussed considering possible complementary roles of FAB1B and FAB1D.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências de Lisboa, BioFIG, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | | | | |
Collapse
|
110
|
Sašek V, Janda M, Delage E, Puyaubert J, Guivarc'h A, López Maseda E, Dobrev PI, Caius J, Bóka K, Valentová O, Burketová L, Zachowski A, Ruelland E. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. THE NEW PHYTOLOGIST 2014; 203:805-16. [PMID: 24758581 DOI: 10.1111/nph.12822] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/22/2014] [Indexed: 05/08/2023]
Abstract
Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.
Collapse
Affiliation(s)
- Vladimír Sašek
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, Prague, 165 02, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Nakamura Y, Teo NZW, Shui G, Chua CHL, Cheong WF, Parameswaran S, Koizumi R, Ohta H, Wenk MR, Ito T. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. THE NEW PHYTOLOGIST 2014; 203:310-322. [PMID: 24684726 DOI: 10.1111/nph.12774] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Flower glycerolipids are the yet-to-be discovered frontier of the lipidome. Although ample evidence suggests important roles for glycerolipids in flower development, stage-specific lipid profiling in tiny Arabidopsis flowers is challenging. Here, we utilized a transgenic system to synchronize flower development in Arabidopsis. The transgenic plant PAP1::AP1-GR ap1-1 cal-5 showed synchronized flower development upon dexamethasone treatment, which enabled massive harvesting of floral samples of homogenous developmental stages for glycerolipid profiling. Glycerolipid profiling revealed a decrease in concentrations of phospholipids involved in signaling during the early development stages, such as phosphatidic acid and phosphatidylinositol, and a marked increase in concentrations of nonphosphorous galactolipids during the late stage. Moreover, in the midstage, phosphatidylinositol 4,5-bisphosphate concentration was increased transiently, which suggests the stimulation of the phosphoinositide metabolism. Accompanying transcriptomic profiling of relevant glycerolipid metabolic genes revealed simultaneous induction of multiple phosphoinositide biosynthetic genes associated with the increased phosphatidylinositol 4,5-bisphosphate concentration, with a high degree of differential expression patterns for genes encoding other glycerolipid-metabolic genes. The phosphatidic acid phosphatase mutant pah1 pah2 showed flower developmental defect, suggesting a role for phosphatidic acid in flower development. Our concurrent profiling of glycerolipids and relevant metabolic gene expression revealed distinct metabolic pathways stimulated at different stages of flower development in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd, Nankang, Taipei, 11529, Taiwan; PRESTO, Japan Science and Technology Agency, A-1-8 Honcho Kawaguchi, Saitama, Japan; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore city, 117456, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore city, 117604, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Gonorazky G, Ramirez L, Abd-El-Haliem A, Vossen JH, Lamattina L, ten Have A, Joosten MHAJ, Laxalt AM. The tomato phosphatidylinositol-phospholipase C2 (SlPLC2) is required for defense gene induction by the fungal elicitor xylanase. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:959-65. [PMID: 24913053 DOI: 10.1016/j.jplph.2014.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 05/14/2023]
Abstract
The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated upon pathogen attack. We have previously shown that the fungal elicitor xylanase rapidly induces nitric oxide (NO), which is required for PI-PLCs activity and downstream defense responses in tomato cell suspensions. Here, we show that all six SlPLC genes are expressed in tomato cell suspensions. Treatment of the cells with xylanase induces an early increase in SlPLC5 transcript levels, followed by a raise of the amount of SlPLC2 transcripts. The production of NO is required to augment SlPLC5 transcript levels in xylanase-treated tomato cells. Xylanase also induces SlPLC2 and SlPLC5 transcript levels in planta. We knocked-down the expression of SlPLC2 and SlPLC5 by virus-induced gene silencing. We found that SlPLC2 is required for xylanase-induced expression of the defense-related genes PR1 and HSR203J.
Collapse
Affiliation(s)
- Gabriela Gonorazky
- Instituto de Investigaciones Biológicas - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, CP 7600, Mar del Plata, Argentina
| | - Leonor Ramirez
- Instituto de Investigaciones Biológicas - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, CP 7600, Mar del Plata, Argentina
| | - Ahmed Abd-El-Haliem
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jack H Vossen
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, CP 7600, Mar del Plata, Argentina
| | - Arjen ten Have
- Instituto de Investigaciones Biológicas - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, CP 7600, Mar del Plata, Argentina
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, CP 7600, Mar del Plata, Argentina.
| |
Collapse
|
113
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
114
|
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JEM, Heilmann I, Munnik T, Friml J. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis. THE PLANT CELL 2014; 26:2114-2128. [PMID: 24876254 PMCID: PMC4079372 DOI: 10.1105/tpc.114.126185] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/07/2014] [Accepted: 05/05/2014] [Indexed: 05/19/2023]
Abstract
Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning.
Collapse
Affiliation(s)
- Ricardo Tejos
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Michael Sauer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | - Hongjiang Li
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ringo van Wijk
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Joop E M Vermeer
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Teun Munnik
- Swammerdam Institute for Life Sciences, Section Plant Physiology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
115
|
Pleskot R, Pejchar P, Staiger CJ, Potocký M. When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:5. [PMID: 24478785 PMCID: PMC3899574 DOI: 10.3389/fpls.2014.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/04/2014] [Indexed: 05/21/2023]
Abstract
The actin cytoskeleton plays a key role in the plant morphogenesis and is involved in polar cell growth, movement of subcellular organelles, cell division, and plant defense. Organization of actin cytoskeleton undergoes dynamic remodeling in response to internal developmental cues and diverse environmental signals. This dynamic behavior is regulated by numerous actin-binding proteins (ABPs) that integrate various signaling pathways. Production of the signaling lipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid affects the activity and subcellular distribution of several ABPs, and typically correlates with increased actin polymerization. Here we review current knowledge of the inter-regulatory dynamics between signaling phospholipids and the actin cytoskeleton in plant cells.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | | | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
116
|
PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
117
|
Leprince AS, Magalhaes N, De Vos D, Bordenave M, Crilat E, Clément G, Meyer C, Munnik T, Savouré A. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:772. [PMID: 25628629 PMCID: PMC4290513 DOI: 10.3389/fpls.2014.00772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/15/2014] [Indexed: 05/03/2023]
Abstract
Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.
Collapse
Affiliation(s)
- Anne-Sophie Leprince
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| | - Nelly Magalhaes
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Delphine De Vos
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Marianne Bordenave
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Emilie Crilat
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
| | - Gilles Clément
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Christian Meyer
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant SciencesVersailles, France
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Arnould Savouré
- Sorbonne Universités, Universite Pierre et Marie Curie Univ Paris 06, Adaptation de Plantes aux Contraintes Environnementales, URF5Paris, France
- *Correspondence: Anne-Sophie Leprince and Arnould Savouré, Sorbonne Universités, UPMC Univ Paris 06, APCE URF5, Case 156, 4 Place Jussieu, F-75252, Paris 05, France e-mail: ;
| |
Collapse
|
118
|
Gonorazky G, Distéfano AM, García-Mata C, Lamattina L, Laxalt AM. Phospholipases in Nitric Oxide-Mediated Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
119
|
Hernández-Sotomayor SMT, Muñoz-Sanchez JA. Determination of phospholipase C activity in vitro. Methods Mol Biol 2013; 1009:187-92. [PMID: 23681534 DOI: 10.1007/978-1-62703-401-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measurement of phospholipase C (PLC) activity in vitro is a valuable biochemistry technique easily applicable in samples from different organisms. It quantifies the enzymatic activity of a key protein involved in critical developmental functions in organisms such as plants, animals, and bacteria. A protocol is described which assays the formation of two main products of the PLC hydrolysis reaction on radioactively labeled phospholipid substrates.
Collapse
Affiliation(s)
- S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Merida, Yucatan, Mexico
| | | |
Collapse
|
120
|
Im YJ, Brglez I, Dieck C, Perera IY, Boss WF. Phosphatidylinositol 4-kinase and phosphatidylinositol 4-phosphate 5-kinase assays. Methods Mol Biol 2013; 1009:163-74. [PMID: 23681532 DOI: 10.1007/978-1-62703-401-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Inositol lipid kinases are perhaps the easiest and most straightforward enzymes in the phosphoinositide pathway to analyze. In addition to monitoring lipid kinase-specific activity, lipid kinase assays can be used to quantify the inositol lipids present in isolated membranes (Jones et al., Methods Mol Biol 462:75-88, 2009). The lipid kinase assays are based on the fact that the more negatively charged phosphorylated lipid products are readily separated from their lipid substrates by thin layer chromatography. We have summarized our current protocols and identified important considerations for working with inositol lipids including different methods for substrate delivery when using recombinant proteins.
Collapse
Affiliation(s)
- Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
121
|
Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijón M, Stenzel I, Löfke C, Wiessner T, Im YJ, Perera IY, Iven T, Feussner I, Busch W, Boss WF, Teichmann T, Hause B, Persson S, Heilmann I. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. THE PLANT CELL 2013; 25:4894-911. [PMID: 24326589 PMCID: PMC3903994 DOI: 10.1105/tpc.113.116582] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/22/2013] [Accepted: 10/15/2013] [Indexed: 05/19/2023]
Abstract
The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)-green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A-induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Stephanie Werner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | - Jennifer Lerche
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Mónica Meijón
- Gregor-Mendel-Institute for Molecular Plant Biology, 1030 Vienna, Austria
| | - Irene Stenzel
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Löfke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Schwann-Schleiden Centre, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Theresa Wiessner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Imara Y. Perera
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Wolfgang Busch
- Gregor-Mendel-Institute for Molecular Plant Biology, 1030 Vienna, Austria
| | - Wendy F. Boss
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Thomas Teichmann
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Schwann-Schleiden Centre, Georg-August-University Göttingen, 37077 Goettingen, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Goettingen, Germany
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Address correspondence to
| |
Collapse
|
122
|
Takáč T, Pechan T, Samajová O, Samaj J. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J Proteome Res 2013; 12:4435-48. [PMID: 23931732 DOI: 10.1021/pr400466x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LY294002 is a synthetic quercetin-like compound, which, unlike wortmannin, is more specific inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated, while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabeling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K-mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K, which are reflected at the proteome level. Compared with wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins, as suggested by gene ontology functional annotation.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
123
|
Oxley D, Ktistakis N, Farmaki T. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography. J Proteomics 2013; 91:580-94. [PMID: 24007659 DOI: 10.1016/j.jprot.2013.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/25/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED A phosphatidylinositol-phosphate affinity chromatographic approach combined with mass spectrometry was used in order to identify novel PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana suspension cell extracts. Most of the phosphatidylinositol-phosphate interacting candidates identified from this differential screening are characterized by lysine/arginine rich patches. Direct phosphoinositide binding was identified for important membrane trafficking regulators as well as protein quality control proteins such as the ATG18p orthologue involved in autophagosome formation and the lipid Sec14p like transfer protein. A pentatricopeptide repeat (PPR) containing protein was shown to directly bind to PI(3,5)P2 but not to PI(3)P. PIP chromatography performed using extracts obtained from high salt (0.4M and 1M NaCl) pretreated suspensions showed that the association of an S5-1 40S ribosomal protein with both PI(3)P and PI(3,5)P2 was abolished under salt stress whereas salinity stress induced an increase in the phosphoinositide association of the DUF538 domain containing protein SVB, associated with trichome size. Additional interacting candidates were co-purified with the phosphoinositide bound proteins. Binding of the COP9 signalosome, the heat shock proteins, and the identified 26S proteasomal subunits, is suggested as an indirect effect of their interaction with other proteins directly bound to the PI(3)P and the PI(3,5)P2 phosphoinositides. BIOLOGICAL SIGNIFICANCE PI(3,5)P2 is of special interest because of its low abundance. Furthermore, no endogenous levels have yet been detected in A. thaliana (although there is evidence for its existence in plants). Therefore the isolation of novel interacting candidates in vitro would be of a particular importance since the future study and localization of the respective endogenous proteins may indicate possible targeted compartments or tissues where PI(3,5)P2 could be enriched and thereafter identified. In addition, PI(3,5)P2 is a phosphoinositide extensively studied in mammalian and yeast systems. However, our knowledge of its role in plants as well as a list of its effectors from plants is very limited.
Collapse
Affiliation(s)
- David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | |
Collapse
|
124
|
Gasulla F, Vom Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:726-41. [PMID: 23672245 DOI: 10.1111/tpj.12241] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/22/2023]
Abstract
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation-tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation-sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x-DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x-DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation-sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer- to non-bilayer-forming lipids, thus contributing to protein and membrane stabilization.
Collapse
Affiliation(s)
- Francisco Gasulla
- Botánica and ICBIBE, Fac. C. Biológicas, Universitat de València, C/Dr. Moliner 50, Burjassot, Valencia 46100, Spain; Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn D-53115, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Heilmann M, Heilmann I. Arranged marriage in lipid signalling? The limited choices of PtdIns(4,5)P2 in finding the right partner. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:789-797. [PMID: 23627419 DOI: 10.1111/plb.12025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/07/2013] [Indexed: 06/02/2023]
Abstract
Inositol-containing phospholipids (phosphoinositides, PIs) control numerous cellular processes in eukaryotic cells. For plants, a key involvement of PIs has been demonstrated in the regulation of membrane trafficking, cytoskeletal dynamics and in processes mediating the adaptation to changing environmental conditions. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) mediates its cellular functions via binding to various alternative target proteins. Such downstream targets of PtdIns(4,5)P(2) are characterised by the possession of specific lipid-binding domains, and binding of the PtdIns(4,5)P(2) ligand exerts effects on their activity or localisation. The large number of potential alternative binding partners - and associated cellular processes - raises the question how alternative or even contrapuntal effects of PtdIns(4,5)P(2) are orchestrated to enable cellular function. This article aims to provide an overview of recent insights and new views on how distinct functional pools of PtdIns(4,5)P(2) are generated and maintained. The emerging picture suggests that PtdIns(4,5)P(2) species containing different fatty acids influence the lateral mobility of the lipids in the membrane, possibly enabling specific interactions of PtdIns(4,5)P(2) pools with certain downstream targets. PtdIns(4,5)P(2) pools with certain functions might also be defined by protein-protein interactions of PI4P 5-kinases, which pass PtdIns(4,5)P(2) only to certain downstream partners. Individually or in combination, PtdIns(4,5)P(2) species and specific protein-protein interactions of PI4P 5-kinases might contribute to the channelling of PtdIns(4,5)P(2) signals towards specific functional effects. The dynamic nature of PI-dependent signalling complexes with specific functions is an added challenge for future studies of plant PI signalling.
Collapse
Affiliation(s)
- M Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | |
Collapse
|
126
|
Guan Y, Guo J, Li H, Yang Z. Signaling in pollen tube growth: crosstalk, feedback, and missing links. MOLECULAR PLANT 2013; 6:1053-64. [PMID: 23873928 PMCID: PMC3842152 DOI: 10.1093/mp/sst070] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle trafficking. Several signaling pathways have been demonstrated to coordinate pollen tube growth by regulating cellular activities such as actin dynamics, exocytosis, and endocytosis. These signaling pathways crosstalk to form a signaling network that coordinates the cellular processes required for tip growth. The homeostasis of key signaling molecules is critical for the proper elongation of the pollen tube tip, and is commonly fine-tuned by positive and negative regulations. In addition to the major signaling pathways, emerging evidence implies the roles of other signals in the regulation of pollen tube growth. Here we review and discuss how these signaling networks modulate the rapid growth of pollen tubes.
Collapse
Affiliation(s)
- Yuefeng Guan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | | | | | |
Collapse
|
127
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
128
|
Liu P, Xu ZS, Pan-Pan L, Hu D, Chen M, Li LC, Ma YZ. A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2915-27. [PMID: 23682116 PMCID: PMC3741686 DOI: 10.1093/jxb/ert133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phosphoinositides are involved in regulation of recruitment and activity of signalling proteins in cell membranes. Phosphatidylinositol (PI) 4-kinases (PI4Ks) generate PI4-phosphate the precursor of regulatory phosphoinositides. No type II PI4K research on the abiotic stress response has previously been reported in plants. A stress-inducible type II PI4K gene, named TaPI4KIIγ, was obtained by de novo transcriptome sequencing of drought-treated wheat (Triticum aestivum). TaPI4KIIγ, localized on the plasma membrane, underwent threonine autophosphorylation, but had no detectable lipid kinase activity. Interaction of TaPI4KIIγ with wheat ubiquitin fusion degradation protein (TaUDF1) indicated that it might be hydrolysed by the proteinase system. Overexpression of TaPI4KIIγ revealed that it could enhance drought and salt stress tolerance during seed germination and seedling growth. A ubdkγ7 mutant, identified as an orthologue of TaPI4KIIγ in Arabidopsis, was sensitive to salt, polyethylene glycol (PEG), and abscisic acid (ABA), and overexpression of TaPI4KIIγ in the ubdkγ7 mutant compensated stress sensitivity. TaPI4KIIγ promoted root growth in Arabidopsis, suggesting that TaPI4KIIγ might enhance stress resistance by improving root growth. Overexpression of TaPI4KIIγ led to an altered expression level of stress-related genes and changes in several physiological traits that made the plants more tolerant to stress. The results provided evidence that overexpression of TaPI4KIIγ could improve drought and salt tolerance.
Collapse
Affiliation(s)
| | - Zhao-Shi Xu
- * To whom correspondence should be addressed. E-mail: or
| | | | | | | | | | - You-Zhi Ma
- * To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
129
|
Bak G, Lee EJ, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang JU, Lee Y. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. THE PLANT CELL 2013; 25:2202-16. [PMID: 23757398 PMCID: PMC3723621 DOI: 10.1105/tpc.113.110411] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 05/08/2023]
Abstract
Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)-induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H(+)-ATPase vha-a2 vha-a3 and vacuolar H(+)-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution.
Collapse
Affiliation(s)
- Gwangbae Bak
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Eun-Jung Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yuree Lee
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Mariko Kato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jae-Ung Hwang
- POSTECH-UZH Cooperative Laboratory, Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Department of Integrative Bioscience and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
130
|
Kato M, Aoyama T, Maeshima M. The Ca(2+) -binding protein PCaP2 located on the plasma membrane is involved in root hair development as a possible signal transducer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:690-700. [PMID: 23445487 DOI: 10.1111/tpj.12155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 05/10/2023]
Abstract
Plasma membrane-associated Ca(2+) -binding protein-2 (PCaP2) of Arabidopsis thaliana is a novel-type protein that binds to the Ca(2+) /calmodulin complex and phosphatidylinositol phosphates (PtdInsPs) as well as free Ca(2+) . Although the PCaP2 gene is predominantly expressed in root hair cells, it remains unknown how PCaP2 functions in root hair cells via binding to ligands. From biochemical analyses using purified PCaP2 and its variants, we found that the N-terminal basic domain with 23 amino acids (N23) is necessary and sufficient for binding to PtdInsPs and the Ca(2+) /calmodulin complex, and that the residual domain of PCaP2 binds to free Ca(2+) . In mutant analysis, a pcap2 knockdown line displayed longer root hairs than the wild-type. To examine the function of each domain in root hair cells, we over-expressed PCaP2 and its variants using the root hair cell-specific EXPANSIN A7 promoter. Transgenic lines over-expressing PCaP2, PCaP2(G2A) (second glycine substituted by alanine) and ∆23PCaP2 (lacking the N23 domain) exhibited abnormal branched and bulbous root hair cells, while over-expression of the N23 domain suppressed root hair emergence and elongation. The N23 domain was necessary and sufficient for the plasma membrane localization of GFP-tagged PCaP2. These results suggest that the N23 domain of PCaP2 negatively regulates root hair tip growth via processing Ca(2+) and PtdInsP signals on the plasma membrane, while the residual domain is involved in the polarization of cell expansion.
Collapse
Affiliation(s)
- Mariko Kato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | |
Collapse
|
131
|
Singh A, Kanwar P, Pandey A, Tyagi AK, Sopory SK, Kapoor S, Pandey GK. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS One 2013; 8:e62494. [PMID: 23638098 PMCID: PMC3640072 DOI: 10.1371/journal.pone.0062494] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/22/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. METHODOLOGY/PRINCIPAL FINDINGS An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. CONCLUSION/SIGNIFICANCE The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akhilesh K. Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
132
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
133
|
Smith CM, Desai M, Land ES, Perera IY. A role for lipid-mediated signaling in plant gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:153-60. [PMID: 23258369 DOI: 10.3732/ajb.1200355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.
Collapse
Affiliation(s)
- Caroline M Smith
- Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
134
|
Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 2013; 52:1-14. [DOI: 10.1016/j.plipres.2012.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022]
|
135
|
The essential phosphoinositide kinase MSS-4 is required for polar hyphal morphogenesis, localizing to sites of growth and cell fusion in Neurospora crassa. PLoS One 2012; 7:e51454. [PMID: 23272106 PMCID: PMC3521734 DOI: 10.1371/journal.pone.0051454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/22/2022] Open
Abstract
Fungal hyphae and plant pollen tubes are among the most highly polarized cells known and pose extraordinary requirements on their cell polarity machinery. Cellular morphogenesis is driven through the phospholipid-dependent organization at the apical plasma membrane. We characterized the contribution of phosphoinositides (PIs) in hyphal growth of the filamentous ascomycete Neurospora crassa. MSS-4 is an essential gene and its deletion resulted in spherically growing cells that ultimately lyse. Two conditional mss-4-mutants exhibited altered hyphal morphology and aberrant branching at restrictive conditions that were complemented by expression of wild type MSS-4. Recombinant MSS-4 was characterized as a phosphatidylinositolmonophosphate-kinase phosphorylating phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). PtdIns3P was also used as a substrate. Sequencing of two conditional mss-4 alleles identified a single substitution of a highly conserved Y750 to N. The biochemical characterization of recombinant protein variants revealed Y750 as critical for PI4P 5-kinase activity of MSS-4 and of plant PI4P 5-kinases. The conditional growth defects of mss-4 mutants were caused by severely reduced activity of MSS-4(Y750N), enabling the formation of only trace amounts of PtdIns(4,5)P2. In N. crassa hyphae, PtdIns(4,5)P2 localized predominantly in the plasma membrane of hyphae and along septa. Fluorescence-tagged MSS-4 formed a subapical collar at hyphal tips, localized to constricting septa and accumulated at contact points of fusing N. crassa germlings, indicating MSS-4 is responsible for the formation of relevant pools of PtdIns(4,5)P2 that control polar and directional growth and septation. N. crassa MSS-4 differs from yeast, plant and mammalian PI4P 5-kinases by containing additional protein domains. The N-terminal domain of N. crassa MSS-4 was required for correct membrane association. The data presented for N. crassa MSS-4 and its roles in hyphal growth are discussed with a comparative perspective on PI-control of polar tip growth in different organismic kingdoms.
Collapse
|
136
|
Vidali L, Bezanilla M. Physcomitrella patens: a model for tip cell growth and differentiation. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:625-31. [PMID: 23022392 DOI: 10.1016/j.pbi.2012.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/01/2012] [Accepted: 09/04/2012] [Indexed: 05/25/2023]
Abstract
The moss Physcomitrella patens has emerged as an excellent model system owing to its amenability to reverse genetics. The moss gametophyte has three filamentous tissues that grow by tip growth: chloronemata, caulonemata, and rhizoids. Because establishment of the moss plant relies on this form of growth, it is particularly suited for dissecting the molecular basis of tip growth. Recent studies demonstrate that a core set of actin cytoskeletal proteins is essential for tip growth. Additional actin cytoskeletal components are required for modulating growth to produce caulonemata and rhizoids. Differentiation into these cell types has previously been linked to auxin, light and nutrients. Recent studies have identified that core auxin signaling components as well as transcription factors that respond to auxin or nutrient levels are required for tip-growing cell differentiation. Future studies may establish a connection between the actin cytoskeleton and auxin or nutrient-induced cell differentiation.
Collapse
Affiliation(s)
- Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, United States
| | | |
Collapse
|
137
|
Saavedra L, Mikami K, Malhó R, Sommarin M. PIP kinases and their role in plant tip growing cells. PLANT SIGNALING & BEHAVIOR 2012; 7:1302-5. [PMID: 22902694 PMCID: PMC3493418 DOI: 10.4161/psb.21547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phosphatidylinositol (4,5) bisphosphate, [PtdIns(4,5)P 2], is a signaling lipid involved in many important processes in animal cells such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels, and nuclear signaling pathways. In the last years PtdIns(4,5)P 2 and its synthesizing enzyme, phosphatidylinositol phosphate kinase (PIPK), has been intensively studied in plant cells, revealing a key role in the control of polar tip growth. Analysis of the PIPK members from Arabidopsis thaliana, Oryza sativa and Physcomitrella patens showed that they share some regulatory features with animal PIPKs but also exert plant-specific modes of regulation. This review aims at giving an overview on the PIPK family from Arabidopsis thaliana and Physcomitrella patens. Even though their basic structure, modes of activation and physiological role is evolutionary conserved, modules responsible for plasma membrane localization are distinct for different PIPKs, depending on differences in physiological and/or developmental status of cells, such as polarized and non-polarized.
Collapse
Affiliation(s)
- Laura Saavedra
- Faculdade de Ciências de Lisboa; Universidade de Lisboa; BioFIG; Lisboa, Portugal.
| | | | | | | |
Collapse
|
138
|
Delage E, Ruelland E, Zachowski A, Puyaubert J. Eat in or take away? How phosphatidylinositol 4-kinases feed the phospholipase C pathway with substrate. PLANT SIGNALING & BEHAVIOR 2012; 7:1197-9. [PMID: 22899063 PMCID: PMC3489660 DOI: 10.4161/psb.21305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) catalyze the first step in the synthesis of phosphoinositide pools hydrolysed by phosphoinositide-dependent phospholipase C (PI-PLC) and thus constitute a potential key regulation point of this pathway. Twelve putative PI4K isoforms, divided as type-II (AtPI4KIIγ1- 8) and type-III PI4Ks (AtPI4KIIIα1- 2 and AtPI4KIIIβ1- 2), have been identified in Arabidopsis genome. By a combination of pharmalogical and genetic approaches we recently evidenced that AtPI4KIIIβ1 and AtPI4KIIIβ2 contribute to supply PI-PLC with substrate and that AtPI4KIIIα1 is probably also involved in this process. Given the current knowledge on PI-PLC and type-III PI4Ks localization in plant cells it raises the question whether type-III PI4Ks produce phosphatidylinositol 4-phosphate at the site of its consumption by the PI-PLC pathway. We therefore discuss the spatial organization of substrate supply to PI-PLC in plant cells with reference to recent data evidenced in mammalian cells.
Collapse
Affiliation(s)
- Elise Delage
- Université Pierre et Marie Curie (Paris VI); CNRS; EAC7180; UR5 Physiologie Cellulaire et Moléculaire des Plantes; Paris, France
| | - Eric Ruelland
- Université Pierre et Marie Curie (Paris VI); CNRS; EAC7180; UR5 Physiologie Cellulaire et Moléculaire des Plantes; Paris, France
| | - Alain Zachowski
- Université Pierre et Marie Curie (Paris VI); CNRS; EAC7180; UR5 Physiologie Cellulaire et Moléculaire des Plantes; Paris, France
| | - Juliette Puyaubert
- Université Pierre et Marie Curie (Paris VI); CNRS; EAC7180; UR5 Physiologie Cellulaire et Moléculaire des Plantes; Paris, France
| |
Collapse
|
139
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
140
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 2012; 51:208-20. [PMID: 22484828 DOI: 10.1016/j.plipres.2012.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biol. Res. Centre, Hungarian Acad. Sci., Temesvári krt. 62, H-6734 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Dieck CB, Boss WF, Perera IY. A role for phosphoinositides in regulating plant nuclear functions. FRONTIERS IN PLANT SCIENCE 2012; 3:50. [PMID: 22645589 PMCID: PMC3355785 DOI: 10.3389/fpls.2012.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/27/2012] [Indexed: 05/21/2023]
Abstract
Nuclear localized inositol phospholipids and inositol phosphates are important for regulating many essential processes in animal and yeast cells such as DNA replication, recombination, RNA processing, mRNA export and cell cycle progression. An overview of the current literature indicates the presence of a plant nuclear phosphoinositide (PI) pathway. Inositol phospholipids, inositol phosphates, and enzymes of the PI pathway have been identified in plant nuclei and are implicated in DNA replication, chromatin remodeling, stress responses and hormone signaling. In this review, the potential functions of the nuclear PI pathway in plants are discussed within the context of the animal and yeast literature. It is anticipated that future research will help shed light on the functional significance of the nuclear PI pathway in plants.
Collapse
Affiliation(s)
| | - Wendy F. Boss
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| | - Imara Y. Perera
- Department of Plant Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
143
|
Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J. Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure. PLANT & CELL PHYSIOLOGY 2012; 53:565-76. [PMID: 22318862 DOI: 10.1093/pcp/pcs011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphatidylinositol-4-phosphate (PtdIns4P) is the most abundant phosphoinositide in plants and the precursor of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)]. This lipid is the substrate of phosphoinositide-dependent phospholipase C (PI-PLC) that produces diacylglycerol (DAG) which can be phosphorylated to phosphatidic acid (PtdOH). In plants, it has been suggested that PtdIns4P may also be a direct substrate of PI-PLC. Whether PtdIns4P is the precursor of PtdIns(4,5)P(2) or a substrate of PI-PLC, its production by phosphatidylinositol-4-kinases (PI4Ks) is the first step in generating the phosphoinositides hydrolyzed by PI-PLC. PI4Ks can be divided into type-II and type-III. In plants, the identity of the PI4K upstream of PI-PLC is unknown. In Arabidopsis, cold triggers PI-PLC activation, resulting in PtdOH production which is paralleled by decreases in PtdIns4P and PtdIns(4,5)P(2). In suspension cells, both the PtdIns4P decrease and the PtdOH increase in response to cold were impaired by 30 μM wortmannin, a type-III PI4K inhibitor. Type-III PI4Ks include AtPI4KIIIα1, β1 and β2 isoforms. In this work we show that PtdOH resulting from the PI-PLC pathway is significantly lowered in a pi4kIIIβ1β2 double mutant exposed to cold stress. Such a decrease was not detected in single pi4kIIIβ1 and pi4kIIIβ2 mutants, indicating that AtPI4KIIIβ1 and AtPI4KIIIβ2 can both act upstream of the PI-PLC. Although several short-term to long-term responses to cold were unchanged in pi4kIIIβ1β2, cold induction of several genes was impaired in the double mutant and its germination was hypersensitive to chilling. We also provide evidence that de novo synthesis of PtdIns4P by PI4Ks occurs in parallel to PI-PLC activation.
Collapse
Affiliation(s)
- Elise Delage
- CNRS, EAC7180, Physiologie Cellulaire et Moléculaire des Plantes, Paris and UPMC Univ Paris 06, UR5, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France
| | | | | | | | | |
Collapse
|
144
|
Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY. Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:689-700. [PMID: 22007900 DOI: 10.1111/j.1365-313x.2011.04823.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Intracellular calcium (Ca(2+)) increases rapidly after heat shock (HS) in the Ca(2+)/calmodulin (Ca(2+)/CaM) HS signal transduction pathway: a hypothesis proposed based on our previous findings. However, evidence for the increase in Ca(2+) after HS was obtained only through physiological and pharmacological experiments; thus, direct molecular genetic evidence is needed. The role of phosphoinositide-specific phospholipase C (PI-PLC) is poorly understood in the plant response to HS. In this work, atplc9 mutant plants displayed a serious thermosensitive phenotype compared with wild-type (WT) plants after HS. Complementation of atplc9 with AtPLC9 rescued both the basal and acquired thermotolerance phenotype of the WT plants. In addition, thermotolerance was even improved in overexpressed lines. The GUS staining of AtPLC9 promoter:GUS transgenic seedlings showed that AtPLC9 expression was ubiquitous. The fluorescence distribution of the fusion protein AtPLC9 promoter:AtPLC9:GFP revealed that the subcellular localization of AtPLC9 was restricted to the plasma membrane. The results of a PLC activity assay showed a reduction in the accumulation of inositol-1,4,5-trisphosphate (IP(3)) in atplc9 during HS and improved IP(3) generation in the overexpressed lines. Furthermore, the heat-induced increase in intracellular Ca(2+) was decreased in atplc9. Accumulation of the small HS proteins HSP18.2 and HSP25.3 was downregulated in atplc9 and upregulated in the overexpressed lines after HS. Together, these results provide molecular genetic evidence showing that AtPLC9 plays a role in thermotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Shu-Zhi Zheng
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | | | | | | | | | | |
Collapse
|
145
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
146
|
Gao XQ, Zhang XS. Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:165-9. [PMID: 22307045 PMCID: PMC3405687 DOI: 10.4161/psb.18743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this mini-review, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis.
Collapse
|
147
|
Ghars MA, Richard L, Lefebvre-De Vos D, Leprince AS, Parre E, Bordenave M, Abdelly C, Savouré A. Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:183-92. [PMID: 22121247 DOI: 10.1093/pcp/pcr164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.
Collapse
Affiliation(s)
- Mohamed Ali Ghars
- UPMC Université Paris 06, UR5 EAC7180 CNRS, Physiologie Cellulaire et Moléculaire des Plantes, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
149
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
150
|
Abstract
"All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.
Collapse
Affiliation(s)
- Wendy F Boss
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7649, USA.
| | | |
Collapse
|