101
|
Ferguson JN, Fernandes SB, Monier B, Miller ND, Allen D, Dmitrieva A, Schmuker P, Lozano R, Valluru R, Buckler ES, Gore MA, Brown PJ, Spalding EP, Leakey ADB. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. PLANT PHYSIOLOGY 2021; 187:1481-1500. [PMID: 34618065 PMCID: PMC9040483 DOI: 10.1093/plphys/kiab346] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.
Collapse
Affiliation(s)
- John N Ferguson
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Samuel B Fernandes
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, Wisconsin
53706, USA
| | - Dylan Allen
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Anna Dmitrieva
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Peter Schmuker
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
- Present address: Lincoln Institute for Agri-Food Technology,
University of Lincoln, Lincoln LN2 2LG, UK
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New
York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, New York 14853, USA
| | - Patrick J Brown
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Present address: Section of Agricultural Plant Biology,
Department of Plant Sciences, University of California Davis, California 95616,
USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin
53706, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Crop Sciences, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Plant Biology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61901, USA
- Author for communication: ,
Present address: Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA,
UK
| |
Collapse
|
102
|
Ferguson JN, Fernandes SB, Monier B, Miller ND, Allen D, Dmitrieva A, Schmuker P, Lozano R, Valluru R, Buckler ES, Gore MA, Brown PJ, Spalding EP, Leakey ADB. Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. PLANT PHYSIOLOGY 2021; 187:1481-1500. [PMID: 34618065 DOI: 10.1093/plphys/kiab34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/29/2021] [Indexed: 05/27/2023]
Abstract
Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.
Collapse
Affiliation(s)
- John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Samuel B Fernandes
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Nathan D Miller
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Dylan Allen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Anna Dmitrieva
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Peter Schmuker
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Patrick J Brown
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| | - Edgar P Spalding
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61901, USA
| |
Collapse
|
103
|
Mathan J, Singh A, Jathar V, Ranjan A. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7119-7135. [PMID: 34185840 DOI: 10.1093/jxb/erab313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
The importance of increasing photosynthetic efficiency for sustainable crop yield increases to feed the growing world population is well recognized. The natural genetic variation in leaf photosynthesis in crop plants is largely unexploited for increasing yield potential. The genus Oryza, including cultivated rice and wild relatives, offers tremendous genetic variability to explore photosynthetic differences and underlying biochemical, photochemical, and developmental traits. We quantified leaf photosynthesis and related physiological parameters for six cultivated and three wild rice genotypes, and identified photosynthetically efficient wild rice accessions. Fitting A/Ci curves and biochemical analyses showed that leaf photosynthesis in cultivated rice varieties IR 64 and Nipponbare was limited due to leaf nitrogen content, Rubisco activity, and electron transport rate compared with photosynthetically efficient wild rice accessions Oryza australiensis and Oryza latifolia. The selected wild rice accessions with high leaf photosynthesis per unit area had anatomical features such as larger mesophyll cells with more chloroplasts, fewer mesophyll cells between two adjacent veins, and higher mesophyll cell and chloroplast surface area exposed to intercellular space. Our results show the existence of desirable variations in Rubisco activity, electron transport rate, and leaf anatomical features that could be targeted for increasing the photosynthetic efficiency of cultivated rice varieties.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anuradha Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikram Jathar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
104
|
Stitt M, Luca Borghi G, Arrivault S. Targeted metabolite profiling as a top-down approach to uncover interspecies diversity and identify key conserved operational features in the Calvin-Benson cycle. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5961-5986. [PMID: 34473300 PMCID: PMC8411860 DOI: 10.1093/jxb/erab291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
Improving photosynthesis is a promising avenue to increase crop yield. This will be aided by better understanding of natural variance in photosynthesis. Profiling of Calvin-Benson cycle (CBC) metabolites provides a top-down strategy to uncover interspecies diversity in CBC operation. In a study of four C4 and five C3 species, principal components analysis separated C4 species from C3 species and also separated different C4 species. These separations were driven by metabolites that reflect known species differences in their biochemistry and pathways. Unexpectedly, there was also considerable diversity between the C3 species. Falling atmospheric CO2 and changing temperature, nitrogen, and water availability have driven evolution of C4 photosynthesis in multiple lineages. We propose that analogous selective pressures drove lineage-dependent evolution of the CBC in C3 species. Examples of species-dependent variation include differences in the balance between the CBC and the light reactions, and in the balance between regulated steps in the CBC. Metabolite profiles also reveal conserved features including inactivation of enzymes in low irradiance, and maintenance of CBC metabolites at relatively high levels in the absence of net CO2 fixation. These features may be important for photosynthetic efficiency in low light, fluctuating irradiance, and when stomata close due to low water availability.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gian Luca Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
105
|
Alvarez-Fernandez R, Penfold CA, Galvez-Valdivieso G, Exposito-Rodriguez M, Stallard EJ, Bowden L, Moore JD, Mead A, Davey PA, Matthews JSA, Beynon J, Buchanan-Wollaston V, Wild DL, Lawson T, Bechtold U, Denby KJ, Mullineaux PM. Time-series transcriptomics reveals a BBX32-directed control of acclimation to high light in mature Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1363-1386. [PMID: 34160110 DOI: 10.1111/tpj.15384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ellie J Stallard
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Laura Bowden
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Jonathan D Moore
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Andrew Mead
- School of Life Sciences, Warwick University, Coventry, CV4 7AL, UK
| | - Phillip A Davey
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jack S A Matthews
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jim Beynon
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | | | - David L Wild
- Department of Statistics, Warwick University, Coventry, CV4 7AL, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Katherine J Denby
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
106
|
Lichstein JW, Peterson BT, Langebrake J, McKinley SA. Leaf Economics of Early- and Late-Successional Plants. Am Nat 2021; 198:347-359. [PMID: 34403314 DOI: 10.1086/715453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe leaf economics spectrum ranges from cheap, short-lived leaves to expensive, long-lived leaves. Species with low leaf mass per area (LMA) and short leaf life span tend to be fast growing and shade intolerant (early successional), whereas species with high LMA and long leaf life span tend to be slow growing and shade tolerant (late successional). However, we have limited understanding of how different leaf mass components (e.g., metabolically active photosynthetic components vs. structural toughness components) contribute to variation in LMA and other leaf economics spectrum traits. Here, we develop a model of plant community dynamics in which species differ in just two traits, photosynthetic and structural LMA components, and we identify optimal values of these traits for early- and late-successional species. Most of the predicted increase in LMA from early- to late-successional species was due to structural LMA. Photosynthetic LMA did not differ consistently between early- and late-successional species, but the photosynthetic LMA to structural LMA ratio declined from early- to late-successional species. Early-successional species had high rates of instantaneous return on leaf mass investment, whereas late-successional species had high lifetime return. Our results provide theoretical support for the primary role of structural (rather than photosynthetic) LMA variation in driving relationships among leaf economics spectrum traits.
Collapse
|
107
|
Liu M, Liu X, Du X, Korpelainen H, Niinemets Ü, Li C. Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources. TREE PHYSIOLOGY 2021; 41:1462-1478. [PMID: 33554242 DOI: 10.1093/treephys/tpab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with nitrate NO3- and ammonium NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (Sc/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (gm) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher Sc/S, and higher gm and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (gcyt1) than females supplied with NO3-, whereas males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3- instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and gm under both types of nitrogen supplies, which may contribute to sex-specific CO2 capture and niche segregation.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xiucheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Xuhua Du
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, State Forestry and Grassland Administration, Wenyi Road 310, Hangzhou 310012, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO P.O. Box 27, Latokartanonkaari 5, FI-00014 Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
108
|
Eckert D, Martens HJ, Gu L, Jensen AM. CO2 refixation is higher in leaves of woody species with high mesophyll and stomatal resistances to CO2 diffusion. TREE PHYSIOLOGY 2021; 41:1450-1461. [PMID: 33595079 PMCID: PMC8359682 DOI: 10.1093/treephys/tpab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The percentage of respiratory and photorespiratory CO2 refixed in leaves (Pr) represents part of the CO2 used in photosynthesis. The importance of Pr as well as differences between species and functional types are still not well investigated. In this study, we examine how Pr differs between six temperate and boreal woody species: Betula pendula, Quercus robur, Larix decidua, Pinus sylvestris, Picea abies and Vaccinium vitis-idaea. The study covers early and late successional species, deciduous broadleaves, deciduous conifers, evergreen conifers and evergreen broadleaves. We investigated whether some species or functional types had higher refixation percentages than others, whether leaf traits could predict higher Pr and whether these traits and their impact on Pr changed during growing seasons. Photosynthesis CO2 response (A/Ci)-curves, measured early, mid and late season, were used to estimate and compare Pr, mesophyll resistance (rm) and stomatal resistance (rs) to CO2 diffusion. Additionally, light images and transmission electron microscope images were used to approximate the fraction of intercellular airspace and cell wall thickness. We found that evergreens, especially late successional species, refixed a significantly higher amount of CO2 than the other species throughout the entire growing season. In addition, rm, rs and leaf mass per area, traits that typically are higher in evergreen species, were also significantly, positively correlated with Pr. We suggest that this is due to higher rm decreasing diffusion of (photo) respiratory CO2 out of the leaf. Cell wall thickness had a positive effect on Pr and rm, while the fraction of intercellular airspace had no effect. Both were significantly different between evergreen conifers and other types. Our findings suggest that species with a higher rm use a greater fraction of mitochondria-derived CO2, especially when stomatal conductance is low. This should be taken into account when modeling the overall CO2 fertilization effect for terrestrial ecosystems dominated by high rm species.
Collapse
Affiliation(s)
- Diana Eckert
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Helle Juel Martens
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, 1958 Copenhagen, Denmark
| | - Lianhong Gu
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA
| | - Anna Monrad Jensen
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| |
Collapse
|
109
|
Jaramillo Roman V, van de Zedde R, Peller J, Visser RGF, van der Linden CG, van Loo EN. High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:634311. [PMID: 34421935 PMCID: PMC8376478 DOI: 10.3389/fpls.2021.634311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The Plantarray 3.0 phenotyping platform® was used to monitor the growth and water use of the quinoa varieties Pasto and selRiobamba under salinity (0-300 mM NaCl). Salinity reduced the cumulative transpiration of both varieties by 60% at 200 mM NaCl and by 75 and 82% at 300 mM NaCl for selRiobamba and Pasto, respectively. Stomatal conductance was reduced by salinity, but at 200 mM NaCl Pasto showed a lower reduction (15%) than selRiobamba (35%), along with decreased specific leaf area. Diurnal changes in water use parameters indicate that under salt stress, daily transpiration in quinoa is less responsive to changes in light irradiance, and stomatal conductance is modulated to maximize CO2 uptake and minimize water loss following the changes in VPD (vapor pressure deficit). These changes might contribute to the enhanced water use efficiency of both varieties under salt stress. The mechanistic crop model LINTUL was used to integrate physiological responses into the radiation use efficiency of the plants (RUE), which was more reduced in Pasto than selRiobamba under salinity. By the end of the experiment (eleven weeks after sowing, six weeks after stress), the growth of Pasto was significantly lower than selRiobamba, fresh biomass was 50 and 35% reduced at 200 mM and 70 and 50% reduced at 300 mM NaCl for Pasto and selRiobamba, respectively. We argue that contrasting water management strategies can at least partly explain the differences in salt tolerance between Pasto and selRiobamba. Pasto adopted a "conservative-growth" strategy, saving water at the expense of growth, while selRiobamba used an "acquisitive-growth" strategy, maximizing growth in spite of the stress. The implementation of high-resolution phenotyping could help to dissect these complex growth traits that might be novel breeding targets for abiotic stress tolerance.
Collapse
Affiliation(s)
- Viviana Jaramillo Roman
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
110
|
Carriquí M, Nadal M, Flexas J. Acclimation of mesophyll conductance and anatomy to light during leaf aging in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 172:1894-1907. [PMID: 33724455 DOI: 10.1111/ppl.13398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Mesophyll conductance (gm ), a key limitation to photosynthesis, is strongly driven by leaf anatomy, which is in turn influenced by environmental growth conditions and ontogeny. However, studies examining the combined environment × age effect on both leaf anatomy and photosynthesis are scarce, and none have been carried out in short-lived plants. Here, we studied the variation of photosynthesis and leaf anatomy in the model species Arabidopsis thaliana (Col-0) grown under three different light intensities at two different leaf ages. We found that light × age interaction was significant for photosynthesis but not for anatomical characteristics. Increasing growth light intensities resulted in increases in leaf mass per area, thickness, number of palisade cell layers, and chloroplast area lining to intercellular airspace. Low and moderate-but not high-light intensity had a significant effect on all photosynthetic characteristics. Leaf aging was associated with increases in cell wall thickness (Tcw ) in all light treatments and in increases in leaf thickness in plants grown under low and moderate light intensities. However, gm did not vary with leaf aging, and photosynthesis only decreased with leaf age under moderate and high light, suggesting a compensatory effect between increased Tcw and decreased chloroplast thickness on the total CO2 diffusion resistance.
Collapse
Affiliation(s)
- Marc Carriquí
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Miquel Nadal
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| |
Collapse
|
111
|
Nadal M, Brodribb TJ, Fernández-Marín B, García-Plazaola JI, Arzac MI, López-Pozo M, Perera-Castro AV, Gulías J, Flexas J, Farrant JM. Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern Anemia caffrorum. THE NEW PHYTOLOGIST 2021; 231:1415-1430. [PMID: 33959976 DOI: 10.1111/nph.17445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Tim J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
- King Abdulaziz University, Jeddah, 80200, Saudi Arabia
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
112
|
Xiong D, Flexas J. Leaf anatomical characteristics are less important than leaf biochemical properties in determining photosynthesis responses to nitrogen top-dressing. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5709-5720. [PMID: 34022050 DOI: 10.1093/jxb/erab230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The photosynthetic capacity of leaves is dramatically influenced by nitrogen (N) availability in the soil, as CO2 concentration in chloroplasts and photosynthetic biochemical capacity are related to leaf N content. The relationship between mesophyll conductance (gm) and leaf N content was expected to be shaped by leaf anatomical traits. However, the increased gm in mature leaves achieved by N top-dressing is unlikely to be caused by changes in leaf anatomy. Here, we assessed the impacts of N supply on leaf anatomical, biochemical, and photosynthetic features, specifically, the dynamic responses of leaf anatomy, biochemistry, and photosynthesis to N top-dressing in tobacco. Plant performance was substantially affected by soil N status. In comparison with the leaves of plants subjected to low N treatment, leaves of plants with high N treatment photosynthesized significantly more, due to higher CO2 diffusion conductance and photosynthetic biochemical capacity. The high gm in high N-treated leaves apparently related to modifications in the leaf anatomy; however, the rapid response of gm to N top-dressing cannot be fully explained by leaf anatomical modifications.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
113
|
Soliman WS, Abbas AM, Novak SJ, Fujimori M, Tase K, Sugiyama SI. Inheritance of heat tolerance in perennial ryegrass ( Lolium perenne, Poaceae): evidence from progeny array analysis. PeerJ 2021; 9:e11782. [PMID: 34322326 PMCID: PMC8300491 DOI: 10.7717/peerj.11782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Heat stress is considered one of the most important environmental factors influencing plant physiology, growth, development, and reproductive output. The occurrence and damage caused by heat stress will likely increase with global climate change. Thus, there is an urgent need to better understand the genetic basis of heat tolerance, especially in cool season plants. Materials and Methods In this study, we assessed the inheritance of heat tolerance in perennial ryegrass (Lolium perenne L. subspecies perenne) , a cool season grass, through a comparison of two parental cultivars with their offspring. We crossed plants of a heat tolerant cultivar (Kangaroo Valley) with plants of a heat sensitive cultivar (Norlea), to generate 72 F1 hybrid progeny arrays. Both parents and their progeny were then exposed to heat stress for 40 days, and their photosynthetic performance (Fv/Fm values) and leaf H2O2 content were measured. Results As expected, Kangaroo Valley had significantly higher Fv/Fm values and significantly lower H2O2 concentrations than Norlea. For the F1 progeny arrays, values of Fv/Fm decreased gradually with increasing exposure to heat stress, while the content of H2O 2 increased. The progeny had a wide distribution of Fv/Fm and H 2O2 values at 40 days of heat stress. Approximately 95% of the 72 F1 progeny arrays had Fv/Fm values that were equal to or intermediate to the values of the two parental cultivars and 68% of the progeny arrays had H2O2 concentrations equal to or intermediate to their two parents. Conclusion Results of this study indicate considerable additive genetic variation for heat tolerance among the 72 progeny arrays generated from these crosses, and such diversity can be used to improve heat tolerance in perennial ryegrass cultivars. Our findings point to the benefits of combining physiological measurements within a genetic framework to assess the inheritance of heat tolerance, a complex plant response.
Collapse
Affiliation(s)
- Wagdi S Soliman
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| | - Ahmed M Abbas
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | | | - Kazuhiro Tase
- National Agricultural Research Center for Hokkaido Region, Sapporo, Japan
| | | |
Collapse
|
114
|
Duarte VP, Pereira MP, Corrêa FF, de Castro EM, Pereira FJ. Aerenchyma, gas diffusion, and catalase activity in Typha domingensis: a complementary model for radial oxygen loss. PROTOPLASMA 2021; 258:765-777. [PMID: 33404920 DOI: 10.1007/s00709-020-01597-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Radial oxygen loss is a physical phenomenon that occurs naturally in aquatic plants. Typha domingensis was chosen as a model plant because it possesses basic morphological characteristics, such as a stem (rhizome) that produces leaves and adventitious roots, which are present in many aquatic plants. This study aimed to evaluate the following: the relevance of the anatomy of T. domingensis on gas diffusion among organs; the influence of plant parts on radial oxygen loss; the role of catalase in radial oxygen loss; and the proposition of a novel explanation for the downward diffusion of oxygen through the organs of this aquatic macrophyte and into the environment. Typha domingensis plants were cultivated in a greenhouse under different conditions: plants with intact leaves, plants with leaves cut in half, and plants without leaves. Furthermore, we evaluated the percentage of aerenchyma in different vegetative organs, the minimum pressure required for radial oxygen loss, the daily variations of dissolved oxygen, and the roots' catalase activity. The results demonstrated that certain cellular features contributed to decreased oxygen diffusion among the organs, specifically, those found in the leaf-rhizome and root-rhizome interfaces as well as the suberin and lignin layers in these regions. Additionally, our experiments with a catalase activator and inhibitor validated that a significant amount of the oxygen released in radial oxygen loss could not, in fact, be exclusively supplied by the atmosphere. Thus, a complementary model is proposed in which catalase activity is an important component of radial oxygen loss.
Collapse
Affiliation(s)
- Vinícius P Duarte
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Marcio P Pereira
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Felipe F Corrêa
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Evaristo M de Castro
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37200-000, Brazil
| | - Fabricio J Pereira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, 37130-001, Brazil.
| |
Collapse
|
115
|
Anderson JT, Jameel MI, Geber MA. Selection favors adaptive plasticity in a long-term reciprocal transplant experiment. Evolution 2021; 75:1711-1726. [PMID: 34076252 DOI: 10.1111/evo.14280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Spatial and temporal environmental variation can favor the evolution of adaptive phenotypic plasticity, such that genotypes alter their phenotypes in response to local conditions to maintain fitness across heterogeneous landscapes. When individuals show greater fitness in one habitat than another, asymmetric migration can restrict adaptation to the lower quality environment. In these cases, selection is predicted to favor traits that enhance fitness in the higher-quality (source) habitat at the expense of fitness in the marginal (sink) habitat. Here, we test whether plasticity is adaptive in a system regulated by demographic source-sink dynamics. Vaccinium elliottii (Ericaceae) occurs in dry upland and flood-prone bottomland forests throughout the southeastern United States, but has larger populations and higher average individual fitness in upland sites. We conducted a multi-year field experiment to evaluate whether plasticity in foliar morphology increases survival and lifespan. Both across and within habitats, selection favored plasticity in specific leaf area, stomatal density, and leaf size. Stabilizing selection acted on plasticity in stomatal density within habitats, suggesting that extreme levels of plasticity are disadvantageous. Thus, even in systems driven by source-sink dynamics, temporal and spatial variation in conditions across the landscape and within habitat types can favor the evolution of plasticity.
Collapse
Affiliation(s)
- Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, Georgia, 30602
| | - M Inam Jameel
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, Georgia, 30602
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14850
| |
Collapse
|
116
|
González CV, Prieto JA, Mazza C, Jeréz DN, Biruk LN, Jofré MF, Giordano CV. Grapevine morphological shade acclimation is mediated by light quality whereas hydraulic shade acclimation is mediated by light intensity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110893. [PMID: 33902854 DOI: 10.1016/j.plantsci.2021.110893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 05/27/2023]
Abstract
Plants acclimate to shade by sensing light signals such as low photosynthetic active radiation (PAR), low blue light (BL) levels and low red-to-far red ratios (R:FR) trough plant photoreceptors cross talk. We previously demonstrated that grapevine is irresponsive to variations in R:FR and that BL-attenuation mediates morphological and architectural responses to shade increasing light interception and absorption efficiencies. However, we wondered if grapevine respond to low R:FR when BL is attenuated at the same time. Our objective was to evaluate if morphological, architectural and hydraulic acclimation to shade is mediated by low R:FR ratios and BL attenuation. To test this, we carried out experiments under natural radiation, manipulating light quality by selective sunlight exclusion and light supplementation. We grew grapevines under low PAR (LP) and four high PAR (HP) treatments: HP, HP plus FR supplementation (HP + FR), HP with BL attenuation (HP-B) and HP with BL attenuation plus FR supplementation (HP-B + FR). We found that plants grown under HP-B and HP-B + FR had similar morphological (stem and petiole length, leaf thickness and area), architectural (laminae' angles) and anatomical (stomatal density) traits than plants grown under LP. However, only LP plants presented lower stomata differentiation, lower δ13C and hence lower water use efficiency. Therefore, even under a BL and R:FR attenuated environment, morphological and architectural responses were modulated by BL but not by variation in R:FR. Meanwhile water relations were affected by PAR intensity but not by changes in light quality. Knowing grapevine responses to light quantity and quality are indispensable to adopt tools or design new cultural management practices that manipulate irradiance in the field intending to improve crop performance.
Collapse
Affiliation(s)
- Carina V González
- IBAM (Instituto de Biología Agrícola de Mendoza), FCA UNCuyo - CONICET, Almirante Brown 500, Chacras de Coria, 5505, Luján de Cuyo, Mendoza, Argentina; FCEN (Facultad de Ciencias Exactas y Naturales), Universidad Nacional de Cuyo, Padre Contreras 1300, 5500, Mendoza, Argentina.
| | - Jorge A Prieto
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martin 3853, Mayor Drummond, 5507, Luján de Cuyo, Mendoza, Argentina
| | - Carlos Mazza
- IFEVA (Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura), CONICET - Universidad de Buenos Aires, Facultad de Agronomía, Av. San Martín 4453 (1417), Buenos Aires, Argentina
| | - Damián Nicolás Jeréz
- IBAM (Instituto de Biología Agrícola de Mendoza), FCA UNCuyo - CONICET, Almirante Brown 500, Chacras de Coria, 5505, Luján de Cuyo, Mendoza, Argentina
| | - Lucía N Biruk
- IADIZA (Instituto Argentino de Investigaciones en Zonas Áridas), CONICET, UNCuyo. Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| | - María Florencia Jofré
- IBAM (Instituto de Biología Agrícola de Mendoza), FCA UNCuyo - CONICET, Almirante Brown 500, Chacras de Coria, 5505, Luján de Cuyo, Mendoza, Argentina
| | - Carla V Giordano
- IADIZA (Instituto Argentino de Investigaciones en Zonas Áridas), CONICET, UNCuyo. Av. Ruiz Leal s/n, Parque General San Martín, 5500, Mendoza, Argentina
| |
Collapse
|
117
|
Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker ABJ. The metabolic origins of non-photorespiratory CO2 release during photosynthesis: a metabolic flux analysis. PLANT PHYSIOLOGY 2021; 186:297-314. [PMID: 33591309 PMCID: PMC8154043 DOI: 10.1093/plphys/kiab076] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 05/02/2023]
Abstract
Respiration in the light (RL) releases CO2 in photosynthesizing leaves and is a phenomenon that occurs independently from photorespiration. Since RL lowers net carbon fixation, understanding RL could help improve plant carbon-use efficiency and models of crop photosynthesis. Although RL was identified more than 75 years ago, its biochemical mechanisms remain unclear. To identify reactions contributing to RL, we mapped metabolic fluxes in photosynthesizing source leaves of the oilseed crop and model plant camelina (Camelina sativa). We performed a flux analysis using isotopic labeling patterns of central metabolites during 13CO2 labeling time course, gas exchange, and carbohydrate production rate experiments. To quantify the contributions of multiple potential CO2 sources with statistical and biological confidence, we increased the number of metabolites measured and reduced biological and technical heterogeneity by using single mature source leaves and quickly quenching metabolism by directly injecting liquid N2; we then compared the goodness-of-fit between these data and data from models with alternative metabolic network structures and constraints. Our analysis predicted that RL releases 5.2 μmol CO2 g-1 FW h-1 of CO2, which is relatively consistent with a value of 9.3 μmol CO2 g-1 FW h-1 measured by CO2 gas exchange. The results indicated that ≤10% of RL results from TCA cycle reactions, which are widely considered to dominate RL. Further analysis of the results indicated that oxidation of glucose-6-phosphate to pentose phosphate via 6-phosphogluconate (the G6P/OPP shunt) can account for >93% of CO2 released by RL.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
| | - Xinyu Fu
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
| | - Thomas D Sharkey
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
| | - and Berkley J Walker
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
- Author for communication:
| |
Collapse
|
118
|
Flexas J, Clemente-Moreno MJ, Bota J, Brodribb TJ, Gago J, Mizokami Y, Nadal M, Perera-Castro AV, Roig-Oliver M, Sugiura D, Xiong D, Carriquí M. Cell wall thickness and composition are involved in photosynthetic limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3971-3986. [PMID: 33780533 DOI: 10.1093/jxb/erab144] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Yusuke Mizokami
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, Japan
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Daisuke Sugiura
- Laboratory of Crop Science, Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Marc Carriquí
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
119
|
Mantuano D, Ornellas T, Aidar MPM, Mantovani A. Photosynthetic activity increases with leaf size and intercellular spaces in an allomorphic lianescent aroid Rhodospatha oblongata. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:557-566. [PMID: 33556303 DOI: 10.1071/fp20215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate leaf anatomy, as well as photosynthetic gas exchange, that underlie the improvement in light foraging capacity, which appears to occur in aroid vines seeking light exposure. Three levels of plant height (soil level, 3 m and 6 m) were categorised for the aroid vine Rhodospatha oblongata Poepp. to represent the transition from ground to canopy. Compared with shaded leaves, leaves exposed to high light conditions were thicker, presenting a larger, spongy parenchyma characterised by a larger transversal area of intercellular spaces. In addition to the increase in maximum CO2 assimilation (Amax) and thicker and larger leaf lamina, we found an increased light saturation point, light compensation point and water use efficiency at 500 µmol PPFD. Nitrogen content per leaf dry mass remained constant across habitats, but Amax/N was 1.5-times greater in the canopy position than in the leaves at soil level, suggesting that CO2 gain did not rely on an N-related biochemical apparatus. The lower δ13C discrimination observed at high canopy leaves corroborated the higher photosynthesis. Altogether, these results suggest that the large and exposed aroid leaves maintained carbon gain coupled with light gain through investing in a more efficient proportion of intercellular spaces and photosynthetic cell surface, which likely allowed a less pronounced CO2 gradient in substomatal-intercellular space.
Collapse
Affiliation(s)
- Dulce Mantuano
- Laboratório de Ecofisiologia Vegetal, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A, sala A1-118, CCS, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil; and Corresponding author.
| | - Thales Ornellas
- Escola Nacional de Botânica Tropical; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| | - Marcos P M Aidar
- Centro de Pesquisas em Ecologia e Fisiologia, Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica de São Paulo, São Paulo, SP, Brazil
| | - André Mantovani
- Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| |
Collapse
|
120
|
Clarke VC, Danila FR, von Caemmerer S. CO 2 diffusion in tobacco: a link between mesophyll conductance and leaf anatomy. Interface Focus 2021; 11:20200040. [PMID: 33628426 PMCID: PMC7898150 DOI: 10.1098/rsfs.2020.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/28/2022] Open
Abstract
The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm). We investigated how gm varies with leaf age and through a tobacco (Nicotiana tabacum) canopy by combining gas exchange and carbon isotope measurements using tunable diode laser spectroscopy. We combined these measurements with the anatomical characterization of leaves. CO2 assimilation rate, A, and gm decreased as leaves aged and moved lower in the canopy and were linearly correlated. This was accompanied by large anatomical changes including an increase in leaf thickness. Chloroplast surface area exposed to the intercellular airspace per unit leaf area (Sc) also decreased lower in the canopy. Older leaves had thicker mesophyll cell walls and gm was inversely proportional to cell wall thickness. We conclude that reduced gm of older leaves lower in the canopy was associated with a reduction in Sc and a thickening of mesophyll cell walls.
Collapse
Affiliation(s)
- Victoria C Clarke
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Florence R Danila
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
121
|
Liu X, Chen H, Sun T, Li D, Wang X, Mo W, Wang R, Zhang S. Variation in woody leaf anatomical traits along the altitudinal gradient in Taibai Mountain, China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
122
|
Wilson MJ, Fradera‐Soler M, Summers R, Sturrock CJ, Fleming AJ. Ploidy influences wheat mesophyll cell geometry, packing and leaf function. PLANT DIRECT 2021; 5:e00314. [PMID: 33855257 PMCID: PMC8026107 DOI: 10.1002/pld3.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 02/21/2021] [Indexed: 05/06/2023]
Abstract
Leaf function is influenced by leaf structure, which is itself related not only to the spatial arrangement of constituent mesophyll cells, but also their size and shape. In this study, we used confocal microscopy to image leaves of Triticum genotypes varying in ploidy level to extract 3D information on individual mesophyll cell size and geometry. Combined with X-ray Computed Tomography and gas exchange analysis, the effect of changes in wheat mesophyll cell geometry upon leaf structure and function were investigated. Mesophyll cell size and shape were found to have changed during the course of wheat evolution. An unexpected linear relationship between mesophyll cell surface area and volume was discovered, suggesting anisotropic scaling of mesophyll cell geometry with increasing ploidy. Altered mesophyll cell size and shape were demonstrated to be associated with changes in mesophyll tissue architecture. Under experimental growth conditions, CO2 assimilation did not vary with ploidy, but stomatal conductance was lower in hexaploid plants, conferring a greater instantaneous water-use efficiency. We propose that as wheat mesophyll cells have become larger with increased ploidy, this has been accompanied by changes in cell geometry and packing which limit water loss while maintaining carbon assimilation.
Collapse
Affiliation(s)
- Matthew J. Wilson
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Marc Fradera‐Soler
- Department of Plant and Environmental SciencesUniversity of CopenhagenCopenhagenDenmark
- Hounsfield FacilityDivision of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | - Craig J. Sturrock
- Hounsfield FacilityDivision of Agriculture and Environmental SciencesSchool of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - Andrew J. Fleming
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
123
|
Nadal M, Perera-Castro AV, Gulías J, Farrant JM, Flexas J. Resurrection plants optimize photosynthesis despite very thick cell walls by means of chloroplast distribution. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2600-2610. [PMID: 33483750 DOI: 10.1093/jxb/erab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Resurrection plants are vascular species able to sustain extreme desiccation in their vegetative tissues. Despite its potential interest, the role of leaf anatomy in CO2 diffusion and photosynthesis under non-stressed conditions has not been explored in these species. Net CO2 assimilation (An) and its underlying diffusive, biochemical, and anatomical determinants were assessed in 10 resurrection species from diverse locations, including ferns, and homoiochlorophyllous and poikilochlorophyllous angiosperms. Data obtained were compared with previously published results in desiccation-sensitive ferns and angiosperms. An in resurrection plants was mostly driven by mesophyll conductance to CO2 (gm) and limited by CO2 diffusion. Resurrection species had a greater cell wall thickness (Tcw) than desiccation-sensitive plants, a feature associated with limited CO2 diffusion in the mesophyll, but also greater chloroplast exposure to intercellular spaces (Sc), which usually leads to higher gm. This combination enabled a higher An per Tcw compared with desiccation-sensitive species. Resurrection species possess unusual anatomical features that could confer stress tolerance (thick cell walls) without compromising the photosynthetic capacity (high chloroplast exposure). This mechanism is particularly successful in resurrection ferns, which display higher photosynthesis than their desiccation-sensitive counterparts.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
124
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
125
|
Kalashnikova IV, Migalina SV, Ronzhina DA, Ivanov LA, Ivanova LA. Functional response of Betula species to edaphic and nutrient stress during restoration of fly ash deposits in the Middle Urals (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12714-12724. [PMID: 33094459 DOI: 10.1007/s11356-020-11200-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
We studied the impact of fly ash produced by the thermal power station in the Middle Urals (Russia) on functional traits of two Betula species naturally colonizing ash dump lagoons. The main limiting factors for tree growth on fly ash deposits were nitrogen deficiency, high alkalinity, and unfavorable mechanical composition of substrate. Leaf area ratio (LAR) and leaf mass ratio (LMR) per tree, leaf area (LA), leaf shape coefficient (LSh), leaf thickness (LT), leaf mass per area (LMA), photosynthesis (Amax) and transpiration rates, chlorophyll (Chl), carotenoid (Car), and nitrogen (N) content were measured in Betula pendula Roth and Betula pubescens Ehrh. growing on the ash dump and in the forest near the dump. Both Betula species showed similar functional response to adverse conditions of the fly ash. We found a 1.5-2-fold increase in LAR and LMR in trees growing on fly ash deposits compared with trees in the forest. In both species, the most significant differences across leaf morphological traits were shown for LT. Higher LT provided an increase in Chl and N content per leaf area that caused the rise in Amax and photosynthetic water use efficiency in the trees on the ash deposit. At the same time, Betula species preserved interspecific differences in values of LA and LT which were larger in B. pubescens whiles B. pendula differed by higher LSh. We concluded that the increase in assimilation activity at both whole-plant and leaf levels provides plant adjustment to edaphic and nutrient stress that allow Betula species to colonize technogenic substrates as fly ash deposits.
Collapse
Affiliation(s)
- Irina V Kalashnikova
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 202a 8Marta St, 620144, Ekaterinburg, Russia
| | - Svetlana V Migalina
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 202a 8Marta St, 620144, Ekaterinburg, Russia
- Tyumen State University, 6 Volodarskogo St, Tyumen, Russia, 625003
| | - Dina A Ronzhina
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 202a 8Marta St, 620144, Ekaterinburg, Russia
- Tyumen State University, 6 Volodarskogo St, Tyumen, Russia, 625003
| | - Leonid A Ivanov
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 202a 8Marta St, 620144, Ekaterinburg, Russia
- Tyumen State University, 6 Volodarskogo St, Tyumen, Russia, 625003
| | - Larissa A Ivanova
- Institute Botanic Garden, Ural Branch, Russian Academy of Sciences, 202a 8Marta St, 620144, Ekaterinburg, Russia.
- Tyumen State University, 6 Volodarskogo St, Tyumen, Russia, 625003.
| |
Collapse
|
126
|
Zhang J, Deng L, Jiang H, Peng C, Huang C, Zhang M, Zhang X. The effects of elevated CO 2, elevated O 3, elevated temperature, and drought on plant leaf gas exchanges: a global meta-analysis of experimental studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15274-15289. [PMID: 33236300 DOI: 10.1007/s11356-020-11728-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Global change significantly influences plant leaf gas exchange, which affects the carbon-water cycle of terrestrial ecosystems. However, the magnitudes of the effects of multiple global change factors on leaf gas exchanges are currently lacking. Therefore, a global meta-analysis of 337 published articles was conducted to determine the effects of elevated CO2 (eCO2), elevated O3 (eO3), elevated temperature (eT), and drought on plant leaf gas exchanges. The results indicated that (1) the overall responses of photosynthesis rate (Pn) and instantaneous water use efficiency (WUEi) to eCO2 increased by 28.6% and 58.6%. But transpiration rate (Tr) and stomatal conductance (gs) responded negatively to eCO2 (- 17.5% and - 17.2%, respectively). Furthermore, all Pn, gs, and WUEi responded negatively to eO3 (- 32.7%, - 24.6%, and - 27.1%), eT (- 23.2%, - 10.8%, and - 28.9%), and drought (- 53.6%, - 59.3%, and - 4.6%, respectively), regardless of functional groups and various complex experimental conditions. (2) Elevated CO2 increased WUEi combined with eO3, eT, and drought (26.6%, 36.0%, and 58.6%, respectively, for eCO2 + eO3, eCO2 + eT, and eCO2 + drought) and mitigated their negative impacts on Pn to some extent. (3) Plant form and foliage type play an important role in the responses of leaf gas exchanges. Trees responded mostly to eCO2, but responded least to eT in Pn, Tr, gs, and WUEi compared with shrubs and herbs. Evergreen broad-leaved species were more responsive to eCO2 and drought. (4) The stress level of each factor can also significantly influence the responses of leaf gas exchanges to environment change. Hopefully, the quantitative results are helpful for the further assessments of the terrestrial carbon-water cycle.
Collapse
Affiliation(s)
- Jinmeng Zhang
- School of Urban and Environment Science, Jiangsu Second Normal University, Nanjing, 211200, China
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
| | - Lei Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Jiang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China.
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China.
| | - Changhui Peng
- Center of CEF/ESCER, Department of Biological Science, University of Quebec at Montreal, Montreal, QC, Canada
| | - Chunbo Huang
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
| | - Minxia Zhang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing, 210023, China
| | - Xiuying Zhang
- International Institutes for Earth System Science, Nanjing University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| |
Collapse
|
127
|
Sakoda K, Yamori W, Groszmann M, Evans JR. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. PLANT PHYSIOLOGY 2021; 185:146-160. [PMID: 33631811 PMCID: PMC8133641 DOI: 10.1093/plphys/kiaa011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 05/07/2023]
Abstract
The dynamics of leaf photosynthesis in fluctuating light affects carbon gain by plants. Mesophyll conductance (gm) limits CO2 assimilation rate (A) under the steady state, but the extent of this limitation under non-steady-state conditions is unknown. In the present study, we aimed to characterize the dynamics of gm and the limitations to A imposed by gas diffusional and biochemical processes under fluctuating light. The induction responses of A, stomatal conductance (gs), gm, and the maximum rate of RuBP carboxylation (Vcmax) or electron transport (J) were investigated in Arabidopsis (Arabidopsis thaliana (L.)) and tobacco (Nicotiana tabacum L.). We first characterized gm induction after a change from darkness to light. Each limitation to A imposed by gm, gs and Vcmax or J was significant during induction, indicating that gas diffusional and biochemical processes limit photosynthesis. Initially, gs imposed the greatest limitation to A, showing the slowest response under high light after long and short periods of darkness, assuming RuBP-carboxylation limitation. However, if RuBP-regeneration limitation was assumed, then J imposed the greatest limitation. gm did not vary much following short interruptions to light. The limitation to A imposed by gm was the smallest of all the limitations for most of the induction phase. This suggests that altering induction kinetics of mesophyll conductance would have little impact on A following a change in light. To enhance the carbon gain by plants under naturally dynamic light environments, attention should therefore be focused on faster stomatal opening or activation of electron transport.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo 188-0002, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo 188-0002, Tokyo, Japan
| | - Michael Groszmann
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Territory 2601, Australia
| | - John R Evans
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Territory 2601, Australia
| |
Collapse
|
128
|
Palacios M, Osman D, Ramírez J, Huovinen P, Gómez I. Photobiology of the giant kelp Macrocystis pyrifera in the land-terminating glacier fjord Yendegaia (Tierra del Fuego): A look into the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141810. [PMID: 32882566 DOI: 10.1016/j.scitotenv.2020.141810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 05/16/2023]
Abstract
The channel and fjord region of southern Chilean Patagonia hosts giant kelp forests (Macrocystis pyrifera) that have little known site-specific responses to diverse physical gradients. In this study, the functionality of the bio-optical, morphological and biochemical features of the kelps, that determine their light trapping and acclimation, were studied along a gradient of varying turbidity and light conditions at the land-terminating glacier of fjord Yendegaia in the Beagle Channel. These habitats are marked by glacial retreat, and M. pyrifera has successfully colonized new areas due to the effects of warming. Results indicated that under a sharp gradient of turbidity and light availability, the kelps have adapted shading characteristics. The photobiological traits (e.g. light absorption, pigment concentration, photochemistry and blade optics) of algae from depths between 6 and 13 m varied in relation to the degree of turbidity along the fjord. However, these populations did not show obvious intra-thallus variation along the longitudinal profile e.g. blades located at different depths showed relatively similar acclimation potential to the prevailing light field. Only basal sporophylls showed general differences in comparison with the vegetative fronds. Otherwise, the high phenolic (phlorotannin) content, which was reflected in the massive presence of intracellular physodes, suggests that these organisms could be biochemically well-equipped to cope with changes in physical conditions or the presence of herbivore invertebrates (e.g. sea urchins).
Collapse
Affiliation(s)
- Mauricio Palacios
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile.
| | - Dayane Osman
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Jaime Ramírez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
129
|
Ye M, Wu M, Zhang H, Zhang Z, Zhang Z. High Leaf Vein Density Promotes Leaf Gas Exchange by Enhancing Leaf Hydraulic Conductance in Oryza sativa L. Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:693815. [PMID: 34759936 PMCID: PMC8573028 DOI: 10.3389/fpls.2021.693815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/20/2021] [Indexed: 05/16/2023]
Abstract
Six cultivated rice genotypes showing different stomatal conductance (g s) values were used to investigate the influence of leaf vein traits on leaf gas exchange and leaf hydraulics. The results showed that g s was the main determinant of the varietal difference in the net photosynthetic rate (P N), whereas the area-based leaf nitrogen content (Narea) and mesophyll conductance (g m) were not main factors. g s and P N were both positively correlated with leaf hydraulic conductance (K leaf). A high density of leaf veins (vein length per leaf area, VLA), especially minor leaf veins (VLAminor), was of benefit for improving the K leaf. The proportion of the minor leaf vein length to the total leaf vein length did not impact the leaf hydraulics or leaf gas exchange. Overall, these findings suggested that a high density of leaf veins, especially minor leaf veins, enhances K leaf and promotes g s and P N in cultivated rice genotypes and a high VLA can be regarded as a high photosynthetic capacity trait in rice plants.
Collapse
Affiliation(s)
- Miao Ye
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meng Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hao Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zuolin Zhang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zujian Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Zujian Zhang
| |
Collapse
|
130
|
Kitao M, Agathokleous E, Harayama H, Yazaki K, Tobita H. Constant ratio of C c to C i under various CO 2 concentrations and light intensities, and during progressive drought, in seedlings of Japanese white birch. PHOTOSYNTHESIS RESEARCH 2021; 147:27-37. [PMID: 33068256 DOI: 10.1007/s11120-020-00788-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Constant mesophyll conductance (gm), and two-resistance gm model (involved in resistances of cell wall and chloroplast), where gm reaches maximum under higher CO2 concentrations, cannot describe the phenomenon that gm decreases with increasing intercellular CO2 concentration (Ci) under relatively higher CO2 concentrations. Yin et al. (2020) proposed a gm model, according to which the ratio of chloroplastic CO2 concentration (Cc) to Ci is constant in the two-resistance gm model, which can describe the decreasing gm with increasing Ci. In the present study, we investigated the relationship between Cc and Ci in leaves of Japanese white birch by using simultaneous measurements of gas exchange and chlorophyll fluorescence under various CO2 concentrations, light intensities, and during progressive drought. Across the range of ambient CO2 from 50 to 1000 μmol mol-1, and light intensities of 50 to 2000 μmol m-2 s-1, measured under well irrigation, the ratio of Cc to Ci kept constant. During the progressive drought, overestimated Ci due to stomatal patchiness and/or cuticular transpiration was empirically corrected (threshold: stomatal conductance < 0.08 mol H2O m-2 s-1) from the A/Ci response measured under adequate irrigation. The ratio of Cc to Ci during progressive drought (predawn leaf potential reached ≈ - 2 MPa) also remained constant irrespective of soil drying rate in various pot sizes. The present study suggests the involvement of some physiologically regulative mechanisms to keep Cc:Ci ratio constant, which might act on gm in addition to the physical interaction of diffusive resistances in the cell components.
Collapse
Affiliation(s)
- Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, 062-8516, Japan.
| | - Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, 062-8516, Japan
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hisanori Harayama
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo, 062-8516, Japan
| | - Kenichi Yazaki
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| | - Hiroyuki Tobita
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| |
Collapse
|
131
|
Jia H, Zhang Z, Sadeghnezhad E, Pang Q, Li S, Pervaiz T, Su Z, Dong T, Fang J, Jia H. Demethylation alters transcriptome profiling of buds and leaves in 'Kyoho' grape. BMC PLANT BIOLOGY 2020; 20:544. [PMID: 33276735 PMCID: PMC7716455 DOI: 10.1186/s12870-020-02754-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/24/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grape buds and leaves are directly associated with the physiology and metabolic activities of the plant, which is monitored by epigenetic modifications induced by environment and endogenous factors. Methylation is one of the epigenetic regulators that could be involved in DNA levels and affect gene expression in response to stimuli. Therefore, changes of gene expression profile in leaves and bud through inhibitors of DNA methylation provide a deep understanding of epigenetic effects in regulatory networks. RESULTS In this study, we carried out a transcriptome analysis of 'Kyoho' buds and leaves under 5-azacytidine (5-azaC) exposure and screened a large number of differentially expressed genes (DEGs). GO and KEGG annotations showed that they are mainly involved in photosynthesis, flavonoid synthesis, glutathione metabolism, and other metabolic processes. Functional enrichment analysis also provided a holistic perspective on the transcriptome profile when 5-azaC bound to methyltransferase and induced demethylation. Enrichment analysis of transcription factors (TFs) also showed that the MYB, C2H2, and bHLH families are involved in the regulation of responsive genes under epigenetic changes. Furthermore, hormone-related genes have also undergone significant changes, especially gibberellin (GA) and abscisic acid (ABA)-related genes that responded to bud germination. We also used protein-protein interaction network to determine hub proteins in response to demethylation. CONCLUSIONS These findings provide new insights into the establishment of molecular regulatory networks according to how methylation as an epigenetic modification alters transcriptome patterns in bud and leaves of grape.
Collapse
Affiliation(s)
- Haoran Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Shangyun Li
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Ziwen Su
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticultural, Nanjing Agricultural University, Nanjing, China.
- China Wine Industry Technology Institute, Yinchuan, China.
| |
Collapse
|
132
|
McAusland L, Vialet-Chabrand S, Jauregui I, Burridge A, Hubbart-Edwards S, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo-Silva E, Lawson T, Murchie EH. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. THE NEW PHYTOLOGIST 2020; 228:1767-1780. [PMID: 32910841 DOI: 10.1111/nph.16832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 05/26/2023]
Abstract
The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | - Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Stella Hubbart-Edwards
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Michael J Fryer
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ian P King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Kevin Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | | | - Tracy Lawson
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
133
|
Gao L, Lu Z, Ding L, Xie K, Wang M, Ling N, Guo S. Anatomically induced changes in rice leaf mesophyll conductance explain the variation in photosynthetic nitrogen use efficiency under contrasting nitrogen supply. BMC PLANT BIOLOGY 2020; 20:527. [PMID: 33208102 PMCID: PMC7672947 DOI: 10.1186/s12870-020-02731-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ratio of CO2 mesophyll conductance (gm) to Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) content has been suggested to positively affect photosynthetic nitrogen use efficiency (PNUE). The anatomical basis of gm has been quantified, but information on the relationship between cell-level anatomies and PNUE is less advanced. Here, hydroponic experiments were conducted in rice plants supplied with ammonium (NH4+) and nitrate (NO3-) under three N levels (low, 0.71 mM; intermediate, 2.86 mM; high, 7.14 mM) to investigate the gas exchange parameters, leaf anatomical structure and PNUE. RESULTS The results showed a lower PNUE in plants supplied with high nitrogen and NH4+, which was positively correlated with the gm/Rubisco ratio. A one-dimensional within-leaf model revealed that the resistance to CO2 diffusion in the liquid phase (rliq) dominated the overall mesophyll resistance (rm), in which CO2 transfer resistance in the cell wall, cytoplasm and stroma were significantly affected by nitrogen supply. The chloroplast surface area exposed to intercellular space (Sc) per Rubisco rather than the gm/Sc ratio was positively correlated with PNUE and was thus considered a key component influencing PNUE. CONCLUSION In conclusion, our study emphasized that Sc was the most important anatomical trait in coordinating gm and PNUE with contrasting N supply.
Collapse
Affiliation(s)
- Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Kailiu Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
134
|
Perera-Castro AV, Nadal M, Flexas J. What drives photosynthesis during desiccation? Mosses and other outliers from the photosynthesis-elasticity trade-off. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6460-6470. [PMID: 32686831 DOI: 10.1093/jxb/eraa328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
In vascular plants, more rigid leaves have been linked to lower photosynthetic capacity, associated with low CO2 diffusion across the mesophyll, indirectly resulting in a trade-off between photosynthetic capacity (An) and bulk modulus of elasticity (ε). However, we evaluated mosses, liverworts, and Chara sp., plus some lycophytes and ferns, and found that they behaved as clear outliers of the An-ε relationship. Despite this finding, when vascular and non-vascular plants were plotted together, ε still linearly determined the cessation of net photosynthesis during desiccation both in species with stomata (either actively or hydro-passively regulated) and in species lacking stomata, and regardless of their leaf structure. The latter result challenges our current view of photosynthetic responses to desiccation and/or water stress. Structural features and hydric strategy are discussed as possible explanations for the deviation of these species from the An-ε trade-off, as well as for the general linear dependency between ε and the full cessation of An during desiccation.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears, INAGEA Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
135
|
Lu Z, Ren T, Li J, Hu W, Zhang J, Yan J, Li X, Cong R, Guo S, Lu J. Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6524-6537. [PMID: 32725164 DOI: 10.1093/jxb/eraa356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Plants in nutrient-poor habitats converge towards lower rates of leaf net CO2 assimilation (Aarea); however, they display variability in leaf mass investment per area (LMA). How a plant optimizes its leaf internal carbon investment may have knock-on effects on structural traits and, in turn, affect leaf carbon fixation. Quantitative models were applied to evaluate the structural causes of variations in LMA and their relevance to Aarea in rapeseed (Brassica napus) based on their responses to nitrogen (N), phosphorus (P), potassium (K), and boron (B) deficiencies. Leaf carbon fixation decreased in response to nutrient deficiency, but the photosynthetic limitations varied greatly depending on the deficient nutrient. In comparison with Aarea, the LMA exhibited diverse responses, being increased under P or B deficiency, decreased under K deficiency, and unaffected under N deficiency. These variations were due to changes in cell- and tissue-level carbon investments between cell dry mass density (N or K deficiency) and cellular anatomy, including cell dimension and number (P deficiency), or both (B deficiency). However, there was a conserved pattern independent of nutrient-specific limitations-low nutrient availability reduced leaf carbon fixation but increased carbon investment in non-photosynthetic structures, resulting in larger but fewer mesophyll cells with a thicker cell wall but a lower chloroplast surface area appressed to the intercellular airspace, which reduced the mesophyll conductance and feedback-limited Aarea. Our results provide insight into the importance of mineral nutrients in balancing the leaf carbon economy by coordinating leaf carbon assimilation and internal distribution.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jing Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wenshi Hu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jianglin Zhang
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jinyao Yan
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
136
|
Yudina PK, Ivanov LA, Ronzhina DA, Anenkhonov OA, Ivanova LA. Influence of the Systematic Position at the Family Level on the Leaf Functional Traits of Steppe Plants. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s199542552005011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
137
|
Eckert D, Jensen AM, Gu L. The maximum carboxylation rate of Rubisco affects CO 2 refixation in temperate broadleaved forest trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:330-337. [PMID: 32798901 DOI: 10.1016/j.plaphy.2020.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Mesophyll resistance to CO2 diffusion (rm) and the maximum carboxylation rate of Rubisco (Vcmax) affect photosynthetic rates, and can potentially also influence the percentage of respiratory and photorespiratory CO2 being refixated (Pr) by mesophyll cells. Here we investigated how various leaf anatomical traits (e.g. leaf mass per area [LMA] and leaf dry matter content [LDMC]) influenced rm in leaves of mature forest trees. We further explored how rm and Vcmax in turn affected Pr, and if these traits varied among species and leaves along a light gradient. Photosynthetic CO2 response of leaves grown in high-, medium-, and low-light environments was measured, from Pinus sylvestris [Scots pine], Picea abies [Norway spruce], Quercus robur [English oak], and Betula pendula [Silver birch] in southern Sweden. A modified version of the Farquhar-von Caemmerer-Berry model was fitted to the leaf gas exchange data to estimate Vcmax, rm and Pr. We found that of all leaf traits measured, only LMA for Q. robur was significantly higher in leaves from high-light environments. When comparing species, both rm and LMA were significantly higher in the conifers, and rm had a negative correlation with Vcmax. We found that Pr was similar between different species and functional groups, with an average of 73.2% (and SD of ±10.4) across all species. There was a strong, positive correlation between Pr and Vcmax in broadleaves, and we hypothesise that this effect might derive from a higher CO2 drawdown near Rubisco in leaves with high Vcmax.
Collapse
Affiliation(s)
- Diana Eckert
- Department of Forestry and Wood Technology, Linnaeus University, 351 95, Växjö, Sweden.
| | - Anna Monrad Jensen
- Department of Forestry and Wood Technology, Linnaeus University, 351 95, Växjö, Sweden
| | - Lianhong Gu
- Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| |
Collapse
|
138
|
Crous KY, Campany C, Lopez R, Cano FJ, Ellsworth DS. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. TREE PHYSIOLOGY 2020; 41:tpaa117. [PMID: 32918811 DOI: 10.1093/treephys/tpaa117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Leaves are exposed to different light conditions according to their canopy position, resulting in structural and anatomical differences with consequences for carbon uptake. While these structure-function relationships have been thoroughly explored in dense forest canopies, such gradients may be diminished in open canopies, and they are often ignored in ecosystem models. We tested within-canopy differences in photosynthetic properties and structural traits in leaves in a mature Eucalyptus tereticornis canopy exposed to long-term elevated CO2 for up to three years. We explored these traits in relation to anatomical variation and diffusive processes for CO2 (i.e., stomatal conductance, gs and mesophyll conductance, gm) in both upper and lower portions of the canopy receiving ambient and elevated CO2. While shade resulted in 13% lower leaf mass per area ratio (MA) in lower versus upper canopy leaves, there was no relationship between leaf Nmass and canopy gap fraction. Both maximum carboxylation capacity (Vcmax) and maximum electron transport (Jmax) were ~ 18% lower in shaded leaves and were also reduced by ~ 22% with leaf aging. In mature leaves, we found no canopy differences for gm or gs, despite anatomical differences in MA, leaf thickness and mean mesophyll thickness between canopy positions. There was a positive relationship between net photosynthesis and gm or gs in mature leaves. Mesophyll conductance was negatively correlated with mean parenchyma length, suggesting that long palisade cells may contribute to a longer CO2 diffusional pathway and more resistance to CO2 transfer to chloroplasts. Few other relationships between gm and anatomical variables were found in mature leaves, which may be due to the open crown of Eucalyptus. Consideration of shade effects and leaf-age dependent responses to photosynthetic capacity and mesophyll conductance are critical to improve canopy photosynthesis models and will improve understanding of long-term responses to elevated CO2 in tree canopies.
Collapse
Affiliation(s)
- K Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - C Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Department of Biology, Shepherd University, P.O. Box 5000, Shepherdstown, West Virginia, 25443, USA
| | - R Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - F J Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - D S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
139
|
Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. THE NEW PHYTOLOGIST 2020; 227:1749-1763. [PMID: 32367581 DOI: 10.1111/nph.16644] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Synergistic improvement in leaf photosynthetic area and rate is essential for enhancing crop yield. However, reduction in leaf area occurs earlier than that in the photosynthetic rate under potassium (K) deficiency stress. The photosynthetic capacity and anatomical characteristics of oilseed rape (Brassica napus) leaves in different growth stages under different K levels were observed to clarify the mechanism regulating this process. Increased mesophyll cell size and palisade tissue thickness, in K-deficient leaves triggered significant enlargement of mesophyll cell area per transverse section width (S/W), in turn inhibiting leaf expansion. However, there was only a minor difference in chloroplast morphology, likely because of K redistribution from vacuole to chloroplast. As K stress increased, decreased mesophyll surface exposed to intercellular space and chloroplast density induced longer distances between neighbouring chloroplasts (Dchl-chl ) and decreased the chloroplast surface area exposed to intercellular space (Sc /S); conversely this induced a greater limitation imposed by the cytosol on CO2 transport, further reducing the photosynthetic rate. Changes in S/W associated with mesophyll cell morphology occurred earlier than changes in Sc /S and Dchl-chl , inducing a decrease in leaf area before photosynthetic rate reduction. Adequate K nutrition simultaneously increases photosynthetic area and rate, thus enhancing crop yield.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Fanjin Meng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
140
|
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, Tosens T. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4958-4971. [PMID: 32392579 DOI: 10.1093/jxb/eraa231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Collapse
Affiliation(s)
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
141
|
Carriquí M, Nadal M, Clemente-Moreno MJ, Gago J, Miedes E, Flexas J. Cell wall composition strongly influences mesophyll conductance in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1372-1385. [PMID: 32390169 DOI: 10.1111/tpj.14806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Cell wall thickness is widely recognized as one of the main determinants of mesophyll conductance to CO2 (gm ). However, little is known about the components that regulate effective CO2 diffusivity in the cell wall (i.e. the ratio between actual porosity and tortuosity, the other two biophysical diffusion properties of cell walls). The aim of this study was to assess, at the interspecific level, potential relationships between cell wall composition, cell wall thickness (Tcw ) and gm . Gymnosperms constitute an ideal group to deepen these relationships, as they present, on average, the thickest cell walls within spermatophytes. We characterized the foliar gas exchange, the morphoanatomical traits related with gm , the leaf fraction constituted by cell walls and three main components of primary cell walls (hemicelluloses, cellulose and pectins) in seven gymnosperm species. We found that, although the relatively low gm of gymnosperms was mainly determined by their elevated Tcw , gm was also strongly correlated with cell wall composition, which presumably sets the final effective CO2 diffusivity. The data presented here suggest that (i) differences in gm are strongly correlated to the pectins to hemicelluloses and cellulose ratio in gymnosperms, and (ii) variations in cell wall composition may modify effective CO2 diffusivity in the cell wall to compensate the negative impact of thickened walls. We speculate that higher relative pectin content allows higher gm because pectins increase cell wall hydrophilicity and CO2 molecules cross the wall dissolved in water.
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
- School of Natural Sciences, University of Tasmania (UTAS), Bag 55, Hobart, Tasmania, 7001, Australia
| | - Miquel Nadal
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - María J Clemente-Moreno
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Jorge Gago
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, 28040, Spain
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| |
Collapse
|
142
|
Sugiura D, Terashima I, Evans JR. A Decrease in Mesophyll Conductance by Cell-Wall Thickening Contributes to Photosynthetic Downregulation. PLANT PHYSIOLOGY 2020; 183:1600-1611. [PMID: 32518201 PMCID: PMC7401118 DOI: 10.1104/pp.20.00328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
It has been argued that accumulation of nonstructural carbohydrates triggers a decrease in Rubisco content, which downregulates photosynthesis. However, a decrease in the sink-source ratio in several plant species leads to a decrease in photosynthesis and increases in both structural and nonstructural carbohydrate content. Here, we tested whether increases in cell-wall materials, rather than starch content, impact directly on photosynthesis by decreasing mesophyll conductance. We measured various morphological, anatomical, and physiological traits in primary leaves of soybean (Glycine max) and French bean (Phaseolus vulgaris) grown under high- or low-nitrogen conditions. We removed other leaves 2 weeks after sowing to decrease the sink-source ratio and conducted measurements 0, 1, and 2 weeks after defoliation.
Collapse
Affiliation(s)
- Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
143
|
Ye M, Zhang Z, Huang G, Xiong Z, Peng S, Li Y. High leaf mass per area Oryza genotypes invest more leaf mass to cell wall and show a low mesophyll conductance. AOB PLANTS 2020; 12:plaa028. [PMID: 32765824 PMCID: PMC7396964 DOI: 10.1093/aobpla/plaa028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/12/2020] [Indexed: 05/20/2023]
Abstract
The intraspecific variations of leaf structure and anatomy in rice leaves and their impacts on gas diffusion are still unknown. Researches about the tradeoff between structural compositions and intracellular chemical components within rice leaves are still lacking. The objectives of the present study were to investigate the varietal differences in leaf structure and leaf chemical compositions, and the tradeoff between leaf structural tissues and intracellular chemical components in rice leaves. Leaf structure, leaf anatomy, leaf chemical composition concentrations and gas exchange parameters were measured on eight Oryza sativa L. genotypes to investigate the intraspecific variations in leaf structure and leaf anatomy and their impacts on gas exchange parameters, and to study the tradeoff between leaf structural compositions (cell wall compounds) and intracellular chemical components (non-structural carbohydrates, nitrogen, chlorophyll). Leaf thickness increased with leaf mass per area (LMA), while leaf density did not correlate with LMA. Mesophyll cell surface area exposed to intercellular airspace (IAS) per leaf area, the surface area of chloroplasts exposed to IAS and cell wall thickness increased with LMA. Cell wall compounds accounted for 71.5 % of leaf dry mass, while mass-based nitrogen and chlorophyll concentrations decreased with LMA. Mesophyll conductance was negatively correlated with LMA and cell wall thickness. High LMA rice genotypes invest more leaf mass to cell wall and possess a low mesophyll conductance.
Collapse
Affiliation(s)
- Miao Ye
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengcan Zhang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guanjun Huang
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhuang Xiong
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Corresponding author’s e-mail address:
| |
Collapse
|
144
|
Zhu K, Wang A, Wu J, Yuan F, Guan D, Jin C, Zhang Y, Gong C. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci Rep 2020; 10:10038. [PMID: 32572068 PMCID: PMC7308411 DOI: 10.1038/s41598-020-66886-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
The response of plant CO2 diffusion conductances (mesophyll and stomatal conductances, gm and gsc) to soil drought has been widely studied, but few studies have investigated the effects of soil nitrogen addition levels on gm and gsc. In this study, we investigated the responses of gm and gsc of Manchurian ash and Mongolian oak to four soil nitrogen addition levels (control, low nitrogen, medium nitrogen and high nitrogen) and the changes in leaf anatomy and associated enzyme activities (aquaporin (AQP) and carbonic anhydrase (CA)). Both gm and gsc increased with the soil nitrogen addition levels for both species, but then decreased under the high nitrogen addition level, which primarily resulted from the enlargements in leaf and mesophyll cell thicknesses, mesophyll surface area exposed to intercellular space per unit leaf area and stomatal opening status with soil nitrogen addition. Additionally, the improvements in leaf N content and AQP and CA activities also significantly promoted gm and gsc increases. The addition of moderate levels of soil nitrogen had notably positive effects on CO2 diffusion conductance in leaf anatomy and physiology in Manchurian ash and Mongolian oak, but these positive effects were weakened with the addition of high levels of soil nitrogen.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yushu Zhang
- The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110166, China
| | - Chunjuan Gong
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
145
|
Ali I, He L, Ullah S, Quan Z, Wei S, Iqbal A, Munsif F, Shah T, Xuan Y, Luo Y, Tianyuan L, Ligeng J. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double‐cropping system. Food Energy Secur 2020. [DOI: 10.1002/fes3.208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Izhar Ali
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Liang He
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Saif Ullah
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Zhao Quan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Shangqing Wei
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Anas Iqbal
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Fazal Munsif
- Department of Agronomy Faculty of Crop Production Sciences University of Agriculture Peshawar Peshawar Pakistan
| | - Tariq Shah
- Department of Agronomy Faculty of Crop Production Sciences University of Agriculture Peshawar Peshawar Pakistan
| | - Ying Xuan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Yuqiong Luo
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Li Tianyuan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| | - Jiang Ligeng
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture Guangxi University Nanning China
| |
Collapse
|
146
|
Fullana-Pericàs M, Conesa MÀ, Pérez-Alfocea F, Galmés J. The influence of grafting on crops' photosynthetic performance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110250. [PMID: 32534620 DOI: 10.1016/j.plantsci.2019.110250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 05/16/2023]
Abstract
In a near scenario of climate change where stress-derived limitations on crops' yield by affecting plant gas-exchange are expected, grafting may become a cheap and easy technique to improve crops photosynthetic performance and water-use efficiency. Inconsistent data of the effect of rootstocks over gas-exchange can be found in literature, being necessary an integrative analysis of the effect of grafting over photosynthetic parameters. With this aim, we present a compilation of the effect of graft on the net CO2 assimilation rate (AN) and other photosynthetic parameters across different species with agronomic interest. No differences were observed in any photosynthetic parameter between non-grafted and self-grafted plants under non-stress conditions. However, differences were found depending on the used rootstock, particularly for the intrinsic water-use efficiency (WUEi). We observed that variations in AN induced by rootstocks were related to changes in both diffusive and biochemical parameters. Under drought or salt stress, different photosynthetic performances were observed depending on the rootstock, although the high variability among studies promted to remarkable results. Overall, we observed that grafting can be a useful technique to improve plant photosynthetic performance, and therefore, crop yield and WUE, and that the rootstock selection for a target environment is determinant for the variations in photosynthesis.
Collapse
Affiliation(s)
- Mateu Fullana-Pericàs
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Francisco Pérez-Alfocea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100, Murcia, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain.
| |
Collapse
|
147
|
Reddy SH, Singhal RK, DaCosta MVJ, Kambalimath SK, Rajanna MP, Muthurajan R, Sevanthi AM, Mohapatra T, Sarla N, Chinnusamy V, S GK, Singh AK, Singh NK, Sharma RP, Pathappa N, Sheshshayee SM. Leaf mass area determines water use efficiency through its influence on carbon gain in rice mutants. PHYSIOLOGIA PLANTARUM 2020; 169:194-213. [PMID: 31912892 DOI: 10.1111/ppl.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Saving water and enhancing rice productivity are consensually the most important research goals globally. While increasing canopy cover would enhance growth rates by higher photosynthetic carbon gain, an accompanied increase in transpiration would have a negative impact on saving water as well as for sustainability under water-limited conditions. Increased water use efficiency (WUE) by virtue of higher carbon assimilatory capacity can significantly circumvent this trade-off. Here, we report leaf mass area (LMA) has an important canopy architecture trait which when combined with superior carboxylation efficiency (CE) would achieve higher water productivity in rice. A set of 130 ethyl methanesulfonate induced mutants of an upland cultivar Nagina-22 (N22), was screened for leaf morphological traits leading to the identification of mutants differing in LMA. The wild-type, N22, along with a selected low-LMA (380-4-3) and two high-LMA mutants (392-9-1 and 457-1-3), all with comparable total leaf area, were raised under well-watered (100% Field Capacity (FC)) and water-limited (60% FC) conditions. Low Δ13 C and a higher RuBisCO content in high-LMA mutants indicated higher carboxylation efficiency, leading to increased carbon gain. Single parent backcross populations developed by crossing high and the low-LMA mutants with N22, separately, were screened for LMA, Δ13 C and growth traits. Comparison of dry matter accumulation per unit leaf area among the progenies differing in LMA and Δ13 C reiterated the association of LMA with CE. Results illustrated that high-LMA when combined with higher CE (low Δ13 C) lead to increased WUE and growth rates.
Collapse
Affiliation(s)
| | - Rajesh Kumar Singhal
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | | | | | - Raveendran Muthurajan
- Center for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | | | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gopala Krishnan S
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | - Sreeman M Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
148
|
McAusland L, Lim MT, Morris DE, Smith-Herman HL, Mohammed U, Hayes-Gill BR, Crowe JA, Fisk ID, Murchie EH. Growth Spectrum Complexity Dictates Aromatic Intensity in Coriander ( Coriandrum sativum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:462. [PMID: 32499791 PMCID: PMC7242725 DOI: 10.3389/fpls.2020.00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Advancements in availability and specificity of light-emitting diodes (LEDs) have facilitated trait modification of high-value edible herbs and vegetables through the fine manipulation of spectra. Coriander (Coriandrum sativum L.) is a culinary herb, known for its fresh, citrusy aroma, and high economic value. Studies into the impact of light intensity and spectrum on C. sativum physiology, morphology, and aroma are limited. Using a nasal impact frequency panel, a selection of key compounds associated with the characteristic aroma of coriander was identified. Significant differences (P < 0.05) were observed in the concentration of these aromatics between plants grown in a controlled environment chamber under the same photosynthetic photon flux density (PPFD) but custom spectra: red (100%), blue (100%), red + blue (RB, 50% equal contribution), or red + green + blue (RGB, 35.8% red: 26.4% green: 37.8% blue) wavelengths. In general, the concentration of aromatics increased with increasing numbers of wavelengths emitted alongside selective changes, e.g., the greatest increase in coriander-defining E-(2)-decenal occurred under the RGB spectrum. This change in aroma profile was accompanied by significant differences (P < 0.05) in light saturated photosynthetic CO2 assimilation, water-use efficiency (Wi), and morphology. While plants grown under red wavelengths achieved the greatest leaf area, RB spectrum plants were shortest and had the highest leaf:shoot ratio. Therefore, this work evidences a trade-off between sellable commercial morphologies with a weaker, less desirable aroma or a less desirable morphology with more intense coriander-like aromas. When supplemental trichromatic LEDs were used in a commercial glasshouse, the majority of compounds, with the exception of linalool, also increased showing that even as a supplement additional wavelength can modify the aromatic profile increasing its complexity. Lower levels of linalool suggest these plants may be more susceptible to biotic stress such as herbivory. Finally, the concentration of coriander-defining aromatics E-(2)-decenal and E-(2)-hexenal was significantly higher in supermarket pre-packaged coriander leaves implying that concentrations of aromatics increase after excision. In summary, spectra can be used to co-manipulate aroma profile and plant form with increasing spectral complexity leading to greater aromatic complexity and intensity. We suggest that increasing spectral complexity progressively stimulates signaling pathways giving rise to valuable economic traits.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Mui-Ting Lim
- Division of Food Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - David E. Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Hayley L. Smith-Herman
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Umar Mohammed
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Barrie R. Hayes-Gill
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - John A. Crowe
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Ian D. Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
149
|
Yin X, van der Putten PEL, Belay D, Struik PC. Using photorespiratory oxygen response to analyse leaf mesophyll resistance. PHOTOSYNTHESIS RESEARCH 2020; 144:85-99. [PMID: 32040701 PMCID: PMC7113236 DOI: 10.1007/s11120-020-00716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 05/12/2023]
Abstract
Classical approaches to estimate mesophyll conductance ignore differences in resistance components for CO2 from intercellular air spaces (IAS) and CO2 from photorespiration (F) and respiration (Rd). Consequently, mesophyll conductance apparently becomes sensitive to (photo)respiration relative to net photosynthesis, (F + Rd)/A. This sensitivity depends on several hard-to-measure anatomical properties of mesophyll cells. We developed a method to estimate the parameter m (0 ≤ m ≤ 1) that lumps these anatomical properties, using gas exchange and chlorophyll fluorescence measurements where (F + Rd)/A ratios vary. This method was applied to tomato and rice leaves measured at five O2 levels. The estimated m was 0.3 for tomato but 0.0 for rice, suggesting that classical approaches implying m = 0 work well for rice. The mesophyll conductance taking the m factor into account still responded to irradiance, CO2, and O2 levels, similar to response patterns of stomatal conductance to these variables. Largely due to different m values, the fraction of (photo)respired CO2 being refixed within mesophyll cells was lower in tomato than in rice. But that was compensated for by the higher fraction via IAS, making the total re-fixation similar for both species. These results, agreeing with CO2 compensation point estimates, support our method of effectively analysing mesophyll resistance.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands.
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| | - Daniel Belay
- Selale University, P.O. Box 245, Fiche, Ethiopia
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| |
Collapse
|
150
|
Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 2020; 48:429-439. [DOI: 10.1042/bst20190312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.
Collapse
|