101
|
Tognetti JA, Pontis HG, Martínez-Noël GM. Sucrose signaling in plants: a world yet to be explored. PLANT SIGNALING & BEHAVIOR 2013; 8:e23316. [PMID: 23333971 PMCID: PMC3676498 DOI: 10.4161/psb.23316] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
The role of sucrose as a signaling molecule in plants was originally proposed several decades ago. However, recognition of sucrose as a true signal has been largely debated and only recently this role has been fully accepted. The best-studied cases of sucrose signaling involve metabolic processes, such as the induction of fructan or anthocyanin synthesis, but a large volume of scattered information suggests that sucrose signals may control a vast array of developmental processes along the whole life cycle of the plant. Also, wide gaps exist in our current understanding of the intracellular steps that mediate sucrose action. Sucrose concentration in plant tissues tends to be directly related to light intensity, and inversely related to temperature, and accordingly, exogenous sucrose supply often mimics the effect of high light and cold. However, many exceptions to this rule seem to occur due to interactions with other signaling pathways. In conclusion, the sucrose role as a signal molecule in plants is starting to be unveiled and much research is still needed to have a complete map of its significance in plant function.
Collapse
Affiliation(s)
- Jorge A. Tognetti
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC); Buenos Aires, Argentina
- Facultad de Ciencias Agrarias; Universidad Nacional de Mar del Plata; Buenos Aires, Argentina
| | - Horacio G. Pontis
- Fundación para Investigaciones Biológicas Aplicadas; Buenos Aires, Argentina
| | - Giselle M.A. Martínez-Noël
- Fundación para Investigaciones Biológicas Aplicadas; Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
- Correspondence to: Giselle M.A. Martínez-Noël,
| |
Collapse
|
102
|
Lukhovitskaya NI, Solovieva AD, Boddeti SK, Thaduri S, Solovyev AG, Savenkov EI. An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. THE PLANT CELL 2013; 25:960-73. [PMID: 23482855 PMCID: PMC3634699 DOI: 10.1105/tpc.112.106476] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/29/2013] [Accepted: 02/19/2013] [Indexed: 05/03/2023]
Abstract
Plant viruses cause a variety of diseases in susceptible hosts. The disease symptoms often include leaf malformations and other developmental abnormalities, suggesting that viruses can affect plant development. However, little is known about the mechanisms underlying virus interference with plant morphogenesis. Here, we show that a C-4 type zinc-finger (ZF) protein, p12, encoded by a carlavirus (chrysanthemum virus B) can induce cell proliferation, which results in hyperplasia and severe leaf malformation. We demonstrate that the p12 protein activates expression of a regulator of cell size and proliferation, designated upp-L (upregulated by p12), which encodes a transcription factor of the basic/helix-loop-helix family sufficient to cause hyperplasia. The induction of upp-L requires translocation of the p12 protein into the nucleus and ZF-dependent specific interaction with the conserved regulatory region in the upp-L promoter. Our results establish the role of the p12 protein in modulation of host cell morphogenesis. It is likely that other members of the conserved C-4 type ZF family of viral proteins instigate reprogramming of plant development by mimicking eukaryotic transcriptional activators.
Collapse
Affiliation(s)
- Nina I. Lukhovitskaya
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
| | - Santosh K. Boddeti
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Andrey G. Solovyev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
103
|
Huysman MJJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L. AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). THE PLANT CELL 2013; 25:215-28. [PMID: 23292736 PMCID: PMC3584536 DOI: 10.1105/tpc.112.106377] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms.
Collapse
Affiliation(s)
- Marie J J Huysman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Marshall WF, Young KD, Swaffer M, Wood E, Nurse P, Kimura A, Frankel J, Wallingford J, Walbot V, Qu X, Roeder AHK. What determines cell size? BMC Biol 2012; 10:101. [PMID: 23241366 PMCID: PMC3522064 DOI: 10.1186/1741-7007-10-101] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, Center for Systems and Synthetic Biology, University of California, San Francisco, 600 16th St, San Francisco, CA 94158, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Matthew Swaffer
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Elizabeth Wood
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Paul Nurse
- Cell Cycle Lab, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
- Laboratory of Yeast Genetics and Biology, The Rockeller University, 1230 York Avenue, New York, NY 10065, USA
- The Francis Crick Institute, Euston Road 215, London, NW1 2BE, UK
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Joseph Frankel
- Department of Biology, University of Iowa, 129 E. Jefferson Street, Iowa City, IA 52242, USA
| | - John Wallingford
- HHMI & Molecular Cell and Developmental Biology, University of Texas, Austin, 78712, USA
| | - Virginia Walbot
- Virginia WalbotDepartment of Biology, Stanford University, Stanford, CA 72205, USA
| | - Xian Qu
- Xian Qu, Cornell University, 244 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| | - Adrienne HK Roeder
- Cornell University, 239 Weill Hall, 526 Campus Rd, Ithaca, NY 14853, USA
| |
Collapse
|
105
|
Murray JA, Jones A, Godin C, Traas J. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling. THE PLANT CELL 2012; 24:3907-19. [PMID: 23110895 PMCID: PMC3517227 DOI: 10.1105/tpc.112.102194] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 05/18/2023]
Abstract
The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.
Collapse
Affiliation(s)
- James A.H. Murray
- School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, United Kingdom
| | - Angharad Jones
- School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, United Kingdom
| | - Christophe Godin
- Virtual Plants, Centre de Coopération Internationale en Recherche Agronomique pour le Développment, Institut National de la Recherche Agronomique, Institut National de Recherche en Informatique et en Automatique, Université Montpellier 2, 34095 Montpellier cedex 5, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, École Normale Superieur de Lyon, Université Claude Bernard Lyon I, 69364 Lyon cedex 07, France
- Address correspondence to
| |
Collapse
|
106
|
Feng Z, Sun X, Wang G, Liu H, Zhu J. LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 110:1-10. [PMID: 22334497 PMCID: PMC3380585 DOI: 10.1093/aob/mcs019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/10/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS LATERAL ORGAN BOUNDARIES DOMAIN 29 (LBD29), an important molecule downstream of auxin response factors ARF7 and ARF19, has a critical role in lateral root formation in Arabidopsis thaliana. The cell cycle activation of pericycle cells and their specification triggered by auxin are crucial for the initiation of lateral roots. In this study, we attempted to determine whether LBD29 is involved in auxin signalling and/or cell cycle regulation and to characterize the roles of LBD29 in these processes. METHODS The impact of LBD29 on cell cycling progression in pericycle cells was investigated in lbd29 loss-of-function mutant or LBD29-over-expressing plants. The cell cycle was determined by measuring the expression of some cell cycle-related genes using in situ hybridization and quantitative real-time reverse transcription-PCR (qRT-PCR). Furthermore, the cell division in the root explants from either the lbd29 mutant, LBD29-over-expressing plants or the wild type grown in auxin-rich media was also analysed and compared by the distribution of DR5:β-glucuronidase (GUS) in the primordia or by the expression of PIN-FORMED (PIN) members and PLETHROA 1 (PLT1) which represented the auxin response by the pericycle cells. KEY RESULTS lbd29 mutation resulted in reduced numbers of lateral roots and primordia, whereas LBD29 over-expression resulted in more lateral root and primordia formation than in the wild type. More importantly, the level of LBD29 expression was found to be positively correlated with the level of expression of cell cycle-related genes and correlated with the numbers of subcellular organelles found in pericycle cells in the maturation zone. In addition, an in vitro experiment using root explants demonstrated that the presence of LBD29 was required for the maintenance of the cell division capacity of the pericycle. Furthermore, LBD29 appeared to modify PIN-dependent auxin signalling in the primordia since there was a correlated association between the expression of PINs, PLT1 and DR5:GUS and the expression of LBD29. CONCLUSIONS The ability of LBD29 to regulate lateral root initiation is associated with its maintenance of the cell division capacity of the pericycle in response to auxin and its involvement in the auxin signalling pathway.
Collapse
|
107
|
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:792-808. [PMID: 22026817 DOI: 10.1111/j.1365-313x.2011.04831.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.
Collapse
Affiliation(s)
- Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
108
|
Magyar Z, Horváth B, Khan S, Mohammed B, Henriques R, De Veylder L, Bakó L, Scheres B, Bögre L. Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO J 2012; 31:1480-93. [PMID: 22307083 DOI: 10.1038/emboj.2012.13] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 01/09/2012] [Indexed: 12/16/2022] Open
Abstract
Post-embryonic growth in plants depends on the continuous supply of undifferentiated cells within meristems. Proliferating cells maintain their competence for division by active repression of differentiation and the associated endocycle entry. We show by upregulation and downregulation of E2FA that it is required for maintaining proliferation, as well as for endocycle entry. While E2FB-RBR1 (retinoblastoma-related protein 1) complexes are reduced after sucrose addition or at elevated CYCD3;1 levels, E2FA maintains a stable complex with RBR1 in proliferating cells. Chromatin immunoprecipitation shows that RBR1 binds in the proximity of E2F promoter elements in CCS52A1 and CSS52A2 genes, central regulators for the switch from proliferation to endocycles. Overexpression of a truncated E2FA mutant (E2FA(ΔRB)) lacking the RBR1-binding domain interferes with RBR1 recruitment to promoters through E2FA, leading to decreased meristem size in roots, premature cell expansion and hyperactivated endocycle in leaves. E2F target genes, including CCS52A1 and CCS52A2, are upregulated in E2FA(ΔRB) and e2fa knockout lines. These data suggest that E2FA in complex with RBR1 forms a repressor complex in proliferating cells to inhibit premature differentiation and endocycle entry. Thus, E2FA regulates organ growth via two distinct, sequentially operating pathways.
Collapse
Affiliation(s)
- Zoltán Magyar
- Royal Holloway, University of London, School of Biological Sciences, Centre for Systems and Synthetic Biology, Egham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Boavida LC, Borges F, Becker JD, Feijó JA. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:2066-80. [PMID: 21317340 PMCID: PMC3091125 DOI: 10.1104/pp.110.169813] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/11/2011] [Indexed: 05/17/2023]
Abstract
Plant reproduction depends on the concerted activation of many genes to ensure correct communication between pollen and pistil. Here, we queried the whole transcriptome of Arabidopsis (Arabidopsis thaliana) in order to identify genes with specific reproductive functions. We used the Affymetrix ATH1 whole genome array to profile wild-type unpollinated pistils and unfertilized ovules. By comparing the expression profile of pistils at 0.5, 3.5, and 8.0 h after pollination and applying a number of statistical and bioinformatics criteria, we found 1,373 genes differentially regulated during pollen-pistil interactions. Robust clustering analysis grouped these genes in 16 time-course clusters representing distinct patterns of regulation. Coregulation within each cluster suggests the presence of distinct genetic pathways, which might be under the control of specific transcriptional regulators. A total of 78% of the regulated genes were expressed initially in unpollinated pistil and/or ovules, 15% were initially detected in the pollen data sets as enriched or preferentially expressed, and 7% were induced upon pollination. Among those, we found a particular enrichment for unknown transcripts predicted to encode secreted proteins or representing signaling and cell wall-related proteins, which may function by remodeling the extracellular matrix or as extracellular signaling molecules. A strict regulatory control in various metabolic pathways suggests that fine-tuning of the biochemical and physiological cellular environment is crucial for reproductive success. Our study provides a unique and detailed temporal and spatial gene expression profile of in vivo pollen-pistil interactions, providing a framework to better understand the basis of the molecular mechanisms operating during the reproductive process in higher plants.
Collapse
|
110
|
Jiang L, Wang Y, Björn LO, Li S. UV-B-induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips. PLANTA 2011; 233:831-41. [PMID: 21221633 DOI: 10.1007/s00425-010-1340-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/17/2010] [Indexed: 05/05/2023]
Abstract
Even though a number of studies have shown that UV-B radiation inhibits plant growth and regulates the cell cycle progress, little is known about the molecular and cellular mechanisms. Here, we developed a synchronous root-tip cell system to investigate expression changes of cell cycle marker genes and DNA damage under UV-B radiation. Expression analysis of cell cycle marker genes revealed that G1-to-S transition in root-tip cells was accomplished within 6 h. In the in vivo synchronous root-tip cells, high level of UV-B radiation (0.45 W m(-2)) induced expression changes of the cell cycle regulatory genes. Genes involved in G1-to-S transition, Histone H4 and E2Fa, were down-regulated by UV-B radiation during 2-6 h; whereas transcripts for KRP2, a negative regulator of G1-to-S transition, were up-regulated by UV-B at 2 h. The peak time for transcript level of CYCD3;1, a positive factor in G1-to-S transition, was delayed by UV-B radiation. Interestingly, a medium level of UV-B radiation (0.25 W m(-2)) did not change the expression of these genes in root tip cells from wild type. However, cell cycle regulatory genes were greatly affected in uvh1 mutant, which exhibited higher content of cyclobutane pyrimidine dimers (CPDs). Ascorbic acid treatment did not change the expression pattern of cell cycle regulatory genes that were affected by high-level UV-B. Our results implied that UV-B-induced DNA damage results in the delay of G1-to-S transition of plant cell cycle. UV-B-induced G1-to-S arrest may be a protective mechanism that prevents cells with damaged DNA from dividing and may explain the plant growth inhibition under increased solar UV-B radiation.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|
111
|
Sanz L, Dewitte W, Forzani C, Patell F, Nieuwland J, Wen B, Quelhas P, De Jager S, Titmus C, Campilho A, Ren H, Estelle M, Wang H, Murray JA. The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. THE PLANT CELL 2011; 23:641-60. [PMID: 21357490 PMCID: PMC3077792 DOI: 10.1105/tpc.110.080002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/14/2011] [Accepted: 02/07/2011] [Indexed: 05/19/2023]
Abstract
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G₁-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.
Collapse
Affiliation(s)
- Luis Sanz
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
- Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Walter Dewitte
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Celine Forzani
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Farah Patell
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Jeroen Nieuwland
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Bo Wen
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Pedro Quelhas
- Instituto de Engenharia Biomédica, Divisão de Sinal e Imagem, 4200-465 Porto, Portugal
| | - Sarah De Jager
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - Craig Titmus
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Aurélio Campilho
- Instituto de Engenharia Biomédica, Divisão de Sinal e Imagem, 4200-465 Porto, Portugal
- Universidade do Porto, Faculdade de Engenharia, 4200-465 Porto, Portugal
| | - Hong Ren
- Division of Biological Sciences, University of California–San Diego, La Jolla, California 92093-0116
| | - Mark Estelle
- Division of Biological Sciences, University of California–San Diego, La Jolla, California 92093-0116
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - James A.H. Murray
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
- Address correspondence to
| |
Collapse
|
112
|
Kwon HK, Wang MH. The D-type cyclin gene (Nicta;CycD3;4) controls cell cycle progression in response to sugar availability in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:133-9. [PMID: 20655622 DOI: 10.1016/j.jplph.2010.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
D-type cyclins play key roles in the G1-to-S phase transition that occurs in response to nutrient and hormonal signals. In higher plants, sucrose is the major transported carbon source, and is likely to be a major determinant of cell division. To elucidate how sugar affects on the regulation of cell cycle machinery and plant development, we examined the role of carbon sources on the expression of cell-cycle-related genes in transgenic tobacco plants overexpressing Nicta;CycD3;4. The Nicta;CycD3;4 overexpressed transgenic plants showed accelerated growth and remarkable increase in the number of cells in the S and G2 phases in response to sucrose concentrations. Increased expressions level of Nicta;CycD3;4 gene was observed in transgenic tobacco plants grown on 1/2 strength MS medium supplemented with a high concentration of sugar. Moreover, the expression of sugar-sensing-related gene, invertase, was also maintained at a high level in transgenic tobacco plants with elevated sugar availability. These findings indicate that sugar availability plays a role during the G1 phase and the transition of the G1-to-S phase of cell cycle by controlling the expression of Nicta;CycD3;4.
Collapse
Affiliation(s)
- Hye-Kyoung Kwon
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Hyoja-2-dong, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
113
|
Inagaki S, Umeda M. Cell-Cycle Control and Plant Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:227-61. [DOI: 10.1016/b978-0-12-386035-4.00007-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
114
|
Wang L, Gu X, Xu D, Wang W, Wang H, Zeng M, Chang Z, Huang H, Cui X. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:761-73. [PMID: 21036927 PMCID: PMC3003814 DOI: 10.1093/jxb/erq307] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/12/2010] [Accepted: 09/13/2010] [Indexed: 05/06/2023]
Abstract
In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial-abaxial axis during leaf morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Li Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolu Gu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Wei Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Zhaoyang Chang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
115
|
Abstract
In plants, as in animals, most cells that constitute the organism limit their reproductive potential in order to provide collective support for the immortal germ line. And, as in animals, the mechanisms that restrict the proliferation of somatic cells in plants can fail, leading to tumours. There are intriguing similarities in tumorigenesis between plants and animals, including the involvement of the retinoblastoma pathway as well as overlap with mechanisms that are used for stem cell maintenance. However, plant tumours are less frequent and are not as lethal as those in animals. We argue that fundamental differences between plant and animal development make it much more difficult for individual plant cells to escape communal controls.
Collapse
Affiliation(s)
- John H Doonan
- John Innes Centre, Conley Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
116
|
Cools T, Iantcheva A, Maes S, Van den Daele H, De Veylder L. A replication stress-induced synchronization method for Arabidopsis thaliana root meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:705-14. [PMID: 21070422 DOI: 10.1111/j.1365-313x.2010.04361.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Synchronized cell cultures are an indispensable tool for the identification and understanding of key regulators of the cell cycle. Nevertheless, the use of cell cultures has its disadvantages, because it represents an artificial system that does not completely mimic the endogenous conditions that occur in organized meristems. Here, we present a new and easy method for Arabidopsis thaliana root tip synchronization by hydroxyurea treatment. A major advantage of the method is the possibility of investigating available Arabidopsis cell-cycle mutants without the need to generate cell cultures. As a proof of concept, the effects of over-expression of a dominant negative allele of the B-type cyclin-dependent kinase CDKB1;1 gene on cell-cycle progression were tested. The previously observed prolonged G₂ phase was confirmed, but was found to be compensated for by a reduced G₁ phase. Furthermore, altered S-phase kinetics indicated a functional role for CDKB1;1 during the replication process.
Collapse
Affiliation(s)
- Toon Cools
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
117
|
Lee SY, Kim H, Hwang HJ, Jeong YM, Na SH, Woo JC, Kim SG. Identification of tyrosyl-DNA phosphodiesterase as a novel DNA damage repair enzyme in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1460-9. [PMID: 20876339 PMCID: PMC2971620 DOI: 10.1104/pp.110.165068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/17/2010] [Indexed: 05/21/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a key enzyme that hydrolyzes the phosphodiester bond between tyrosine of topoisomerase and 3'-phosphate of DNA and repairs topoisomerase-mediated DNA damage during chromosome metabolism. However, functional Tdp1 has only been described in yeast and human to date. In human, mutations of the Tdp1 gene are involved in the disease spinocerebellar ataxia with axonal neuropathy. In plants, we have identified the functional nuclear protein AtTDP, homolog to human Tdp1 from Arabidopsis (Arabidopsis thaliana). The recombinant AtTDP protein certainly hydrolyzes the 3'-phosphotyrosyl DNA substrates related to repairing in vivo topoisomerase I-DNA-induced damage. The loss-of-function AtTDP mutation displays developmental defects and dwarf phenotype in Arabidopsis. This phenotype is substantially caused by decreased cell numbers without any change of individual cell sizes. The tdp plants exhibit hypersensitivities to camptothecin, a potent topoisomerase I inhibitor, and show rigorous cell death in cotyledons and rosette leaves, suggesting the failure of DNA damage repair in tdp mutants. These results indicate that AtTDP plays a clear role in the repair of topoisomerase I-DNA complexes in Arabidopsis.
Collapse
|
118
|
Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. TRENDS IN PLANT SCIENCE 2010; 15:436-446. [PMID: 20605513 DOI: 10.1016/j.tplants.2010.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 05/26/2023]
Abstract
In this review, we examine the role of AUXIN BINDING PROTEIN 1 (ABP1) in mediating growth and developmental responses. ABP1 is involved in a broad range of cellular responses to auxin, acting either as the main regulator of the response, such as seen for entry into cell division or, as a fine-tuning device as for the regulation of expression of early auxin response genes. Phylogenetic analysis has revealed that ABP1 is an ancient protein that was already present in various algae and has acquired a motif of retention in the endoplasmic reticulum only recently. An evaluation of the evidence for ABP1 function according to its cellular localization supports the plasma membrane as a starting point for ABP1-mediated auxin signaling.
Collapse
Affiliation(s)
- Alexandre Tromas
- Institut des Sciences du Végétal, CNRS UPR2355, University of Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | |
Collapse
|
119
|
Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 2010; 8:e1000367. [PMID: 20485493 PMCID: PMC2867943 DOI: 10.1371/journal.pbio.1000367] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/01/2010] [Indexed: 12/21/2022] Open
Abstract
How growth and proliferation are precisely controlled in organs during development and how the regulation of cell division contributes to the formation of complex cell type patterns are important questions in developmental biology. Such a pattern of diverse cell sizes is characteristic of the sepals, the outermost floral organs, of the plant Arabidopsis thaliana. To determine how the cell size pattern is formed in the sepal epidermis, we iterate between generating predictions from a computational model and testing these predictions through time-lapse imaging. We show that the cell size diversity is due to the variability in decisions of individual cells about when to divide and when to stop dividing and enter the specialized endoreduplication cell cycle. We further show that altering the activity of cell cycle inhibitors biases the timing and changes the cell size pattern as our model predicts. Models and observations together demonstrate that variability in the time of cell division is a major determinant in the formation of a characteristic pattern.
Collapse
Affiliation(s)
- Adrienne H. K. Roeder
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Center for Integrative Study of Cell Regulation, California Institute Technology, Pasadena, California, United States of America
| | - Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Alexandre Cunha
- Center for Integrative Study of Cell Regulation, California Institute Technology, Pasadena, California, United States of America
- Center for Advanced Computing Research, California Institute of Technology, Pasadena, California, United States of America
| | - Boguslaw Obara
- Center for Bio-Image Informatics, Electrical and Computer Engineering Department, University of California, Santa Barbara, California, United States of America
| | - B. S. Manjunath
- Center for Bio-Image Informatics, Electrical and Computer Engineering Department, University of California, Santa Barbara, California, United States of America
| | - Elliot M. Meyerowitz
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
120
|
Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY. Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. PLANT MOLECULAR BIOLOGY 2010; 73:191-205. [PMID: 20151315 DOI: 10.1007/s11103-010-9611-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/26/2010] [Indexed: 05/20/2023]
Abstract
Daylength is an important environmental cue for synchronizing growth, flowering, and dormancy with seasonality. As many floral development genes are photoperiod regulated, it has been suggested that they could have a regulatory role in bud endodormancy. Therefore, the influence of photoperiod was studied on inflorescence primordia differentiation and floral pathway related gene expression during the development of overwintering buds in Vitis riparia and V. spp. 'Seyval'. Photoperiod treatments were imposed 35 days after budbreak, and histological and transcriptomic analyses were conducted during the subsequent 42 days of bud development. Long day (LD, 15 h) and short day (SD, 13 h) buds were floral competent by 21 days of photoperiod treatment (56 days after budbreak); however, the floral meristem developed faster in LD than in SD buds. Analysis of 132 floral pathway related genes represented on the Affymetrix Grape Genome array indicated 60 were significantly differentially expressed between photoperiod treatments. Genes predominantly related to floral transition or floral meristem development were identified by their association with distinct grape floral meristem development and an expression pattern in LD consistent with their previously identified roles in flowering literature. Genes with a potential dual role in floral development and dormancy transitioning were identified using photoperiod induced differences in floral development between LD and SD buds and uncharacteristic gene expression trends in relation to floral development. Candidate genes with the potential to play a dual role in SD dormancy induction include circadian rhythm or flowering transition related genes: AP2, BT1, COL-13, EIN3, ELF4, DDTR, GAI and HY5.
Collapse
Affiliation(s)
- Lekha Sreekantan
- Horticulture, Forestry, Landscape and Parks Department, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
121
|
Abstract
The phytohormone auxin is a major regulator of plant growth and development. Many aspects of these processes depend on the multiple controls exerted by auxin on cell division and cell expansion. The detailed mechanisms by which auxin controls these essential cellular responses are still poorly understood, despite recent progress in the identification of auxin receptors and components of auxin signaling pathways. The purpose of this review is to provide an overview of the present knowledge of the molecular mechanisms involved in the auxin control of cell division and cell expansion. In both cases, the involvement of at least two signaling pathways and of multiple targets of auxin action reflects the complexity of the subtle regulation of auxin-mediated cellular responses. In addition, it offers the necessary flexibility for generating differential responses within a given cell depending on its developmental context.
Collapse
Affiliation(s)
- Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355 CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, Cedex, France.
| |
Collapse
|
122
|
Sugiyama SI, Gotoh M. How meristem plasticity in response to soil nutrients and light affects plant growth in four Festuca grass species. THE NEW PHYTOLOGIST 2010; 185:747-758. [PMID: 19925556 DOI: 10.1111/j.1469-8137.2009.03090.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Investigation of responses of meristems to environmental conditions is important for understanding the mechanisms and consequences of plant phenotypic plasticity. Here, we examined how meristem plasticity to light and soil nutrients affected leaf growth and relative growth rate (RGR) in fast- and slow-growing Festuca grass species. Activity in shoot apical meristems was measured by leaf appearance rate, and that in leaf meristems by the duration and rate of cell production, which was further divided into single cell cycle time and the number of dividing cells. Light and soil nutrients affected activity in shoot apical meristems similarly. The high nutrient supply increased the number of dividing cells, which was responsible for enhancement of cell production rate; shaded conditions extended the duration of cell production. As a result, leaf length increased under high nutrient and shaded conditions. The RGR was correlated positively with the total meristem size of the shoot under a low nutrient supply, implying inhibition of RGR by cell production under nutrient-limited conditions. Fast-growing species were more plastic for cell production rate and specific leaf area (SLA) but less plastic for RGR than slow-growing species. This study demonstrates that meristem plasticity plays key roles in characterizing environmental responses of plant species.
Collapse
Affiliation(s)
- Shu-ichi Sugiyama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.
| | | |
Collapse
|
123
|
Hu Z, Qin Z, Wang M, Xu C, Feng G, Liu J, Meng Z, Hu Y. The Arabidopsis SMO2, a homologue of yeast TRM112, modulates progression of cell division during organ growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:600-610. [PMID: 19929876 DOI: 10.1111/j.1365-313x.2009.04085.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell proliferation is integrated into developmental progression in multicellular organisms, including plants, and the regulation of cell division is of pivotal importance for plant growth and development. Here, we report the identification of an Arabidopsis SMALL ORGAN 2 (SMO2) gene that functions in regulation of the progression of cell division during organ growth. The smo2 knockout mutant displays reduced size of aerial organs and shortened roots, due to the decreased number of cells in these organs. Further analyses reveal that disruption of SMO2 does not alter the developmental timing but reduces the rate of cell production during leaf and root growth. Moreover, smo2 plants exhibit a constitutive activation of cell cycle-related genes and over-accumulation of cells expressing CYCB1;1:beta-glucuronidase (CYCB1;1:GUS) during organogenesis, suggesting that smo2 has a defect in G(2)-M phase progression in the cell cycle. SMO2 encodes a functional homologue of yeast TRM112, a plurifunctional component involved in a few cellular events, including tRNA and protein methylation. In addition, the mutation of SMO2 does not appear to affect endoreduplication in Arabidopsis leaf cells. Taken together we postulate that Arabidopsis SMO2 is a conserved yeast TRM112 homologue and SMO2-mediated cellular events are required for proper progression of cell division in plant growth and development.
Collapse
Affiliation(s)
- Zhubing Hu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Plant organs grow to characteristic, species-specific sizes and shapes. At the cellular level, organ growth is initially characterized by cell proliferation, which gives way to cell expansion at later stages. Using mainly Arabidopsis thaliana as a model species, a number of factors have been isolated in recent years that promote or restrict organ growth, with the altered organ size being associated with changes in cell number, in cell size, or in both. However, cells in an organ do not appear to follow a strictly autonomous program of proliferation and expansion, and their behavior is coordinated in at least three different respects: normally sized organs can be formed consisting of altered numbers of cells with compensatory changes in the size of the individual cells, suggesting that cellular behavior is subject to organ-wide control; the growth of cells derived from more than one clonal origin is coordinated within a plant lateral organ with its different histological layers; and growth of cells in different regions of an organ is coordinated to generate a reasonably flat leaf or floral organ. Organ growth is strongly modulated by environmental factors, and the molecular basis for this regulation is beginning to be understood. Given the complexity of organ growth as a dynamic four-dimensional process, precise quantification of growth parameters and mathematical modeling are increasingly used to understand this fascinating problem of plant biology.
Collapse
Affiliation(s)
- Holger Breuninger
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
125
|
de Jager SM, Scofield S, Huntley RP, Robinson AS, den Boer BGW, Murray JAH. Dissecting regulatory pathways of G1/S control in Arabidopsis: common and distinct targets of CYCD3;1, E2Fa and E2Fc. PLANT MOLECULAR BIOLOGY 2009; 71:345-65. [PMID: 19662336 DOI: 10.1007/s11103-009-9527-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 07/13/2009] [Indexed: 05/10/2023]
Abstract
Activation of E2F transcription factors at the G1-to-S phase boundary, with the resultant expression of genes needed for DNA synthesis and S-phase, is due to phosphorylation of the retinoblastoma-related (RBR) protein by cyclin D-dependent kinase (CYCD-CDK), particularly CYCD3-CDKA. Arabidopsis has three canonical E2F genes, of which E2Fa and E2Fb are proposed to encode transcriptional activators and E2Fc a repressor. Previous studies have identified genes regulated in response to high-level constitutive expression of E2Fa and of CYCD3;1, but such plants display significant phenotypic abnormalities. We have sought to identify targets that show responses to lower level induced changes in abundance of these cell cycle regulators. Expression of E2Fa, E2Fc or CYCD3;1 was induced using dexamethasone and the effects analysed using microarrays in a time course allowing short and longer term effects to be observed. Overlap between CYCD3;1 and E2Fa modulated genes substantiates their action in a common pathway with a key role in controlling the G1/S transition, with additional targets for CYCD3;1 in chromatin modification and for E2Fa in cell wall biogenesis and development. E2Fc induction led primarily to gene downregulation, but did not antagonise E2Fa action and hence E2Fc appears to function outside the CYCD3-RBR pathway, does not have a direct effect on cell cycle genes, and promoter analysis suggests a distinct binding site preference.
Collapse
Affiliation(s)
- Sarah M de Jager
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
126
|
Lee BH, Ko JH, Lee S, Lee Y, Pak JH, Kim JH. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. PLANT PHYSIOLOGY 2009; 151:655-68. [PMID: 19648231 PMCID: PMC2754652 DOI: 10.1104/pp.109.141838] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/27/2009] [Indexed: 05/18/2023]
Abstract
Previously, the GRF-INTERACTING FACTOR1 (GIF1)/ANGUSTIFOLIA3 (AN3) transcription coactivator gene, a member of a small gene family comprising three genes, was characterized as a positive regulator of cell proliferation in lateral organs, such as leaves and flowers, of Arabidopsis (Arabidopsis thaliana). As yet, it remains unclear how GIF1/AN3 affects the cell proliferation process. In this study, we demonstrate that the other members of the GIF gene family, GIF2 and GIF3, are also required for cell proliferation and lateral organ growth, as gif1, gif2, and gif3 mutations cause a synergistic reduction in cell numbers, leading to small lateral organs. Furthermore, GIF1, GIF2, and GIF3 overexpression complemented a cell proliferation defect of the gif1 mutant and significantly increased lateral organ growth of wild-type plants as well, indicating that members of the GIF gene family are functionally redundant. Kinematic analysis on leaf growth revealed that the gif triple mutant as well as other strong gif mutants developed leaf primordia with fewer cells, which was due to the low rate of cell proliferation, eventually resulting in earlier exit from the proliferative phase of organ growth. The low proliferative activity of primordial leaves was accompanied by decreased expression of cell cycle-regulating genes, indicating that GIF genes may act upstream of cell cycle regulators. Analysis of gif double and triple mutants clarified a previously undescribed role of the GIF gene family: gif mutants had small vegetative shoot apical meristems, which was correlated with the development of small leaf primordia. gif triple mutants also displayed defective structures of floral organs. Taken together, our results suggest that the GIF gene family plays important roles in the control of cell proliferation via cell cycle regulation and in other developmental properties that are associated with shoot apical meristem function.
Collapse
Affiliation(s)
- Byung Ha Lee
- Department of Biology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
127
|
Ni DA, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C. The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. THE NEW PHYTOLOGIST 2009; 184:311-322. [PMID: 19650778 DOI: 10.1111/j.1469-8137.2009.02961.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
* Minichromosome maintenance (MCM) proteins are subunits of the pre-replication complex that probably function as DNA helicases during the S phase of the cell cycle. Here, we investigated the function of AtMCM2 in Arabidopsis. * To gain an insight into the function of AtMCM2, we combined loss- and gain-of-function approaches. To this end, we analysed two null alleles of AtMCM2, and generated transgenic plants expressing AtMCM2 downstream of the constitutive 35S promoter. * Disruption of AtMCM2 is lethal at a very early stage of embryogenesis, whereas its over-expression results in reduced growth and inhibition of endoreduplication. In addition, over-expression of AtMCM2 induces the formation of additional initials in the columella root cap. In the plt1,2 mutant, defective for root apical meristem maintenance, over-expression of AtMCM2 induces lateral root initiation close to the root tip, a phenotype not reported in the wild-type or in plt1,2 mutants, even when cell cycle regulators, such as AtCYCD3;1, were over-expressed. * Taken together, our results provide evidence for the involvement of AtMCM2 in DNA replication, and suggest that it plays a crucial role in root meristem function.
Collapse
Affiliation(s)
- Di An Ni
- Institut de Biotechnologie des Plantes (UMR8618), Université Paris-XI, 91405 Orsay, France
| | - Rosangela Sozzani
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Sophie Blanchet
- Institut de Biotechnologie des Plantes (UMR8618), Université Paris-XI, 91405 Orsay, France
| | - Séverine Domenichini
- Institut de Biotechnologie des Plantes (UMR8618), Université Paris-XI, 91405 Orsay, France
| | - Christophe Reuzeau
- CropDesign N.V.-a BASF Plant Science Company, Technologiepark 3, B-9052 Gent, Belgium
| | - Rino Cella
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Catherine Bergounioux
- Institut de Biotechnologie des Plantes (UMR8618), Université Paris-XI, 91405 Orsay, France
| | - Cécile Raynaud
- Institut de Biotechnologie des Plantes (UMR8618), Université Paris-XI, 91405 Orsay, France
| |
Collapse
|
128
|
Kwon SH, Lee BH, Kim EY, Seo YS, Lee S, Kim WT, Song JT, Kim JH. Overexpression of a Brassica rapa NGATHA Gene in Arabidopsis thaliana Negatively Affects Cell Proliferation During Lateral Organ and Root Growth. ACTA ACUST UNITED AC 2009; 50:2162-73. [DOI: 10.1093/pcp/pcp150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
129
|
Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme K, Ljung K, Lee JY, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS One 2009; 4:e6648. [PMID: 19777056 PMCID: PMC2744284 DOI: 10.1371/journal.pone.0006648] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/13/2009] [Indexed: 12/18/2022] Open
Abstract
Background In plants, the phytohormone auxin is a crucial regulator sustaining growth and development. At the cellular level, auxin is interpreted differentially in a tissue- and dose-dependent manner. Mechanisms of auxin signalling are partially unknown and the contribution of the AUXIN BINDING PROTEIN 1 (ABP1) as an auxin receptor is still a matter of debate. Methodology/Principal Findings Here we took advantage of the present knowledge of the root biological system to demonstrate that ABP1 is required for auxin response. The use of conditional ABP1 defective plants reveals that the protein is essential for maintenance of the root meristem and acts at least on the D-type CYCLIN/RETINOBLASTOMA pathway to control entry into the cell cycle. ABP1 affects PLETHORA gradients and confers auxin sensitivity to root cells thus defining the competence of the cells to be maintained within the meristem or to elongate. ABP1 is also implicated in the regulation of gene expression in response to auxin. Conclusions/Significance Our data support that ABP1 is a key regulator for root growth and is required for auxin-mediated responses. Differential effects of ABP1 on various auxin responses support a model in which ABP1 is the major regulator for auxin action on the cell cycle and regulates auxin-mediated gene expression and cell elongation in addition to the already well known TIR1-mediated ubiquitination pathway.
Collapse
Affiliation(s)
- Alexandre Tromas
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
| | - Nils Braun
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
- Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Philippe Muller
- Institut des Sciences du Végétal, CNRS UPR2355, Université Paris Sud Orsay, Gif sur Yvette, France
| | - Tatyana Khodus
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Ivan A. Paponov
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Klaus Palme
- Institut für Biology II – Zellbiologie Universität Freiburg, Freiburg, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Sveriges Lantbruksuniversitet, Umeå, Sweden
| | - Ji-Young Lee
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Philip Benfey
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James A. H. Murray
- Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Ben Scheres
- Department of Molecular Cell Biology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
130
|
Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CM, Boller T, Wiemken A, Peppelenbosch MP. Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One 2009; 4:e6605. [PMID: 19672308 PMCID: PMC2720452 DOI: 10.1371/journal.pone.0006605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022] Open
Abstract
External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.
Collapse
Affiliation(s)
- Tita Ritsema
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - David Brodmann
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Sander H. Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carina L. Bos
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinay Nagaraj
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Corné M.J. Pieterse
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Andres Wiemken
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
131
|
An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res 2009; 19:1291-304. [PMID: 19581938 DOI: 10.1038/cr.2009.83] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transformants have more nuclei and higher aneuploid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role for AtMYB59 in cell cycle regulation and plant root growth.
Collapse
|
132
|
Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.). J Chem Ecol 2009; 35:679-88. [PMID: 19459009 DOI: 10.1007/s10886-009-9642-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Several benzoic and cinnamic acid derivatives were identified from cucumber root exudates. The effects of these phenylcarboxylic acids on root growth and cell cycle progression were examined in germinated seeds of cucumber. All 12 phenylcarboxylic acids (0.25 mM) tested significantly inhibited cucumber radicle growth, and cinnamic acid exerted a dose-dependent inhibitory effect. At 6 h after exposure to the acids, transcript levels of the cell cycle-related genes, including two cyclin-dependent kinases (CDKs) and four cyclins were reduced. Among them, transcript of CycB, a marker gene for mitosis showed a remarkable reduction. The temporal analysis showed that expression of mitotic genes (CDKB, CycA, and CycB) were reduced throughout the experiment, while the reduction of the other genes (CDKA, CycD3;1, and CycD3;2) were observed only at earlier time points. At 48 h after treatment with benzoic and cinnamic acids, an enhancement of endoreduplication was observed. Further time course analysis indicated that endoreduplication started as early as 6 h after exposure to cinnamic acid. These results provide evidence that exposure to benzoic and cinnamic acids can induce rapid and dramatic down-regulation of cell cycle-related genes, thus leading to root growth inhibition. Meanwhile, the block of mitosis caused by phenylcarboxylic acids also induced an increased level of endoreduplication.
Collapse
|
133
|
Adachi S, Nobusawa T, Umeda M. Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev Biol 2009; 329:306-14. [PMID: 19285489 DOI: 10.1016/j.ydbio.2009.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/30/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Sumiko Adachi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | |
Collapse
|
134
|
Brooks L, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MCP, Schnable PS, Nettleton D, Scanlon MJ. Microdissection of shoot meristem functional domains. PLoS Genet 2009; 5:e1000476. [PMID: 19424435 PMCID: PMC2673047 DOI: 10.1371/journal.pgen.1000476] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 04/09/2009] [Indexed: 12/30/2022] Open
Abstract
The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.
Collapse
Affiliation(s)
- Lionel Brooks
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Josh Strable
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Xiaolan Zhang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Kazuhiro Ohtsu
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ruilian Zhou
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Ananda Sarkar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sarah Hargreaves
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Robert J. Elshire
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Douglas Eudy
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Teresa Pawlowska
- Department of Plant Pathology, Ithaca, New York, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Agriculture Research Service Department, United States Department of Agriculture, Washington, D.C., United States of America
| | - Diane Janick-Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Brent Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | | | - Patrick S. Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Michael J. Scanlon
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
135
|
Depuydt S, De Veylder L, Holsters M, Vereecke D. Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. PLANT PHYSIOLOGY 2009; 149:1387-98. [PMID: 19118126 PMCID: PMC2649406 DOI: 10.1104/pp.108.131797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 12/25/2008] [Indexed: 05/20/2023]
Abstract
The phytopathogenic actinomycete Rhodococcus fascians induces neoplastic shooty outgrowths on infected hosts. Upon R. fascians infection of Arabidopsis (Arabidopsis thaliana), leaves are formed with small narrow lamina and serrated margins. These symptomatic leaves exhibit reduced tissue differentiation, display more but smaller cells that do not endoreduplicate, and accumulate in the G1 phase of the cell cycle. Together, these features imply that leaf growth occurs primarily through mitotic cell division and not via cell expansion. Molecular analysis revealed that cell cycle gene expression is activated continuously throughout symptomatic leaf development, ensuring persistent mitotic cycling and inhibition of cell cycle exit. The transition at the two major cell cycle checkpoints is stimulated as a direct consequence of the R. fascians signals. The extremely reduced phenotypical response of a cyclind3;1-3 triple knockout mutant indicates that the D-type cyclin/retinoblastoma/E2F transcription factor pathway, as a major mediator of cell growth and cell cycle progression, plays a key role in symptom development and is instrumental for the sustained G1-to-S and G2-to-M transitions during symptomatic leaf growth.
Collapse
Affiliation(s)
- Stephen Depuydt
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Belgium
| | | | | | | |
Collapse
|
136
|
Skirycz A, Radziejwoski A, Busch W, Hannah MA, Czeszejko J, Kwaśniewski M, Zanor MI, Lohmann JU, De Veylder L, Witt I, Mueller-Roeber B. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:779-92. [PMID: 18665917 DOI: 10.1111/j.1365-313x.2008.03641.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In contrast to animal growth, plant growth is largely post-embryonic. Therefore plants have developed new mechanisms to precisely regulate cell proliferation by means of internal and external stimuli whilst the general core cell cycle machinery is conserved between eukaryotes. In this work we demonstrate a role for the Arabidopsis thaliana DNA-binding-with-one-finger (DOF) transcription factor OBP1 in the control of cell division upon developmental signalling. Inducible overexpression of OBP1 resulted in a significant overrepresentation of cell cycle genes among the upregulated transcripts. Direct targets of OBP1, as verified by chromatin immunoprecipitation, include at least the core cell cycle gene CYCD3;3 and the replication-specific transcription factor gene AtDOF2;3. Consistent with our molecular data, short-term activation of OBP1 in cell cultures affected cell cycle re-entry, shortening the duration of the G(1) phase and the overall length of the cell cycle, whilst constitutive overexpression of OBP1 in plants influenced cell size and cell number, leading to a dwarfish phenotype. Expression during embryogenesis, germination and lateral root initiation suggests an important role for OBP1 in cell cycle re-entry, operating as a transcriptional regulator of key cell cycle genes. Our findings provide significant input into our understanding of how cell cycle activity is incorporated into plant growth and development.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Cho JH, Kim HB, Kim HS, Choi SB. Identification and characterization of a rice MCM2 homologue required for DNA replication. BMB Rep 2008; 41:581-6. [PMID: 18755073 DOI: 10.5483/bmbrep.2008.41.8.581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pre-replication complex (pre-RC), including the core hexameric MCM2-7 complex, ensures that the eukaryotic genome is replicated only once per cell division cycle. In this study, we identified a rice minichromosome maintenance (MCM) homologue (OsMCM2) that functionally complemented fission yeast MCM2 (CDC19) mutants. We found OsMCM2 transcript expression in roots, leaves, and seeds, although expression levels differed slightly among the organs. Likewise, the OsMCM2 protein was ubiquitously expressed, but it was downregulated when nutritients were limiting, indicating that MCM2 expression (and therefore cell cycle progression) requires adequate nutrition. Yeast two-hybrid and GST pull-down assays demonstrated that OsMCM2 interacted with the COP9 signalosome 5 (CSN5). Taken as a whole, our results indicated that OsMCM2 functions as a subunit of the rice MCM complex and interacts with CSN5 during developmental regulation.
Collapse
Affiliation(s)
- Jae Han Cho
- Department of Biological Sciences, Myongji University, Yongin, Korea
| | | | | | | |
Collapse
|
138
|
Braun N, Wyrzykowska J, Muller P, David K, Couch D, Perrot-Rechenmann C, Fleming AJ. Conditional repression of AUXIN BINDING PROTEIN1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. THE PLANT CELL 2008; 20:2746-62. [PMID: 18952781 PMCID: PMC2590743 DOI: 10.1105/tpc.108.059048] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 09/22/2008] [Accepted: 10/01/2008] [Indexed: 05/19/2023]
Abstract
AUXIN BINDING PROTEIN1 (ABP1) has long been characterized as a potentially important mediator of auxin action in plants. Analysis of the functional requirement for ABP1 during development was hampered because of embryo lethality of the null mutant in Arabidopsis thaliana. Here, we used conditional repression of ABP1 to investigate its function during vegetative shoot development. Using an inducible cellular immunization approach and an inducible antisense construct, we showed that decreased ABP1 activity leads to a severe retardation of leaf growth involving an alteration in cell division frequency, an altered pattern of endocycle induction, a decrease in cell expansion, and a change in expression of early auxin responsive genes. In addition, local repression of ABP1 activity in the shoot apical meristem revealed an additional role for ABP1 in cell plate formation and cell shape. Moreover, cells at the site of presumptive leaf initiation were more sensitive to ABP1 repression than other regions of the meristem. This spatial context-dependent response of the meristem to ABP1 inactivation and the other data presented here are consistent with a model in which ABP1 acts as a coordinator of cell division and expansion, with local auxin levels influencing ABP1 effectiveness.
Collapse
Affiliation(s)
- Nils Braun
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Université Paris-Sud XI, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
139
|
Baena-González E, Sheen J. Convergent energy and stress signaling. TRENDS IN PLANT SCIENCE 2008; 13:474-82. [PMID: 18701338 PMCID: PMC3075853 DOI: 10.1016/j.tplants.2008.06.006] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 05/17/2023]
Abstract
Plants are constantly confronted by multiple types of stress. Despite their distinct origin and mode of perception, nutrient deprivation and most stresses have an impact on the overall energy status of the plant, leading to convergent downstream responses that include largely overlapping transcriptional patterns. The emerging view is that this transcriptome reprogramming in energy and stress signaling is partly regulated by the evolutionarily conserved energy sensor protein kinases, SNF1 (sucrose non-fermenting 1) in yeast, AMPK (AMP-activated protein kinase) in mammals and SnRK1 (SNF1-related kinase 1) in plants. Upon sensing the energy deficit associated with stress, nutrient deprivation and darkness, SnRK1 triggers extensive transcriptional changes that contribute to restoring homeostasis, promoting cell survival and elaborating longer-term responses for adaptation, growth and development.
Collapse
|
140
|
Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. MOLECULAR PLANT 2008; 1:321-37. [PMID: 19825543 DOI: 10.1093/mp/ssm021] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, the hormone auxin shapes gene expression to regulate growth and development. Despite the detailed characterization of auxin-inducible genes, a comprehensive overview of the temporal and spatial dynamics of auxin-regulated gene expression is lacking. Here, we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators. Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes. Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression. Changes in transcript levels were consistent with a distinct sequence of conjugation, increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations. Our data show that auxin regulates genes associated with the biosynthesis, catabolism and signaling pathways of other phytohormones. We present a transcriptional overview of the auxin response. Specific interactions between auxin and other phytohormones are highlighted, particularly the regulation of their metabolism. Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'--a tissue-specific fingerprint of gene expression that initiates specific developmental processes.
Collapse
Affiliation(s)
- Ivan A Paponov
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
141
|
Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC PLANT BIOLOGY 2008; 8:16. [PMID: 18990244 PMCID: PMC2287172 DOI: 10.1186/1471-2229-8-16] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/17/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Collapse
Affiliation(s)
- Bart J Janssen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kate Thodey
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Robert J Schaffer
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rob Alba
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
- Monsanto Company – O3D, Product Safety Center, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA
| | | | - Rebecca Bishop
- 4 La Trobe Track, RD2 New Lynn, Karekare, Auckland, New Zealand
| | - Judith H Bowen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Ross N Crowhurst
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Susan Ledger
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Steve McArtney
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Centre, 455 Research Drive, Fletcher, NC 28732-9244, USA
| | - Franz B Pichler
- Microbial Ecology & Genomics Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kimberley C Snowden
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Shayna Ward
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
142
|
Hirano H, Harashima H, Shinmyo A, Sekine M. Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. PLANT MOLECULAR BIOLOGY 2008; 66:259-75. [PMID: 18064404 DOI: 10.1007/s11103-007-9268-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/18/2007] [Indexed: 05/14/2023]
Abstract
Although sucrose availability is crucial for commitment to plant cell division during G1 phase by controlling the expression of D-type cyclins, it has remained unclear how these factors mediate entry into the cell cycle. Here we show that Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 (AtRBR1) is involved in G1-phase cell cycle arrest caused by sucrose starvation. We generated estrogen-inducible AtRBR1 RNA interference (RNAi) Arabidopsis suspension MM2d cells, and found that downregulation of AtRBR1 leads to a higher frequency of arrest in G2 phase, instead of G1-phase arrest in the uninduced control, after sucrose starvation. Synchronization experiments confirmed that downregulation of AtRBR1 leads to a prolonged G2 phase and delayed activation of G2/M marker genes. Downregulation of AtRBR1 also stimulated the activation of E2F-regulated genes when these genes were repressed in the uninduced cells under the limited sucrose conditions. We conclude that AtRBR1 is a key effector for the ability of sucrose to modulate progression from G1 phase.
Collapse
Affiliation(s)
- Hiroto Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
143
|
Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. THE NEW PHYTOLOGIST 2008; 177:60-76. [PMID: 18028300 DOI: 10.1111/j.1469-8137.2007.02254.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant hormones are considered to be important mediators of the fruit developmental signal after pollination. The role of phytohormones in tomato (Solanum lycopersicum) fruit set was investigated here. Transcriptome analysis of ovaries was performed using two complementary approaches: cDNA-amplified fragment length polymorphism (AFLP) and microarray analysis. The gene expression profiles obtained suggest that, in addition to auxin and gibberellin, ethylene and abscisic acid (ABA) are involved in regulating fruit set. Before fruit development, many genes involved in biotic and abiotic responses are active in the ovary. In addition, genes involved in ethylene and ABA biosynthesis were strongly expressed, suggesting relatively high ethylene and ABA concentrations before fruit set. Induction of fruit development, either by pollination or by gibberellin application, attenuated expression of all ethylene and ABA biosynthesis and response genes within 24 h. It is proposed that the function of ABA and ethylene in fruit set might be antagonistic to that of auxin and gibberellin in order to keep the ovary in a temporally protected and dormant state; either to protect the ovary tissue or to prevent fruit development before pollination and fertilization occur.
Collapse
Affiliation(s)
- Wim H Vriezen
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Richard Feron
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Fabio Maretto
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Jasper Keijman
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Celestina Mariani
- Department of Plant Cell Biology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| |
Collapse
|
144
|
Menges M, Pavesi G, Morandini P, Bögre L, Murray JAH. Genomic organization and evolutionary conservation of plant D-type cyclins. PLANT PHYSIOLOGY 2007; 145:1558-76. [PMID: 17951462 PMCID: PMC2151690 DOI: 10.1104/pp.107.104901] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 10/06/2007] [Indexed: 05/21/2023]
Abstract
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.
Collapse
Affiliation(s)
- Margit Menges
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
145
|
Marks MD, Gilding E, Wenger JP. Genetic interaction between glabra3-shapeshifter and siamese in Arabidopsis thaliana converts trichome precursors into cells with meristematic activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:352-61. [PMID: 17764505 DOI: 10.1111/j.1365-313x.2007.03243.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The identity of many genes required for trichome differentiation is known. This paper describes a novel interaction between mutant alleles of two such genes. One of the alleles, called gl3-sst, is derived from the GL3 locus, which encodes a basic helix-loop-helix type transcription factor. The mutation in the gl3-sst protein modifies its ability to form a complex with the GL1 protein (a MYB transcription factor required for trichome formation), leading to changes in gene expression compared with wild type during gl3-sst mutant trichome development. The other mutant allele, sim, is a likely loss of function allele derived from the SIM locus, which is predicted to encode a negative regulator of D-type cyclin activity. The gl3-sst sim double mutant exhibits mounds of cells derived from the proliferation of single trichome precursors. The ectopic expression of a D-type cyclin gene in gl3-sst mimics the double mutant phenotype. Thus, an interaction between altered trichome gene expression caused by the gl3-sst mutation and relaxed regulation of D-type cyclin activity in the double mutant converted a non-dividing cell into a novel highly proliferating cell type.
Collapse
Affiliation(s)
- M David Marks
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave., St Paul, MN 55108-1095, USA.
| | | | | |
Collapse
|
146
|
Jordan CV, Shen W, Hanley-Bowdoin LK, Robertson DN. Geminivirus-induced gene silencing of the tobacco retinoblastoma-related gene results in cell death and altered development. PLANT MOLECULAR BIOLOGY 2007; 65:163-75. [PMID: 17634748 DOI: 10.1007/s11103-007-9206-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 06/27/2007] [Indexed: 05/16/2023]
Abstract
The retinoblastoma-related protein (RBR) is required for cell cycle control and differentiation and is expressed throughout the life of plants and animals. In this study, the tomato golden mosaic virus (TGMV) geminivirus vector was used to silence NbRBR1 in Nicotiana benthamiana by microprojectile bombardment into fully developed leaves. Similar to previous results using agroinoculation of a tobacco rattle virus silencing vector [Park et al. (Plant J 42:153, 2005)], developmental defects caused by disruptions in cell size and number were seen in new growth. Leaf midvein cross-sections showed tissue-specific differences in size, cell number, and cell morphology. While cortical cell numbers decreased, size increased to maintain overall shape. In contrast, xylem parenchyma cells increased approximately three fold but remained small. Normally straight flowers often curved up to 360 degrees without a significant change in size. However, the most striking phenotype was cell death in mature cells after a delay of 3-4 weeks. Trypan blue staining confirmed cell death and demonstrated that cell death was absent in similarly treated leaves of wild type TGMV-inoculated plants. Quantitative RT-PCR confirmed that the mature TGMV:RBR-inoculated leaves still maintained reduced accumulation of RBR transcript at 4 weeks compared to controls. The results suggest that either inappropriate activation of the cell cycle is lethal in plants or that RBR has other functions, unrelated to the cell cycle. The results also demonstrate that continual transcription of RBR is necessary for cell survival.
Collapse
Affiliation(s)
- Chad V Jordan
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| | | | | | | |
Collapse
|
147
|
Abstract
Plants must achieve a balance between carbon assimilation, storage and growth, but little is known about how this is achieved. We describe evidence for the existence of regulatory mechanisms that coordinate carbon supply and use, and the likely central role of sugar signalling. We propose the existence of both 'acute' and 'acclimatory' responses to alterations in carbon supply, the latter tuning the balance between carbon supply and demand to optimise the capacity for sustained growth. A full understanding of these responses requires new, systems-level approaches that integrate information from transcriptomic, enzyme activity, metabolomic and growth analyses. We illustrate the complexity of acute and acclimatory responses by consideration of the control of starch synthesis and degradation in leaves. Finally, we consider how carbon balance may be linked to growth, and the importance of these linkages for sustained plant growth in a changing environment.
Collapse
Affiliation(s)
- Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | | |
Collapse
|
148
|
Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci U S A 2007; 104:14537-42. [PMID: 17726100 PMCID: PMC1964848 DOI: 10.1073/pnas.0704166104] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Current understanding of the integration of cell division and expansion in the development of plant lateral organs such as leaves is limited. Cell number is established during a mitotic phase, and subsequent growth into a mature organ relies primarily on cell expansion accompanied by endocycles. Here we show that the three Arabidopsis cyclin D3 (CYCD3) genes are expressed in overlapping but distinct patterns in developing lateral organs and the shoot meristem. Triple loss-of-function mutants show that CYCD3 function is essential neither for the mitotic cell cycle nor for morphogenesis. Rather, analysis of mutant and reciprocal overexpression phenotypes shows that CYCD3 function contributes to the control of cell number in developing leaves by regulating the duration of the mitotic phase and timing of the transition to endocycles. Petals, which normally do not endoreduplicate, respond to loss of CYCD3 function with larger cells that initiate endocycles. The phytohormone cytokinin regulates cell division in the shoot meristem and developing leaves and induces CYCD3 expression. Loss of CYCD3 impairs shoot meristem function and leads to reduced cytokinin responses, including the inability to initiate shoots on callus, without affecting endogenous cytokinin levels. We conclude that CYCD3 activity is important for determining cell number in developing lateral organs and the relative contribution of the alternative processes of cell production and cell expansion to overall organ growth, as well as mediating cytokinin effects in apical growth and development.
Collapse
Affiliation(s)
- Walter Dewitte
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Simon Scofield
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Annette A. Alcasabas
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Spencer C. Maughan
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Margit Menges
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Nils Braun
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Carl Collins
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Jeroen Nieuwland
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; and
| | - Venkatesan Sundaresan
- Section of Plant Biology and Department of Plant Sciences, University of California, Davis, CA 95616
| | - James A. H. Murray
- *Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Li Y, Smith C, Corke F, Zheng L, Merali Z, Ryden P, Derbyshire P, Waldron K, Bevan MW. Signaling from an altered cell wall to the nucleus mediates sugar-responsive growth and development in Arabidopsis thaliana. THE PLANT CELL 2007; 19:2500-15. [PMID: 17693536 PMCID: PMC2002624 DOI: 10.1105/tpc.106.049965] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugars such as glucose function as signal molecules that regulate gene expression, growth, and development in plants, animals, and yeast. To understand the molecular mechanisms of sugar responses, we isolated and characterized an Arabidopsis thaliana mutant, high sugar response8 (hsr8), which enhances sugar-responsive growth and gene expression. Light-grown hsr8 plants exhibited increased starch and anthocyanin and reduced chlorophyll content in response to glucose treatment. Dark-grown hsr8 seedlings showed glucose-hypersensitive hypocotyl elongation and development. The HSR8 gene, isolated using map-based cloning, was allelic to the MURUS4 (MUR4) gene involved in arabinose synthesis. Dark-grown mur1 and mur3 seedlings also exhibited similar sugar responses to hsr8/mur4. The sugar-hypersensitive phenotypes of hsr8/mur4, mur1, and mur3 were rescued by boric acid, suggesting that alterations in the cell wall cause hypersensitive sugar-responsive phenotypes. Genetic analysis showed that sugar-hypersensitive responses in hsr8 mutants were suppressed by pleiotropic regulatory locus1 (prl1), indicating that nucleus-localized PRL1 is required for enhanced sugar responses in hsr8 mutant plants. Microarray analysis revealed that the expression of many cell wall-related and sugar-responsive genes was altered in mur4-1, and the expression of a significant proportion of these genes was restored to wild-type levels in the mur4-1 prl1 double mutant. These findings reveal a pathway that signals changes in the cell wall through PRL1 to altered gene expression and sugar-responsive metabolic, growth, and developmental changes.
Collapse
Affiliation(s)
- Yunhai Li
- Department of Cell and Developmental Biology, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Peres A, Churchman ML, Hariharan S, Himanen K, Verkest A, Vandepoele K, Magyar Z, Hatzfeld Y, Van Der Schueren E, Beemster GTS, Frankard V, Larkin JC, Inzé D, De Veylder L. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J Biol Chem 2007; 282:25588-96. [PMID: 17599908 DOI: 10.1074/jbc.m703326200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.
Collapse
|