101
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
102
|
Guan D, Yang F, Xia X, Shi Y, Yang S, Cheng W, He S. CaHSL1 Acts as a Positive Regulator of Pepper Thermotolerance Under High Humidity and Is Transcriptionally Modulated by CaWRKY40. FRONTIERS IN PLANT SCIENCE 2018; 9:1802. [PMID: 30581449 PMCID: PMC6292930 DOI: 10.3389/fpls.2018.01802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
Pepper (Capsicum annuum) is an economically important vegetable and heat stress can severely impair pepper growth, development, and productivity. The molecular mechanisms underlying pepper thermotolerance are therefore important to understand but remain elusive. In the present study, we characterized the function of CaHSL1, encoding a HAESA-LIKE (HSL) receptor-like protein kinase (RLK), during the response of pepper to high temperature and high humidity (HTHH). CaHSL1 exhibits the typical structural features of an arginine-aspartate RLK. Transient overexpression of CaHSL1 in the mesophyll cells of Nicotiana benthamiana showed that CaHSL1 localizes throughout the cell, including the plasma membrane, cytoplasm, and the nucleus. CaHSL1 was significantly upregulated by HTHH or the exogenous application of abscisic acid but not by R. solanacearum inoculation. However, CaHSL1 was downregulated by exogenously applied salicylic acid, methyl jasmonate, or ethephon. Silencing of CaHSL1 by virus-induced gene silencing significantly was reduced tolerance to HTHH and downregulated transcript levels of an associated gene CaHSP24. In contrast, transient overexpression of CaHSL1 enhanced the transcript abundance of CaHSP24 and increased tolerance to HTHH, as manifested by enhanced optimal/maximal photochemical efficiency of photosystem II in the dark (Fv/Fm) and actual photochemical efficiency of photosystem II in the light. In addition, CaWRKY40 targeted the promoter of CaHSL1 and induced transcription during HTHH but not in response to R. solanacearum. All of these results suggest that CaHSL1 is directly modulated at the transcriptional level by CaWRKY40 and functions as a positive regulator in the response of pepper to HTHH.
Collapse
Affiliation(s)
- Deyi Guan
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Cheng
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
103
|
Taylor I, Walker JC. Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. BMC Res Notes 2018; 11:754. [PMID: 30352616 PMCID: PMC6199728 DOI: 10.1186/s13104-018-3864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Objective In Arabidopsis, the abscission of floral organs is regulated by two related receptor-like protein kinases, HAESA and HAESA–like 2 (HAE/HSL2). Signaling by HAE/HSL2 leads to expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. Mutants in the gene NEVERSHED (NEV) also fail to abscise floral organs and phenotypically resemble hae hsl2. NEV encodes an ADP-ribosylation factor GTPase-activating protein that localizes to the trans-Golgi network and early endosome. nev displays altered Golgi morphology and aberrations in vesicular trafficking. The mechanism by which nev fails to abscise is presently unknown. It has been hypothesized that nev fails to activate HAE/HSL2 signaling. In this study we use RNA-Sequencing to test this hypothesis. Results We show that the transcriptional alterations in hae hsl2 and nev are highly divergent. hae hsl2 displays a clear reduction in expression of genes associated with cell wall remodeling and pectin degradation, while nev displays vast transcriptional changes associated with response to pathogens. These results suggest that the mechanism of the defect between hae hsl2 and nev are distinct. Electronic supplementary material The online version of this article (10.1186/s13104-018-3864-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.,Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.,Department of Statistics, University of Missouri, Columbia, MO, 65211, USA.,Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - John C Walker
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
104
|
Li X, Salman A, Guo C, Yu J, Cao S, Gao X, Li W, Li H, Guo Y. Identification and Characterization of LRR-RLK Family Genes in Potato Reveal Their Involvement in Peptide Signaling of Cell Fate Decisions and Biotic/Abiotic Stress Responses. Cells 2018; 7:cells7090120. [PMID: 30150583 PMCID: PMC6162732 DOI: 10.3390/cells7090120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/25/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of receptor-like kinases (RLKs) and play important roles in regulating growth, development, and stress responses in plants. In this study, 246 LRR-RLK genes were identified in the potato (Solanum tuberosum) genome, which were further classified into 14 subfamilies. Gene structure analysis revealed that genes within the same subgroup shared similar exon/intron structures. A signature small peptide recognition motif (RxR) was found to be largely conserved within members of subfamily IX, suggesting that these members may recognize peptide signals as ligands. 26 of the 246 StLRR-RLK genes were found to have arisen from tandem or segmental duplication events. Expression profiling revealed that StLRR-RLK genes were differentially expressed in various organs/tissues, and several genes were found to be responsive to different stress treatments. Furthermore, StLRR-RLK117 was found to be able to form homodimers and heterodimers with StLRR-RLK042 and StLRR-RLK052. Notably, the overlapping expression region of StLRR-RLK117 with Solanum tuberosumWUSCHEL (StWUS) suggested that the CLV3–CLV1/BAM–WUS feedback loop may be conserved in potato to maintain stem cell homeostasis within the shoot apical meristem.
Collapse
Affiliation(s)
- Xiaoxu Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ahmad Salman
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Yu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Songxiao Cao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiaoming Gao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Wei Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hong Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
105
|
Liu C, Zhang C, Fan M, Ma W, Chen M, Cai F, Liu K, Lin F. GmIDL2a and GmIDL4a, Encoding the Inflorescence Deficient in Abscission-Like Protein, Are Involved in Soybean Cell Wall Degradation during Lateral Root Emergence. Int J Mol Sci 2018; 19:E2262. [PMID: 30072588 PMCID: PMC6121880 DOI: 10.3390/ijms19082262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022] Open
Abstract
The number of lateral roots (LRs) of a plant determines the efficiency of water and nutrient uptake. Soybean is a typical taproot crop which is deficient in LRs. The number of LRs is therefore an important agronomic trait in soybean breeding. It is reported that the inflorescence deficient in abscission (IDA) protein plays an important role in the emergence of Arabidopsis LRs. Previously, the genes which encode IDA-like (IDL) proteins have been identified in the soybean genome. However, the functions of these genes in LR development are unknown. Therefore, it is of great value to investigate the function of IDL genes in soybean. In the present study, the functions of two root-specific expressed IDL genes, GmIDL2a and GmIDL4a, are investigated. The expressions of GmIDL2a and GmIDL4a, induced by auxin, are located in the overlaying tissue, where LRs are initiated. Overexpression of GmIDL2a and GmIDL4a increases the LR densities of the primary roots, but not in the elder root. Abnormal cell layer separation has also been observed in GmIDL2a- and GmIDL4a-overexpressing roots. These results suggest that the overlaying tissues of GmIDL2a- and GmIDL4a-overexpressing roots are looser and are suitable for the emergence of the LR primordium. Further investigation shows that the expression of some of the cell wall remodeling (CWR) genes, such as xyloglucan endotransglucosylase/hydrolases, expansins, and polygalacturonases, are increased when GmIDL2a and GmIDL4a are overexpressed in hairy roots. Here, we conclude that GmIDL2a and GmIDL4a function in LR emergence through regulating soybean CWR gene expression.
Collapse
Affiliation(s)
- Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Mingxia Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Wenjuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Meiming Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Fengchun Cai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Kuichen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110086, China.
| |
Collapse
|
106
|
Kinoshita T, McCourt P, Asami T, Torii KU. Plant Chemical Biology. PLANT & CELL PHYSIOLOGY 2018; 59:1483-1486. [PMID: 30032233 DOI: 10.1093/pcp/pcy142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Peter McCourt
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada
| | - Tadao Asami
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
107
|
Shi CL, von Wangenheim D, Herrmann U, Wildhagen M, Kulik I, Kopf A, Ishida T, Olsson V, Anker MK, Albert M, Butenko MA, Felix G, Sawa S, Claassen M, Friml J, Aalen RB. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. NATURE PLANTS 2018; 4:596-604. [PMID: 30061750 DOI: 10.1038/s41477-018-0212-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The root cap protects the stem cell niche of angiosperm roots from damage. In Arabidopsis, lateral root cap (LRC) cells covering the meristematic zone are regularly lost through programmed cell death, while the outermost layer of the root cap covering the tip is repeatedly sloughed. Efficient coordination with stem cells producing new layers is needed to maintain a constant size of the cap. We present a signalling pair, the peptide IDA-LIKE1 (IDL1) and its receptor HAESA-LIKE2 (HSL2), mediating such communication. Live imaging over several days characterized this process from initial fractures in LRC cell files to full separation of a layer. Enhanced expression of IDL1 in the separating root cap layers resulted in increased frequency of sloughing, balanced with generation of new layers in a HSL2-dependent manner. Transcriptome analyses linked IDL1-HSL2 signalling to the transcription factors BEARSKIN1/2 and genes associated with programmed cell death. Mutations in either IDL1 or HSL2 slowed down cell division, maturation and separation. Thus, IDL1-HSL2 signalling potentiates dynamic regulation of the homeostatic balance between stem cell division and sloughing activity.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel von Wangenheim
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, UK
| | - Ullrich Herrmann
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Plant Developmental Biology and Plant Physiology, University of Kiel, Kiel, Germany
| | - Mari Wildhagen
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ivan Kulik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Andreas Kopf
- ETH Zurich, HPT E 73, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Vilde Olsson
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mari Kristine Anker
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Markus Albert
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Melinka A Butenko
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Manfred Claassen
- ETH Zurich, HPT E 73, Auguste-Piccard-Hof 1, Zürich, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Reidunn B Aalen
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
108
|
Kim J, Yang R, Chang C, Park Y, Tucker ML. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3009-3021. [PMID: 29648636 PMCID: PMC5972575 DOI: 10.1093/jxb/ery135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 05/12/2023]
Abstract
INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is a signaling peptide that regulates cell separation in Arabidopsis including floral organ abscission and lateral root emergence. IDA is highly conserved in dicotyledonous flowering plant genomes. IDA-like sequences were also found in the genomic sequences of root-knot nematodes, Meloidogyne spp., which are globally deleterious pathogens of agriculturally important plants, but the role of these genes is unknown. Exogenous treatment of the Arabidopsis ida mutant with synthetic peptide identical to the M. incognita IDA-like 1 (MiIDL1) protein sequence minus its N-terminal signal peptide recovered both the abscission and root architecture defects. Constitutive expression of the full-length MiIDL1 open reading frame in the ida mutant substantially recovered the delayed floral organ abscission phenotype whereas transformants expressing a construct missing the MiIDL1 signal peptide retained the delayed abscission phenotype. Importantly, wild-type Arabidopsis plants harboring an MiIDL1-RNAi construct and infected with nematodes had approximately 40% fewer galls per root than control plants. Thus, the MiIDL1 gene produces a functional IDA mimic that appears to play a role in successful gall development on Arabidopsis roots.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Bldg, University of Maryland, MD, USA
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Department of Horticulture Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
- Correspondence:
| |
Collapse
|
109
|
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A 2018; 115:5810-5815. [PMID: 29760074 DOI: 10.1073/pnas.1719491115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
Collapse
|
110
|
Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, Chen H, Yun J, Oh SY, Wen X, Cho HK, Mang H, Kwak JM. A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell 2018; 173:1468-1480.e9. [PMID: 29731167 DOI: 10.1016/j.cell.2018.03.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.
Collapse
Affiliation(s)
- Yuree Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.
| | - Taek Han Yoon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jiyoun Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - So Yeon Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jae Ho Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Mi Kyoung Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Huize Chen
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Ju Yun
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Se Yun Oh
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Xiaohong Wen
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Hui Kyung Cho
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Hyunggon Mang
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - June M Kwak
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
111
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
112
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
113
|
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and Developmental Biology of Plant Mitogen-Activated Protein Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:237-265. [PMID: 29489398 DOI: 10.1146/annurev-arplant-042817-040314] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitogen-activated protein kinases (MAPKs) constitute a network of signaling cascades responsible for transducing extracellular stimuli and decoding them to dedicated cellular and developmental responses that shape the plant body. Over the last decade, we have accumulated information about how MAPK modules control the development of reproductive tissues and gametes and the embryogenic and postembryonic development of vegetative organs such as roots, root nodules, shoots, and leaves. Of key importance to understanding how MAPKs participate in developmental and environmental signaling is the characterization of their subcellular localization, their interactions with upstream signal perception mechanisms, and the means by which they target their substrates. In this review, we summarize the roles of MAPK signaling in the regulation of key plant developmental processes, and we survey what is known about the mechanisms guiding the subcellular compartmentalization of MAPK modules.
Collapse
Affiliation(s)
- George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
114
|
Abstract
Plants contain a unique family of membrane receptors, which are different from the ones found in bacteria and animals. These proteins are able to sense very different signals, such as steroid molecules, peptides, and proteins at the cell surface using a spiral-shaped ligand binding domain. Ligand binding allows the receptor to engage with a smaller coreceptor kinase, which is shared among different receptors. Here it is analyzed how one coreceptor protein can contribute to the sensing of two different ligands involved in plant growth and organ abscission and to activation of their cognate receptors. Plant-unique membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) can sense small molecule, peptide, and protein ligands. Many LRR-RKs require SERK-family coreceptor kinases for high-affinity ligand binding and receptor activation. How one coreceptor can contribute to the specific binding of distinct ligands and activation of different LRR-RKs is poorly understood. Here we quantitatively analyze the contribution of SERK3 to ligand binding and activation of the brassinosteroid receptor BRI1 and the peptide hormone receptor HAESA. We show that while the isolated receptors sense their respective ligands with drastically different binding affinities, the SERK3 ectodomain binds the ligand-associated receptors with very similar binding kinetics. We identify residues in the SERK3 N-terminal capping domain, which allow for selective steroid and peptide hormone recognition. In contrast, residues in the SERK3 LRR core form a second, constitutive receptor–coreceptor interface. Genetic analyses of protein chimera between BRI1 and SERK3 define that signaling-competent complexes are formed by receptor–coreceptor heteromerization in planta. A functional BRI1–HAESA chimera suggests that the receptor activation mechanism is conserved among different LRR-RKs, and that their signaling specificity is encoded in the kinase domain of the receptor. Our work pinpoints the relative contributions of receptor, ligand, and coreceptor to the formation and activation of SERK-dependent LRR-RK signaling complexes regulating plant growth and development.
Collapse
|
115
|
Abstract
Abscission is a process in plants for shedding unwanted organs such as leaves, flowers, fruits, or floral organs. Shedding of leaves in the fall is the most visually obvious display of abscission in nature. The very shape plants take is forged by the processes of growth and abscission. Mankind manipulates abscission in modern agriculture to do things such as prevent pre-harvest fruit drop prior to mechanical harvesting in orchards. Abscission occurs specifically at abscission zones that are laid down as the organ that will one day abscise is developed. A sophisticated signaling network initiates abscission when it is time to shed the unwanted organ. In this article, we review recent advances in understanding the signaling mechanisms that activate abscission. Physiological advances and roles for hormones in abscission are also addressed. Finally, we discuss current avenues for basic abscission research and potentially lucrative future directions for its application to modern agriculture.
Collapse
Affiliation(s)
- O Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - John C Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
116
|
Shi CL, Butenko MA. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope. Methods Mol Biol 2018; 1744:321-328. [PMID: 29392677 DOI: 10.1007/978-1-4939-7672-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Collapse
Affiliation(s)
- Chun-Lin Shi
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Melinka A Butenko
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
117
|
Sundaresan S, Philosoph-Hadas S, Ma C, Jiang CZ, Riov J, Mugasimangalam R, Kochanek B, Salim S, Reid MS, Meir S. The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. HORTICULTURE RESEARCH 2018; 5:28. [PMID: 29872533 PMCID: PMC5981600 DOI: 10.1038/s41438-018-0033-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/04/2023]
Abstract
The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Present Address: Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Chao Ma
- Department of Plant Sciences, University of California, Davis, CA USA
- Present Address: Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA USA
- Crops Pathology & Genetic Research Unit, USDA-ARS, Davis, CA USA
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. Ltd, Bangalore, India
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| |
Collapse
|
118
|
van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. THE PLANT CELL 2018; 30:101-116. [PMID: 29321188 PMCID: PMC5810572 DOI: 10.1105/tpc.17.00771] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 05/20/2023]
Abstract
Plants in dense vegetation compete for resources and detect competitors through reflection of far-red (FR) light from surrounding plants. This reflection causes a reduced red (R):FR ratio, which is sensed through phytochromes. Low R:FR induces shade avoidance responses of the shoot and also changes the root system architecture, although this has received little attention so far. Here, we investigate the molecular mechanisms through which light detection in the shoot regulates root development in Arabidopsis thaliana We do so using a combination of microscopy, gene expression, and mutant study approaches in a setup that allows root imaging without exposing the roots to light treatment. We show that low R:FR perception in the shoot decreases the lateral root (LR) density by inhibiting LR emergence. This decrease in LR emergence upon shoot FR enrichment is regulated by phytochrome-dependent accumulation of the transcription factor ELONGATED HYPOCOTYL5 (HY5) in the LR primordia. HY5 regulates LR emergence by decreasing the plasma membrane abundance of PIN-FORMED3 and LIKE-AUX1 3 auxin transporters. Accordingly, FR enrichment reduces the auxin signal in the overlaying cortex cells, and this reduces LR outgrowth. This shoot-to-root communication can help plants coordinate resource partitioning under competition for light in high density fields.
Collapse
Affiliation(s)
- Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chiakai Kang
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Richard Paalman
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Diederik Keuskamp
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Scott Hayes
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
119
|
Izhaki A, Alvarez JP, Cinnamon Y, Genin O, Liberman-Aloni R, Eyal Y. The Tomato BLADE ON PETIOLE and TERMINATING FLOWER Regulate Leaf Axil Patterning Along the Proximal-Distal Axes. FRONTIERS IN PLANT SCIENCE 2018; 9:1126. [PMID: 30127796 PMCID: PMC6087763 DOI: 10.3389/fpls.2018.01126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/12/2018] [Indexed: 05/22/2023]
Abstract
Leaf axil patterning occurs concomitantly with leaf development and takes place at the boundary zone which demarcates the initiating leaf primordium from the shoot apical meristem. Subsequent growth and differentiation result in establishment of the axillary meristem and abscission zone (AZ) along the proximal-distal axis of the leaf axil, yet the molecular mechanisms that regulate these events are poorly understood. We studied the role of the tomato BLADE ON PETIOLE (SlBOP) boundary gene family on the development of the leaf axil using BOP-silenced plants as well as BOP-mutated lines. We show that silencing of the tomato SlBOP gene family affects patterning of the leaf axil along the proximal-distal axis, manifested by dispositioning of the AM and abnormal development of the adjacent tissue resulting in lack of a functional leaf AZ. Dissection of the role of each of the three tomato SlBOPs by analysis of single, double and triple null-mutants demonstrated that SlBOP2 is the dominant gene in leaf axil patterning, but does not rule out involvement of SlBOP1 and SlBOP3 in correct AM positioning. We further studied the potential role of TERMINATING FLOWER (TMF), a transcription factor which was previously shown to interact with SlBOPs, in leaf axil patterning using TMF mutant tomato lines. The results suggest that similar to SlBOP2, TMF is involved in leaf axil proximal-distal patterning and AZ development.
Collapse
Affiliation(s)
- Anat Izhaki
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- *Correspondence: Anat Izhaki,
| | - John P. Alvarez
- School of Biological Sciences, Clayton Campus, Monash University, Melbourne, VIC, Australia
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Science, Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Raya Liberman-Aloni
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
120
|
Stührwohldt N, Hohl M, Schardon K, Stintzi A, Schaller A. Post-translational maturation of IDA, a peptide signal controlling floral organ abscission in Arabidopsis. Commun Integr Biol 2017. [PMCID: PMC5824936 DOI: 10.1080/19420889.2017.1395119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The abscission of sepals, petals and stamens in Arabidopsis flowers is controlled by a peptide signal called IDA (Inflorescence Deficient in Abscission). IDA belongs to the large group of small post-translationally modified signaling peptides that are synthesized as larger precursors and require proteolytic processing and specific side chain modifications for signal biogenesis. Using tissue-specific expression of proteinase inhibitors as a novel approach for loss-of-function analysis, we recently identified the peptidases responsible for IDA maturation within the large family of subtilisin-like proteinases (subtilases; SBTs). Further biochemical and physiological assays identified three SBTs (AtSBT5.2, AtSBT4.12, AtSBT4.13) that cleave the IDA precursor to generate the N-terminus of the mature peptide. The C-terminal processing enzyme(s) remain(s) to be identified. While proline hydroxylation was suggested as additional post-translational modification required for IDA maturation, hydroxylated and non-hydroxylated IDA peptides were found to be equally active in bioassays for abscission.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Mathias Hohl
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Schardon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
121
|
Vie AK, Najafi J, Winge P, Cattan E, Wrzaczek M, Kangasjärvi J, Miller G, Brembu T, Bones AM. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3557-3571. [PMID: 28586470 PMCID: PMC5853212 DOI: 10.1093/jxb/erx168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2017] [Indexed: 05/13/2023]
Abstract
Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis.
Collapse
Affiliation(s)
- Ane Kjersti Vie
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javad Najafi
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ester Cattan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Wrzaczek
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Finland
- Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tore Brembu
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
122
|
Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo Transcriptome Profiling of Flowers, Flower Pedicels and Pods of Lupinus luteus (Yellow Lupine) Reveals Complex Expression Changes during Organ Abscission. FRONTIERS IN PLANT SCIENCE 2017; 8:641. [PMID: 28512462 PMCID: PMC5412092 DOI: 10.3389/fpls.2017.00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Waldemar Wojciechowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Milena Kulasek
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Wojciech Glinkowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Katarzyna Marciniak
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Natalia Klajn
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jacek Kesy
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jan Kopcewicz
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| |
Collapse
|
123
|
Hohmann U, Lau K, Hothorn M. The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:109-137. [PMID: 28125280 DOI: 10.1146/annurev-arplant-042916-040957] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have evolved a family of unique membrane receptor kinases to orchestrate the growth and development of their cells, tissues, and organs. Receptor kinases also form the first line of defense of the plant immune system and allow plants to engage in symbiotic interactions. Here, we discuss recent advances in understanding, at the molecular level, how receptor kinases with lysin-motif or leucine-rich-repeat ectodomains have evolved to sense a broad spectrum of ligands. We summarize and compare the established receptor activation mechanisms for plant receptor kinases and dissect how ligand binding at the cell surface leads to activation of cytoplasmic signaling cascades. Our review highlights that one family of plant membrane receptors has diversified structurally to fulfill very different signaling tasks.
Collapse
Affiliation(s)
- Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Kelvin Lau
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland; , ,
| |
Collapse
|
124
|
Structural insights into ligand recognition and activation of plant receptor kinases. Curr Opin Struct Biol 2017; 43:18-27. [DOI: 10.1016/j.sbi.2016.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
|
125
|
Mazurek S, Garroum I, Daraspe J, De Bellis D, Olsson V, Mucciolo A, Butenko MA, Humbel BM, Nawrath C. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis. PLANT PHYSIOLOGY 2017; 173:1146-1163. [PMID: 27994007 PMCID: PMC5291042 DOI: 10.1104/pp.16.01637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 05/19/2023]
Abstract
The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development.
Collapse
Affiliation(s)
- Sylwester Mazurek
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Imène Garroum
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Jean Daraspe
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Damien De Bellis
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Vilde Olsson
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Antonio Mucciolo
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Melinka A Butenko
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Bruno M Humbel
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| | - Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology (S.M., I.G., C.N.) and Electron Microscopy Facility (J.D., D.D.B., A.M., B.M.H.), CH-1015 Lausanne, Switzerland;
- University of Wroclaw, Department of Chemistry, 50-383 Wroclaw, Poland (S.M.); and
- University of Oslo, Department of Biosciences, Section for Evolutionary Genetics, 0371 Oslo, Norway (V.O., M.A.B.)
| |
Collapse
|
126
|
Yadeta KA, Elmore JM, Creer AY, Feng B, Franco JY, Rufian JS, He P, Phinney B, Coaker G. A Cysteine-Rich Protein Kinase Associates with a Membrane Immune Complex and the Cysteine Residues Are Required for Cell Death. PLANT PHYSIOLOGY 2017; 173:771-787. [PMID: 27852951 PMCID: PMC5210739 DOI: 10.1104/pp.16.01404] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 05/19/2023]
Abstract
Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses.
Collapse
Affiliation(s)
- Koste A Yadeta
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - James M Elmore
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Athena Y Creer
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Baomin Feng
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Jessica Y Franco
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Jose Sebastian Rufian
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Ping He
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Brett Phinney
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| | - Gitta Coaker
- Department of Plant Pathology (K.A.Y., J.M.E., A.Y.C., J.Y.F., G.C., J.S.R.) and Genome Center Proteomics Core Facility (B.P.), University of California, Davis, California 95616; and
- Department of Biochemistry and Biophysics and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843 (B.F.)
| |
Collapse
|
127
|
Wang X, Hou S, Wu Q, Lin M, Acharya BR, Wu D, Zhang W. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:250-263. [PMID: 27618493 DOI: 10.1111/tpj.13380] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 05/03/2023]
Abstract
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell-wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)-derived peptide and its receptors, HAESA (HAE) and HAESA-LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell-wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA-like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss-of-function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6-HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6-HAE/HSL2-ADPG2 signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, Shandong, 250101, China
| | - Qiqi Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Minyan Lin
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| | - Biswa R Acharya
- Donald Danforth Plant Science Center, 975 N. Warson Road, St Louis, MO, 63132, USA
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, Shandong, 250101, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, 250100, China
| |
Collapse
|
128
|
Tranbarger TJ, Tucker ML, Roberts JA, Meir S. Editorial: Plant Organ Abscission: From Models to Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:196. [PMID: 28261249 PMCID: PMC5306310 DOI: 10.3389/fpls.2017.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 05/11/2023]
Affiliation(s)
- Timothy J. Tranbarger
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
- *Correspondence: Timothy J. Tranbarger
| | - Mark L. Tucker
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Jeremy A. Roberts
- Division of Plant Sciences, School of Biosciences, University of NottinghamNottingham, UK
| | - Shimon Meir
- Deptartment of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| |
Collapse
|
129
|
Li Z, Wang Y, Huang J, Ahsan N, Biener G, Paprocki J, Thelen JJ, Raicu V, Zhao D. Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination. PLANT PHYSIOLOGY 2017; 173:326-337. [PMID: 27920157 PMCID: PMC5210720 DOI: 10.1104/pp.16.01219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 05/03/2023]
Abstract
Cell signaling pathways mediated by leucine-rich repeat receptor-like kinases (LRR-RLKs) are essential for plant growth, development, and defense. The EMS1 (EXCESS MICROSPOROCYTES1) LRR-RLK and its small protein ligand TPD1 (TAPETUM DETERMINANT1) play a fundamental role in somatic and reproductive cell differentiation during early anther development in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether other cell surface molecules serve as coregulators of EMS1. Here, we show that SERK1 (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1) and SERK2 LRR-RLKs act redundantly as coregulatory and physical partners of EMS1. The SERK1/2 genes function in the same genetic pathway as EMS1 in anther development. Bimolecular fluorescence complementation, Förster resonance energy transfer, and coimmunoprecipitation approaches revealed that SERK1 interacted biochemically with EMS1. Transphosphorylation of EMS1 by SERK1 enhances EMS1 kinase activity. Among 12 in vitro autophosphorylation and transphosphorylation sites identified by tandem mass spectrometry, seven of them were found to be critical for EMS1 autophosphorylation activity. Furthermore, complementation test results suggest that phosphorylation of EMS1 is required for its function in anther development. Collectively, these data provide genetic and biochemical evidence of the interaction and phosphorylation between SERK1/2 and EMS1 in anther development.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Yao Wang
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Jian Huang
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Nagib Ahsan
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Gabriel Biener
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Joel Paprocki
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Jay J Thelen
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Valerica Raicu
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| | - Dazhong Zhao
- Department of Biological Sciences (Z.L., Y.W., J.H., V.R., D.Z.) and Department of Physics (G.B., J.P., V.R.), University of Wisconsin, Milwaukee, Wisconsin 53211; and
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 (N.A., J.J.T.)
| |
Collapse
|
130
|
Schardon K, Hohl M, Graff L, Pfannstiel J, Schulze W, Stintzi A, Schaller A. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 2016; 354:1594-1597. [PMID: 27940581 DOI: 10.1126/science.aai8550] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
Peptide hormones that regulate plant growth and development are derived from larger precursor proteins by proteolytic processing. Our study addressed the role of subtilisin-like proteinases (SBTs) in this process. Using tissue-specific expression of proteinase inhibitors as a tool to overcome functional redundancy, we found that SBT activity was required for the maturation of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION), a peptide signal for the abscission of floral organs in Arabidopsis We identified three SBTs that process the IDA precursor in vitro, and this processing was shown to be required for the formation of mIDA (the mature and bioactive form of IDA) as the endogenous signaling peptide in vivo. Hence, SBTs act as prohormone convertases in plants, and several functionally redundant SBTs contribute to signal biogenesis.
Collapse
Affiliation(s)
- Katharina Schardon
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Mathias Hohl
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Lucile Graff
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, 70593 Stuttgart, Germany
| | - Waltraud Schulze
- University of Hohenheim, Department of Plant Systems Biology, 70593 Stuttgart, Germany
| | - Annick Stintzi
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany
| | - Andreas Schaller
- University of Hohenheim, Institute of Plant Physiology and Biotechnology, 70593 Stuttgart, Germany.
| |
Collapse
|
131
|
van Esse GW, Ten Hove CA, Guzzonato F, van Esse HP, Boekschoten M, Ridder L, Vervoort J, de Vries SC. Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants. PLANT PHYSIOLOGY 2016; 172:2516-2529. [PMID: 27803191 PMCID: PMC5129729 DOI: 10.1104/pp.16.01478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/28/2016] [Indexed: 05/15/2023]
Abstract
Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligand-perceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because multiple pathways can be affected, while redundancy is observed for a single phenotype. For example, serk1serk3 double mutant roots are insensitive toward brassinosteroids but have a phenotype different from bri1 mutant roots. To decipher these effects, 4-d-old Arabidopsis (Arabidopsis thaliana) roots were studied using microarray analysis. A total of 698 genes, involved in multiple biological processes, were found to be differentially regulated in serk1-3serk3-2 double mutants. About half of these are related to brassinosteroid signaling. The remainder appear to be unlinked to brassinosteroids and related to primary and secondary metabolism. In addition, methionine-derived glucosinolate biosynthesis genes are up-regulated, which was verified by metabolite profiling. The results also show that the gene expression pattern in serk3-2 mutant roots is similar to that of the serk1-3serk3-2 double mutant roots. This confirms the existence of partial redundancy between SERK3 and SERK1 as well as the promoting or repressive activity of a single coreceptor in multiple simultaneously active pathways.
Collapse
Affiliation(s)
- G Wilma van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Colette A Ten Hove
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Francesco Guzzonato
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - H Peter van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Mark Boekschoten
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lars Ridder
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sacco C de Vries
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
132
|
Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 2016; 6:37135. [PMID: 27845425 PMCID: PMC5109030 DOI: 10.1038/srep37135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.
Collapse
Affiliation(s)
- Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
133
|
Baer J, Taylor I, Walker JC. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5473-5484. [PMID: 27566817 PMCID: PMC5049395 DOI: 10.1093/jxb/erw313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9-yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling.
Collapse
Affiliation(s)
- John Baer
- Division of Biological Science, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Isaiah Taylor
- Division of Biological Science, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - John C Walker
- Division of Biological Science, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
134
|
Shumayla, Sharma S, Kumar R, Mendu V, Singh K, Upadhyay SK. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs). FRONTIERS IN PLANT SCIENCE 2016; 7:1374. [PMID: 27713749 PMCID: PMC5031697 DOI: 10.3389/fpls.2016.01374] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/29/2016] [Indexed: 09/01/2023]
Abstract
The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat.
Collapse
Affiliation(s)
- Shumayla
- Deparment of Botany, Panjab UniversityChandigarh, India
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | | | - Rohit Kumar
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | | |
Collapse
|
135
|
Patharkar OR, Walker JC. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. PLANT PHYSIOLOGY 2016; 172:510-20. [PMID: 27468996 PMCID: PMC5074626 DOI: 10.1104/pp.16.01004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/27/2016] [Indexed: 05/21/2023]
Abstract
Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission.
Collapse
Affiliation(s)
- O Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - John C Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
136
|
Huang J, Zhang T, Linstroth L, Tillman Z, Otegui MS, Owen HA, Zhao D. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genet 2016; 12:e1006147. [PMID: 27537183 PMCID: PMC4990239 DOI: 10.1371/journal.pgen.1006147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction. The differentiation of distinct somatic and reproductive cells in flowers is required for the successful sexual reproduction of plants. The anther produces reproductive microsporocytes (pollen mother cells) that give rise to pollen (male gametophytes), as well as surrounding somatic cells (particularly the tapetal cells) that support the normal development of pollen. In animals, signals from somatic cells are known to influence reproductive cell fate determination, and vice versa. However, little is known about the molecular mechanisms underlying somatic and reproductive cell fate determination in plants. In this paper, we demonstrate that TPD1 (TAPETUM DETERMINANT1) is processed into a small secreted cysteine-rich protein ligand for the EMS1 (EXCESS MICROSPOROCYTES1) leucine-rich repeat receptor-like kinase (LRR-RLK). TPD1 is secreted from reproductive cells to the plasma membrane of somatic cells, where activated TPD1-EMS1 signaling first promotes periclinal cell division and then determines tapetal cell fate. Moreover, tapetal cells suppress microsporocyte proliferation. Our findings illuminate a novel mechanism by which reproductive cells determine somatic cell fate, and somatic cells in turn limit reproductive cell proliferation. Plants extensively employ LRR-RLKs to control growth, development, and defense. Our identification of TPD1 as the first small protein ligand for all LRR-RLKs characterized to date will provide a valuable system for studying how small protein ligands activate LRR-RLK signaling complexes.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Tianyu Zhang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lisa Linstroth
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Zachary Tillman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Heather A. Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
137
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
138
|
Abstract
A significant part of the communication between plant cells is mediated by signaling peptides and their corresponding plasma membrane-localized receptor-like kinases. This communication mechanism serves as a key regulatory unit for coordination of plant growth and development. In the past years more peptide–receptor signaling pathways have been shown to regulate developmental processes, such as shoot and root meristem maintenance, seed formation, and floral abscission. More detailed understanding of the processes behind this regulation might also be helpful to increase the yield of crop plants.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, University Street, D-40225, Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences and Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
139
|
Abstract
The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.
Collapse
|
140
|
Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W, Han Z, Guo H, Chai J. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res 2016; 26:674-85. [PMID: 27229311 PMCID: PMC4897187 DOI: 10.1038/cr.2016.62] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022] Open
Abstract
Peptide-mediated cell-to-cell signaling has crucial roles in coordination and definition of cellular functions in plants. Peptide-receptor matching is important for understanding the mechanisms underlying peptide-mediated signaling. Here we report the structure-guided identification of root meristem growth factor (RGF) receptors important for plant development. An assay based on a signature ligand recognition motif (Arg-x-Arg) conserved in a subfamily of leucine-rich repeat receptor kinases (LRR-RKs) identified the functionally uncharacterized LRR-RK At4g26540 as a receptor of RGF1 (RGFR1). We further solved the crystal structure of RGF1 in complex with the LRR domain of RGFR1 at a resolution of 2.6 Å, which reveals that the Arg-x-Gly-Gly (RxGG) motif is responsible for specific recognition of the sulfate group of RGF1 by RGFR1. Based on the RxGG motif, we identified additional four RGFRs. Participation of the five RGFRs in RGF-induced signaling is supported by biochemical and genetic data. We also offer evidence showing that SERKs function as co-receptors for RGFs. Taken together, our study identifies RGF receptors and co-receptors that can link RGF signals with their downstream components and provides a proof of principle for structure-based matching of LRR-RKs with their peptide ligands.
Collapse
Affiliation(s)
- Wen Song
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Liu
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jizong Wang
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Wu
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Heqiao Zhang
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiao Tang
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzhong Lin
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yichuan Wang
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xing Wen
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wenyang Li
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhifu Han
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongwei Guo
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Jijie Chai
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
141
|
Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K, Schneeberger K, Parker JE. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genet 2016; 12:e1005990. [PMID: 27082651 PMCID: PMC4833295 DOI: 10.1371/journal.pgen.1005990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. Plants tune their cellular and developmental programs to different environmental stimuli. Central players in the plant biotic stress response network are intracellular NLR receptors which intercept specific disease-inducing molecules (effectors) produced by pathogenic microbes. Variation in NLR gene repertoires between plant genetic lines is driven by pathogen selection pressure. One evolutionary question is how new, functional NLRs are assembled within a plant genome without mis-activating defense pathways, which can have strong negative effects on growth and fitness. This study focuses on a large, polymorphic sub-class of NLR receptors called TNLs present in dicotyledenous plant lineages. TNL receptors confer immunity to a broad range of pathogens. They also frequently underlie autoimmunity caused by their mis-regulation or deleterious allelic interactions with other genes in crosses between different genetic lines (hybrid incompatibility, HI). TNL pathogen-triggered and autoimmune responses require the conserved nucleocytoplasmic protein EDS1 to transcriptionally reprogram cells for defense. We discover in Arabidopsis thaliana that high levels of nuclear-enriched EDS1 induce transcriptional activation of defenses and growth inhibition without a pathogen effector stimulus. In a mutational screen, we identify one rapidly evolving TNL gene, DM2hLer, as a driver of nuclear EDS1 autoimmunity. DM2hLer also contributes to two separate cases of EDS1-dependent autoimmunity. Genetic cooperation between DM2hLer and EDS1 suggests a functional relationship in the transcriptional feed-forward regulation of defense pathways.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
- * E-mail: (JS); (JEP)
| | - Nora Peine
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana V. Garcia
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christine Wagner
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Sayan R. Choudhury
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (JS); (JEP)
| |
Collapse
|
142
|
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 2016; 5:e15075. [PMID: 27058169 DOI: 10.7554/elife.15075.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/07/2016] [Indexed: 05/28/2023] Open
Abstract
Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism.
Collapse
Affiliation(s)
- Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
143
|
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 2016; 5. [PMID: 27058169 PMCID: PMC4848090 DOI: 10.7554/elife.15075] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/07/2016] [Indexed: 01/26/2023] Open
Abstract
Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI:http://dx.doi.org/10.7554/eLife.15075.001 Plants can shed their leaves, flowers or other organs when they no longer need them. But how does a leaf or a flower know when to let go? A receptor protein called HAESA is found on the surface of the cells that surround a future break point on the plant. When its time to shed an organ, a hormone called IDA instructs HAESA to trigger the shedding process. However, the molecular details of how IDA triggers organ shedding are not clear. The shedding of floral organs (or leaves) can be easily studied in a model plant called Arabidopsis. Santiago et al. used protein biochemistry, structural biology and genetics to uncover how the IDA hormone activates HAESA. The experiments show that IDA binds directly to a canyon shaped pocket in HAESA that extends out from the surface of the cell. IDA binding to HAESA allows another receptor protein called SERK1 to bind to HAESA, which results in the release of signals inside the cell that trigger the shedding of organs. The next step following on from this work is to understand what signals are produced when IDA activates HAESA. Another challenge will be to find out where IDA is produced in the plant and what causes it to accumulate in specific places in preparation for organ shedding. DOI:http://dx.doi.org/10.7554/eLife.15075.002
Collapse
Affiliation(s)
- Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
144
|
Meng X, Zhou J, Tang J, Li B, de Oliveira MVV, Chai J, He P, Shan L. Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis. Cell Rep 2016; 14:1330-1338. [PMID: 26854226 DOI: 10.1016/j.celrep.2016.01.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023] Open
Abstract
Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation.
Collapse
Affiliation(s)
- Xiangzong Meng
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jinggeng Zhou
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jiao Tang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Marcos V V de Oliveira
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
145
|
Wu Y, Xun Q, Guo Y, Zhang J, Cheng K, Shi T, He K, Hou S, Gou X, Li J. Genome-Wide Expression Pattern Analyses of the Arabidopsis Leucine-Rich Repeat Receptor-Like Kinases. MOLECULAR PLANT 2016; 9:289-300. [PMID: 26712505 DOI: 10.1016/j.molp.2015.12.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 05/18/2023]
Abstract
Receptor-like protein kinases (RLKs) are a large group of transmembrane proteins playing critical roles in cell-cell and cell-environment communications. Based on extracellular domain structures, RLKs were classified into more than 21 subfamilies, among which leucine-rich repeat RLKs (LRR-RLKs) belong to the largest subfamily in plants such as Arabidopsis and rice. In Arabidopsis, there are approximately 223 LRR-RLKs, but only about 60 of which have been functionally described to date. To systematically investigate the roles of LRR-RLKs in regulating plant growth, development, and stress adaptations, we generated promoter::GUS transgenic plants for all 223 LRR-RLK genes in Arabidopsis and analyzed their detailed expression patterns at various developmental stages. The results provide valuable resources for functionally elucidating this large and essential signaling protein subfamily.
Collapse
Affiliation(s)
- Yunzhe Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kaili Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
146
|
Patterson SE, Bolivar-Medina JL, Falbel TG, Hedtcke JL, Nevarez-McBride D, Maule AF, Zalapa JE. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops? FRONTIERS IN PLANT SCIENCE 2016; 6:1268. [PMID: 26858730 PMCID: PMC4726918 DOI: 10.3389/fpls.2015.01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/28/2015] [Indexed: 05/24/2023]
Abstract
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.
Collapse
Affiliation(s)
- Sara E. Patterson
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | - Jenny L. Bolivar-Medina
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research ServiceMadison, WI, USA
| | - Tanya G. Falbel
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | | | | | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | - Juan E. Zalapa
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research ServiceMadison, WI, USA
| |
Collapse
|
147
|
Taylor I, Wang Y, Seitz K, Baer J, Bennewitz S, Mooney BP, Walker JC. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission. PLoS One 2016; 11:e0147203. [PMID: 26784444 PMCID: PMC4718614 DOI: 10.1371/journal.pone.0147203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Ying Wang
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Kati Seitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - John Baer
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Stefan Bennewitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Brian P. Mooney
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Charles W. Gehrke Proteomics Center and Division of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - John C. Walker
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
148
|
Groner WD, Christy ME, Kreiner CM, Liljegren SJ. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers. FRONTIERS IN PLANT SCIENCE 2016; 7:1588. [PMID: 27818674 PMCID: PMC5073242 DOI: 10.3389/fpls.2016.01588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.
Collapse
|
149
|
Wang GQ, Wei PC, Tan F, Yu M, Zhang XY, Chen QJ, Wang XC. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:863. [PMID: 27379143 PMCID: PMC4911407 DOI: 10.3389/fpls.2016.00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/01/2016] [Indexed: 05/20/2023]
Abstract
Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway.
Collapse
Affiliation(s)
- Gao-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Peng-Cheng Wei
- Rice Research Institution, AnHui Academy of Agricultural SciencesHefei, China
| | - Feng Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Man Yu
- Department of Food and Biological Technology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
- *Correspondence: Xue-Chen Wang,
| |
Collapse
|
150
|
Couzigou JM, Magne K, Mondy S, Cosson V, Clements J, Ratet P. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. THE NEW PHYTOLOGIST 2016; 209:228-40. [PMID: 26390061 DOI: 10.1111/nph.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/04/2015] [Indexed: 05/05/2023]
Abstract
Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, CNRS, 31326, Castanet Tolosan, France
| | - Kevin Magne
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Samuel Mondy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Viviane Cosson
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| |
Collapse
|