101
|
Kostadinova AI, Pablos-Tanarro A, Diks MAP, van Esch BCAM, Garssen J, Knippels LMJ, Willemsen LEM. Dietary Intervention with β-Lactoglobulin-Derived Peptides and a Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates the Prevention of Whey-Induced Allergy in Mice by Supporting a Tolerance-Prone Immune Environment. Front Immunol 2017; 8:1303. [PMID: 29123515 PMCID: PMC5662887 DOI: 10.3389/fimmu.2017.01303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cow's milk allergy (CMA) prevails in infants and brings increased risk of developing other allergic diseases. Oral administration of specific β-lactoglobulin (BLG)-derived peptides (PepMix) and a specific blend of short- and long-chain fructo-oligosaccharides and Bifidobacterium breve M-16V (FF/Bb) was found to partially prevent CMA development in mice. In this study, we aimed to expand the knowledge on the preventive potential and the underlying mechanisms of this approach. Three-week-old female C3H/HeOuJ mice were orally exposed to PepMix±FF/Bb prior to a 5-week oral sensitization with whole whey and cholera toxin as an adjuvant. The acute allergic skin response was determined after an intradermal challenge with whole whey protein. Following an oral challenge with whey, regulatory T cells (Tregs) in the small intestine lamina propria (SI-LP) and mRNA expression of immune markers in the Peyer's patches (PP) were investigated. The early impact of PepMix and FF/Bb interventions on the immune system during the oral tolerance (OT) induction phase was investigated after the last OT administration. Pre-exposing mice to PepMix+FF/Bb partially prevented the acute allergic skin response compared to PBS and increased Tregs and activated T cells in the SI-LP compared to sham-sensitized mice. It also increased the mRNA expression of Tbet over GATA3 in the PP of whey-sensitized mice. Directly upon the 6-day OT phase, FF/Bb intervention enhanced cecal content levels of propionic and butyric acid in PepMix-fed mice and the former was positively correlated with Foxp3+ cell numbers in the colon. In the PP of PepMix+FF/Bb-exposed mice, IL-22 mRNA expression increased and IL-10 followed the same tendency, while the Foxp3 expression was increased over GATA3 and RorγT. In the colon, the Tbet mRNA expression increased over GATA3, while IL-22 decreased. In addition, the Foxp3+/GATA3+ and regulatory/effector T cell ratios in the mesenteric lymph nodes and the CD11b+/CD11b- conventional dendritic cells ratio in the SI-LP were increased. In conclusion, the FF/Bb diet facilitates the capacity of the specific BLG-peptides to partially prevent the allergic response after sensitization to whole whey protein, possibly by creating a tolerance-prone environment during the OT phase. Such a dietary intervention might contribute to tailoring successful strategies for CMA prevention.
Collapse
Affiliation(s)
- Atanaska I Kostadinova
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Alba Pablos-Tanarro
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Mara A P Diks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
102
|
Arvonen M, Virta LJ, Pokka T, Kröger L, Vähäsalo P. Cow's Milk Allergy in Infancy and Later Development of Juvenile Idiopathic Arthritis: A Register-Based Case-Control Study. Am J Epidemiol 2017; 186:237-244. [PMID: 28459985 DOI: 10.1093/aje/kwx060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
We examined the association between cow's milk allergy (CMA) and juvenile idiopathic arthritis (JIA). The material for this case-control study was collected from national registers of all children born in Finland between 2000 and 2010 and diagnosed with JIA (n = 1,298) and age-, sex-, and place-matched controls (n = 5,179). We identified 235 children with CMA; 66 of these children also had JIA. A conditional logistic regression analysis was performed to evaluate the association between CMA and JIA and to test whether exposure to antibiotics would be a covariate for this association. In boys (but not in girls), a diagnosis of CMA and the use of hypoallergenic formula in infancy were associated with the later development of JIA (odds ratio = 2.4, 95% confidence interval: 1.6, 3.6). The association was most evident in boys who were diagnosed with JIA before age 3 years or diagnosed with CMA with predominantly gastrointestinal symptoms. There was no statistically significant additive interaction between CMA and antibiotic exposure in the later development of JIA. These associations may reflect impaired maturation of intestinal immunity and integrity in boys with a risk of JIA. Predisposing factors related to JIA pathogenesis seem to display a sex-linked disparity.
Collapse
|
103
|
Hammerschmidt-Kamper C, Biljes D, Merches K, Steiner I, Daldrup T, Bol-Schoenmakers M, Pieters RHH, Esser C. Indole-3-carbinol, a plant nutrient and AhR-Ligand precursor, supports oral tolerance against OVA and improves peanut allergy symptoms in mice. PLoS One 2017; 12:e0180321. [PMID: 28666018 PMCID: PMC5493375 DOI: 10.1371/journal.pone.0180321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022] Open
Abstract
In general, dietary antigens are tolerated by the gut associated immune system. Impairment of this so-called oral tolerance is a serious health risk. We have previously shown that activation of the ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) by the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects both oral tolerance and food allergy. In this study, we determine whether a common plant-derived, dietary AhR-ligand modulates oral tolerance as well. We therefore fed mice with indole-3-carbinole (I3C), an AhR ligand that is abundant in cruciferous plants. We show that several I3C metabolites were detectable in the serum after feeding, including the high-affinity ligand 3,3´-diindolylmethane (DIM). I3C feeding robustly induced the AhR-target gene CYP4501A1 in the intestine; I3C feeding also induced the aldh1 gene, whose product catalyzes the formation of retinoic acid (RA), an inducer of regulatory T cells. We then measured parameters indicating oral tolerance and severity of peanut-induced food allergy. In contrast to the tolerance-breaking effect of TCDD, feeding mice with chow containing 2 g/kg I3C lowered the serum anti-ovalbumin IgG1 response in an experimental oral tolerance protocol. Moreover, I3C feeding attenuated symptoms of peanut allergy. In conclusion, the dietary compound I3C can positively influence a vital immune function of the gut.
Collapse
Affiliation(s)
| | - Daniel Biljes
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katja Merches
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Irina Steiner
- Institute of Legal Medicine, Department of Forensic Toxicology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Thomas Daldrup
- Institute of Legal Medicine, Department of Forensic Toxicology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Raymond H. H. Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Esser
- IUF – Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
104
|
Palomares O, Akdis M, Martín-Fontecha M, Akdis CA. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol Rev 2017; 278:219-236. [DOI: 10.1111/imr.12555] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - Mar Martín-Fontecha
- Department of Organic Chemistry; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| |
Collapse
|
105
|
Benedé S, Garrido-Arandia M, Martín-Pedraza L, Bueno C, Díaz-Perales A, Villalba M. Multifactorial Modulation of Food-Induced Anaphylaxis. Front Immunol 2017; 8:552. [PMID: 28559894 PMCID: PMC5432630 DOI: 10.3389/fimmu.2017.00552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
Prevalence of food-induced anaphylaxis increases progressively and occurs in an unpredictable manner, seriously affecting the quality of life of patients. Intrinsic factors including age, physiological, and genetic features of the patient as well as extrinsic factors such as the intake of drugs and exposure to environmental agents modulate this disorder. It has been proven that diseases, such as mastocytosis, defects in HLA, or filaggrin genes, increase the risk of severe allergic episodes. Certain allergen families such as storage proteins, lipid transfer proteins, or parvalbumins have also been linked to anaphylaxis. Environmental factors such as inhaled allergens or sensitization through the skin can exacerbate or trigger acute anaphylaxis. Moreover, the effect of dietary habits such as the early introduction of certain foods in the diet, and the advantage of the breastfeeding remain as yet unresolved. Interaction of allergens with the intestinal cell barrier together with a set of effector cells represents the primary pathways of food-induced anaphylaxis. After an antigen cross-links the IgEs on the membrane of effector cells, a complex intracellular signaling cascade is initiated, which leads cells to release preformed mediators stored in their granules that are responsible for the acute symptoms of anaphylaxis. Afterward, they can also rapidly synthesize lipid compounds such as prostaglandins or leukotrienes. Cytokines or chemokines are also released, leading to the recruitment and activation of immune cells in the inflammatory microenvironment. Multiple factors that affect food-induced anaphylaxis are discussed in this review, paying special attention to dietary habits and environmental and genetic conditions.
Collapse
Affiliation(s)
- Sara Benedé
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Martín-Pedraza
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bueno
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Mayte Villalba
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
106
|
Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017; 114:116-131. [PMID: 28438674 PMCID: PMC6132247 DOI: 10.1016/j.addr.2017.04.008] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
While vaccination remains the most cost effective strategy for disease prevention, communicable diseases persist as the second leading cause of death worldwide. There is a need to design safe, novel vaccine delivery methods to protect against unaddressed and emerging diseases. Development of vaccines administered orally is preferable to traditional injection-based formulations for numerous reasons including improved safety and compliance, and easier manufacturing and administration. Additionally, the oral route enables stimulation of humoral and cellular immune responses at both systemic and mucosal sites to establish broader and long-lasting protection. However, oral delivery is challenging, requiring formulations to overcome the harsh gastrointestinal (GI) environment and avoid tolerance induction to achieve effective protection. Here we address the rationale for oral vaccines, including key biological and physicochemical considerations for next-generation oral vaccine design.
Collapse
Affiliation(s)
- Julia E Vela Ramirez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Lindsey A Sharpe
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
107
|
Al-Ghobashy MA, ElMeshad AN, Abdelsalam RM, Nooh MM, Al-Shorbagy M, Laible G. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model. Sci Rep 2017; 7:46468. [PMID: 28425447 PMCID: PMC5397842 DOI: 10.1038/srep46468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. IN CONCLUSION i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.
Collapse
Affiliation(s)
- Medhat A. Al-Ghobashy
- Analytical Chemistry Department of, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Bioanalysis Research Group, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa N. ElMeshad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M. Abdelsalam
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed M. Nooh
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammad Al-Shorbagy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Götz Laible
- AgRresearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
108
|
Kenngott EE, Pfeil J, Hoffmann U, Lauer U, Kühl AA, Rigby A, Pernthaner A, Hamann A. Facilitated Peptide Transport via the Mucosal Epithelium: Impact on Tolerance Induction. Front Immunol 2017; 8:216. [PMID: 28321216 PMCID: PMC5337492 DOI: 10.3389/fimmu.2017.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
A hallmark of autoimmunity is the breakdown of tolerance and generation of effector responses against self-antigens. Re-establishment of tolerance in autoimmune disorders was always the most desired treatment option; however, despite many efforts, clinical trials have been largely unsuccessful. This also applies to the generation of oral tolerance, which seems to be a default response type of the mucosa-associated lymphoid tissues to harmless antigens. In this study, we report improved efficacy of oral tolerance induction by coupling antigen with the newly identified mucosal carrier peptide 13C. Antigen coupled to 13C is efficiently taken up in the gastrointestinal tract and could be visualized in cells of the lamina propria. Oral, rectal, or nasal treatment effectively induced the proliferation of antigen-specific T cells with some increase in the frequency of regulatory T cells. In a model of delayed-type hypersensitivity, especially intrarectal tolerization treatment resulted in reduced footpad swelling, demonstrating a moderate tolerogenic effect of mucosal treatment with 13C coupled antigen. Coupling of antigens to a transmucosal carrier, therefore, is a promising tool to improve the efficacy of vaccination via mucosal surfaces.
Collapse
Affiliation(s)
- Elisabeth E Kenngott
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany; Rheumatology, Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany; Experimental Rheumatology, Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum , Berlin , Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum , Berlin , Germany
| | - Anja A Kühl
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Research Center ImmunoSciences, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Anne Rigby
- Experimental Rheumatology, Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Anton Pernthaner
- The Hopkirk Research Institute, AgResearch Ltd., Grasslands Research Institute , Palmerston North , New Zealand
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany; Experimental Rheumatology, Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
109
|
Biljes D, Hammerschmidt-Kamper C, Merches K, Esser C. The aryl hydrocarbon receptor in T cells contributes to sustaining oral tolerance against ovalbumin in a mouse model. EXCLI JOURNAL 2017; 16:291-301. [PMID: 30233276 PMCID: PMC6141817 DOI: 10.17179/excli2017-168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Abstract
Oral tolerance (OT) towards antigens encountered in the gut is a vital immune function of gut immunity. Experimental models can demonstrate OT efficacy by feeding of a protein followed by peripheral immunization and measuring the specific antibody titer. We had previously shown that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a xenobiotic high-affinity aryl hydrocarbon receptor (AhR)-ligand, destabilized OT against ovalbumin (OVA) in mice. AhR is involved in the development, differentiation and function of immune cells, and highly expressed in gut epithelial cells and gut immune cells. We here used AhR-deficient mice to study the role of AhR in OT further. We show that complete AhR-deficiency undermines the stability of oral tolerance against OVA upon multiple immunizations, despite no renewed oral encounter with the antigen. This OT destabilization is accompanied by significant changes in IL10 and TGFβ RNA in the gut tissue. Using conditional AhR-deficient mouse lines, we identify T cells as the major responsible immune cell type in this context. Our findings add to knowledge that lack of AhR signaling in the gut impairs important gut immune functions.
Collapse
Affiliation(s)
- Daniel Biljes
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | | | - Katja Merches
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| |
Collapse
|
110
|
Chen N, Peine KJ, Collier MA, Gautam S, Jablonski KA, Guerau-de-Arellano M, Ainslie KM, Bachelder EM. Co-Delivery of Disease Associated Peptide and Rapamycin via Acetalated Dextran Microparticles for Treatment of Multiple Sclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Naihan Chen
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Kevin J. Peine
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Michael A. Collier
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Shalini Gautam
- Division of Pharmaceutics; College of Pharmacy; The Ohio State University; Columbus OH 43210 USA
| | - Kyle A. Jablonski
- Medical Laboratory Science Division; School of Health and Rehabilitation Sciences; The Ohio State University; Columbus OH 43210 USA
| | - Mireia Guerau-de-Arellano
- Medical Laboratory Science Division; School of Health and Rehabilitation Sciences; The Ohio State University; Columbus OH 43210 USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics; Eshelman School of Pharmacy; The University of North Carolina at Chapel Hill; Chapel Hill NC 27599 USA
| |
Collapse
|
111
|
de Oliveira SRP, Nomizo A, Frantz FG, Faccioli LH, de Matos APK, Carrilho E, Afonso A, de Freitas Anibal F. Participation of Leukotrienes in the Immune Modulation of Oral Tolerance. Front Microbiol 2017; 8:242. [PMID: 28270799 PMCID: PMC5318402 DOI: 10.3389/fmicb.2017.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 02/03/2017] [Indexed: 11/24/2022] Open
Abstract
Oral tolerance (OT) is characterized as a peripheral immune tolerance form, in which, mature lymphocytes in lymphoid tissues associated with mucosa, become non-functional or hypo responsive due to prior oral administration of antigen. OT is an important immunological phenomenon due to its therapeutic potential in inflammatory processes and others diseases. Here we evaluated leukotriene role in the induction of OT, as well as, the production of cytokines IL-5 and IFN-γ in leukotriene deficient animals (knock-out). Our results suggested that even in the presence of OT and leukotrienes absence, cytokine IFN-γ remains being secreted, which gives us an indication of immune system specificity and also that IFN-γ participates in various immune processes.
Collapse
Affiliation(s)
- Sandra R P de Oliveira
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São Carlos São Carlos, Brazil
| | - Auro Nomizo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Fabiani G Frantz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Lúcia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Ana Paula Keller de Matos
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São CarlosSão Carlos, Brazil; Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão PretoBrazil
| | - Emanuel Carrilho
- Bioanalytical, Microfabrication, and Separations Group, Instituto de Química de São Carlos, Universidade de São Paulo São Carlos, Brazil
| | - Ana Afonso
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São CarlosSão Carlos, Brazil; Bioanalytical, Microfabrication, and Separations Group, Instituto de Química de São Carlos, Universidade de São PauloSão Carlos, Brazil; Medical Parasitology Unit, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisbon, Portugal
| | - Fernanda de Freitas Anibal
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São Carlos São Carlos, Brazil
| |
Collapse
|
112
|
Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol Immunol 2017; 85:196-204. [PMID: 28285182 DOI: 10.1016/j.molimm.2017.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 01/25/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a common pathogen that causes severe disease in the salmonid aquaculture industry. Because oral vaccines induce more efficient mucosal immunity than parenteral immunization, an oral vaccine was developed with an improved yeast cell surface display technology to induce an immune response to IHNV. The oral yeast vaccine, designated EBY100/pYD1-bi-G, was delivered orally to rainbow trout (Oncorhynchus mykiss) on days 1 and 32, and the nonspecific and specific immune responses were measured 50days after the first vaccination. In the hindgut, spleen, and head kidney, the expression of IFN-1 and Mx-1 was significantly upregulated after oral vaccination with EBY100/pYD1-bi-G, and the highest expression of IFN-1 and Mx-1 was observed in the spleen (7.5-fold higher than the control group) and head kidney (3.9-fold higher than the control group), respectively. Several markers of the adaptive immune response (IgM, IgT, CD4, and CD8) were also significantly upregulated, and the highest expression of these markers was observed in the hindgut, suggesting that the mucosal immune response was successfully induced by oral vaccination with EBY100/pYD1-bi-G. Sera from the orally vaccinated rainbow trout showed higher anti-IHNV neutralizing antibody titers (antibody titer 81±4) than the control sera (antibody titer 7±3), and the relative percentage survival after IHNV challenge was 45.8% compared with 2% in the control group. Although the protection afforded by this orally delivered vaccine was lower than that of a DNA vaccine (83%-98%), it is a promising candidate vaccine with which to protect larval fish against IHNV, which are most susceptible to the virus and difficult to inject with a DNA vaccine.
Collapse
|
113
|
Dennis-Wall JC, Culpepper T, Nieves C, Rowe CC, Burns AM, Rusch CT, Federico A, Ukhanova M, Waugh S, Mai V, Christman MC, Langkamp-Henken B. Probiotics ( Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 2017; 105:758-767. [PMID: 28228426 DOI: 10.3945/ajcn.116.140012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Background: Rhinoconjunctivitis-specific quality of life is often reduced during seasonal allergies. The Mini Rhinoconjunctivitis Quality of Life Questionnaire (MRQLQ) is a validated tool used to measure quality of life in people experiencing allergies (0 = not troubled to 6 = extremely troubled). Probiotics may improve quality of life during allergy season by increasing the percentage of regulatory T cells (Tregs) and inducing tolerance.Objective: The objective of this study was to determine whether consuming Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and B. longum MM-2 compared with placebo would result in beneficial effects on MRQLQ scores throughout allergy season in individuals who typically experience seasonal allergies. Secondary outcomes included changes in immune markers as part of a potential mechanism for changes in MRQLQ scores.Design: In this double-blind, placebo-controlled, parallel, randomized clinical trial, 173 participants (mean ± SEM: age 27 ± 1 y) who self-identified as having seasonal allergies received either a probiotic (2 capsules/d, 1.5 billion colony-forming units/capsule) or placebo during spring allergy season for 8 wk. MRQLQ scores were collected weekly throughout the study. Fasting blood samples were taken from a subgroup (placebo, n = 37; probiotic, n = 35) at baseline and week 6 (predicted peak of pollen) to determine serum immunoglobulin (Ig) E concentrations and Treg percentages.Results: The probiotic group reported an improvement in the MRQLQ global score from baseline to pollen peak (-0.68 ± 0.13) when compared with the placebo group (-0.19 ± 0.14; P = 0.0092). Both serum total IgE and the percentage of Tregs increased from baseline to week 6, but changes were not different between groups.Conclusions: This combination probiotic improved rhinoconjunctivitis-specific quality of life during allergy season for healthy individuals with self-reported seasonal allergies; however, the associated mechanism is still unclear. This trial was registered at clinicaltrials.gov as NCT02349711.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, FL; and
| | - Sheldon Waugh
- Emerging Pathogens Institute, University of Florida, Gainesville, FL; and
| | - Volker Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL; and
| | | | | |
Collapse
|
114
|
Deshpande V, Krishnan R, Philip S, Faludi I, Ponnusamy T, Thota LNR, Endresz V, Lu X, Kakkar VV, Mundkur LA. Oral administration of recombinant Mycobacterium smegmatis expressing a tripeptide construct derived from endogenous and microbial antigens prevents atherosclerosis in ApoE(-/-) mice. Cardiovasc Ther 2017; 34:314-24. [PMID: 27241889 DOI: 10.1111/1755-5922.12201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Immunotherapy by inducing oral tolerance to atherogenic self-antigens is gaining importance as an alternative treatment modality for atherosclerosis. The use of live bacterial vectors to express the recombinant antigen in vivo will obviate the need for large-scale purification of recombinant protein and may also augment the efficacy of oral tolerance induction. AIM The objective of the study was to explore the use of recombinant Mycobacterium smegmatis as a live vector for oral delivery of antigens to induce immune tolerance. METHOD AND RESULTS We developed a M. smegmatis vector to secrete a recombinant tripeptide construct (AHC; peptides from Apolipoprotein B, Heat-shock protein 60 and Chlamydia pneumoniae outer membrane protein) expressed in a dendroaspin protein scaffold in pJH154 background. Immune response and oral tolerance to the cloned peptides were studied in C57/BL6 mice. The efficacy of this live vaccine to control atherosclerosis was studied in ApoE(-/-) knockout mice in C57/BL6 background. Oral administration of M. smegmatis secreting the cloned AHC antigen was found to induce tolerance to cloned protein and reduce the development of atherosclerosis by 24.0% compared to control. Protection against atherosclerosis was associated with increase in expression of regulatory T cell-associated markers including CTLA4 (1.8-fold), Foxp3 (2.6-fold), TGF-β (2.8-fold), IL10 (2.9-fold), and reduction in lipids, macrophage infiltration, and expression of inflammatory mediators in aorta. CONCLUSIONS Our results suggest that M. smegmatis can be developed as an oral carrier of recombinant proteins to treat inflammatory autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Sheena Philip
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India
| | - Ildiko Faludi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Xinjie Lu
- Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Vijay V Kakkar
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.,Molecular Immunology, Thrombosis Research Institute, London, UK
| | - Lakshmi A Mundkur
- Molecular Immunology, Thrombosis Research Institute, Bangalore, India.
| |
Collapse
|
115
|
Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Letkiewicz S, Fortuna W, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Olchawa E, Walaszek KM, Górski A. Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol 2017; 12:109-117. [DOI: 10.2217/fmb-2016-0156] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: The aim was to study the association between the phage neutralization of patients’ sera and the clinical outcome of phage therapy (PT). Patients: About 62 patients with various bacterial infections receiving PT as well as 30 healthy volunteers were studied. Materials & methods: Antiphage activity of sera (AAS) was examined using the phage neutralization test of different types of phages before and during PT in relation to the route of phage administration and correlated with the results of PT. Results & conclusion: The analysis of the association between AAS level and clinical results indicated that the level of AAS is not correlated with the outcome of PT.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Maciej Żaczek
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Medical Sciences Institute, Katowice School of Economics, Katowice, Poland
| | - Wojciech Fortuna
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Rogóż
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krzysztof Szufnarowski
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | | | - Kinga M Walaszek
- Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Andrzej Górski
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
116
|
Paiatto LN, Silva FGD, Bier J, Brochetto-Braga MR, Yamada ÁT, Tamashiro WMSC, Simioni PU. Oral Tolerance Induced by OVA Intake Ameliorates TNBS-Induced Colitis in Mice. PLoS One 2017; 12:e0170205. [PMID: 28099498 PMCID: PMC5242488 DOI: 10.1371/journal.pone.0170205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Literature data have shown that the consumption of dietary proteins may cause modulatory effects on the host immune system, process denominated oral tolerance by bystander suppression. It has been shown that the bystander suppression induced by dietary proteins can improve inflammatory diseases such as experimental arthritis. Here, we evaluated the effects of oral tolerance induced by ingestion of ovalbumin (OVA) on TNBS-induced colitis in mice, an experimental model for human Crohn's disease. METHODS AND RESULTS Colitis was induced in BALB/c mice by instilling a single dose of TNBS (100 mg/kg) in ethanol into the colon. Tolerized mice received OVA (4mg/mL) dissolved in the drinking water for seven consecutive days, prior to or concomitantly with the intrarectal instillation. Control groups received protein-free water and ethanol by intrarectal route. We observed that either the prior or concomitant induction of oral tolerance were able to reduce the severity of colitis as noted by recovery of body weight gain, improvement of clinical signs and reduction of histological abnormalities. The in vitro proliferation of spleen cells from tolerant colitic mice was lower than that of control mice, the same as the frequencies of CD4+ T cells secreting IL-17 and IFN-γ. The frequencies of regulatory T cells and T cells secreting IL-10 have increased significantly in mice orally treated with OVA. The levels of inflammatory cytokines (IL-17A, TNF-α, IL-6 and IFN-γ) were lower in supernatants of cells from tolerant colitic mice, whereas IL-10 levels were higher. CONCLUSION Our data show that the modulation of immune response induced by oral tolerance reduces the severity of experimental colitis. Such modulation may be partially attributed to the increase of Treg cells and reduction of pro-inflammatory cytokines in peripheral lymphoid organs of tolerant mice by bystander suppression.
Collapse
Affiliation(s)
- Lisiery N. Paiatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| | - Fernanda G. D. Silva
- Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Julia Bier
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Áureo T. Yamada
- Department of Histology and Embryology, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Wirla M. S. C. Tamashiro
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia U. Simioni
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
- Department of Biomedical Science, Faculty of Americana, FAM, Americana, São Paulo, Brazil
| |
Collapse
|
117
|
Kostadinova AI, Meulenbroek LAPM, van Esch BCAM, Hofman GA, Garssen J, Willemsen LEM, Knippels LMJ. A Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates Partial Non-Responsiveness to Whey Protein in Mice Orally Exposed to β-Lactoglobulin-Derived Peptides. Front Immunol 2017; 7:673. [PMID: 28127297 PMCID: PMC5226939 DOI: 10.3389/fimmu.2016.00673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Oral tolerance is a promising approach for allergy prevention in early life, but it strongly depends on allergen exposure and proper immune environment. Small tolerance-inducing peptides and dietary immunomodulatory components may comprise an attractive method for allergy prevention in at-risk infants. This study aimed to investigate whether early oral exposure to β-lactoglobulin-derived peptides (BLG-peptides) and a specific synbiotic mixture of short- and long- chain fructo-oligosaccharides (scFOS/lcFOS, FF) and Bifidobacterium breve (Bb) M-16V (FF/Bb) can prevent cow’s milk allergy (CMA). Three-week-old female C3H/HeOuJ mice were orally exposed to phosphate buffered saline (PBS), whey protein, or a mixture of four synthetic BLG-peptides combined with a FF/Bb-enriched diet prior to intragastric sensitization with whey protein and cholera toxin. To assess the acute allergic skin response and clinical signs of allergy, mice were challenged intradermally with whole whey protein. Serum immunoglobulins were analyzed after a whey protein oral challenge. Cytokine production by allergen-reactivated splenocytes was measured and changes in T cells subsets in the spleen, mesenteric lymph nodes, and intestinal lamina propria were investigated. Pre-exposing mice to a low dosage of BLG-peptides and a FF/Bb-enriched diet prior to whey protein sensitization resulted in a significant reduction of the acute allergic skin response to whey compared to PBS-pretreated mice fed a control diet. Serum immunoglobulins were not affected, but anaphylactic symptom scores remained low and splenocytes were non-responsive in whey-induced cytokine production. In addition, preservation of the Th1/Th2 balance in the small intestine lamina propria was a hallmark of the mechanism underlying the protective effect of the BLG-peptides–FF/Bb intervention. Prior exposure to BLG-peptides and a FF/Bb-enriched diet is a promising approach for protecting the intestinal Th1/Th2 balance and reducing the allergic response to whole whey protein. Therefore, it might have implications for developing successful nutritional strategies for CMA prevention.
Collapse
Affiliation(s)
- Atanaska I Kostadinova
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | | | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | - Gerard A Hofman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , Netherlands
| | - Léon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Immunology, Nutricia Research, Utrecht, Netherlands
| |
Collapse
|
118
|
Shin JH, Kim DH, Kim BY, Kim SW, Hwang SH, Lee J, Kim SW. Anti-Interleukin-9 Antibody Increases the Effect of Allergen-Specific Immunotherapy in Murine Allergic Rhinitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:237-246. [PMID: 28293930 PMCID: PMC5352575 DOI: 10.4168/aair.2017.9.3.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Purpose Interleukin (IL)-9 induces allergic responses; however, the roles of anti-IL-9 antibody in the induction of tolerance remain unclear. This study investigated the effects of anti-IL-9 antibody on oral tolerance (OT) in a mouse model of allergic rhinitis (AR). Methods BALB/c mice were divided into 4 groups: the control, AR, OT, and OT with anti-IL-9 antibody (OT+IL9AB) groups. Ovalbumin (OVA) was used for sensitization and challenge. Mice in the OT and OT+IL9AB groups were fed OVA for immunotherapy. During immunotherapy, OT+IL9AB mice were injected with anti-IL-9 antibody. Allergic symptoms, tissue eosinophil counts, and serum OVA-specific immunoglobulin E (IgE) were measured. The mRNA expressions of cytokines and transcription factors of T cells of nasal mucosa were determined by real-time polymerase chain reaction (PCR). The protein levels of GATA3, ROR-γt, and Foxp3 in nasal mucosa were determined by Western blot. CD4+CD25+Foxp3+ T cells in the spleen were analyzed by flow cytometry. Results Administration of anti-IL-9 antibody decreased allergic symptoms, OVA-specific IgE levels, and eosinophil counts. In addition, it inhibited T-helper (Th) 2 responses, but had no effect on Th1 responses. Protein levels of ROR-γt and mRNA levels of PU.1 and ROR-γt were reduced by anti-IL-9 antibody. Anti-IL-9 antibody increased Foxp3 and IL-10 mRNA expression, Foxp3 protein, and induction of CD4+CD25+Foxp3+ T cells. Conclusions Anti-IL-9 antibody decreased allergic inflammation through suppression of Th2 and Th17 cells. Anti-IL-9 antibody enhanced the tolerogenic effects of regulatory T cells. These results suggest that anti-IL-9 antibody might represent a potential therapeutic agent for allergen immunotherapy in patients with uncontrolled allergic airway disease.
Collapse
Affiliation(s)
- Ji Hyeon Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Boo Young Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joohyung Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Whan Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
119
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
120
|
Abstract
Immunoglobulin E (IgE)-mediated food allergy is an adverse reaction to foods and is driven by uncontrolled type-2 immune responses. Current knowledge cannot explain why only some individuals among those with food allergy are prone to develop life-threatening anaphylaxis. It is increasingly evident that the immunologic mechanisms involved in developing IgE-mediated food allergy are far more complex than allergic sensitization. Clinical observations suggest that patients who develop severe allergic reactions to food are often sensitized through the skin in early infancy. Environmental insults trigger epidermal thymic stromal lymphopoietin and interleukin-33 (IL-33) production, which endows dendritic cells with the ability to induce CD4
+TH2 cell-mediated allergic inflammation. Intestinal IL-25 propagates the allergic immune response by enhancing collaborative interactions between resident type-2 innate lymphoid cells and CD4
+TH2 cells expanded by ingested antigens in the gastrointestinal tract. IL-4 signaling provided by CD4
+TH2 cells induces emigrated mast cell progenitors to become multi-functional IL-9-producing mucosal mast cells, which then expand greatly after repeated food ingestions. Inflammatory cytokine IL-33 promotes the function and maturation of IL-9-producing mucosal mast cells, which amplify intestinal mastocytosis, resulting in increased clinical reactivity to ingested food allergens. These findings provide the plausible view that the combinatorial signals from atopic status, dietary allergen ingestions, and inflammatory cues may govern the perpetuation of allergic reactions from the skin to the gut and promote susceptibility to life-threatening anaphylaxis. Future in-depth studies of the molecular and cellular factors composing these stepwise pathways may facilitate the discovery of biomarkers and therapeutic targets for diagnosing, preventing, and treating food allergy.
Collapse
Affiliation(s)
- Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45299-3026, USA
| |
Collapse
|
121
|
Scaramuzzi K, Tanaka GD, Neto FM, Garcia PR, Gabrili JJ, Oliveira DC, Tambourgi DV, Mussalem JS, Paixão-Cavalcante D, D’Azeredo Orlando MT, Botosso VF, Oliveira CL, Fantini MC, Sant’Anna OA. Nanostructured SBA-15 silica: An effective protective vehicle to oral hepatitis B vaccine immunization. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2241-2250. [DOI: 10.1016/j.nano.2016.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
|
122
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
123
|
Wang D, Ghosh D, Islam SMT, Moorman CD, Thomason AE, Wilkinson DS, Mannie MD. IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2992-3007. [PMID: 27619998 PMCID: PMC5101178 DOI: 10.4049/jimmunol.1500411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Abstract
This study introduces a flexible format for tolerogenic vaccination that incorporates IFN-β and neuroantigen (NAg) in the Alum adjuvant. Tolerogenic vaccination required all three components, IFN-β, NAg, and Alum, for inhibition of experimental autoimmune encephalomyelitis (EAE) and induction of tolerance. Vaccination with IFN-β + NAg in Alum ameliorated NAg-specific sensitization and inhibited EAE in C57BL/6 mice in pretreatment and therapeutic regimens. Tolerance induction was specific for the tolerogenic vaccine Ag PLP178-191 or myelin oligodendrocyte glycoprotein (MOG)35-55 in proteolipid protein- and MOG-induced models of EAE, respectively, and was abrogated by pretreatment with a depleting anti-CD25 mAb. IFN-β/Alum-based vaccination exhibited hallmarks of infectious tolerance, because IFN-β + OVA in Alum-specific vaccination inhibited EAE elicited by OVA + MOG in CFA but not EAE elicited by MOG in CFA. IFN-β + NAg in Alum vaccination elicited elevated numbers and percentages of FOXP3+ T cells in blood and secondary lymphoid organs in 2D2 MOG-specific transgenic mice, and repeated boosters facilitated generation of activated CD44high CD25+ regulatory T cell (Treg) populations. IFN-β and MOG35-55 elicited suppressive FOXP3+ Tregs in vitro in the absence of Alum via a mechanism that was neutralized by anti-TGF-β and that resulted in the induction of an effector CD69+ CTLA-4+ IFNAR+ FOXP3+ Treg subset. In vitro IFN-β + MOG-induced Tregs inhibited EAE when transferred into actively challenged recipients. Unlike IFN-β + NAg in Alum vaccines, vaccination with TGF-β + MOG35-55 in Alum did not increase Treg percentages in vivo. Overall, this study indicates that IFN-β + NAg in Alum vaccination elicits NAg-specific, suppressive CD25+ Tregs that inhibit CNS autoimmune disease. Thus, IFN-β has the activity spectrum that drives selective responses of suppressive FOXP3+ Tregs.
Collapse
Affiliation(s)
- Duncheng Wang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - S M Touhidul Islam
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Ashton E Thomason
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Disease Research, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
124
|
Tunis MC, Dawod B, Carson KR, Veinotte LL, Marshall JS. Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy 2016; 45:1690-702. [PMID: 26242919 PMCID: PMC5019435 DOI: 10.1111/cea.12605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) is a widely expressed pattern recognition receptor critical for innate immunity. TLR2 is also a key regulator of mucosal immunity implicated in the development of allergic disease. TLR2 activators are found in many common foods, but the role of TLR2 in oral tolerance and allergic sensitization to foods is not well understood. OBJECTIVE The purpose of this study was to evaluate the impacts of TLR2 expression and TLR2 activation on oral tolerance to food antigens in a murine model. METHODS Mice were fed ovalbumin (OVA) or peanut butter with or without the addition of low doses of TLR2 activators Pam3 CSK4 or FSL-1. Oral tolerance was assessed by analysing antibody responses after a systemic antigen challenge. OVA-specific Tregs were assessed in the Peyer's patches, mesenteric lymph nodes, and spleen in wild-type and TLR2(-/-) mice. Low-dose Pam3 CSK4 was also tested as an oral adjuvant. RESULTS Oral tolerance was successfully induced in both wild-type and TLR2(-/-) recipient mice, with an associated regulatory T-cell response. Oral TLR2 activation, with low-dose Pam3 CSK4 or FSL-1, during oral antigen exposure was found to alter oral tolerance and was associated with the development of substantial IgE and IgA responses to foods upon systemic challenge. Low-dose oral Pam3 CSK4 treatment also selectively enhanced antigen-specific IgA responses to oral antigen exposure. CONCLUSIONS AND CLINICAL RELEVANCE TLR2 is not necessary for oral tolerance induction, but oral TLR2 activation modulates humoral IgE and IgA responses during tolerance development. Low-dose Pam3 CSK4 is also an effective oral adjuvant that selectively enhances IgA production. These observations are pertinent to the optimization of oral allergen immunotherapy and oral vaccine development.
Collapse
Affiliation(s)
- M C Tunis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - B Dawod
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - K R Carson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - L L Veinotte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - J S Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
125
|
Kim D, Beck BR, Lee SM, Jeon J, Lee DW, Lee JI, Song SK. Pellet feed adsorbed with the recombinant Lactococcus lactis BFE920 expressing SiMA antigen induced strong recall vaccine effects against Streptococcus iniae infection in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 55:374-383. [PMID: 27302864 DOI: 10.1016/j.fsi.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to develop a fish feed vaccine that provides effective disease prevention and convenient application. A lactic acid bacterium (LAB), Lactococcus lactis BFE920, was modified to express the SiMA antigen, a membrane protein of Streptococcus iniae. The antigen was engineered to be expressed under the nisin promoter, which is induced by nisin produced naturally by the host LAB. Various sizes (40 ± 3.5 g, 80 ± 2.1 g, and 221 ± 2.4 g) of olive flounder (Paralichthys olivaceus) were vaccinated by feeding the extruded pellet feed, onto which the SiMA-expressing L. lactis BFE920 (1.0 × 10(7) CFU/g) was adsorbed. Vaccine-treated feed was administered twice a day for 1 week, and priming and boosting were performed with a 1-week interval in between. The vaccinated fish had significantly elevated levels of antigen-specific serum antibodies and T cell marker mRNAs: CD4-1, CD4-2, and CD8a. In addition, the feed vaccine significantly induced T cell effector functions, such as the production of IFN-γ and activation of the transcription factor that induces its expression, T-bet. When the flounder were challenged by intraperitoneal infection and bath immersion with S. iniae, the vaccinated fish showed 84% and 82% relative percent survival (RPS), respectively. Furthermore, similar protective effects were confirmed even 3 months after vaccination in a field study (n = 4800), indicating that this feed vaccine elicited prolonged duration of immunopotency. In addition, the vaccinated flounder gained 21% more weight and required 16% less feed to gain a unit of body weight compared to the control group. The data clearly demonstrate that the L. lactis BFE920-SiMA feed vaccine has strong protective effects, induces prolonged vaccine efficacy, and has probiotic effects. In addition, this LAB-based fish feed vaccine can be easily used to target many different pathogens of diverse fish species.
Collapse
Affiliation(s)
- Daniel Kim
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Bo Ram Beck
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jongsu Jeon
- New Business Development Dept., Medytox Inc, Republic of Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jae Il Lee
- GyeongSangbuk-Do Fisheries Technology Center, Pohang 791-941, Republic of Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, Pohang 791-708, Republic of Korea.
| |
Collapse
|
126
|
Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol 2016; 12:398-411. [PMID: 27305853 DOI: 10.1038/nrrheum.2016.85] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human gut harbours a tremendously diverse and abundant microbial community that correlates with, and even modulates, many health-related processes. The mucosal interfaces are particularly active sites of microorganism-host interplay. Growing insight into the characteristic composition and functionality of the mucosal microbiota has revealed that the microbiota is involved in mucosal barrier integrity and immune function. This involvement affects proinflammatory and anti-inflammatory processes not only at the epithelial level, but also at remote sites such as the joints. Here, we review the role of the gut microbiota in shaping local and systemic immune responses and how disturbances in the host-microorganism interplay can potentially affect the development and progression of rheumatic diseases. Increasing our understanding of how to promote host-microorganism homeostasis could therefore reveal novel strategies for the prevention or alleviation of rheumatic disease.
Collapse
Affiliation(s)
- Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Jens T Van Praet
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.,Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, 8000 Bruges, Belgium
| | - Massimo Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Michael B Drennan
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| |
Collapse
|
127
|
Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221:1014-33. [PMID: 27262513 DOI: 10.1016/j.imbio.2016.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023]
Abstract
Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules.
Collapse
|
128
|
Burbank AJ, Burks W. Food specific oral immunotherapy: a potential treatment for food allergy. Expert Rev Gastroenterol Hepatol 2016; 9:1147-59. [PMID: 26145713 DOI: 10.1586/17474124.2015.1065177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Food allergy is a potentially life-threatening condition affecting up to 8% of children and up to 2% of adults in westernized countries. There are currently no approved treatments for food allergy apart from avoidance. The apparent increase in incidence of food allergies over the past few decades calls attention to the need for effective, disease-modifying therapies for food allergies. Oral immunotherapy (OIT) is a promising experimental treatment in which food allergic patients consume increasing quantities of food in attempt to increase their threshold for allergic reaction. Studies are ongoing to determine whether OIT is capable of safely inducing not only desensitization but also tolerance to the allergenic foods. This article focuses on recent relevant studies of OIT for the treatment of common food allergies.
Collapse
Affiliation(s)
- Allison J Burbank
- a University of North Carolina, Department of Allergy, Immunology, and Rheumatology, Chapel Hill, NC, USA
| | | |
Collapse
|
129
|
Tulic MK, Vivinus-Nébot M, Rekima A, Rabelo Medeiros S, Bonnart C, Shi H, Walker A, Dainese R, Boyer J, Vergnolle N, Piche T, Verhasselt V. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 2016; 65:757-766. [PMID: 26646935 DOI: 10.1136/gutjnl-2015-310523] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Abnormal gut barrier function is the basis of gut inflammatory disease. It is known that house dust mite (HDM) aero-allergens induce inflammation in respiratory mucosa. We have recently reported allergen from Dermatophagoides pteronyssinus (Der p1) to be present in rodent gut. OBJECTIVE To examine whether Der p1 is present in human gut and to assess its effect on gut barrier function and inflammation. DESIGN Colonic biopsies, gut fluid, serum and stool were collected from healthy adults during endoscopy. Der p1 was measured by ELISA. Effect of HDM was assessed on gut permeability, tight-junction and mucin expression, and cytokine production, in presence or absence of cysteine protease inhibitors or serine protease inhibitors. In vivo effect of HDM was examined in mice given oral HDM or protease-neutralised HDM. Role of HDM in low-grade inflammation was studied in patients with IBS. RESULTS HDM Der p1 was detected in the human gut. In colonic biopsies from healthy patients, HDM increased epithelial permeability (p<0.001), reduced expression of tight-junction proteins and mucus barrier. These effects were associated with increased tumour necrosis factor (TNF)-α and interleukin (IL)-10 production and were abolished by cysteine-protease inhibitor (p<0.01). HDM effects did not require Th2 immunity. Results were confirmed in vivo in mice. In patients with IBS, HDM further deteriorated gut barrier function, induced TNF-α but failed to induce IL-10 secretion (p<0.001). CONCLUSIONS HDM, a ubiquitous environmental factor, is present in the human gut where it directly affects gut function through its proteolytic activity. HDM may be an important trigger of gut dysfunction and warrants further investigation.
Collapse
Affiliation(s)
- Meri K Tulic
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| | - Mylene Vivinus-Nébot
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Immunology, Hôpital Archet 1, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Akila Rekima
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France
| | - Samara Rabelo Medeiros
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chrystelle Bonnart
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Haining Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Raffaella Dainese
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Julien Boyer
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Nathalie Vergnolle
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Thierry Piche
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Valérie Verhasselt
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| |
Collapse
|
130
|
Role of Regulatory T-cells in Different Clinical Expressions of Helicobacter pylori Infection. Arch Med Res 2016; 47:245-54. [DOI: 10.1016/j.arcmed.2016.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
131
|
Huang MT, Lin BR, Liu WL, Lu CW, Chiang BL. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression. J Leukoc Biol 2016; 99:561-568. [PMID: 26543091 DOI: 10.1189/jlb.1a0715-296r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells have a crucial role in health and disease because of their immune regulation function. However, the anatomic sites where regulatory T cells exert optimal immune regulation are open to debate. In our current study with the use of a shear-stress flow assay, we found that regulatory T cells exhibited significantly decreased adhesion to either activated endothelial monolayer or intercellular adhesion molecule 1 or E-selectin-coated surfaces compared with activated effector T cells. The less transmigration capacity of the regulatory T cells prompted our speculation of preferential lymph node localization for the regulatory T cells that endowed these cells with immune regulation function in the most efficient manner. To test this hypothesis, the role of lymph node localization in regulatory T cell-mediated immune suppression was evaluated with a footpad inflammation model. We found that adoptively transferred regulatory T cells inhibited the development of footpad inflammation. In addition, although blockage of CCR7 or CD62L had no effect on the immune suppressive function of the regulatory T cells per se, pretreatment of the regulatory T cells with either CCR7 or CD62L blocking antibodies prevented their recruitment into draining lymph nodes and concomitantly abrogated the immune suppressive effects of adoptively transferred regulatory T cells during footpad inflammation. Our data demonstrate the crucial role of lymph node localization in regulatory T cell-mediated immune suppression and suggest a probable hierarchy in the anatomic sites for optimal immune regulation. Elucidating the relationships between the transmigration characteristics of the regulatory T cells and their immune regulation function will provide insightful information for regulatory T cell-based cell therapy.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Been-Ren Lin
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Liang Liu
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wei Lu
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Departments of *Medical Research, Pediatrics, Graduate Institute of Clinical Medicine, School of Medicine, and Department of General Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
132
|
Ma ZF, Majid NA, Yamaoka Y, Lee YY. Food Allergy and Helicobacter pylori Infection: A Systematic Review. Front Microbiol 2016; 7:368. [PMID: 27047479 PMCID: PMC4804492 DOI: 10.3389/fmicb.2016.00368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/07/2016] [Indexed: 01/05/2023] Open
Abstract
Introduction: Based on the hygiene hypothesis, a low prevalence of Helicobacter pylori (H. pylori) infection may explain the recent high prevalence of allergic diseases including food allergy. However, there are very few studies that investigate the relationship between H. pylori and food allergy. Summary: We searched for PubMed, Ovid Medline and the Cochrane library for relevant articles published in English from inception to November 2015. The inverse relationship between H. pylori and food allergy remains unproven because of contradictory and limited evidence at the moment. Likewise, only limited studies have examined the relationship between CagA; one of H. pylori virulence factor and food allergy. On the other hand, in vitro evidence seems to point out a role of H. pylori in the causation of food allergy. The inconsistent results from epidemiological data may be due to small sample size, heterogeneous populations and unstandardised methods or food allergens. Conclusion: Available studies do not support the role of H. pylori in food allergy.
Collapse
Affiliation(s)
- Zheng Fei Ma
- Department of Human Nutrition, University of Otago Dunedin, New Zealand
| | - Noorizan A Majid
- School of Medical Sciences, Universiti Sains Malaysia Kubang Kerian, Malaysia
| | - Yoshio Yamaoka
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, HoustonTX, USA; Department of Environmental and Preventive Medicine, Oita University Faculty of MedicineYufu, Japan
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia Kubang Kerian, Malaysia
| |
Collapse
|
133
|
Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency. Mucosal Immunol 2016; 9:479-91. [PMID: 26530133 DOI: 10.1038/mi.2015.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/30/2015] [Indexed: 02/04/2023]
Abstract
Increased risk of allergy during early life indicates deficient immune regulation in this period of life. To date, the cause for inefficient neonatal immune regulation has never been elucidated. We aimed to define the ontogeny of oral tolerance and to identify necessary conditions specific for this stage of life. Ovalbumin (OVA) was administered orally to mice through breast milk and efficiency of systemic tolerance to OVA was assessed in adulthood using a model of allergic airway inflammation. Oral tolerance induction was fully efficient starting third week of life. Inefficiency in neonates was a consequence of abnormal antigen transfer across the gut barrier and retinaldehyde dehydrogenase expression by mesenteric lymph node CD103(+) neonatal dendritic cells, resulting in inefficient T-cell activation. Neonates' serum retinol levels were three times lower than in adult mice, and vitamin A supplementation was sufficient to rescue neonatal defects and allow tolerance induction from birth. The establishment of oral tolerance required the differentiation of Th1 lymphocytes in both vitamin A-supplemented neonates and 3-week-old unsupplemented mice. This knowledge should guide the design of interventions for allergy prevention that are adapted to the neonatal stage of life such as vitamin A supplementation.
Collapse
|
134
|
Wang X, Terhorst C, Herzog RW. In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cell Immunol 2016; 301:18-29. [PMID: 26454643 PMCID: PMC4761281 DOI: 10.1016/j.cellimm.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Current therapy for the X-linked coagulation disorder hemophilia is based on intravenous infusion of the specifically deficient coagulation factor. However, 20-30% of hemophilia A patients (factor VIII, FVIII, deficiency) generate inhibitory antibodies against FVIII. While formation of inhibitors directed against factor IX, FIX, resulting from hemophilia B treatment is comparatively rare, a serious complication that is often associated with additional immunotoxicities, e.g. anaphylaxis, occurs. Current immune tolerance protocols to eradiate inhibitors are lengthy, expensive, not effective in all patients, and there are no prophylactic tolerance regimens to prevent inhibitor formation. The outcomes of recent experiments in animal models of hemophilia demonstrate that regulatory CD4(+) T cells (Treg) are of paramount importance in controlling B cell responses to FVIII and FIX. This article reviews several novel strategies designed to in vivo induce coagulation factor-specific Treg cells and discusses the subsets of Treg that may promote immune tolerance in hemophilia. Among others, drug- and gene transfer-based protocols, lymphocyte transplant, and oral tolerance are reviewed.
Collapse
Affiliation(s)
- Xiaomei Wang
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Cox Terhorst
- Div. Immunology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
135
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
136
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
137
|
Cardona P, Marzo-Escartín E, Tapia G, Díaz J, García V, Varela I, Vilaplana C, Cardona PJ. Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice. Front Microbiol 2016; 6:1482. [PMID: 26779140 PMCID: PMC4700139 DOI: 10.3389/fmicb.2015.01482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Low-dose tolerance using heat-killed mycobacteria has been tested as a means of stopping progression toward active tuberculosis (TB) lesions in a human-like murine model using C3HeB/FeJ mice. In the present study, we studied the effect of different treatment schedules with heat-killed non-tuberculous-mycobacteria (NTM) species when given orally, based on the hypothesis of generating oral tolerance. This study included M. manresensis, a new species belonging to the fortuitum group, present in drinking water. Oral treatment with M. manresensis for 2 weeks was able to induce a PPD-specific Tregs population, which has been related to a decrease in the neutrophilic infiltration found in TB lesions. Further mechanistic analysis using PPD-stimulated splenocytes links this 2-week treatment with heat-killed M. manresensis to IL-10 production and memory PPD-specific Tregs, and also to a weak PPD-specific global immune response stimulation, increasing IL-6, TNF, and IFN-γ production. In lungs, this treatment decreased the bacillary load, granulomatous infiltration and pro-inflammatory cytokines (TNF, IFN-γ, IL-6, and IL-17). Oral administration of M. manresensis during standard treatment for TB also significantly reduced the relapse of active TB after ending the treatment. Overall the data suggest that the use of heat-killed M. manresensis could be a new and promising tool for avoiding active TB induction and as adjunctive to TB treatment. This supports the usefulness of generating a new kind of protection based on a complex balanced immune response focused on both destroying the bacilli and including control of an excessive inflammatory response.
Collapse
Affiliation(s)
- Paula Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Elena Marzo-Escartín
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Gustavo Tapia
- Pathology Department, Universitat Autònoma de Barcelona, Hospital Germans Trias I Pujol Badalona, Spain
| | - Jorge Díaz
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Vanessa García
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Ismael Varela
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona Badalona, Spain
| |
Collapse
|
138
|
Bittner S, Wiendl H. Neuroimmunotherapies Targeting T Cells: From Pathophysiology to Therapeutic Applications. Neurotherapeutics 2016; 13:4-19. [PMID: 26563391 PMCID: PMC4720668 DOI: 10.1007/s13311-015-0405-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Therapeutic options for multiple sclerosis (MS) have significantly increased over the last few years. T lymphocytes are considered to play a central role in initiating and perpetuating the pathological immune response. Currently approved therapies for MS target T lymphocytes, either in an unspecific manner or directly by interference with specific T-cell pathways. While the concept of "T-cell-specific therapy" implies specificity and selectivity, currently approved approaches come from a general shaping of the immune system towards anti-inflammatory immune responses by non-T-cell-selective immune suppression or immune modulation (e.g., interferons-immune modulation approach) to a depletion of immune cell populations involving T cells (e.g., anti-CD52, alemtuzumab-immune selective depletion approach), or a selective inhibition of distinct molecular pathways in order to sequester leucocytes (e.g., natalizumab-leukocyte sequestration approach). This review will highlight the rationale and results of different T-cell-directed therapeutic approaches coming from basic animal experiments to clinical trials. We will first discuss the pathophysiological rationale for targeting T lymphocytes in MS leading to currently approved treatments acting on T lymphocytes. Furthermore, we will disuss previous promising concepts that have failed to show efficacy in clinical trials or were halted as a result of unexpected adverse events. Learning from the discrepancies between expectations and failures in practical outcomes helps to optimize future research approaches and clinical study designs. As our current view of MS pathogenesis and patient needs is rapidly evolving, novel therapeutic approaches targeting T lymphocytes will also be discussed, including specific molecular interventions such as cytokine-directed treatments or strategies enhancing immunoregulatory mechanisms. Based on clinical experience and novel pathophysiological approaches, T-cell-based strategies will remain a pillarstone of MS therapy.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
139
|
The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 2015; 15:198-209. [PMID: 26724103 DOI: 10.1016/s1474-4422(15)00334-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of the target antigens of pathogenic antibodies and T cells is of fundamental importance for understanding the pathogenesis of multiple sclerosis, and for the development of personalised treatments for the disease. Myelin-specific CD4+ T cells emerged long ago as a key player in animal models of multiple sclerosis. Taking a forward-translational approach, autoreactive CD4+ T cells have been studied extensively in patients with multiple sclerosis, and there is evidence, but as yet no direct proof, that autoreactive CD4+ T cells are a key player in the pathogenesis of the disorder. Several therapies that selectively target myelin-specific CD4+ T cells have been investigated in clinical trials up to phase 3. So far, however, none of these (mostly underpowered) therapeutic trials have provided definitive evidence of clinical efficacy. One major obstacle to personalised, highly selective immunotherapy is the absence of standardised and reliable assays to assess antigen-specific human T-cell responses. Such assays would be essential for stratification of patients with multiple sclerosis according to their individual target antigens.
Collapse
|
140
|
Kenngott EE, Cole S, Hein WR, Hoffmann U, Lauer U, Maass D, Moore L, Pfeil J, Rosanowski S, Shoemaker CB, Umair S, Volkmer R, Hamann A, Pernthaner A. Identification of Targeting Peptides for Mucosal Delivery in Sheep and Mice. Mol Pharm 2015; 13:202-10. [DOI: 10.1021/acs.molpharmaceut.5b00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sally Cole
- AgResearch Ltd., Hamilton 3240, New Zealand
| | | | - Ute Hoffmann
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - Uta Lauer
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | - David Maass
- AgResearch Ltd., Hamilton 3240, New Zealand
- Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Jennifer Pfeil
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
| | | | | | | | | | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum, 10117 Berlin, Germany
- Charité Universitätsmedizin, 10117 Berlin, Germany
| | | |
Collapse
|
141
|
Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015; 14:781-803. [DOI: 10.1038/nrd4608] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
Affiliation(s)
- Miao Wang
- a State Key Laboratory of Veterinary Etiological Biology; National Foot-and-Mouse Disease Reference Laboratory; Lanzhou Veterinary Research Institute; CAAS ; Lanzhou , Gansu , China
| | | | | | | | | |
Collapse
|
143
|
Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 2015; 6:1085. [PMID: 26500629 PMCID: PMC4595839 DOI: 10.3389/fmicb.2015.01085] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Every year in the United States approximately 200,000 people die from pulmonary infections, such as influenza and pneumonia, or from lung disease that is exacerbated by pulmonary infection. In addition, respiratory diseases such as, asthma, affect 300 million people worldwide. Therefore, understanding the mechanistic basis for host defense against infection and regulation of immune processes involved in asthma are crucial for the development of novel therapeutic strategies. The identification, characterization, and manipulation of immune regulatory networks in the lung represents one of the biggest challenges in treatment of lung associated disease. Recent evidence suggests that the gastrointestinal (GI) microbiota plays a key role in immune adaptation and initiation in the GI tract as well as at other distal mucosal sites, such as the lung. This review explores the current research describing the role of the GI microbiota in the regulation of pulmonary immune responses. Specific focus is given to understanding how intestinal “dysbiosis” affects lung health.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
144
|
Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments. Mediators Inflamm 2015; 2015:493012. [PMID: 26339135 PMCID: PMC4539174 DOI: 10.1155/2015/493012] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn's disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.
Collapse
|
145
|
Maeda S, Ohno K, Fujiwara-Igarashi A, Uchida K, Tsujimoto H. Changes in Foxp3-Positive Regulatory T Cell Number in the Intestine of Dogs With Idiopathic Inflammatory Bowel Disease and Intestinal Lymphoma. Vet Pathol 2015; 53:102-12. [PMID: 26173451 DOI: 10.1177/0300985815591081] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although regulatory T cells (Tregs) play an integral role in immunologic tolerance and the maintenance of intestinal homeostasis, their involvement in canine gastrointestinal diseases, including idiopathic inflammatory bowel disease (IBD) and intestinal lymphoma, remains unclear. Here we show altered numbers of forkhead box P3 (Foxp3)-positive Tregs in the intestine of dogs with IBD and intestinal lymphoma. IBD was diagnosed in 48 dogs; small cell intestinal lymphoma was diagnosed in 46 dogs; large cell intestinal lymphoma was diagnosed in 30 dogs; and 25 healthy beagles were used as normal controls. Foxp3-positive Tregs in the duodenal mucosa were examined by immunohistochemistry and immunofluorescence. Duodenal expression of interleukin-10 mRNA was quantified by real-time reverse transcription polymerase chain reaction. The number of Foxp3-positive lamina propria cells and the expression of interleukin-10 mRNA were significantly lower in dogs with IBD than in healthy dogs and dogs with intestinal lymphoma. The number of Foxp3-positive intraepithelial cells was higher in dogs with small cell intestinal lymphoma. Some large cell intestinal lymphoma cases had high numbers of Foxp3-positive cells, but the increase was not statistically significant. Double-labeling immunofluorescence showed that CD3-positive granzyme B-negative helper T cells expressed Foxp3. In small cell intestinal lymphoma cases, the overall survival of dogs with a high Treg density was significantly worse than that of dogs with a normal Treg density. These results suggest that a change in the number of Foxp3-positive Tregs contributes to the pathogenesis of canine IBD and intestinal lymphoma by disrupting mucosal tolerance and suppressing antitumor immunity, respectively.
Collapse
Affiliation(s)
- S Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - A Fujiwara-Igarashi
- Department of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - K Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
146
|
Shoda H, Fujio K, Sakurai K, Ishigaki K, Nagafuchi Y, Shibuya M, Sumitomo S, Okamura T, Yamamoto K. Autoantigen BiP-Derived HLA-DR4 Epitopes Differentially Recognized by Effector and Regulatory T Cells in Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1171-81. [PMID: 25778936 DOI: 10.1002/art.39054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/22/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The balance between effector and regulatory CD4+ T cells plays a key role in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to examine whether the RA autoantigen BiP has epitopes for both effector and regulatory immunities. METHODS The proliferation and cytokine secretion of peripheral blood mononuclear cells (PBMCs) from HLA-DR4-positive RA patients in response to BiP-derived peptides were examined by (3)H-thymidine uptake and enzyme-linked immunosorbent assay. As a mouse therapeutic model, a BiP-derived peptide was administered orally to mice with collagen-induced arthritis (CIA). RESULTS Among the peptides examined, BiP(336-355) induced the strongest proliferation of PBMCs from RA patients, but not from healthy donors. The proliferation of PBMCs in response to BiP(336-355) showed a correlation with clinical RA activity and serum anti-BiP/citrullinated BiP antibodies. In contrast, BiP(456-475) induced interleukin-10 (IL-10) secretion from CD25-positive PBMCs obtained from RA patients and healthy donors without inducing cell proliferation, and it actively suppressed the BiP(336-355)-induced proliferation and proinflammatory cytokine secretion by PBMCs. Oral administration of BiP(456-475) to mice with CIA reduced the severity of arthritis and T cell proliferation and increased the secretion of IL-10 from T cells as well as the number of CD4+CD25+FoxP3+ regulatory T cells. CONCLUSION Effector and regulatory T cells recognized different BiP epitopes. The deviated balance toward BiP-specific effector T cells in RA may be associated with disease activity; therefore, BiP-specific effector or regulatory T cells could be a target of new RA therapies.
Collapse
|
147
|
Alvarenga DM, Perez DA, Gomes-Santos AC, Miyoshi A, Azevedo V, Coelho-Dos-Reis JGA, Martins-Filho OA, Faria AMC, Cara DC, Andrade MC. Previous Ingestion of Lactococcus lactis by Ethanol-Treated Mice Preserves Antigen Presentation Hierarchy in the Gut and Oral Tolerance Susceptibility. Alcohol Clin Exp Res 2015; 39:1453-64. [PMID: 26110492 DOI: 10.1111/acer.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. METHODS Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. RESULTS The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. CONCLUSIONS The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract.
Collapse
Affiliation(s)
- Débora M Alvarenga
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Denise A Perez
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Ana C Gomes-Santos
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Anderson Miyoshi
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | | | | | - Ana Maria C Faria
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Denise C Cara
- Universidade Federal de Minas Gerais (UFMG), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Marileia C Andrade
- Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, MG, Brazil
| |
Collapse
|
148
|
Israeli E, Zigmond E, Lalazar G, Klein A, Hemed N, Goldin E, Ilan Y. Oral mixture of autologous colon-extracted proteins for the Crohn’s disease: A double-blind trial. World J Gastroenterol 2015; 21:5685-5694. [PMID: 25987796 PMCID: PMC4427695 DOI: 10.3748/wjg.v21.i18.5685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/13/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the safety and efficacy of oral administration of Alequel™, an autologous protein-containing colon extract.
METHODS: A total of 43 patients were enrolled in a randomized, placebo-controlled, double-blind trial. Patients were orally administered with autologous protein-containing colon extract three doses of autologous study drug per week for 15 wk, for a total of 45 doses. Patients were followed for safety parameters. Remission was defined as a Crohn’s disease activity index (CDAI) score of less than or equal to 150. All patients were followed for changes in subsets of T cells by fluorescence-activated cell sorting analysis.
RESULTS: Analysis was performed on a total number of evaluable patients of 14 in the study drug group and 15 in the placebo group. Treatment was well tolerated by all patients. No major treatment-related adverse events were reported or observed in any of the treated patients during the feeding or follow-up periods. Between weeks 6 and 9 of the study, six of the 14 (43%) evaluable subjects who received the study drug achieved a CDAI of 150 or lower. In contrast, five of the 15 (33%) evaluable subjects in the placebo group achieved remission. Between weeks 9 and 12, the remission rates were 50% and 33% for the drug group and placebo group, respectively. Among the drug-treated subjects who achieved remission, the effect of the drug was judged as stable in eight of the 14 subjects as measured by at least two CDAI scores indicating remission in the 15-wk treatment period. A decreased percentage of peripheral natural killer T regulatory cells (a decrease of 28% vs an increase of 16%) and an increased ratio of CD4+/CD8+ T lymphocytes (an increase of 11% vs a decrease of 9%) were noted in subjects with a significant clinical response.
CONCLUSION: Oral administration of the autologous colonic extract could be a safe and effective for the treatment of patients with moderate to severe Crohn’s disease.
Collapse
|
149
|
Abstract
Antigen-specific immunotherapy is expected to be a desirable treatment for allergic diseases. Currently, antigen-specific immunotherapy is performed by administering disease-causing antigens subcutaneously or sublingually. These approaches induce long-term remission in patients with allergic rhinitis or asthma. The oral route is an alternative to subcutaneous and sublingual routes, and can also induce long-term remission, a phenomenon known as "oral tolerance." The effectiveness of oral tolerance has been reported in the context of autoimmune diseases, food allergies, asthma, atopic dermatitis, and allergic rhinitis in both human patients and animal models. However, few studies have examined its efficacy in animal models of allergic conjunctivitis. Previously, we showed that ovalbumin feeding suppressed ovalbumin-induced experimental allergic conjunctivitis, indicating the induction of oral tolerance is effective in treating experimental allergic conjunctivitis. In recent years, transgenic rice has been developed that can induce oral tolerance and reduce the severity of anaphylaxis. The major Japanese cedar pollen antigens in transgenic rice, Cryptomeria japonica 1 and C. japonica 2, were deconstructed by molecular shuffling, fragmentation, and changes in the oligomeric structure. Thus, transgenic rice may be an effective treatment for allergic conjunctivitis.
Collapse
|
150
|
Therapeutic applications of nanomedicine in autoimmune diseases: From immunosuppression to tolerance induction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1003-18. [DOI: 10.1016/j.nano.2014.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
|